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Abstract

Formanek and Procesi have demonstrated that Aut(Fn) is not linear for
n � 3. Their technique is to construct nonlinear groups of a special form,
which we call FP-groups, and then to embed a special type of automorphism
group, which we call a poison group, in Aut(Fn), from which they build an
FP-group. We �rst prove that poison groups cannot be embedded in certain
mapping class groups. We then show that no FP-groups of any form can
be embedded in mapping class groups. Thus the methods of Formanek and
Procesi fail in the case of mapping class groups, providing strong evidence
that mapping class groups may in fact be linear.
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1 Introduction

The question of whether mapping class groups are linear has been around for
some time. The recent work of Bigelow [2] and also Krammer [14] in determining
that the braid group is linear has renewed interest in the subject, due to the close
relationship between mapping class groups and braid groups. Let Sg;b;n denote a
surface of genus g with b boundary components and n �xed points. Let Mg;b;n

denote the mapping class group of Sg;b;n . We assume throughout that maps �x
boundary components pointwise. Bigelow and Budney [3] and independently
Korkmaz [13] recently determined that M2;0;0 is linear. Korkmaz also showed
in [13] that mapping class groups contain very large linear subgroups, namely,
the hyperelliptic subgroups. However, the question of linearity remains open
for mapping class groups of surfaces of genus 3 or greater.

Let Fn denote the free group of rank n. It is well known that Out(F2) and
Aut(F2) are linear. The former fact is due to Nielsen [17], and the latter follows
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by [7] from the linearity of the 4-string braid group B4 , which is due to Krammer
[14].

On the other hand, Formanek and Procesi demonstrated in [9] that Aut(Fn) is
not a linear group for n � 3. A simple corollary of this result is that Out(Fn)
is not linear for n � 4. The well-known fact due to Nielsen [15] that Mg;0;0

is isomorphic to Out(�1(Sg;0;0)) suggests that it may be possible to apply the
methods of Formanek and Procesi to mapping class groups, though it may not
be immediately clear how to do so.

Formanek and Procesi de�ne a class of nonlinear groups, which we will general-
ize slightly and refer to as Formanek and Procesi groups, or FP-groups for short.
We will show that the existence of FP-subgroups of Mg;0;1 would imply that
Mg+k;0;0 is not linear for k � 1. We will also focus our attention on a special
kind of automorphism group, which we call a poison group. We will describe the
particular method of Formanek and Procesi for constructing FP-groups from
poison subgroups.

This work originated in an attempt to use the methods of Formanek and Procesi
to show that Mg;0;0 is not linear for g � 3. We prove instead that the essential
building blocks of the Formanek and Procesi method do not exist in mapping
class groups, �rst in a special case.

Theorem A Poison subgroups cannot be embedded in Mg;0;1 .

Thus the particular technique of Formanek and Procesi fails to show that certain
mapping class groups are not linear. We then generalize this result as follows.

Theorem B FP-groups do not embed in Mg;b;n for any g , b, and n.

Our paper is organized as follows. In Section 2, we give an overview of the meth-
ods of Formanek and Procesi for constructing a nonlinear subgroup of Aut(Fn)
from a poison subgroup. In Section 3, we establish connections between cer-
tain mapping class groups and the automorphism group of a closed surface. In
Section 4 we prove Theorem A. In Section 5 we prove Theorem B using very
di�erent techniques from those used in Section 4. Though Theorem A is a spe-
cial case of Theorem B, we include a separate proof of Theorem A both for the
sake of highlighting the particular construction of Formanek and Procesi and
also because the methods used are interesting in their own right. The reader
should note, however, that Sections 3, 4, and 5 are completely independent of
one another. For example, the reader interested only in Theorem B could read
Sections 1, 2, and 5 without any loss of continuity.
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2 The method of Formanek and Procesi

Let G be any group, and let H(G) denote the following HNN-extension of
G�G:

H(G) = hG�G; t j t(g; g)t−1 = (1; g); g 2 Gi:
In other words, conjugation by t in the HNN-extension carries the diagonal
subgroup G � G onto its second factor. Formanek and Procesi show in the
following theorem that such groups exhibit special behavior under a linear rep-
resentation.

Theorem 2.1 (Formanek and Procesi, [9]) Let G be a group. Then the im-
age of the subgroup G�f1g under any linear representation of H(G) is nilpot-
ent-by-abelian-by-�nite.

Corollary 2.2 Let G be a group, and K a normal subgroup of H(G) such
that the image of G � f1g in H(G)=K is not nilpotent-by-abelian-by-�nite.
Then H(G)=K is not linear.

Proof Let � : H(G)=K ! GLN (k) be a linear representation where k is a
�eld. Let � : H(G) ! H(G)=K be the natural projection map. Then � � � is
a linear representation of H(G) and hence by Theorem 2.1, �(�(G � f1g)) is
nilpotent-by-abelian-by-�nite. Thus � is not faithful.

We will call a group of the type described in Corollary 2.2 a Formanek and
Procesi group, or FP-group for short. We now describe the particular construc-
tion of Formanek and Procesi in demonstrating the nonlinearity of Aut(Fn) for
n � 3.
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Let G be any group. Let x1; x2; x3 be elements of G such that hx1; x2; x3i �= F3 .
Let �1; �2 2 Aut(G) be two maps such that

(1) �i(xj) = xj; i; j = 1; 2, and

(2) �i(x3) = x3xi; i = 1; 2.

We will call the subgroup h�1; �2i a poison subgroup of Aut(G). We can de-
�ne poison subgroups of the mapping class group Mg;0;1 analogously, since in
this case the mapping class group acts on �1(Sg;0;1). Notice that the second
condition implies that h�1; �2i �= F2 . Thus poison groups, being isomorphic
to the linear group F2 , are not themselves a kind of FP-group. However, as
the following lemma shows, their existence in an automorphism group Aut(G)
implies that Aut(G) is not linear (hence the name \poison groups", though it
suggests a bias towards linearity).

Lemma 2.3 Let G be any group. If Aut(G) contains a poison subgroup, then
it contains an FP-subgroup isomorphic to H(F2).

Proof Let h�1; �2i be a poison subgroup in Aut(G). Following Formanek and
Procesi’s argument in [9], let �i 2 Aut(G) denote conjugation by xi . Consider
the group

H = h�1; �2; �1; �2; �3i:
First, note that h�1; �2; �3i is a normal subgroup of H since both �1 and
�2 preserve the subgroup hx1; x2; x3i. Now let w(a; b) denote any non-trivial
reduced word in the free group on the letters a and b. By de�nition of a poison
subgroup, we know that w(�1; �2)(xi) = xi for i = 1,2. This tells us that
if w(�1; �2) is in h�1; �2; �3i, then w(�1; �2) must induce conjugation by an
element in hx1; x2; x3i �= F3 , which commutes with x1 and x2 . But the only
such element is the identity. Hence w(�1; �2) must be the identity map. But
we know this is not the case since

w(�1; �2)(x3) = x3w(x1; x2): (1)

This tells us that the images of �1 and �2 mod h�1; �2; �3i will generate a free
group. Clearly, the images of �1 and �2 also generate the quotient of H by
h�1; �2; �3i , and so we have a split exact sequence

1! h�1; �2; �3i ! H ! h�1; �2i ! 1: (2)

Thus the only relations we have in a presentation for H are given by conjuga-
tion, as follows:

H = h�1; �2; �1; �2; �3 j �i�j�−1
i = �j ; �i�3�

−1
i = �3�i; i; j = 1; 2i: (3)
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Rewriting the second set of relations, we obtain �3(�i�i)�−1
3 = �i; i = 1; 2.

Since h�1; �2i �= h�1; �2i �= F2 , we have that H �= H(F2), with �3 playing the
role of the element t. Since F2 is not nilpotent-by-abelian-by-�nite, H(F2) is
an FP-group.

3 The connection with mapping class groups

Our motivation for the work in this paper is the following observation, the proof
of which we defer to the end of the section.

Claim 3.1 If a poison subgroup exists in Mg;0;1 for g � 2, then the groups
Mg+k;0;0 are not linear for k � 1.

We have been abusing terminology a bit by talking about poison subgroups
in Mg;0;1 and also in the context of automorphism groups. The distinction
between the two contexts is unnecessary for our purposes, as the following
lemma shows, since these mapping class groups are isomorphic to automorphism
groups.

Lemma 3.2 Mg;0;1
�= Aut(�1(Sg;0;0)); for g � 2:

Proof We begin with the exact sequence

1! Inn(�1(Sg;0;0))! Aut(�1(Sg;0;0))! Out(�1(Sg;0;0))! 1:

By the well-known theorem of Nielsen [15], we have that Out(�1(Sg;0;0)) �=
Mg;0;0 . In addition, since �1(Sg;0;0) is centerless, we can replace Inn(�1(Sg;0;0))
with �1(Sg;0;0) (see, for example, [6]) to obtain

1! �1(Sg;0;0)! Aut(�1(Sg;0;0))!Mg;0;0 ! 1: (4)

By [4], we also have the following exact sequence:

1! �1(Sg;0;0)!Mg;0;1 !Mg;0;0 ! 1: (5)

Every short exact sequence 1 ! N ! E ! G ! 1 induces a homomorphism
G ! Out(N), de�ned as follows. Let g 2 G, and let eg be a lift of g 2 E .
Now, E acts on N by conjugation, hence we can think of eg as an element
of Aut(N). However, since N is not necessarily abelian, this map is only well
de�ned up to conjugation by an element of N . Thus we get a map G !
Out(N). According to Corollary 6.8 of [6], given any short exact sequence as
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above, with N centerless, there is a unique \middle group" E corresponding
to any given homomorphism G! Out(N).

In Sequence 4 above, it is clear that the map induced is the Nielsen isomorphism
between Mg;0;0 and Out(�1(Sg;0;0)). In Sequence 5, as discussed in [4], the
image of a generator a of �1(Sg;0;0) is the so-called \spin map" associated to
each curve, which induces conjugation by that curve, but can be more easily
understood as a product of opposite Dehn twists about the boundary of an
annular neighborhood of the curve a. In other words, if � and � are the two
boundary curves, then the spin map associated to the curve a can be written as
T�T

−1
� , where Tγ denotes the Dehn twist about the curve γ . Let � 2 Mg;0;0 ,

and let ~� denote a lift of � in Mg;0;1 . Then ~�T�T−1
�

~�−1 = T~�(�)T
−1
~�(�)

, which is

precisely the spin map associated to ~�(a). Thus, we are simply looking at the
action of ~� on �1(Sg;0;0), but since � does not necessarily �x the basepoint, �
is getting mapped to the class of ~� in Aut, modulo inner automorphisms. In
other words, the induced map from Mg;0;0 ! Out(�1(Sg;0;0)) is also the Nielsen
isomorphism. Now since �1(Sg;0;0) has a trivial center, we apply Corollary 6.8
of [6], and the lemma is proved.

Remark 3.3 The isomorphism given in Lemma 3.2 has received some atten-
tion in the literature, though perhaps not as much as it deserves. The map
itself is the obvious one, namely, any homeomorphism of a surface with one
�xed point induces a natural automorphism of the fundamental group of the
closed surface with the �xed point taken as base point. From the geomet-
ric point of view, it is not immediately clear that this map from Mg;0;1 to
Aut(�1(Sg;0;0)) should be a surjection, i.e., it is not necessarily obvious that all
elements of Aut(�1(Sg;0;0)) should be topologically induced.

Lemma 3.4 If Aut(�1(Sg;0;0)) is not linear, then Mg;1;0 is not linear.

Before proving the lemma, we make a few observations. From Chapter 4, Sec-
tion 1 of [4] and Lemma 3.2 we have the short exact sequence

1! Z!Mg;1;0 ! Aut(�1(Sg;0;0))! 1: (6)

We note that Z is actually the center of Mg;1;0 , generated by a Dehn twist
about the boundary curve. Now Aut(�1(Sg;0;0)) is the quotient of Mg;1;0 by
Z. In general, the quotient of a linear group is not necessarily linear, but the
extra information we have about the kernel in this case will allow us to draw
the desired conclusion. The following two theorems are proved in [19]. Note
that the term \closed" refers to the Zariski topology.
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Theorem 3.5 Let G be a linear group and H a closed normal subgroup of
G. Then G=H is also linear.

Theorem 3.6 The centralizer of any subset of a linear group is closed.

Proof of Lemma 3.4 Since Z is the center of Mg;1;0 , it is normal and also
closed by the above. Thus we can apply Theorem 3.5 to the surjection given in
Sequence 6, and Lemma 3.4 follows directly.

We are now ready to prove the claim.

Proof of Claim 3.1 Suppose that Mg;0;1 contains a poison subgroup. Then
by the isomorphism of Lemma 3.2, Aut(�1(Sg;0;0)) also contains a poison sub-
group. Then Aut(�1(Sg;0;0)) is not linear by Lemma 2.3. Now by Lemma 3.4,
Mg;1;0 is also not linear. The claim follows from the fact that Mg;1;0 is a sub-
group of Mg+k;0;0 , for k � 1. Although this fact is well-known, for the sake
of completeness we include a proof as follows. Consider Sg;1;0 as a subsurface
of Sg+k;0;0 . Let h be the homomorphism from Mg;1;0 to Mg+k;0;0 de�ned by
extension to the identity on Sg+k;0;0 n Sg;1;0 . Let f 2 ker(h) such that f 6= id.
The mapping class h(f) of Sg+k;0;0 keeps the subsurface Sg;1;0 invariant up to
isotopy. According to Section 7.5 in [11], h(f) induces a well de�ned mapping
class in �0(Di�(Sg;1;0)) (the group of homeomorphisms of Sg;1;0 up to isotopy
not necessarily �xing @Sg;1;0 ). But since h(f) = id and by the de�nition of h,
this implies that f induces the identity in �0(Di�(Sg;1;0)), which implies that
f could only be a non-trivial power of a Dehn twist in the @Sg;1;0 . Then by
de�nition, h(f) will also be a non-trivial power of a Dehn twist, which is a
contradiction.

Remark 3.7 We have de�ned poison subgroups in the context of Mg;0;1 and
also in the context of automorphism groups, but the de�nition also makes sense
in the context of any group action on another group. Thus one could use this
as a general approach to the linearity question for any such group.

4 Poison subgroups cannot be embedded in Mg;0;1

Our strategy for proving this result will be to decompose the surface S = Sg;0;0
into subsurfaces in a particular way. We then use the machinery of graphs of
groups (described in detail in [1]) to analyze the action of the generators of a
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poison subgroup of Mg;0;1 on the elements x1; x2; x3 2 �1(S). After completion
of the proof of Theorem A, we discovered that similar methods involving graphs
of groups and normal forms were used by Levitt and Vogtmann in [12] to
give an algorithm for the Whitehead problem for surface groups. There is a
major di�erence, however, in that we are not given the curves x1; x2; and x3 ,
and hence we cannot apply their algorithm directly, nor would our proof be
signi�cantly shortened by direct reference to their results. Thus we have kept
the proof of Theorem A in its original form for the sake of self-containment. We
have, however, found it useful to adopt their methods for the decomposition of
the surface S .

Throughout this section assume that g � 2, since Theorem A is clear when
g � 1. Fix a point � 2 S , and identify Sg;0;1 with (S; �). We use the point
� as the base point for the fundamental group of S . Let h�1; �2i be a poison
subgroup in Mg;0;1 . Then there are elements x1; x2; x3 2 �1(S; �) such that
hx1; x2; x3i �= F3 and

(1) �i(xj) = xj i; j = 1; 2, and

(2) �i(x3) = x3xi i = 1; 2.

In what follows, we will choose appropriate representatives for �i and xj (de-
noted by the same names by abuse of notation) such that, among other things, a
power of �i �xes a regular neighborhood of xj pointwise. To this end our main
tool will be the following result of Hass and Scott [10]. For y1; y2 2 �1(S; �),
let

Stab(y1; y2) = f� 2Mg;0;1 j �(yi) = yi; i = 1; 2g:

Lemma 4.1 Let y1; y2 be distinct elements of �1(S; �), which are not proper
powers. Then there exists a representative of yi (denoted by ~yi) and a subsur-
face A formed by a regular neighborhood N of ~y1 [ ~y2 together with all disk
components of SnN , such that, for any � 2 Stab(y1; y2), � has a representative
homeomorphism ~� such that ~�(A) = A.

This lemma follows from Theorem 2.1 in [10] together with the discussion in
the beginning of page 32 in the same paper. For further details see Section 2.1
in [12].

Remark 4.2 Notice that, in Lemma 4.1, if � 2 Stab(y1; y2), the map � in-
duces a unique mapping class in �0(Di�(A; �)) (see Section 7.5 in [11]).

Since it is possible that x1 and x2 are proper powers, we need the following
well-known lemma, adapted from [12].
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Lemma 4.3 Given a nontrivial element x 2 �1(S; �) , there exists a unique
y 2 �1(S; �) and a unique t � 1 such that y is not a proper power and x = yt .

Proof A proof is given in [12] (Lemma 2.3). Though we will not give details,
we note that it is also possible to prove this lemma by elementary hyperbolic
geometry, using the discrete action of �1(S; �) on the upper half plane by hy-
perbolic isometries.

Corollary 4.4 Let z1; z2 2 �1(S; �) be such that zN1 = zN2 for some N � 1.
Then z1 = z2 .

Proof Using Lemma 4.3 let ytii = zi such that yi is not a proper power and
ti � 1, for i = 1; 2. Let x = yt1N1 = yt2N2 . By the uniqueness guaranteed by
Lemma 4.3, we have y1 = y2 and t1N = t2N . Hence z1 = z2 , as desired.

Using Lemma 4.3, we can choose elements yi which are not proper powers and
ti � 1 such that xi = ytii for i = 1; 2. Then we know that �i(y

tj
j ) = y

tj
j ,

which implies that �i(yj) = yj , by Corollary 4.4. Notice that y1 and y2 are
distinct since hx1; x2i �= F2 . We choose ~yi and A according to Lemma 4.1. Let
�0(Di�(S;A)) be the subgroup of Mg;0;1 consisting of mapping classes which
have a representative keeping A �xed pointwise. We now adapt Lemma 3.1 of
[12] to our purposes, and repeat their argument nearly verbatim.

Lemma 4.5 The subgroup �0(Di�(S;A)) has �nite index in Stab(y1; y2).

Proof First note that A is not an annulus, since x1 and x2 generate a free
group. Using Lemma 4.1 (and noting Remark 4.2), we can de�ne a map �
from Stab(y1; y2) to �0(Di�(A; �)). Now we claim that the image of � is �nite.
To see this, let k be any positive integer. Let Tk denote the set of homotopy
classes of simple closed curves in A whose intersection number with y1 and y2

is at most k . Then Tk is �nite, since An (~y1 [ ~y2) is composed entirely of disks
and annuli. Any map � 2 Stab(y1; y2) will preserve the intersection number of
a curve with y1 and y2 , and hence Stab(y1; y2) acts on the set Tk . Now choose
a �nite set W of simple closed curves in A whose image completely determines
an element of �0(Di�(A; �)). Let k be bigger than the intersection number
of any element in W with y1 and y2 . Thus the class of � restricted to A in
�0(Di�(A; �)) is completely determined by the action of � on Tk . But the set
of permutations of Tk is �nite, and hence the image of Stab(y1; y2) under � is
�nite.
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Now let � : �0(Di�(A; �)) ! Out(�1(A; �)) be the natural homomorphism.
The image of � � � is also �nite by the above argument. Now any element
� 2 ker(� � �) induces an inner automorphism on �1(A; �), i.e., �(z) = czc−1 .
The element c has to commute with both y1 and y2 , which implies that c has
to be a power of both y1 and y2 since the centralizer of an element in a surface
group is cyclic (this is an exercise in elementary hyperbolic geometry), and y1

and y2 are not proper powers. But this implies that c = 1 since x1 and x2

generate a free group. Hence � induces the identity on �1(A; �). Picking a set
of simple generators for �1(A; �), one can use an isotopy of the surface to make
sure that � keeps them �xed pointwise, by [8]. Then one can further isotope �
to make sure � keeps A invariant pointwise by Alexander’s lemma [18]. Hence
ker(� � �) is contained in �0(Di�(S;A)), which proves the lemma.

Proposition 4.6 There exists an integer M such that �Mi �xes A pointwise
(up to isotopy).

Proof We know �i 2 Stab(y1; y2) for i = 1; 2. Hence by Lemma 4.5, there is
an integer Mi � 0 such that �Mi

i 2�0(Di�(S;A)). Letting M = LCM(M1;M2),
we have �Mi 2 �0(Di�(S;A)) for i = 1; 2.

From this point on, we assume that we are working with the particular repre-
sentative of �Mi which �xes A pointwise.

Let B1; � � � ;Br be the respective closures of each component of S n A. Each
component is Bj attached to A along one or more circles. Hence A\Bj consists
of nj � 1 circles, which we denote by γj;1; � � � ; γj;nj .

In what follows we will use this decomposition of S into the subsurfaces A;Bj
to construct a graph of groups G whose fundamental group will give a decom-
position of �1(S; �). To that end, we introduce some notation.

For an oriented arc e let start(e) and end(e) be the starting and ending points of
the arc e, respectively. Also, let �e be the same arc with the opposite orientation.
In the following discussion, let the pair of indices j; k be such that 1 � j � r ,
and 1 � k � nj .

Choose base points bj 2 Bj . Notice that �Mi �xes each Bj setwise. Hence we
further isotope �Mi so that it �xes bj , for i = 1; 2. See Figure 1.

Choose oriented arcs ej;k connecting � to bj for 1 � j � r and 1 � k � nj .
Choose each arc ei;j such that it intersects γj;k exactly once, and does not
intersect any other γ ’s. Moreover, we make the choices in such a way that
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B3

b3
γ3;1

γ3;2

B2

b2γ2;1

e2;1e3;1

e3;2

�

A

γ1;1

e1;1

b1

B1

Br

br

Figure 1: The decomposition of the surface S

ej;k γj;k
cj;k

e00j;k

e0j;k

�

bj

Figure 2: The subarcs of ej;k
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if (j; k) 6= (j0; k0), then ej;k and ej0;k0 do not intersect except possibly at the
endpoints. Let cj;k be the point of intersection of ej;k with γj;k . Also, let e0j;k
be the subarc of ej;k connecting � to cj;k , and let e00j;k be the subarc from cj;k
to bj . See Figure 2.

Let G be the graph embedded in S with vertices �; b1; � � � ; br and geometric
edges ej;k as above. As a technical point, the arcs with the opposite orientation
�ej;k are also considered edges of the graph G but not drawn separately.

We use the graph G to construct a graph of groups. To each vertex of G we
assign the fundamental group of the subsurface in which it is located, namely,
to � we assign A = �1(A; �), to bj we assign Bj = �1(Bj ; bj). To each edge
ej;k we assign Γej;k = �1(γj;k; cj;k) �= Z. Also, let Γ�ej;k = Γej;k . We also have
natural injections of the edge groups into the adjoining vertex groups as follows:
for any ej;k , since start(ej;k) = �, the vertex group for start(ej;k) is A. We have
�ej;k : Γej;k ! A de�ned by �ej;k(x) = e0j;kx�e0j;k . Corresponding to end(ej;k),
we have ��ej;k : Γej;k ! Bj which is de�ned by ��ej;k(x) = �e00j;kxe

00
j;k . For the

edges �ej;k set ��ej;k = ��ej;k and ���ej;k = �ej;k .

Let G be the graph of groups constructed by the above data. By the generalized
Van Kampen theorem, �1(S; �) is isomorphic to the fundamental group of the
graph of groups �1(G; �).

To understand the elements of �1(G; �), we quote some de�nitions from [1]. A
loop based at � in G is a sequence

t = (g0; �1; g1; � � � ; �n; gn)

where �i are edges of G and (�1; � � � ; �n) is a loop in G with start(�1) = � and
end(�n) = �. Also, g0 and gn are in A, and for 0 < i < n, each gi is in the group
assigned to end(�i) = start(�i+1). A loop t in G is reduced if either n = 0 and
g0 6= 1, or n > 0 and whenever �i+1 = ��i , we have gi =2 ���i(Γ�i). Geometrically,
one can think of t as a loop in S , with gi being loops in respective subsurfaces,
and �i as arcs connecting these loops. From this point of view, a reduced loop
on S does not \travel" to a component Bj unnecessarily.

By [1], any non-trivial element of �1(G; �) can be written as jtj = g0�1g1 � � � �ngn ,
where t is a reduced loop as above.

Remark 4.7 The reduced loop representing 1 is the empty sequence.

Remark 4.8 A non-reduced loop can be made into a reduced loop which
represents the same element in �1(G; �) by the process of combing. Namely,
if a loop t of length n > 1 is not reduced, it has a subsequence of the form
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(gi−1; �i; ���i(hi); ��i). One can replace this subsequence with (gi−1��i(hi)). This
process reduces the length, so after �nitely many steps one arrives at a reduced
loop.

The following theorem is proved in [1].

Theorem 4.9 Let t = (g0; �1; g1; � � � ; �n; gn) and t0 = (g00; �
0
1; g
0
1; � � � ; �0m; g0m)

be two reduced loops such that jtj = jt0j in �1(G). Then n = m, �i = �0i for
1 � i � n, and there exist hi 2 Γ�i such that

(1) g00 = g0 ��i(h1)−1 ,

(2) g0i = ���i(hi) gi ��i+1(hi+1)−1 ,

(3) g0n = ���n(hn) gn:

Notice that in the above theorem the elements of the form ��(h) come from
the circles γj;k .

Proof of Theorem A Suppose h�1; �2i � Mg;0;1 is a poison subgroup with
respect to x1; x2; x3 2 �1(Sg;0;0; �). We construct the graph of groups G as
above, with �1(G; �) �= �1(Sg;0;0; �). In the following we will identify these two
groups.

By Proposition 4.6, we can choose an integer M such that �Mi �xes A pointwise.
Since �Mi also sends each Bj to itself �xing the base points, we can see that
�Mi (ej;k) = ej;kpj;k where pj;k 2 Bj . Similarly �Mi (�ej;k) = pj;k

−1�ej;k .

We will now simplify notation a bit by letting � stand for �M1 . Let x3 = jtj
where t is the reduced loop t = (g0; �1; g1; � � � ; �2n; g2n): Notice that since the
graph G is \star-shaped", the length of the loop must be even. Therefore

�(x3) =

j(g0; �1; p1�(g1)p2
−1; �2; g2; �3; p3�(g3)p4

−1; �4; � � � ; p2n−1�(g2n−1)p2n
−1; �2n; g2n)j

(each pi is in the group which makes this a well-de�ned path). Now by the
condition �1(x3) = x3x1 , which implies that �(x3) = x3x

M
1 , we get the equality

j(g0; �1; p1�(g1)p2
−1; �2; g2; �3; p3�(g3)p4

−1; �4; � � � ; p2n−1�(g2n−1)p2n
−1; �2n; g2n)j

= j(g0; �1; g1; � � � ; �2n; g2nx
M
1 )j:

Let t0 and t00 be the paths appearing on the left and right hand sides of the
above equation respectively. Since the path t is reduced, so is t00 . If t0 is not
reduced, by Remark 4.8 we can comb it to a reduced path t0red . By the equality
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and Theorem 4.9, t0red must have the same length as t00 , which means t0 was
reduced in the �rst place. Using Theorem 4.9 again, there is an h1 2 Γ�2n such
that g2nx

M
1 = ���2n(h1) g2n , i.e., xM1 = g2n

−1���2n(h1) g2n . Similarly, using �2

in place of �1 , there exists an h2 2 Γ�2n such that xM2 = g2n
−1���2n(h2)g2n . But

Γ�2n �= Z, therefore h1; h2 commute, which implies xM1 ; xM2 commute. This is
a contradiction, since hx1; x2i �= F2 .

5 FP-groups do not embed in mapping class groups

We begin by showing how to narrow our search for an FP-subgroup in a mapping
class group.

Lemma 5.1 Suppose that Mg;b;n contains an FP-subgroup. Then it contains
an FP-subgroup H which is isomorphic to a quotient of H(F2). Moreover, the
image of F2 � f1g in H is isomorphic to F2 .

Proof Suppose Mg;b;n contains an FP-subgroup. Hence there is a group G
and a homomorphism � : H(G)!Mg;b;n such that �(G�f1g) is not nilpotent-
by-abelian-by-�nite. Here �(H(G)) �= H(G)=ker(�) is the FP-subgroup of
Mg;b;n . By Tits’ alternative for mapping class groups ([11] or [16]), �(G�f1g)
is either abelian-by-�nite or contains a subgroup isomorphic to F2 . By assump-
tion, the latter holds. Let x1; x2 2 G such that h�(x1; 1); �(x2; 1)i �= F2 . Then
it is easily seen that for G1 = hx1; x2i, �(H(G1)) is an FP-subgroup of Mg;b;n

and G1
�= F2 .

We now recall the following de�nition from [11]. A mapping class f is called
pure if there exists a set (possibly empty) C = fc1; � � � ; ckg of non-parallel,
non-trivial, non-intersecting simple closed curves on the surface such that:

(1) The mapping class f �xes each curve in C up to isotopy.

(2) The mapping class f keeps each component of S n C invariant up to
isotopy.

(3) The restriction of f to each component of S n C is either the identity
or pseudo-Anosov. (Recall that the restriction of f to a surface U is
pseudo-Anosov if and only if for any non-trivial simple closed curve c in
U not isotopic to @U and for any N > 0, fN(c) is not isotopic to c.)
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For an integer m, let H1(S;Z=mZ) be the �rst homology group of S with
coe�cients in Z=mZ. We have an action of Mg;b;n on H1(S;Z=mZ), which
de�nes a natural homomorphism Mg;b;n ! Aut(H1(S;Z=mZ)). The following
theorem is due to Ivanov ([11], 1.8).

Theorem 5.2 For any integer m � 3, the group

Γm = ker(Mg;b;n ! Aut(H1(S;Z=mZ)))

is a normal subgroup of �nite index in Mg;b;n consisting only of pure elements.

In the following discussion we will only need one such subgroup, so we set m = 3
for simplicity. Any value m � 3 would work as well.

The reader should note that in the following theorem, the generators �i , �j ,
and t do not have precisely the same meaning as in Section 2.

Theorem 5.3 Assume Mg;b;n contains an FP-subgroup. Then there exists
an FP-subgroup of the form H = h�1; �2; �1; �2; ti such that �1 , �2 , �1 and
�2 are in Γ3 (in particular they are pure), and

(1) h�1; �2i �= F2 ,

(2) �i commutes with �j ,

(3) t(�i�i)t−1 = �i .

Proof Let H be an FP-subgroup of the form �(H(F2)) as in Lemma 5.1, where
F2 = hx1; x2i. Let �i = �(1; xi) and �i = �(xi; 1). By abuse of notation, we
denote �(t) by t. Then H = h�1; �2; �1; �2; ti is an FP-subgroup satisfying (1) -
(3) above, by de�nition of an FP-subgroup and Lemma 5.1. Using Theorem 5.2,
Γ3 is a normal subgroup of Mg;b;n of �nite index. Let N = [Mg;b;n : Γ3]. Then
�Ni ; �

N
i 2 Γ3 are pure, and h�N1 ; �N2 i �= F2 . Replacing each of �i; �j with their

N th powers and keeping the same t, we get an FP-subgroup satisfying the
conditions of the theorem.

In the rest of this paper we assume that �i; �j and t are maps as given in
Theorem 5.3.

We can now exploit the machinery of pure mapping classes as developed in
[11]. For a pure mapping class f , one can always �nd a representative home-
omorphism (which we will also denote by f ) which �xes each curve in C and
each component setwise. Moreover, the mapping class f induces well-de�ned

Algebraic & Geometric Topology, Volume 1 (2001)



460 Tara E. Brendle and Hessam Hamidi-Tehrani

mapping classes on components of S n C (see Section 7.5 in [11]). As an impor-
tant technical point, for a component T of S n C , in order to get a well-de�ned
mapping class f jT in the mapping class group of T , one should allow the iso-
topies in T to move the points in the components of @T which are created as a
result of cutting S open. Otherwise, an ambiguity results from combining f jT
with a Dehn twist in a component of @T . In other words, when the surface
is cut open along C , all the new boundary components which appear will be
dealt with essentially as punctures. The same remark holds when considering
the mapping class group of a connected subsurface of S . In what follows, the
phrase \up to isotopy" will usually be dropped, but should be understood in
any discussion of topological equivalence.

In the above discussion, the collection C corresponding to a pure mapping class
f may not be canonical, but in fact one can always choose a canonical collection
of isotopy classes of disjoint simple closed curves, denoted by �(f), which we
will de�ne shortly. For two 1-submanifolds C1 and C2 of S , let

i(C1; C2) = minfjC01 \ C02j j C0i is isotopic to Cig:

In other words, i(C1; C2) is the geometric intersection number of C1 and C2 . We
then de�ne �(f) by saying c 2 �(f) if the two following conditions hold:

(1) f(c) = c:

(2) For any simple closed curve γ , if i(γ; c) 6= 0, then f(γ) 6= γ .

The collection �(f) is called the essential reduction system for f . It is proved
in [11] (see Chapter 7) that �(f) is a �nite collection of disjoint simple closed
curves, and f restricted to each component of S n�(f) is either the identity or
pseudo-Anosov.

If f 2Mg;b;n is not pure, then as discussed above there is some N > 0 such that
fN is pure. Thus we can extend the de�nition of essential reduction systems
by de�ning �(f) to be equal to �(fN ). The notion of an essential reduction
system was originally de�ned in [5] for a mapping class, and was generalized
in [11] to an arbitrary subgroup of Mg;b;n . Note that �(f) is a topological
invariant of the mapping class f . We use this notion to de�ne an invariant for
a pair of mapping classes in Mg;b;n .

De�nition 5.4 For two mapping classes f; h 2Mg;b;n , we let

i(f; h) = i(�(f); �(h)):

Notice that this is invariant under simultaneous conjugacy:
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Proposition 5.5 For t; f; h 2Mg;b;n , i(tft−1; tht−1) = i(f; h).

Proof First notice that �(tft−1) = t(�(f)), for f; t 2 Mg;b;n (again see [11],
Chapter 7). Then we have that

i(tft−1; tht−1) = i(�(tft−1); �(tht−1))
= i(t(�(f)); t(�(h)))
= i(�(f); �(h))
= i(f; h):

The invariant i(f; h) for f; h 2 Mg;b;n will be crucial in the proof of Theorem
B. We recall the following lemma, proved in [11].

Lemma 5.6 (Ivanov) Let f be a pure mapping class. If X is a subsurface
or a simple closed curve on the surface such that fN (X) = X for some N � 1,
then f(X) = X .

The following de�nition is also inspired by [11].

De�nition 5.7 Let f 2Mg;b;n , and let T be the isotopy class of a connected
subsurface of S . We say f keeps T precisely invariant if f(T ) = T and if
f(c) 6= c for each curve c such that i(c; @T ) 6= 0.

In particular we note that a pure mapping class f 2 Mg;b;n keeps all compo-
nents of S n �(f) precisely invariant, by the basic property of �(f). Similarly,
f keeps each regular neighborhood of c 2 �(f) precisely invariant. We now
develop a series of lemmas to prove Theorem B.

Lemma 5.8 Let f; � be pure mapping classes in Mg;b;n such that �f = f�.
Let T be a component of S n �(f). Then we have

(i) �(T ) = T , up to isotopy.

(ii) �(c) = c for each c 2 �(f).

(iii) i(f; �) = 0; i.e., �(f) and �(�) can be isotoped o� each other.

Proof For any integer N , �N commutes with f . This implies that f(�N (T ))
= �N (f(T )) = �N (T ): Suppose a simple closed curve c intersects @�N (T )
non-trivially. Then �−N (c) intersects @T non-trivially, and so f(�−N (c)) 6=
�−N (c), by assumption. Applying �N to both sides, we get f(c) 6= c. Hence f
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keeps �N (T ) precisely invariant. By the basic property of the essential reduc-
tion system, either f jT = id or f jT is pseudo-Anosov.

Case 1 Assume f jT = id. Since f j�N (T ) = (�N jT )f jT (�N jT )−1; we have
f j�N (T ) = id for all N . Notice that i(@�N (T ); @T ) = 0, since f keeps �N (T )
precisely invariant for all N . Moreover, we claim that no component c of
@�N (T ) can be isotopic to a simple closed curve in T which is not isotopic
to a component of @T . Otherwise, one can �nd a simple closed curve γ in
T such that i(c; γ) 6= 0. But f(γ) = γ , which contradicts the fact that f
keeps �N (T ) precisely invariant. Similarly one can show that no component of
@T can be isotopic to a simple closed curve in �N (T ) which is not isotopic to
@�N (T ). This shows that either �N (T ) = T or �N (T ) can be isotoped o� T .
This in turn implies that the collection of subsurfaces f�N (T ) j N 2 Zg is a
collection of disjoint homeomorphic subsurfaces up to isotopy, and hence it is a
�nite collection. This shows that �N (T ) = T for some N , and since � is pure,
�(T ) = T; up to isotopy, by Lemma 5.6.

Case 2 Let f jT be pseudo-Anosov. Again, since f j�N (T ) =(�N jT)f jT (�N jT)−1;

we have f j�N (T ) is pseudo-Anosov for all N . Also, notice that i(@�N (T ); @T ) =
0, since f keeps �N (T ) precisely invariant for all N . Moreover, we claim that
no component c of @�N (T ) can be isotopic to a simple closed curve in T which
is not isotopic to a component of @T . Otherwise, since c 2 @�N (T ) and f is
pure and pseudo-Anosov on �N (T ), we have f(c) = c. On the other hand, c
is in the interior of T and f is pseudo-Anosov on T , hence f(c) 6= c, which
is a contradiction. Similarly one can show that no component of @T can be
isotopic to a simple closed curve in �N (T ) which is not isotopic to @�N (T ).
This shows that either �N (T ) = T or �N (T ) can be isotoped o� T . The rest
of the argument is exactly as in Case 1. This proves (i).

To prove (ii), let c 2 �(f). Let T be component of S n �(f) such that c is a
component of @T . Then �(T ) = T , by (i). This implies that � permutes the
components of @T , which by Lemma 5.6 implies that �(c) = c, proving (ii).

To prove (iii), let c 2 �(f) and γ 2 �(�) such that i(c; γ) > 0. Then by
de�nition of an essential reduction system, �(c) 6= c, which contradicts (ii).

Let H = h�1; �2; �1; �2; ti be an FP-subgroup of the type described in The-
orem 5.3. Notice that by Lemma 5.8(iii), �(�i) [ �(�j) is collection of non-
intersecting simple closed curves. For i = 1; 2, let Ci = �(�i) \ �(�i), Ai =
�(�i)nCi and Di = �(�i)nCi . Note that each of Ai; Ci or Di could be empty.

Lemma 5.9 For i = 1; 2, Ai [Di � �(�i�i).
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Proof Without loss of generality, we prove Ai � �(�i�i). Let c 2 Ai . Notice
that by Lemma 5.8(ii), �i(c) = �i(c) = c. If c =2 �(�i�i), by de�nition, there
is a subsurface U containing c where U is a component of S n �(�i�i). Since
�i�ijU �xes c, it is not pseudo-Anosov and hence is the identity. Similarly
since c =2 �(�i), there is a subsurface V containing c where V is a component
of S n�(�i) such that �ijV = id. Therefore �ijU\V = id. Since c is not isotopic
to any component of @U or @V , and i(@U; @V ) = 0, c is not isotopic to any
component of @(U \ V ). Then one can �nd a simple closed curve γ in U \ V
such that i(c; γ) > 0. But �ijU\V = id, so �i(γ) = γ , which contradicts the
fact that c 2 �(�i).

Lemma 5.10 i(�1; �2) = 0.

Proof Recall that �(�i) = Ai [ Ci and �(�i) = Ci [ Di . By de�nition of
essential reduction system and Lemma 5.8(ii), i(�i; �j) = 0 and so

i(Ai; Cj) = i(Ai;Dj) = i(C1; C2) = i(Ci;Dj) = 0;

for i; j = 1; 2. Therefore i(�1; �2) = i(A1; A2). Now by Lemma 5.9,

i(�1�1; �2�2) � i(A1; A2) + i(A1;D2) + i(D1; A2) + i(D1;D2)
= i(A1; A2) + i(D1;D2):

By part (3) of Theorem 5.3 and Proposition 5.5, we have that

i(A1; A2) = i(�1; �2)
= i(t(�1�1)t−1; t(�2�2)t−1)
= i(�1�1; �2�2)
� i(A1; A2) + i(D1;D2):

Thus i(D1;D2) = 0. Hence

i(�1; �2) = i(�(�1); �(�2))
= i(C1 [D1; C2 [D2)
= i(C1; C2) + i(C1;D2) + i(D1; C2) + i(D1;D2)
= 0;

which proves the lemma.

For a connected subsurface U of S , we de�ne a subgroup Γ3(U) of the mapping
class group of U as follows:

Γ3(U) = ff jU j f 2 Γ3 and f(U) = Ug:
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Notice that all elements of Γ3(U) are pure. Also notice that if �i (respectively
�i ) keeps U invariant, then by Theorem 5.3 we have �ijU 2 Γ3(U) (respectively
�ijU 2 Γ3(U)). The following lemma is proved in [11] (Lemma 8.13).

Lemma 5.11 Let Γ be a subgroup of the mapping class group of a connected
surface U consisting of pure elements. If f 2 Γ is a pseudo-Anosov element,
then its centralizer in Γ is an in�nite cyclic group generated by a pseudo-Anosov
element.

Corollary 5.12 Let Γ be a subgroup of the mapping class group of a con-
nected surface U consisting of pure elements. If f; h 2 Γ are pseudo-Anosov
elements, then either f commutes with h or their respective centralizers in Γ
intersect trivially.

Proof Let CΓ(f) denote the centralizer of f in Γ. Suppose there is an element
1 6= � 2 CΓ(f) \ CΓ(h). Then f; h 2 CΓ(�), which is cyclic by Lemma 5.11, so
f commutes with h.

We are going to encounter the following particular situation in di�erent con-
texts, so we declare it a lemma:

Lemma 5.13 Let U be a component of S n�(�i) for i = 1 or i = 2 such that
Γ3(U) is non-trivial. Assume that �ijU = id and �i(U) = U for i = 1; 2. Then
the respective centralizers of �1jU and �2jU in Γ3(U) intersect non-trivially.

Proof Without loss of generality, let U be a component of S n�(�1). Assume
on the contrary that the centralizers of �1jU and �2jU in the mapping class
group of U have only the identity map in common. This in particular implies
that �ijU 6= id for i = 1; 2. The map �1jU is pseudo-Anosov, since U is
a component of S n �(�1). Consider the subsurface t(U). By part (3) of
Theorem 5.3, we have

�ijt(U) = (tjU )(�ijU�ijU )(tjU )−1 = (tjU )(�ijU )(tjU )−1: (7)

This implies that �ijt(U) 6= id keeps t(U) invariant, since it is conjugate to
�ijU , for i = 1; 2. Moreover, �1jt(U) is pseudo-Anosov. This in particular
implies that t(U) is a component of S n �(�1), and t(U) can be isotoped o�
U , since �1jU = id. Moreover, by assumption and by (7), the centralizers of
�1jt(U) and �2jt(U) intersect trivially in Γ3(t(U)). By Lemma 5.8(i), �i keeps
t(U) invariant for i = 1; 2, since �i commutes with �1 . Again, since �ijt(U)

commutes with �j jt(U) and by the assumption about the centralizers, we have
�ijt(U) = id, for i; j = 1; 2. Now we can prove the following statements for
N � 1 simultaneously by induction on N :
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(1) �ijtN (U) 6= id keeps tN (U) invariant, for i = 1; 2.

(2) �1jtN (U) is pseudo-Anosov (hence, �i keeps tN (U) invariant for i = 1; 2).

(3) The respective centralizers of �ijtN (U) in Γ3(tN (U)) intersect trivially, for
i = 1; 2.

(4) �ijtN (U) = id, for i = 1; 2.

We have already established all four statements for N = 1. The passage from
N to N + 1 follows similarly from the relation:

�ijtN+1(U) =(tjtN (U))(�ijtN (U)�ijtN (U))(tjtN (U))
−1=(tjtN (U))(�ijtN (U))(tjtN (U))

−1

The second statement above shows that tN (U) can be isotoped o� U , since
�1jU = id. Therefore, tM (U) can be isotoped o� tN (U) for all M 6= N . This
is clearly a contradiction, since the Euler characteristic of S is �nite.

Lemma 5.14 For i = 1; 2, let Ui be a component of S n �(�i) such that
�ijUi is pseudo-Anosov. Then either U1 and U2 are disjoint up to isotopy, or
U1 is isotopic to U2 .

Proof First we show that if U1 and U2 are not disjoint, then either U1 � U2

or U2 � U1 . Suppose U1 * U2 and U2 * U1 but U1 cannot be isotoped o�
U2 . Throughout the proof, let j; k 2 f1; 2g be arbitrary such that j 6= k . Since
i(@U1; @U2) = 0, there is some component cj of @Uj such that cj � Uk and cj
is not isotopic to any component of @Uk . By Lemma 5.8(i), �i keeps U1 and
U2 invariant for i = 1; 2. Since �i 2 Γ3 , we have �ijUj 2 Γ3(Uj). Since cj is in
the interior of Uk and �i(cj) = cj by Lemma 5.8(ii), this implies that �ijUk is
not pseudo-Anosov, hence by Lemma 5.11, �ijUk = id for i; k = 1; 2.

Let U = U1 [U2 . At this point we apply a similar argument as in the proof of
Lemma 5.13, as follows. By the relation

�ijt(Ui) = (tjUi)(�ijUi�ijUi)(tjUi)−1 = (tjUi)(�ijUi)(tjUi)−1; (8)

we see that �ijt(Ui) is pseudo-Anosov. This in particular implies that t(U) =
t(U1) [ t(U2) can be isotoped o� U , since �ijU = id. Note that t(Ui) is
a component of S n �(�i), so �j keeps t(Ui) invariant for i; j = 1; 2, by
Lemma 5.8(i). Since �i is pure, and t(cj) is a boundary component of t(Uj),
we have �i(t(cj)) = t(cj). By the choice of cj we know that t(cj) is in the
interior of t(Uk). By Lemma 5.11 and the fact that �ijt(Uk) 2 Γ3(Uk), we have
�ijt(Uk) = id, for i; k = 1; 2. Now by induction on N we can simultaneously
prove the following statements for N � 1:
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(1) The map �ijtN (Ui) is pseudo-Anosov, for i = 1; 2.

(2) We have �ijtN (Uj) = id, for i; j = 1; 2.

We have already established these two statements for N = 1. The passage from
N to N + 1 can be achieved by considering the conjugacy relation

�ijtN+1(Ui) = tjtN (Ui) �ijtN (Ui) �ijtN (Ui) tj
−1
tN (Ui)

= tjtN (Ui) �ijtN (Ui) tj
−1
tN (Ui)

: (9)

This proves statement (1) above. Now use Lemma 5.8(i) to see that �i keeps
tN+1(Uj) invariant. This implies that �ijtN+1(Uj) 2 Γ3(tN+1(Uj)), and by
Lemma 5.11, we have statement (2).

In particular, statement (1) shows that tN (U) can be isotoped o� U for all
N > 1, which is a contradiction as in Lemma 5.13. This proves that either
U1 � U2 or U2 � U1 , or U1 and U2 can be isotoped o� each other.

Now without loss of generality, suppose that U1 � U2 , but U1 is not isotopic
to U2 . Then there exists a component c1 of @U1 such that c1 is not isotopic
to a component of @U2 . By Lemma 5.8(i), �i keeps U1 and U2 invariant for
i = 1; 2. Also, by Lemma 5.8(ii), �i(c1) = c1 , which implies �ijU2 = id, by
Lemma 5.11. Again, using (8) we get statement (1) for N = 1. Hence t(Ui) is
a component of S n �(�i). So �i keeps Uj invariant. Thus �i(t(c1)) = t(c1),
which gives �i(U2) = id, by Lemma 5.11. This proves statement (2) for N = 1.
The passage from N to N + 1 follows by using equation (9) above. Then
again we have that U2 can be isotoped o� tN (U2) for all N > 1, which is a
contradiction. This proves that U1 is isotopic to U2 .

Lemma 5.15 Let U be a component of both S n �(�1) and S n �(�2) such
that �ijU is pseudo-Anosov for i = 1; 2. Then �1jU commutes with �2jU .

Proof If �1jU and �2jU do not commute, then their centralizers in Γ3(U)
have trivial intersection by Corollary 5.12. This implies that �ijU = id, which
contradicts Lemma 5.13.

We are �nally ready to prove Theorem B.

Proof of Theorem B Let U be a component of S n �(�1) such that �1jU
is pseudo-Anosov. We �rst prove that �2jU is either pseudo-Anosov or the
identity. Suppose �2jU is neither pseudo-Anosov nor the identity (in particular,
U is not a component of S n �(�2)). Let V1; V2; � � � ; Vs be components of
Sn�(�2), which cover U up to isotopy. We can assume that the cover is minimal
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in the sense that none of the Vk can be isotoped o� U . By Lemma 5.14, �2jVk =
id for all 1 � k � s. (This does not mean that �2jU = id, since �2 may involve
Dehn twists about boundary components of Vk .) By Lemma 5.10, i(@U; @Vk) =
0 for all 1 � k � s, which shows that �2 keeps U invariant. Moreover,
�2jU is a non-trivial composition of Dehn twists about disjoint simple closed
curves. Using Lemma 5.8(i), �i keeps U invariant. Since �ijU ; �j jU 2 Γ3(U)
and �ijU commutes with �2jU , using Lemma 5.11 we see that �ijU cannot
be pseudo-Anosov. Moreover, �ijU commutes with �1jU so �ijU = id. Now
by Lemma 5.13, we get that the centralizers of �1jU and �2jU must intersect
non-trivially. Lemma 5.11 then implies that �2jU is either pseudo-Anosov or
the identity, which is a contradiction.

We have proved that for a component U of S n �(�1) where �1jU is pseudo-
Anosov, �2jU is either pseudo-Anosov or the identity. In the case that �2jU
is pseudo-Anosov, �1jU and �2jU commute by Lemma 5.15. Similarly, for
a component V of S n �(�2) where �2jV is pseudo-Anosov, �1jV is either a
commuting pseudo-Anosov or the identity.

Let S1 be the subsurface of S which is the union of subsurfaces T such that
either �1jT or �2jT is pseudo-Anosov. We have proved that �1 and �2 both
keep S1 invariant, and �1jS1 commutes with �2jS1 .

On S2 = S nS1 both �1 and �2 are compositions of Dehn twists about disjoint
curves, by Lemma 5.10. Hence �1jS2 and �2jS2 commute. We conclude that
�1 and �2 commute, contradicting part (1) of Theorem 5.3. This shows that
FP-groups do not embed in Mg;b;n , as desired.
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