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Abstract We calculate the RT{invariants of all oriented Seifert manifolds
directly from surgery presentations. We work in the general framework of
an arbitrary modular category as in [Tu], and the invariants are expressed
in terms of the S{ and T {matrices of the modular category. In another
direction we derive a rational surgery formula, which states how the RT{
invariants behave under rational surgery along framed links in arbitrary
closed oriented 3{manifolds with embedded colored ribbon graphs. The
surgery formula is used to give another derivation of the RT{invariants of
Seifert manifolds with orientable base.
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1 Introduction

A major challenge in the theory of quantum invariants of links and 3{manifolds,
notably the Jones polynomial of links in S3 [Jo], is to determine relationships
between these invariants and classical invariants. In 1988 Witten [Wi] gave a
sort of an answer by his interpretation of the Jones polynomial (and its general-
izations) in terms of quantum �eld theory. Witten not only gave a description of
the Jones polynomial in terms of 3{dimensional topology/geometry, but he also
initiated the era of quantum invariants of 3{manifolds by de�ning invariants
ZGk (M;L) 2 C of an arbitrary closed oriented 3{manifold M with an embed-
ded colored link L by quantizing the Chern{Simons �eld theory associated to
a simply connected compact simple Lie group G, k being an arbitrary posi-
tive integer, called the (quantum) level. The invariant ZGk (M;L) is given by
a Feynman path integral over the (in�nite dimensional) space of gauge equiv-
alence classes of connections in a G{bundle over M . This integral should be
understood in a formal way since, at the moment of writing, it seems that no
mathematically rigorous de�nition is known, cf. [JL, Sect. 20.2.A].
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By using stationary phase approximation techniques together with path integral
arguments Witten was able [Wi] to express the leading asymptotics of ZGk (M)
as k ! 1 in terms of such topological/geometric invariants as Chern{Simons
invariants, Reidemeister torsions and spectral flows, so here we see a way to
extract topological information from the invariants ZGk (M) (here L = ;). Fur-
thermore, a full asymptotic expansion of ZGk (M) as k ! 1 is expected on
the basis of a full perturbative analysis of the Feynman path integral, see e.g.
[AS1], [AS2].

Reshetikhin and Turaev [RT2] constructed invariants �
sl2(C)
r (M;L) 2 C by a

mathematical approach via representations of a quantum group Uq(sl2(C)),
q = exp(2�i=r), r an integer � 2. Shortly afterwards, quantum invariants
�gr (M;L) 2 C associated to other complex simple Lie algebras g were con-
structed using representations of the quantum groups Uq(g), q = exp(2�i=r) a
‘nice’ root of unity, see [TW1]. Both in Witten’s approach and in the approach
of Reshetikhin and Turaev the invariants are part of a so-called topological
quantum �eld theory (TQFT). This implies that the invariants are de�ned for
compact oriented 3{dimensional cobordisms (perhaps with some extra struc-
ture on the boundary), and satisfy certain cut-and-paste axioms, see [At], [Q],
[Tu]. The TQFT of Reshetikhin and Turaev can from an algebraic point of
view be given a more general formulation by using so-called modular categories
[Tu]. The representation theory of Uq(g), g an arbitrary complex simple Lie
algebra, induces such a modular category if q = exp(2�i=r) is chosen properly,
see [TW1], the appendix in [TW2], [Kir], [BK], [Sa], and [Le].

It is believed that the TQFT’s of Witten and Reshetikhin{Turaev coincide.
In particular it is conjectured, that Witten’s leading asymptotics for ZGk (M)
should be valid for the function r 7! �gr (M) in the limit r ! 1 and further-
more, that this function should have a full asymptotic expansion. In this paper
we initiate a veri�cation of this conjecture for oriented Seifert manifolds by de-
riving formulas for the RT{invariants of these manifolds. In a subsequent paper
[Ha2] we then use these formulas to calculate the large r asymptotics of the
RT{invariants and thereby prove the so-called asymptotic expansion conjecture
for such manifolds in the sl2(C){case. The precise formulation of this conjec-
ture, which is a combination of Witten’s leading asymptotics and the existence
of a full asymptotic expansion of a certain type, was proposed by Andersen
in [A], where he proved it for mapping tori of �nite order di�eomorphisms of
orientable surfaces of genus at least two using the gauge theory de�nition of the
quantum invariants.

In the following a Seifert manifold means an oriented Seifert manifold. Calcu-
lations of quantum invariants of lens spaces and other Seifert manifolds have

Algebraic & Geometric Topology, Volume 1 (2001)



Reshetikhin{Turaev invariants of Seifert 3{manifolds 629

been done by several people [A], [G], [J], [LR], [N], [Roz], [Ta1], [Ta2], [Tu] and
probably many more. The papers [G], [J], [LR], [N], [Ta1] and [Ta2] calculate
and study the quantum invariants of lens spaces and other Seifert manifolds
with base equal to S2 . In [Ta1], [Ta2] the so-called P sln(C){invariants are
calculated. The P sln(C){invariant of a closed oriented 3{manifold M associ-
ated with an integer r > n coprime to n is a factor of � sln(C)

r (M). Neil [N]
calculates the sl2(C){invariants based on Lickorish skein theoretical approach
[Li2]. In [LR] the SU(2){invariants of certain Seifert manifolds with base S2

are calculated and studied. The class of Seifert manifolds considered includes
the Seifert manifolds which are integral homology spheres. Rozansky [Roz] de-
rives a formula for the SU(2){invariants of all Seifert manifolds with orientable
base. The papers [G], [J], [LR] and [Roz] are based on Witten’s approach to the
invariants. Andersen [A] calculates quantum G{invariants of all mapping tori of
�nite order di�eomorphisms of orientable surfaces of genus at least two, where
G is an arbitrary simply connected compact simple Lie group. The mapping
tori of �nite order di�eomorphisms of an orientable surface �g of genus g are
precisely the Seifert manifolds with base �g and Seifert Euler number equal
to zero. Turaev has calculated the RT{invariants associated to an arbitrary
unimodal modular category of all graph manifolds, cf. [Tu, Sect. X.9]. These
manifolds include the Seifert manifolds with orientable base (but not the ones
with non-orientable base).

In this paper we extend the above results in two directions. Firstly, we calcu-
late the RT{invariants of all Seifert manifolds. In particular we calculate the
invariants of Seifert manifolds with non-orientable base. This case has to the
authors knowledge not been considered before in the literature. Secondly, our
calculations are done for arbitrary modular categories, cf. Theorem 4.1. We
present three di�erent calculations of the RT{invariants of Seifert manifolds
with di�erent levels of generality. In our �rst approach we calculate the invari-
ants of all Seifert manifolds directly from surgery presentations only using the
theory of RT{invariants of closed oriented 3{manifolds without refering to the
underlying TQFT. In our second approach we calculate the RT{invariants of all
Seifert manifolds with orientable base using a rational surgery formula for the
RT{invariants, Theorem 5.3, derived in this paper. In these two approaches we
work in the framework of an arbitrary modular category. In our third approach
we use a formula for the RT{invariants of graph manifolds due to Turaev, see
[Tu, Theorem X.9.3.1]. This formula is valid for all modular categories satis-
fying a special condition called unimodality. As mentioned above the graph
manifolds include the Seifert manifolds with orientable base. We show that
Turaev’s formula specializes to our formula for the invariants of these Seifert
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manifolds.

The rational surgery formula, Theorem 5.3, states how the RT{invariants be-
have under rational surgeries along framed links in arbitrary closed oriented
3{manifolds with embedded colored ribbon graphs. This formula generalizes
the de�ning formula for the RT{invariants of closed oriented 3{manifolds with
embedded colored ribbon graphs (which is a surgery formula for surgeries on S3

with embedded colored ribbon graphs along framed links). The surgery formula
has the very same form as the surgery formulas presented in the Chern{Simons
TQFT of Witten, see [Wi, Sect. 4], [LR], [Roz].

In the �nal part of the paper we analyse more carefully the sl2(C){case. In the
general formulas for the RT{invariants of the Seifert manifolds, see Theorem 4.1,
a certain factor of so-called S{ and T {matrices is present. In the sl2(C){
case the S{ and T {matrices can be identi�ed (up to normalization) with the
values of a certain representation R of SL(2;Z) in the standard generators of
SL(2;Z). This representation has been carefully studied by Je�rey in [J], where
an explicit formula for R(A) in terms of the entries of A 2 SL(2;Z) is given.
We use this formula to give expressions for the RT{invariants of the Seifert
manifolds in terms of the Seifert invariants, see Theorem 8.4. Theorem 8.4
generalizes results in the literature, in particular the formulas for the RT{
invariants of Seifert manifolds with orientable base given in [Roz].

The paper is organized as follows. In Sect. 2 we recall the de�nition and clas-
si�cation of Seifert manifolds [Se1], [Se2]. We also present surgery presenta-
tions of the Seifert manifolds due to Montesinos [M]. In Sect. 3 we give a
short introduction to the modular categories. This is a preliminary section in-
tended to �x notation used throughout in the paper. In Sect. 4 we calculate the
RT{invariants of all Seifert manifolds directly from surgery presentations. In
Sect. 5 we derive the rational surgery formula for the RT{invariants of closed
oriented 3{manifolds with embedded colored ribbon graphs. In Sect. 6 we cal-
culate the RT{invariants of the Seifert manifolds with orientable base using the
surgery formula. In Sect. 7 we show that Turaev’s formula for the RT{invariants
of graph manifolds specializes to our formula for the RT{invariants of Seifert
manifolds with orientable base. In Sect. 8 we analyse the sl2(C){case in greater
detail. Besides we have added two appendices, one comparing di�erent normal-
izations of the RT{invariants used in the literature and one discussing di�erent
de�nitions of framed links in arbitrary closed oriented 3{manifolds.
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2 Seifert manifolds

Seifert manifolds were invented by H. Seifert in [Se1]. For an english transla-
tion, see [Se2]. We consider only oriented Seifert manifolds in this section as
in the rest of the paper. These will be denoted Seifert manifolds (as in the
introduction).

Oriented Seifert manifolds and their classi�cation Let �; � be coprime
integers with � > 0, and let � : B2 ! B2 be the rotation by the angle 2�(�=�)
in the anti-clockwise direction, where B2 � C is the standard oriented unit disk.
The (oriented) �bered solid torus T (�; �) is the oriented space B2 � [0; 1]=R ,
where R identi�es (x; 1) with (�(x); 0), x 2 B2 , and the orientation is given by
the orientation of B2 followed by the orientation of [0; 1]. By this identi�cation
the lines (�bers) fxg � [0; 1] of B2 � [0; 1], x 2 B2 n f0g, are decomposed into
classes, such that each class contains exactly � lines, which match together to
give one �ber of T (�; �). The image of f0g�[0; 1] in T (�; �) is also a �ber, called
the ‘middle �ber’. The pair (�; �) is an invariant of T (�; �) if we normalize
to 0 � � < �. The following de�nition is Seifert’s de�nition of a �bered space
[Se1] adapted to the oriented case. A Seifert manifold is a closed connected and
oriented 3{manifold M , which can be decomposed into a collection of disjoint
simple closed curves, called �bers, such that each �ber H has a neighborhood
N , called a �ber neighborhood, which is homeomorphic to a �bered solid torus
T (�; �) by an orientation and �ber preserving homeomorphism mapping H to
the middle �ber of T (�; �). By [Se2, Lemma 2], the numbers �; � are invariants
of the �ber H , called the (oriented) �ber invariants of H . If � > 1, we call H an
exceptional �ber; if � = 1, an ordinary �ber. In a �ber neighborhood of a �ber H
all �bers except possibly H are ordinary �bers, so there are only �nitely many
(possibly zero) exceptional �bers in a Seifert manifold. For a Seifert manifold
M , the base is the quotient space of M obtained by identifying each �ber to a
point. The base is a closed connected surface, orientable or non-orientable. The
genus of the non-orientable #gRP2 is g . Two Seifert manifolds are equivalent if
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there is a �ber and orientation preserving homeomorphism between them. We
have the following classi�cation result due to Seifert.

Theorem 2.1 [Se1] An equivalence class of Seifert manifolds is determined
by a system of invariants

(�; g j b; (�1; �1); : : : ; (�r; �r)) :

Here � = o if the base is orientable and � = n if not, and the non-negative integer
g is the genus of the base. Moreover, r � 0 is the number of exceptional �bers,
and (�i; �i) are the (oriented) Seifert invariants of the i’th exceptional �ber.
The invariant b can take any value in Z (−b is the Euler number of the locally
trivial S1{bundle (�; g j b)).

An oriented Seifert manifold M belonging to the class determined by the invari-
ants (�; g j b; (�1; �1); : : : ; (�r; �r)) belongs after reversing its orientation to the
class determined by the invariants (�; g j −r−b; (�1; �1−�1); : : : ; (�r; �r−�r)),
� = o;n.

The Seifert invariants (�i; �i) of the i’th exceptional �ber are the unique
integers such that �i = �i , �i�i � 1 (mod �i) and 0 < �i < �i , where
�i; �i are the �ber invariants of that �ber. One can obtain (�; g j b) from
(�; g j b; (�1; �1); : : : ; (�r; �r)) by cutting out �ber neighborhoods of the excep-
tional �bers and gluing in ordinary solid tori (i.e. T (1; 0)’s) by certain �ber
preserving homeomorphisms, see [Se2, Sect. 7], [M, Sect. 4.2] for details. The
Seifert Euler number of the Seifert �bration (�; g j b; (�1; �1); : : : ; (�r; �r)) is the
rational number e = −

�
b+

Pr
j=1 �j=�j

�
. (The reason for the choice of sign

of e is the following. Let � 2 fo;ng and let X be a closed surface of genus
g , orientable if � = o and non-orientable if � = n. Then (�; g j − �(X)) is
the unit tangent bundle of X , where �(X) is the Euler characteristic of X .
More generally, (�; g j b) is a locally trivial S1{bundle over the surface X . The
number −b is the Euler number of this bundle and is an obstruction to the
existence of a section of (�; g j b), see [M, Chap. 1]. The Seifert Euler number is
a natural generalization of −b when extending the above notions to orbifolds,
see [T], [Sc], [M].)

Surgery presentations Any closed connected oriented 3{manifold can be
obtained by Dehn-surgery on S3 along a labelled link, the labels being the
rational surgery coe�cients, cf. [Li1], [Wa]. We use the standard convention for
surgery coe�cients, see e.g. [Ro1, Chap. 9], [Ro2]. In particular integer labelled
links in S3 can be identi�ed with framed links with the framing indexes equal
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� � � � � �
`g

0

0

0 0 −b

�1
�1

�n
�n

Figure 1: Surgery presentation of (o; g j b; (�1; �1); : : : ; (�n; �n))

to the labels. If M is a 3{manifold given by surgery on S3 along a labelled link
L we call L a surgery presentation of M . According to [M, Fig. 12 p. 146], the
manifold (�; g j b; (�1; �1); : : : ; (�n; �n)) has a surgery presentation as shown in
Fig. 1 if � = o and as shown in Fig. 2 if � = n. The `g indicate g repetitions.

� � � � � �
`g

2 2

1
2

1
2

−b

�1
�1

�n
�n

Figure 2: Surgery presentation of (n; g j b; (�1; �1); : : : ; (�n; �n))

Non-normalized Seifert invariants The so-called non-normalized Seifert
invariants, see [Ne], [JN] or [NR], are sometimes more convenient to use in
speci�c calculations. Let (�j ; �j) be a pair of coprime integers with �j > 0,
j = 1; 2; : : : ; n. Then the Seifert manifold with non-normalized Seifert invari-
ants f�; g; (�1; �1); : : : ; (�n; �n)g is given by a surgery presentation as shown
in Fig. 1 with b = 0 if � = o and as shown in Fig. 2 with b = 0 if � = n.
It follows that these non-normalized invariants are not unique. In fact, by
[JN, Theorem 1.5 and Theorem 1.8], the sets f�; g; (�1; �1); : : : ; (�n; �n)g and
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f�0; g0; (�01; �
0
1); : : : ; (�0m; �0m)g are two pairs of non-normalized Seifert invari-

ants of the same Seifert manifold M if and only if � = �0 , g = g0 (triv-
ial),

Pn
i=1 �i=�i =

Pm
j=1 �

0
j=�
0
j , and disregarding any �i=�i and �0j=�

0
j which

are integers, the remaining �i=�i (mod 1) are a permutation of the remain-
ing �0j=�

0
j (mod 1). It follows that any Seifert manifold M has a unique set

of non-normalized Seifert invariants (up to permutation of the indicis) of the
form f�; g; (1; �0); (�1; �1); : : : ; (�r; �r)g with 0 < �i < �i , i = 1; : : : ; r , so
M = (�; g j�0; (�1; �1); : : : ; (�r; �r)) in the terminology of Theorem 2.1. This
implies that the Seifert Euler number of a Seifert manifold with non-normalized
Seifert invariants f�; g; (�1; �1); : : : ; (�n; �n)g is given by −

Pn
i=1 �i=�i .

Remark 2.2 [JN] operates with a generalization of oriented Seifert �bra-
tions in which the pairs (�j ; �j) are allowed to be equal to (0;�1). How-
ever, up to an orientation preserving homeomorphism, these generalized �bra-
tions are Seifert manifolds as de�ned above or connected sums of the form
#k
i=1(S1 � S2)##n

i=1L(pi; qi), cf. [JN, Theorem 5.1]. Since the RT{invariants
behave nicely with respect to connected sums and since the lens spaces are
(ordinary) Seifert manifolds, see the proof of Corollary 4.4, we will continue by
only considering the Seifert manifolds in Theorem 2.1.

3 Modular categories and 3{manifold invariants

This is a preliminary section in which we recall concepts and notation from
[Tu] used throughout in this paper. All monoidal categories in the following
are assumed strict.

Ribbon categories and invariants of colored ribbon graphs A ribbon
category V is a monoidal category with a braiding c and a twist � and with a
duality (�; b; d) compatible with these structures. In V one has a well-de�ned
trace tr = trV of morphisms and thereby a well-de�ned dimension dim =
dimV of objects. These take values in the commutative semigroup K = KV =
EndV(I), where I is the unit object (the multiplication being given by the
composition of morphisms).

By a (V {)colored ribbon graph we mean a ribbon graph Ω with an object of V
attached to each band and annulus of Ω and with a compatible morphism of
V attached to each coupon of Ω. We let F = FV be the operator invariant of
V {colored ribbon graphs in R3 of Reshetikhin and Turaev, see [RT1], [RT2],
[Tu, Chap. I].
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We use the graphical calculus for morphisms of the ribbon category V , see
[Tu, Sect. I.1.6], [Ka, Chap. XIV]. In this calculus one represents a morphism
f of V by a colored ribbon graph Ω mapped by F to f if such a ribbon
graph exists. We then write Ω := f . We present ribbon graphs in �gures
according to the usual rules, cf. [Tu, Chap. I]. In particular we draw only the
oriented cores of the annuli and bands, and we are careful to drawing all loops
corresponding to twists in the ribbons. Analogous to the framing numbers in
�gures showing framed links we will sometimes indicate a certain number of
twists in an annulus component of a ribbon graph by an integer instead of
drawing the loops corresponding to these twists. In �gures showing colored
ribbon graphs these numbers will be put into parentheses to distinguish them
from colors.

Modular categories A monoidal Ab{category is a monoidal category with
all morphism sets equipped with an additive abelian group structure making
the composition and tensor product bilinear (cf. [Ma]; Ab{categories are also
called pre-abelian categories).

Let V be a ribbon Ab{category, i.e. a ribbon category such that the underlying
monoidal category is a monoidal Ab{category. In particular, the semigroup
K = KV is a commutative unital ring, called the ground ring of V . For any pair
of objects V , W of V , the abelian group HomV(V;W ) acquires the structure
of a left K{module by kf = k ⊗ f , k 2 K , f 2 HomV(V;W ), which makes
composition and the tensor product of morphisms K{bilinear. An object V of
V is called simple if k 7! kidV is a bijection K ! EndV(V ). In particular the
unit object I is simple. An object V of V is dominated by a family fVigi2I
if there exists a �nite set of morphisms ffr : Vi(r) ! V; gr : V ! Vi(r)gr with
i(r) 2 I such that idV =

P
r frgr .

A modular category is a tuple (V; fVigi2I), where V is a ribbon Ab{category
and fVigi2I is a �nite set of simple objects closed under duals (i.e. for any
i 2 I there exists i� 2 I such that Vi� is isomorphic to the dual of Vi ) and
dominating all objects of V , such that V0 = I for a distinguished element 0 2 I ,
and such that the so-called S{matrix S = (Si;j)i;j2I is invertible over K . Here
Si;j = tr

(
cVj ;Vi � cVi;Vj

�
is the invariant of the standard Hopf link with framing

0 and with one component colored by Vi and the other colored by Vj . The
invertibility of S implies that i 7! i� is an involution in I .

Since Vi is a simple object, �Vi : Vi ! Vi is equal to viidVi for a vi 2 K ,
i 2 I . The T {matrix T = (Ti;j)i;j2I is given by Ti;j = �i;jvi , where �i;j is the
Kronecker delta equal to 1 if i = j and to 0 otherwise. In Fig. 3 we give a
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graphical description of the entries of the S{ and T {matrices. In this and other
�gures we indicate the object Vi by i. Moreover, we put dim(i) = dim(Vi),
i 2 I . We have used the identity F (�Ω) = tr(F (Ω)), where �Ω is the closure of
a colored ribbon graph Ω, cf. [Tu, Corollary I.2.7.2].

j

k

:= (dim(j))−1Sk;j idVj
:= vj idVj ;

j

Figure 3

A rank of the modular category (V; fVigi2I) is an element D = DV 2 K such
that D2 =

P
i2I (dim(i))2 . A modular category does not need to have a rank,

but, as pointed out in [Tu, p. 76], we can always formally change V to a modular
category with the same objects as V and with a rank. We let � = �V =P

i2I v
−1
i (dim(i))2 . For a modular category with a rank D we have

S2 = D2J (1)

by [Tu, Formula (II.3.8.a)], where Ji;j = �i�;j , i; j 2 I .

The RT{invariants of 3{manifolds We identify as usual an oriented framed
link in S3 = R3 [ f1g with a ribbon graph in S3 (actually in R3 ) consisting
solely of directed annuli, cf. [RT2], [Tu]. If L is a framed link in S3 and B4

is the closed 4{ball, oriented as the unit ball in C2 , then we get a smooth
closed connected oriented 4{manifold WL by adding 2{handles to B4 along
the components of L in S3 = @B4 using the framing of L, see [Ki]. The
manifold M = ML = @WL , oriented using the ‘outward �rst’ convention for
boundaries, is the result of surgery on S3 along L. Let Ω be a colored ribbon
graph inside M and let Γ(L; �) be the colored ribbon graph obtained by �xing
an orientation in L and coloring the i’th component of L by V�(Li) . The
RT{invariant of the pair (M;Ω) based on (V; fVigi2I ;D) is given by

�(V ;D)(M;Ω) = ��(L)D−�(L)−m−1 (2)

�
X

�2col(L)

 
mY
i=1

dim(�(Li))

!
F (Γ(L; �) [ Ω);

cf. [Tu, p. 82], where, as usual, we identify Ω with a colored ribbon graph in
S3 n L. Here m is the number of components of L, �(L) is the signature of
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WL , i.e. the signature of the intersection form on H2(WL;R), and col(L) is the
set of mappings from the set of components of L to I . The signature �(L) is
also equal to the signature of the linking matrix of L.

The mirror of a modular category The mirror of a modular category
(V; fVigi2I) is a ribbon Ab{category V with the same underlying monoidal Ab{
category and the same duality as V . If � and c are the twist and braiding of V ,
then the twist �� and braiding �c of V are de�ned by ��V = (�V )−1 and �cV;W =
(cW;V )−1 for any objects V , W of V , cf. [Tu, Sect. I.1.4]. By [Tu, Exercise
II.1.9.2],

(
V; fVigi2I

�
is a modular category with S{matrix �S = (Si�;j)i;j2I ,

where S = (Si;j)i;j2I is the S{matrix of V . Note that D is a rank of V if and
only if D is a rank of V , since the dimensions of any object of V with respect
to V and V are equal, cf. [Tu, Corollary I.2.8.5]. By [Tu, Formula (II.2.4.a)]
we have

�V�V = D2: (3)

We end this section by recalling the notion of a unimodal modular category also
called a unimodular category, cf. [Tu, Sect. VI.2]. Moreover we give two small
lemmas needed in the calculations of the RT{invariants of Seifert manifolds
with non-orientable base.

Let (V; fVigi2I) be a modular category. An element i 2 I is called self-dual
if i = i� . For such an element we have a K{module isomorphism HomV(V ⊗
V; I) �= K , V = Vi . The map x 7! x(idV ⊗ �V )cV;V is a K{module endomor-
phism of HomV(V ⊗ V; I), so is a multiplication by a certain "i 2 K . By the
de�nition of the braiding and twist we have ("i)2 = 1. In particular "i 2 f�1g
if K is a �eld. The modular category (V; fVigi2I) is called unimodal if "i = 1
for every self-dual i 2 I . By copying a part of the proof of [Tu, Lemma VI.2.2]
we get:

Lemma 3.1 Let (V; fVigi2I) be a modular category and let i 2 I be self-dual.
Moreover, let V = Vi and let �i 2 K be as above. Then

dV (! ⊗ idV ) = "id
−
V (idV ⊗ !) (4)

for any isomorphism ! : V ! V � , where d−V is the operator invariant FV of
the left-oriented cap x colored with V .

Let (A;R; v; fVigi2I) be a modular Hopf algebra over a commutative unital ring
K , cf. [Tu, Chap. XI]. If we write the universal R{matrix as R =

P
j �j ⊗�j 2
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A⊗2 , the element u is given by u =
P

j s(�j)�j 2 A, where s is the antipode of
the underlying Hopf algebra. Let (V; fVigi2I) be the modular category induced
by (A;R; v; fVigi2I), cf. [Tu, Chap. XI].

Lemma 3.2 Let i 2 I be self-dual, let V = Vi and let �i 2 KV = K be as
above. For any isomorphism ! : V ! V � , the composition

V
!

// V �
(!−1)�

// V ��
G

// V

is given by multiplication with "iuv , where G−1 is the canonical K{module
isomorphism between the �nitely generated projective K{module V and its
double dual V �� .

Proof Since V is a ribbon category, we have a canonical A{module isomor-
phism �V : V ! V �� given by

�V = (d−V ⊗ idV ��)(idV ⊗ bV �);

cf. [Tu, Corollary I.2.6.1]. Let Q : V ! V be multiplication by uv . Then
�V = G−1 � Q. To see this, write bV �(1) =

P
k gk ⊗ gk 2 V � ⊗ V �� . This

element is characterized by the following property: For any � 2 V � , y 2 V ��
we have

y(�) =
X
k

y(gk)gk(�):

Now let x 2 V and get

�V (x) =
X
k

d−V (x⊗ gk)⊗ gk:

By using that d−V = dV cV;V �(�V ⊗ idV �) we get

�V (x) =
X
k

gk(uv � x)gk 2 V ��:

If � 2 V � we therefore have

�V (x)(�) =
X
k

gk(uv � x)gk(�) = G−1 �Q(x)(�):

If f : U ! W is a morphism in V , then the dual morphism f� : W � ! U� is
given by f� = (dW ⊗ idU�)(idW �⊗f⊗ idU�)(idW �⊗bU). By using the graphical
calculus together with (4) one immediately gets that (!−1)� � ! = "i�V .
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4 The Reshetikhin{Turaev invariants of Seifert man-
ifolds

In this section we calculate the RT{invariants of all oriented Seifert manifolds.
Throughout, (V; fVigi2I) is a �xed modular category with a �xed rank D . We
let F = FV , � = �V , K = KV , and � = �(V ;D) .

Notation For the next theorem and for later use we introduce some notation.
Let y(i; j) 2 K be the scalar such that F (Tij) = y(i; j)idVj , where Tij is the
colored ribbon tangle in Fig. 4. That is, y(i; j) = (dim(j))−1tr(F (Tij)). We
put

�(j) =
X
i2I

dim(i)y(i; j); j 2 I: (5)

For every self-dual element i 2 I , let "i 2 K be as in the last part of Sect. 3.

j

i

Tij
,

j

i

P
i2I dim(i) := �(j)idVj

Figure 4

The group SL(2;Z) is generated by two matrices

� =
�

0 −1
1 0

�
; � =

�
1 1
0 1

�
: (6)

For a tuple of integers C = (a1; : : : ; an) we let

BCk =
�
�Ck �Ck
�Ck �Ck

�
= �ak��ak−1� : : :�a1�; k = 1; 2; : : : ; n (7)
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and let BC = BCn . Moreover, we put

GC = T anST an−1S � � �ST a1S: (8)

A continued fraction expansion
p

q
= an −

1

an−1 −
1

� � � − 1
a1

; ai 2 Z;

p; q 2 Z not both equal to zero, is abbreviated(a1; : : : ; an). Given pairs (�j ; �j)
of coprime integers we let Cj = (a(j)

1 ; a
(j)
2 ; : : : ; a

(j)
mj ) be a continued fraction

expansion of �j=�j , j = 1; 2; : : : ; n.

Theorem 4.1 The RT{invariant � of M = (o; g j b; (�1; �1); : : : ; (�n; �n)) is

�(M) = (�D−1)�oD2g−2−
∑n
j=1mj

X
j2I

v−bj dim(j)2−n−2g

 
nY
i=1

(SGCi)j;0

!
; (9)

where

�o = sign(e) +
nX
j=1

mjX
l=1

sign(�Cjl �
Cj
l ): (10)

Here e = −
�
b+

Pn
j=1

�j
�j

�
is the Seifert Euler number.

The RT{invariant � of the Seifert manifold M with non-normalized Seifert
invariants fo; g; (�1; �1); : : : ; (�n; �n)g is given by the same expression with

the exceptions, that the factor v−bj has to be removed and e = −
Pn

j=1
�j
�j

.

The RT{invariant � of M = (n; g j b; (�1; �1); : : : ; (�n; �n)) is

�(M) = (�D−1)�nDg−2−
∑n
j=1mj (11)

�
X
j2I

("j)
g �j;j�v

−b
j dim(j)2−n−g

 
nY
i=1

(SGCi)j;0

!
;

where �j;k is the Kronecker delta equal to 1 if j = k and to 0 otherwise, and

�n =
nX
j=1

mjX
l=1

sign(�Cjl �
Cj
l ): (12)

The RT{invariant � of the Seifert manifold M with non-normalized Seifert
invariants fn; g; (�1; �1); : : : ; (�n; �n)g is given by the same expression with
the exception, that the factor v−bj has to be removed.
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The theorem is also valid in case n = 0. In this case one just has to put all
sums

Pn
j=1 equal to zero and all products

Qn
i=1 equal to 1. Note that �gj = 1

if g is even and �gj = �j if g is odd since �2j = 1.

Preliminaries Before giving the proof of Theorem 4.1 we make some prelim-
inary remarks.

1) Let C = (a1; : : : ; an) 2 Zn and consider the matrices in (7). By [J, Proposi-
tion 2.5] we have that (a1; : : : ; ak) is a continued fraction expansion of �Ck=�

C
k ,

k = 1; 2; : : : ; n, and that �Ck = �Ck−1 , k = 2; 3; : : : ; n. Note that �C1 = a1 and
�C1 = 1.

p
q

Li

� � � �

a1 a2 a3 an−2 an−1

an

Li

Figure 5

2) Two labelled links in S3 are (surgery) equivalent if surgeries on S3 along
these labelled links result in 3{manifolds which are isomorphic as oriented 3{
manifolds. Correspondingly we talk about equivalent surgery presentations.
We have the following well-known fact [Ro1, p. 273]: Let (a1; : : : ; an) be a
continued fraction expansion of p=q 2 Q and let L be a labelled link with a
component Li with surgery coe�cient p=q . Then this link is surgery equivalent
to a link obtained from L by changing the surgery coe�cient of Li to an and
shackling Li with an integer labelled Hopf chain with n − 1 components with
labels a1; : : : ; an−1 as shown in Fig. 5. For a proof of this, simply use standard
surgery modi�cations, cf. [Ro1, Sect. 9.H], [Ro2]. (Begin by unknotting Li
in the presentation in the right-hand side of Fig. 5 and get rid of the Hopf
chain, see the proof of [PS, Proposition 17.3]. Finally recover the original Li
by knotting.) Alternatively, see [KM2, Appendix].

3) The identity in Fig. 6 is due to Turaev, cf. [Tu, Exercise II.3.10.2]. For the
sake of completeness we give a proof of it here.

Proof of the identity in Fig. 6 The axiom of domination for a modular
category, see Sect. 3, implies that we for arbitrary i; j 2 I can write the identity
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k

dim(i)
P

k2I dim(k) := �i;jD2

j

i i

i

Figure 6

k

:=
P

l

j

i

i(l)

fl

gl

k

i

i

j

j

Figure 7

endomorphism of Vj ⊗ V �i as a �nite sum

idVj⊗V �i =
X
l

flgl;

where fl : Vi(l) ! Vj ⊗ V �i and gl : Vj ⊗ V �i ! Vi(l) are certain morphisms. By
this we get the identity in Fig. 7. According to [Tu, Lemma II.3.2.3] we have
dim(k) = d−1

0 dk , where the elements di 2 K , i 2 I , are de�ned by (50), cf. [Tu,
p. 87]. By using this and [Tu, Lemma II.3.2.2 (i)] we get the identity shown in
Fig. 8, where x =

P
u2I du dim(u). Since V �i �= Vi� and Hom(I; Vj ⊗ Vi�) = 0

unless i = j , cf. [Tu, Lemma II.3.5], we get the result for i 6= j . Assume
i = j . By [Tu, Lemma II.3.5], the K{module Hom(I; Vi ⊗ V �i ) is generated
by bVi , where b is part of the duality of the modular category. Similarly,
Hom(Vi ⊗ V �i ; I) is generated by d−Vi , where d−Vi : Vi ⊗ V

�
i ! I is the operator

invariant of the left-oriented cap x colored with Vi . We can therefore write
idVi⊗V �i = fg+

P
l:i(l)6=0 flgl , where f = abVi and g = a0d−Vi , a; a

0 2 K . By this
we get

d−VibVi = d−Vi idVi⊗V �i bVi = aa0(d−VibVi)
2;

since Hom(Vr; Vs) = 0 for any distinct r; s 2 I , cf. [Tu, Lemma II.1.5]. Since
d−VibVi = dim(i) we get aa0 = (dim(i))−1 . Combining this with the identity in
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Fig. 8 and the fact that xd−1
0 = D2 , cf. [Tu, p. 89], �nally brings us to the

identity in Fig. 6.

The above proof does not use the existence of a rank. In case we don’t have a
rank, the identity in Fig. 6 is still valid if we replace D2 by

P
u2I (dim(u))2 .

One should also note that the orientation of the annulus component with color
k does not play any role. This follows by the usual argument since we sum over
all colors k .

k

:= xd−1
0

P
l:i(l)=0

P
k2I dim(k)

j

i

0

fl

gl

i

i

j

j

Figure 8

Proof of Theorem 4.1 Let M = (o; g j b; (�1; �1); : : : ; (�n; �n)) and let L
be the link obtained from the link in Fig. 1 by replacing the component with
surgery coe�cient �j=�j by a chain according to Cj as in Fig. 5, j = 1; : : : ; n.
Note that L has m = 2g+ 1 +

Pn
j=1mj components. By (2) and the identities

in Fig. 3 we have

�(M) = ��(L)D−�(L)−m−1
X
j2I

dim(j)1−n
 

nY
i=1

(SGCi)j;0

!

�
X

u1;::: ;ug;n1;::: ;ng2I

 
gY
l=1

dim(ul) dim(nl)

!
F (Γ(j; u1; n1; : : : ; ug; ng));

where Γ(j; u1; n1; : : : ; ug; ng) is the colored ribbon graph shown in Fig. 9. If
g = 0 we have to replace the sum

P
u1;::: ;ug;n1;::: ;ng2I by v−bj dim(j) here and

can go directly to the calculation of �(L). Assume g > 0. By using the identity
in Fig. 6 with the component colored with uj in Fig. 9 equal to the component
colored with k in Fig. 6, j = 1; 2; : : : ; g , we get
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X
u1;::: ;ug;n1;::: ;ng2I

 
gY
l=1

dim(ul) dim(nl)

!
F (Γ(j; u1; n1; : : : ; ug; ng))

= D2g
X

n1;::: ;ng2I
F (Γ(j; n1; : : : ; ng));

where Γ(j; n1; : : : ; ng) is the colored ribbon tangle shown in Fig. 10. The
expression (9) now follows by the fact that �(L) = �o , see below, and byX

n1;::: ;ng2I
F (Γ(j; n1; : : : ; ng))

= v−bj
X

n1;::: ;ng2I

 
gY
l=1

Snl;jSn�l ;j dim(j)−2

!
dim(j) = dim(j)1−2gv−bj D2g;

where the �rst equality follows by the identities in Fig. 3 and the last equality
follows by (1) and the facts that S is symmetric and satis�es Si;j = Si�;j� ,
i; j 2 I , cf. [Tu, Formula (II.3.3.a)].

� � �

ng

n1

ug u1
(−b)
j

Figure 9: Oriented colored surgery presentation of (o; g j b)

Let us show that �(L) = �o . To this end let us use the notation

A(x1; x2; : : : ; xk) =

0BBBB@
x1 1 0 � � � 0
1 x2 1 � � � 0
0 1 x3 � � � 0
� � � � � � � � � � � � � � �
0 0 0 � � � xk

1CCCCA ; (13)
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n1 ng� � �

ng

n1

(−b)
j

Figure 10: The colored ribbon tangle Γ(j; n1; : : : ; ng)

so A(x1; x2; : : : ; xk)ij is xi if i = j , 1 if ji − jj = 1, and 0 elsewhere, i; j 2

f1; 2; : : : ; kg. The linking matrix of L is given by
�

0 0
0 A

�
, where the zeroes

refer to the �rst 2g rows and columns and

A =

0BBBB@
−b e1 e1 � � � e1

et1 A1 0 � � � 0
et1 0 A2 � � � 0
� � � � � � � � � � � � � � �
et1 0 0 � � � An

1CCCCA : (14)

Here Aj = A(a(j)
mj ; a

(j)
mj−1; : : : ; a

(j)
1 ), i.e. the linking matrix of the j ’th chain,

and e1 = (1; 0; � � � ; 0). We write wt for a vector w considered as a column
vector. We will calculate the signature of A by reducing A using combined
row and column operations. A main problem is to avoid dividing by zero. Let
us consider A1 . Write m = m1 , ai = a

(1)
i , pi = �C1i , and qi = �C1i to shorten

notation. Assume �rst that pi 6= 0 for all i = 1; 2; : : : ;m (or equivalently that
qi 6= 0 for all i = 1; 2; : : : ;m since q1 = 1, pm = ��1 6= 0, and qi = pi−1 ,
i = 2; 3; : : : ;m). Since (a1; a2; : : : ; ai) is a continued fraction expansion of
pi=qi , i = 1; 2; : : : ;m, we can reduce A to

A0 =

0BBBB@
−b− qm

pm
0 e1 � � � e1

0 A01 0 � � � 0
et1 0 A2 � � � 0
� � � � � � � � � � � � � � �
et1 0 0 � � � An

1CCCCA ; (15)
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where A01 = diag(pm=qm; pm−1=qm−1; : : : ; p1=q1).

Next assume that pi = 0 for at least one i 2 f1; 2; : : : ;mg. Let k be the
smallest element in f1; 2; : : : ;mg such that pk = 0. Choose a non-negative
integer l such that ak+1 = ak+2 = � � � = ak+l = 0 and ak+l+1 6= 0 or k+ l = m.
Let us �rst consider the case k + l < m and let a = ak+l+1 . If k > 1 we
reduce A to a matrix A0 which is equal to A, except that A1 is changed

to A01 =
�
C 0
0 D

�
, where D = diag(pk−1=qk−1; pk−2=qk−2; : : : ; p1=q1) and

C = A(am; am−1; : : : ; ak+l+2; a; 0; : : : ; 0). If k = 1, let A0 = A and A01 = A1 .
Next reduce A0 to a matrix A00 equal to A0 , except that A01 is changed to

A001 =

0BBBB@
E 0 � � � 0 0
0 G � � � 0 0
� � � � � � � � � � � � � � �
0 0 � � � G 0
0 0 � � � 0 D

1CCCCA ; (16)

where G = diag(2;−1=2), and where E = A(am; am−1; : : : ; ak+l+2; a; 0) if l is
even and E = A(am; am−1; : : : ; ak+l+2; a) if l is odd. (The row and column
with D is not present if k = 1. Note that A00 = A0 if l = 0.) Assume
that k + l + 1 = m. Then, if l is even, we reduce A00 futher to a matrix
equal to the right-hand side of (15) with A01 replaced by a matrix A0001 equal
to A001 with E replaced by diag(a;−1=a). If l is odd we let A0001 = A001 . Since

pk = 0 we have that BC1k = �
�

0 −1
1 d

�
= ���d for a d 2 Z, so BC1k+i =

��i+1�d , i = 1; 2; : : : ; l . Since �2 = −1 we therefore have qk+i = 0 for i
odd and pk+i = 0 for i even, i 2 f0; 1; : : : ; lg. In particular qm = pk+l = 0
for l even. For l odd we have pm=qm = a. From this we also see that the
signature of A0001 is equal to

Pm
j=1 sign(pjqj). If k + l + 1 < m we continue

the diagonalization by reducing E in the same manner as we have reduced A1

above. If l is odd, pk+l+1=qk+l+1 = a and the lower right block in A001 , i.e.
diag(G; : : : ; G;D), has signature

Pk+l
j=1 sign(pjqj). If l is even, pk+l = 0 and

therefore qk+l+1 = 0 and pk+l+2=qk+l+2 = ak+l+2 . In this case we begin by

reducing A00 to a matrix equal to A00 with E replaced by
�
E0 0
0 F

�
in A001 ,

where E0 = A(am; am−1; : : : ; ak+l+2) and F = diag(a;−1=a). Note that the
lower right block in the reduced A001 , i.e. diag(F;G; : : : ; G;D), has signaturePk+l+1

j=1 sign(pjqj).

The only case left to consider is when k + l = m. In this case BC1 = BC1m =
�lBC1k = ��l+1�d , so l is odd since pm = ��1 6= 0. But then �1 = �qm = 0,
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so this case is only relevant in case of non-normalized Seifert invariants. For
letting the above calculation also work in this case, let us assume for the moment
that k + l = m and l is odd. We then reduce A to a matrix H equal to A,
except that A1 is replaced by a matrix H1 equal to the right-hand side of (16)
with E replaced by J = A(0; 0). Finally, we reduce H to a matrix equal to
the right-hand side of (15) with A01 replaced by a matrix H2 equal to H1 with
J replaced by G. Note that the signature of H2 is equal to

Pm
j=1 sign(pjqj).

This ends the reduction involving A1 . We can now continue as above reducing
the parts in A involving Aj , j = 2; 3; : : : ; n, and get the result.

The RT{invariant � of the Seifert manifold with non-normalized Seifert invari-
ants fo; g; (�1; �1); : : : ; (�n; �n)g is calculated as above by letting b be equal
to zero everywhere, since this manifold has a surgery presentation as in Fig. 1
with −b changed to 0.

Ti1j

Tigj

(−b− 2g)

j

Figure 11: Oriented colored surgery presentation of (n; g j b)

Next let us calculate �(M) for M = (n; g j b; (�1; �1); : : : ; (�n; �n)). To obtain
a surgery presentation of M with only integral surgery coe�cients we make
two left-handed twists about every component with surgery coe�cient 1=2 in
the surgery presentation in Fig. 2. The components with surgery coe�cients
�j=�j are replaced by chains according to the continued fraction expansions
Cj , j = 1; : : : ; n, as before. Fig. 11 shows a colored oriented version of the new
surgery diagram in the case where there are no exceptional �bers. The coupons
Tilj represent colored ribbon tangles shown in Fig. 4. The resulting framed link
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L has m = g + 1 +
Pn

j=1mj components. By (2) and the identities in Fig. 3
we have

�(M) = ��(L)D−�(L)−m−1
X
j2I

dim(j)1−n
 

nY
i=1

(SGCi)j;0

!

�
X

i1;::: ;ig2I

 
gY
l=1

dim(il)

!
F (R(j; i1; : : : ; ig));

where R(j; i1; : : : ; ig) is the colored ribbon graph in Fig. 11. The expression
(11) now follows by the fact that �(L) = �n , see below, and by Lemma 4.2
together with the identityX

i1;::: ;ig2I

 
gY
l=1

dim(il)

!
F (R(j; i1; : : : ; ig)) = v−b−2g

j dim(j)�(j)g ;

which follows by combining Figures 3 and 4.

Let us show that �(L) = �n . The linking matrix of L is given by

A =

0BBBBBB@

0 wt 0 0 0 0
w −b− 2g e1 e1 � � � e1

0 et1 A1 0 � � � 0
0 et1 0 A2 � � � 0
� � � � � � � � � � � � � � � � � �
0 et1 0 0 � � � An

1CCCCCCA ;

where w = (−2;−2; : : : ;−2) is a vector of length g and Aj is given as in the
case of oriented base, i.e. Aj = A(a(j)

mj ; a
(j)
mj−1; : : : ; a

(j)
1 ), see (13). By doing the

same combined row and column operations as in the case of oriented base we
reduce A to

A0 =

0BBBB@
D 0 0 � � � 0
0 A01 0 � � � 0
0 0 A02 � � � 0
� � � � � � � � � � � � � � �
0 0 0 � � � A0n

1CCCCA ;

where A0j is a diagonal matrix with signature
Pmj

k=1 sign(�Cjk �
Cj
k ), j = 1; : : : ; n,

and D =
�

0 wt

w e− 2g

�
; where, as usual, e = −

�
b+

Pn
j=1 �j=�j

�
is the

Seifert Euler number. By this and the fact that the signature of D is zero it
follows that �(L) is equal to �n in (12).
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The RT{invariant � of the Seifert manifold with non-normalized Seifert invari-
ants fn; g; (�1; �1); : : : ; (�n; �n)g is calculated as above by letting b be equal
to zero everywhere, since this manifold has a surgery presentation as in Fig. 2
with −b changed to 0.

The following lemma was �rst proved by the author in the case, where the
modular categories are induced by the quantum groups associated to sl2(C).
This was done by a rather long R{matrix calculation. After having presented
the result to V. Turaev, he found the proof below using a geometric computation
which works for an arbitrary modular category.

Lemma 4.2 For all j 2 I ,

�(j) =
X
i2I

dim(i)y(i; j) = "jD2v2
j �j;j� (dim(j))−1 :

Proof Let Lij be the closure of the ribbon tangle Tij . We have the isotopy
shown in Fig. 12. Let !j : Vj ! (Vj�)

� be an isomorphism and use this and
its inverse to reverse the orientation of one of the two strings passing through
the component with color i in L0ij (the link in the right-hand side of Fig. 12).
This enables us to use the identity in Fig. 6, which gives us the identity in
Fig. 13. The result now follows by applying Lemma 3.1 together with F (Lij) =
tr(F (Tij)) = y(i; j) dim(j).

j

i

Lij

i

j j

L0ij

�

Figure 12: A fundamental isotopy
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!−1
j!j

j

j

P
i2I dim(i)F (Lij)

:= v2
j (dim(j))−1D2�j;j�

Figure 13

It follows that the lemma is also true in case we don’t have a rank if one replaces
D2 with

P
u2I (dim(u))2 . The result in Lemma 4.2 is independent of how we

direct the component with color i in Tij . This follows by the usual argument
since we sum over all colors i. If we reverse the direction of the component
with color j we get �(j�) instead of �(j), since the operator invariant F of
a colored ribbon graph is unchanged by changing the direction of an annulus
component if one at the same time changes the color of that component to the
dual color. Observe however that �(j�) = �(j) since j�� = j .

Remark 4.3 In this remark we give some alternative expressions for the sig-
natures (10) and (12). Similar formulas have been obtained in [FG] and [J] for
the case g = 0 (so � = o) in connection with calculations of framing corrections
of Witten’s 3{manifold invariants of lens spaces and other Seifert manifolds
with base S2 . To this end we use the Rademacher Phi function �, which is
de�ned on PSL(2;Z) = SL(2;Z)=f�1g by

�
��

p r
q s

��
=
� p+s

q − 12(sign(q))s(s; jqj) ; q 6= 0
r
s ; q = 0:

(17)

Here, for q > 0, the Dedekind sum s(s; q) is given by

s(s; q) =
1
4q

q−1X
j=1

cot
�j

q
cot

�sj

q
(18)

for q > 1 and s(s; 1) = 0, s 2 Z. We refer to [RG] for a comprehensive
description of this function and also to [KM2] for a detailed account of the
presence of the Rademacher Phi function and the related Dedekind sums in
topological settings. By [J, Formula (2.20)] we have

m−1X
l=1

sign(�Cl �
C
l ) =

1
3

 
mX
l=1

al − �(BC)

!
(19)
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for any sequence of integers C = (a1; : : : ; am). Formula (10) can therefore be
changed to

�o = sign(e) +
nX
j=1

sign(�j�j) +
1
3

nX
j=1

 mjX
l=1

a
(j)
l − �(BCj )

!
; (20)

where the second sum of course can be put equal to n if we work with normalized
Seifert invariants (�j > �j > 0). We can choose the Cj so that jajl j � 2 for l =
1; 2; : : : ;mj − 1 and j = 1; 2; : : : ; n. In this case we have that sign(�Cjl �

Cj
l ) =

sign(a(j)
l ), l = 1; 2; : : : ;mj − 1 and j = 1; 2; : : : ; n, so

�o = sign(e) +
nX
j=1

sign(�j�j) +
nX
j=1

mj−1X
l=1

sign(a(j)
l ): (21)

The formula (21) generalizes [FG, Formula (2.7)]. The expressions (20) and
(21) also hold for the signature �n in (12) if we remove the term sign(e).

We end this section by specializing to lens spaces. Let p; q be coprime integers.
The lens space L(p; q) is given by surgery on S3 along the unknot with surgery
coe�cient −p=q . (Recall here that L(p;−q) is di�eomorphic to L(p; q) via an
orientation reversing di�eomorphism.) From this surgery description we can
directly calculate the RT{invariants of L(p; q) by using a continued fraction
expansion of −p=q as in the proof of Theorem 4.1. We choose instead to
calculate the invariants by identifying L(p; q) with certain Seifert �brations,
see the proof below.

In the following corollary we include the possibilities L(0; 1) = S1 � S2 and
L(1; q) = S3 , q 2 Z. (Of course we immediately get from (2) that �(S3) = D−1

and �(S1 � S2) = 1, since S3 and S1 � S2 are given by surgeries on S3 along
the empty framed link and the unknot with framing 0 respectively.)

Corollary 4.4 Let p; q be a pair of coprime integers and let (a1; : : : ; am−1)
be a continued fraction expansion of −p=q if q 6= 0. If q = 0 we put m = 3
and a1 = a2 = 0. Then the RT{invariant � of the lens space L(p; q) is

�(L(p; q)) = (�D−1)�oD−mGC0;0; (22)

where C = (a1; : : : ; am−1; 0) and

�o =
m−1X
l=1

sign(�Cl �
C
l ) =

1
3

 
m−1X
l=1

al − �(BC)

!
:
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Proof Lens spaces are Seifert manifolds with base S2 and zero, one or two
exceptional �bers. In fact, let M be the Seifert manifold with non-normalized
Seifert invariants fo; 0; (�1; �1); (�2; �2)g, and let �01; �

0
2 be integers such that

�2�
0
2 − �2�

0
2 = 1. By [JN, Theorem 4.4], M is isomorphic to L(p; q) as ori-

ented manifold, where p = �1�2 + �2�1 and q = �1�
0
2 + �02�1 . In particu-

lar L(p; q) is isomorphic (as oriented manifold) to fo; 0; (jqj; sign(q)p); (1; 0)g =
fo; 0; (jqj; sign(q)p)g, see Remark 4.5 i). If q = 0we have m = 3 and a1 = a2 = 0
by assumption, so by (1) the right-hand side of (22) is equal to D−1 as it should
be. If q 6= 0 we have

�(L(p; q)) = (�D−1)�oD−m−2
X
j2I

dim(j)(SGC)j;0

= (�D−1)�oD−m−2(S2GC)0;0

by Theorem 4.1, since C is a continued fraction expansion of q=p (also for
p = 0). The formula (22) then follows by (1). The formula for �o follows from
(10) and (20).

Remark 4.5 i) The manifold fo; 0; (0;�1)g is a Seifert �bration in the ex-
tended sense of [JN], see Remark 2.2. [JN, Theorem 4.4] is valid for these more
general Seifert �brations. Note also that it follows from this theorem, that a
given lens space can have several distinct Seifert �bered structures.

ii) If C is chosen so that jajj � 2 for j = 1; : : : ;m − 1 (which is possible if
jp=qj > 1 by [J, Lemma 3.1]), then �o =

Pm−1
j=1 sign(aj) by (21).

iii) In the special case (p; q) = (n; 1), jnj � 2, the above coincides with the
result obtained immediately by (2), cf. [Tu, p. 81] (by the conventions used
here our L(n; 1) is equal to −L(n; 1) in [Tu]). The manifold L(b; 1), b 2 Z,
is isomorphic (as oriented manifold) to the Seifert manifold with (normalized)
Seifert invariants (o; 0 j b).

5 A rational surgery formula for the Reshetikhin{

Turaev invariant

In this section, as in the previous, (V; fVigi2I) is a �xed modular category with
a �xed rank D . We will use notation introduced above Theorem 4.1. Moreover,
� is the Rademacher function, see (17).

The surgery formula, we are going to derive, concerns rational surgery along
framed links in arbitrary closed oriented 3{manifolds. Before giving the result
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in the general case, let us �rst consider rational surgery along links in S3 . By
using the surgery equivalence described in Fig. 5, the identities in Fig. 3, and
the method used in the proof of Theorem 4.1 to calculate signatures we obtain:

Theorem 5.1 Let L be a link in S3 with m components and let M be the
3{manifold given by surgery on S3 along L with surgery coe�cient pi=qi 2 Q
attached to the i’th component, i = 1; 2; : : : ;m (so we assume qi 6= 0, i =
1; 2; : : : ;m, see the comments to (23)). Moreover, let Ω be a colored ribbon
graph in M (also identi�ed with a colored ribbon graph in S3 n L). Let L0

be L considered as a framed link with all components given the framing 0.

Finally, let Ci = (a(i)
1 ; : : : ; a

(i)
mi) be a continued fraction expansion of pi=qi ,

i = 1; 2; : : : ;m. Then

�(M;Ω) = (�D−1)�+
∑m
i=1 ciD−

∑m
i=1 mi

�
X

�2col(L)

�(S3;Γ(L0; �) [ Ω)

 
mY
i=1

GCi
�(Li);0

!
;

where ci = 1
3

�Pmi
j=1 a

(i)
j −�(BCi)

�
, i = 1; : : : ;m, and � is the signature of

the linking matrix of L (with the surgery coe�cients p1=q1; : : : ; pm=qm on the
diagonal ).

We have used (19). Note that �(S3;Γ(L0; �) [ Ω) = D−1F (Γ(L0; �) [ Ω).
Theorem 5.1 is a generalization of the de�ning surgery formula (2). This follows
by the facts that if a 2 Z, then �(�a�) = a and (T aS)j;0 = vaj dim(j).

In the case of surgery on arbitrary closed oriented 3{manifolds along framed
links we do not have a preferred framing as above, i.e. we can not identify a
framing of a link component with an integer in a canonical way, see Appendix
B. Here, by a framed link in a closed oriented 3{manifold M , we mean a pair
(L;Q), where Q = qmi=1Qi : qmi=1 (B2 � S1) ! M is an embedding (or more
precisely an isotopy class of such embeddings) and L is the image by Q of
qmi=1(0 � S1). For other de�nitions of framed links in 3{manifolds and how
these relate to this de�nition we refer to Appendix B. To establish a surgery
formula as above in this more general setting we will need the machinery of
the TQFT of Reshetikhin and Turaev. We have to be precise with orientations
because the TQFT{calculations are sensitive to these orientations. We will use
the following conventions.

Conventions 5.2 The space B2 � S1 is the standard solid torus in R3 with
the orientation induced by the standard right-handed orientation of R3 . Here
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S1 is the standard unit circle in the xz{plane with centre 0 and oriented coun-
terclockwise, i.e., e3 is a positively oriented tangent vector in the tangent space
Te1S

1 � R3 , ei being the i’th standard unit vector in R3 , see Fig. 14. For a
framed link (L;Q) as above we will always assume that each copy of B2 � S1

is this oriented standard solid torus, and that Q is orientation preserving after
giving the image of Q the orientation induced by that of M (we can always
obtain this by composing some of the Qi by g � idS1 if necessarily, where
g : B2 ! B2 is an orientation reversing homeomorphism). Moreover, we ori-
ent L so that Qi restricted to S1 � f0g is orientation preserving for each i.
The oriented meridian � and longitude � , see Fig. 14, represent a basis (over
�) of H1(�(1;); �) = � � �, � = Z;R, �(1;) = S1 � S1 . (For the notation
�(1;) , see Sect. 5.1.) We identify elements of H1(�(1;); �) with 2{columns via

x[�]+y[�] !
�
x
y

�
. The endomorphisms of H1(�(1;); �) are identi�ed with

2x2{matrices with entries in � acting on the 2{columns by multiplication on
the left.

�
�

x

z

Figure 14

Let us recall the notion of rational surgery on M along (L;Q). Therefore,
let Ui = Qi(B2 � S1) and let li = Qi(e1 � S1) oriented so that [li] = [Li] in
H1(Ui;Z) where Li = Qi(0 � S1). Moreover, let �i = Qi(@B2 � 1) oriented
so that (@Qi)�([�]) = [�i] in H1(@Ui;Z), where @Qi is the restriction of Qi to
@B2 � S1 = �(1;) . Let (pi; qi) be pairs of coprime integers, let hi : @Ui ! @Ui
be homeomorphisms such that

(hi)�([�i]) = �(pi[�i] + qi[li]) (23)

in H1(@Ui;Z), let h be the union of the hi , and let U = qmi=1Ui be the image
of Q. Then the 3{manifold M 0 = (M n int(U)) [h U is said to be the result
of doing surgery on M along the framed link (L;Q) with surgery coe�cients
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fpi=qigmi=1 . If qi = 0 so pi = �1 we just write 1 for pi=qi . Such surgeries do
not change the manifold (up to an orientation preserving homeomorphism). If,
in (23), pi = 0 and qi = �1 for all i, i.e. all surgery coe�cients are 0, then
we call M 0 the result of doing surgery on M along the framed link (L;Q). We
equip M 0 with the unique orientation extending the orientation in M n int(U).
The above generalizes ordinary rational surgery along links in S3 , see Appendix
B. We call a homeomorphism h satisfying (23) an attaching map for the surgery.
We can and will always choose an orientation preserving attaching map. Up
to an orientation preserving homeomorphism the result of doing surgery on M
along the framed link (L;Q) with surgery coe�cients fpi=qigmi=1 is well de�ned,
independent of the choices of representative Q and attaching map h.

For � 2 col(L) we let Γ(L; �) = [mi=1Γ(Li; �(Li)), where Γ(Li; j) is the colored
ribbon graph equal to the directed annulus Qi(([−1=2; 1=2] � 0) � S1) with
oriented core Li and color Vj , j 2 I .

Theorem 5.3 Let Ci = (a(i)
1 ; : : : ; a

(i)
mi) 2 Zmi be a continued fraction expan-

sion of pi=qi , i = 1; : : : ;m. Moreover let Ω be a colored ribbon graph in M 0

(also identi�ed with a colored ribbon graph in M n L). Then

�(M 0;Ω) = (�D−1)�+
∑m
i=1 ciD−

∑m
i=1mi

�
X

�2col(L)

�(M;Γ(L; �) [Ω)

 
mY
i=1

GCi�(Li);0

!
;

where � is a sum of signs given by (33) and ci = 1
3

�Pmi
j=1 a

(i)
j − �(BCi)

�
,

i = 1; : : : ;m.

This theorem obviously generalizes Theorem 5.1. Theorem 5.3 follows by
Lemma 5.4 and Lemma 5.5 below. To prove these lemmas we use the ma-
chinery of the 2 + 1{dimensional TQFT (�;T ) of Reshetikhin and Turaev, see
[Tu, Chap. II and IV].

5.1 The TQFT (�; T )

The modular functor T for the TQFT (�;T ) is a functor from parametrized
decorated surfaces (see below) to the category of �nitely generated projective
K{modules. Decorated surfaces will be denoted d-surfaces in the following. We
begin by recalling the concepts and notation from [Tu] needed.

A decorated type or just a type is a tuple t = (g; (W1; �1); : : : ; (Wm; �m)), where
g is a non-negative integer, W1; : : : ;Wm are objects of V , and �1; : : : ; �m 2
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f�1g. The number m of pairs (Wj ; �j) is allowed to be zero. For a type t as
above we let

Ψt =
M
i2Ig

Hom(I;�(t; i)); (24)

where �(t; i) = W �1
1 ⊗ W �2

2 ⊗ : : : ⊗ W �m
m ⊗

Ng
r=1(Vir ⊗ V �ir) for every i =

(i1; : : : ; ig) 2 Ig . Here W+1 = W and W−1 = W � . Note that Ψt is a �nitely
generated projective K{module as a �nite direct sum of such modules, cf. [Tu,
Lemma II.4.2.1].

A connected d-surface is a connected closed oriented surface � of genus g with
m � 0 distinguished ordered and oriented arcs γ1; : : : ; γm , such that γj is
marked with a pair (Wj ; �j), where Wj is an object of V and �j 2 f�1g,
j = 1; 2; : : : ;m. The tuple t(�) = (g; (W1; �1); : : : ; (Wm; �m)) is called the type
of the d-surface. A non-connected closed oriented surface is said to be decorated
if its connected components are decorated. A d-homeomorphism of d-surfaces is
an orientation preserving homeomorphism of the underlying surfaces preserving
the distinguished arcs together with their orientations, marks, and order (on
each component).

For every type t = (g; (W1; �1); : : : ; (Wm; �m)) there is a certain standard d-
surface of type t, denoted �t , which is the boundary of an oriented handlebody
Ut of genus g with a certain partially colored ribbon graph Rt sitting inside, see
[Tu, Sect. IV.1.2]. In particular, �(1;) = S1 � S1 is an ordinary oriented torus,
see Fig. 15. The ribbon graph R(1;) lies in the interior of U(1;) and consists of
an uncolored coupon with a cap-like uncolored, untwisted, and directed band
attached to its top base. A non-connected standard d-surface is a disjoint union
of a �nite number of connected standard d-surfaces.

Figure 15: Projection of the standard handlebody U(1;)
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In the proof of Theorem 5.3 we will only need the standard surface �(1;) . For
this proof one can therefore ignore everything about the decoration with des-
tinguished marked arcs. However, in Sect. 6 we will need such decorations.
To avoid saying things twice, we continue by presenting the concepts using
arbitrary types.

A connected parametrized d-surface is a connected d-surface � together with
a d-homeomorphism �t ! � called the parametrization of �, where t = t(�)
is the type of �. A non-connected parametrized d-surface is de�ned similarly
by using non-connected standard d-surfaces. A morphism in the category of
parametrized d-surfaces, denoted a d-morphism, is a d-homeomorphism com-
muting with the parametrizations.

For a connected parametrized d-surface � of type t we have T (�) = Ψt . If �
is a non-connected parametrized d-surface with components �1; : : : ;�n , then
T (�) is equal to the non-ordered tensor product of the Ψtj , j = 1; : : : ; n, where
tj is the type of �j . Moreover T (;) = K . The modular functor T assigns the
identity endomorphism to any d-morphism. By [Tu, Lemma IV.1.4.1], T is a
modular functor in the sense of [Tu, Sect. III.1.2].

A decorated 3{manifold is a compact oriented 3{manifold M with parametrized
decorated boundary @M and with an embedded colored ribbon graph Ω, which
is compatible with the decoration of @M , see [Tu, p. 157]. In this paper we will
only meet decorated 3{manifolds with empty boundary or boundary equal to
a torus of type (1; ). In general, if @M contains no distinguished marked arcs,
then Ω is a colored ribbon graph in the interior of M with all bases of bands
lying on bases of coupons. A d-homeomorphism of decorated 3{manifolds is an
orientation preserving homeomorphism of the underlying oriented 3{manifolds
preserving all additional structure such as the decoration of the boundaries and
the colored ribbon graphs. Such a d-homeomorphism restricts to a d-morphism
of the boundaries.

A decorated 3{cobordism is a triple (M;@−M;@+M), where @−M and @+M
(denoted the bottom and top base respectively) are parametrized d-surfaces
and M is a decorated 3{manifold with boundary @M = (−@−M) q @+M .
Here −N denotes the manifold N with the opposite orientation, where N
is an oriented manifold. (To be precise − is an involution in the space-
structure of parametrized d-surfaces, see [Tu, Sect. IV.1.3 and Sect. III.1.1].)
A d-homeomorphism of decorated 3{cobordisms is a d-homeomorphism of the
underlying decorated 3{manifolds which preserves the bases.

A K{homomorphism �(M) = �(M;@−M;@+M) : T (@−M)! T (@+M) is con-
structed in [Tu, Sect. IV.1.8] making (�;T ) a topological quantum �eld theory
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(TQFT) based on decorated 3{cobordisms and parametrized d-surfaces in the
sense of [Tu, Sect. III.1.4], cf. [Tu, Theorem IV.1.9]. If @−M = ;, then �(M) is
determined by the element �(M)(1K) 2 T (@+M), and it is common practise in
this case to identify �(M) with this element. If M is closed with an embedded
colored ribbon graph Ω, then �(M) is the RT{invariant of the pair (M;Ω)
as de�ned in (2). The map � is called the operator invariant of decorated
3{cobordisms.

5.2 Gluing anomalies in the TQFT (�; T )

The TQFT (�;T ) has so-called (gluing) anomalies, see [Tu, Sect. III.1.4 and
Sect. IV.4]. (There is a way to get rid of these anomalies by changing the TQFT
sligthly, cf. [Tu, Sect. IV.9]. However from a computational point of view this
‘killing’ of anomalies does not make things easier.) To describe these anomalies
we need some concepts from the theory of symplectic vector spaces.

If H1 and H2 are non-degenerate symplectic vector spaces, then a Lagrangian
relation between H1 and H2 is a Lagrangian subspace of (−H1) � H2 . For
a Lagrangian relation N � (−H1) � H2 we write N : H1 =) H2 . Let H1 ,
H2 be non-degenerate symplectic vector spaces, and let �(Hi) be the set of
Lagrangian subspaces of Hi , i = 1; 2. A Lagrangian relation N : H1 =) H2

induces two mappings N� : �(H1) ! �(H2) and N� : �(H2) ! �(H1) given
by

N�(�) = fh2 2 H2 j 9h1 2 � : (h1; h2) 2 Ng

for � 2 �(H1) and

N�(�) = fh1 2 H1 j 9h2 2 � : (h1; h2) 2 Ng

for � 2 �(H2). If f : H1 ! H2 is a symplectic isomorphism and �i 2 �(Hi),
i = 1; 2, then (Nf )�(�1) = f(�1) and (Nf )�(�2) = f−1(�2), where Nf is the
graph of f .

For Lagrangian subspaces �1; �2; �3 of a symplectic vector space (H;!), let
W = (�1 + �2) \ �3 and let h: ; :i be the bilinear form on W de�ned by

ha; bi = !(a2; b) (25)

for a; b 2W with a = a1 + a2 , ai 2 �i . This is a well-de�ned symmetric form,
see e.g. [Tu, Sect. IV.3.5]. The Maslov index �(�1; �2; �3) 2 Z is the signature
of this bilinear form. It is invariant under cyclic permutations of the triple
(�1; �2; �3) and changes sign if we exchange �i and �j , i 6= j .
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If � is a closed oriented surface, the real vector space H1(�;R) together with
the intersection pairing

H1(�;R)�H1(�;R)! R (26)

is a non-degenerate symplectic vector space. For � = ; we let H1(�;R) =
0. For a parametrized d-surface � there is a certain Lagrangian subspace
�(�) � H1(�;R). For the standard d-surface �t of type t, �t = �(�t) is
the kernel of the inclusion homomorphism H1(�t;R) ! H1(Ut;R). For any
connected parametrized d-surface �, �(�) = f�(�t) where f : �t ! � is the
parametrization. For a non-connected parametrized d-surface �, �(�) is the
subspace of H1(�;R) generated by the Lagrangian subspaces of the connected
components.

For any decorated 3{cobordism (M;@−M;@+M) we have

H1(@M ;R) = (−H1(@−M ;R))�H1(@+M ;R);

and the kernel of the inclusion homomorphism H1(@M ;R)! H1(M ;R) yields
a Lagrangian relation H1(@−M ;R) =) H1(@+M ;R) which is denoted N(M).
(Note that N(M) does not depend on the parametrizations and marks of @�M
and the colored ribbon graph in M .) We let �−(M) = �(@−M) and �+(M) =
�(@+M).

The anomalies of the TQFT (�;T ) are calculated in [Tu, Theorem IV.4.3]:
Let M = M2M1 be a decorated 3{cobordism obtained from decorated 3{
cobordisms M1 and M2 by gluing along a d-morphism p : @+(M1)! @−(M2).
Set

Nr = N(Mr) : H1(@−(Mr);R) =) H1(@+(Mr);R)

for r = 1; 2. Then

�(M) = (D�−1)m�(M2)�(M1) (27)

with m = �(p�(N1)�(�−(M1)); �−(M2);N�2 (�+(M2))). If @−M1 = @+M2 = ;,
then

m = �(p�(N(M1)); �(−@M2);N(M2)); (28)

a Maslov index for Lagrangian subspaces of H1(−@M2;R) = −H1(@M2;R).
These anomalies do not depend on the colored ribbon graphs inside the dec-
orated 3{cobordisms. By de�nition, T (p) : T (@+(M1)) ! T (@−(M2)) is the
identity and is therefore left out in (27).
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5.3 The projective actions of the modular groups

We will need to know how the operator invariant � of decorated 3{cobordisms
changes when changing the parametrizations of the parametrized boundary
d-surfaces. To this end we need the projective action of the modular group
Modt , t a decorated type, cf. [Tu, Sect. IV.5]. Here Modt is the group of
isotopy classes of d-homeomorphisms �t ! �t . For t = (g; ), Modt = Modg
is the usual modular group of genus g . In this paper we only consider the
modular group Mod1 of genus 1. The reader can therefore concentrate on this
case if he/she prefers that. We will however state the following results using
arbitrary types since it is not any longer. For a decorated type t, let � = �t

and let M(id) = (�� [0; 1];�;�), where � is parametrized by the identity and
��[0; 1] is the standard decorated cylinder over �, cf. [Tu, p. 158]. For t = (1; )
this is just an ordinary oriented cylinder cobordism without any ribbon graph
inside (and without any marked arcs on the boundary tori, but with identity
parametrizations attached to these tori). For an arbitrary d-homeomorphism
g : � ! �, let M(g) be as the decorated 3{cobordism M(id) except that the
bottom base is parametrized by g . Let

�(g) = �(M(g)) : Ψt ! Ψt:

Then g 7! �(g) is a projective linear action of Modt on T (�t) = Ψt . In fact we
have

�(gh) = (D�−1)�(h�(�t);�t;g
−1
� (�t))�(g)�(h); (29)

cf. [Tu, Formula (IV.5.1.a)]. By the axioms of a TQFT �(id) = id, so �(g−1) =
(�(g))−1 by (29).

We use the action � to describe the dependency of the operator invariant � on
the choice of parametrizations of bases. Let (M;@−M;@+M) be a decorated 3{
cobordism with parametrizations f� : �t� ! @�M . Let g� : �t� ! �t� be d-
homeomorphisms. Provide @−M and @+M with the structure of parametrized
d-surfaces via f 0− = f−(g−)−1 : �t− ! @−M and f 0+ = f+(g+)−1 : �t+ !
@+M . Denote the resulting parametrized d-surfaces by @0−M and @0+M respec-
tively. These are the same oriented surfaces as @−M , @+M with the same (sets
of totally ordered) distinguished marked arcs but with di�erent parametriza-
tions. The cobordism M with the newly parametrized bases is a decorated
3{cobordism, say M 0 , between @−(M 0) = @0−M and @+(M 0) = @0+M . By de�-
nition of the modular functor T we have T (@�M) = T (�t�) = T (@�M 0), and
by [Tu, Formula (IV.5.3.b)] we have

�(M 0)�(g−) = (D�−1)�+−�−�(g+)�(M) : T (�t−)! T (�t+); (30)
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where, with N = N(M) = N(M 0),

�+ = �(N�(�−(M)); �+(M); �+(M 0));
�− = �(�−(M); �−(M 0);N�(�+(M 0))):

5.4 The proof of Theorem 5.3

The standard handlebody U(1;) is a solid torus with a uncolored ribbon graph
R(1;) inside consisting of one coupon and one band, see Fig. 15. By coloring the
band with Vi and the coupon with bi = bVi , i 2 I , where b is part of the duality
of V , we get a decorated 3{manifold which is the oriented standard solid torus
B2�S1 with a directed untwisted annulus with oriented core 0�S1 and color
Vi . Let Yi be this decorated 3{manifold considered as a decorated 3{cobordism
between the empty surface and @U(1;) = �(1;) , where �(1;) is parametrized by
the identity. By [Tu, Lemma IV.2.1.3] we have

�(Yi) = bi: (31)

Let Ω be a colored ribbon graph in S3 containing an annulus component or
a band of color I, and let Ω0 be the colored ribbon graph obtained from Ω
by eliminating this annulus (resp. band). Then it is a well-known fact that
F (Ω0) = F (Ω), cf. [Tu, Exercise I.2.9.2]. Now let Y be the decorated 3{
cobordism (B2 � S1; ;;�(1;)) with the empty ribbon graph inside and with
�(1;) parametrized by the identity. Then

�(Y ) = �(Y0) = b0: (32)

The �rst equality follows by the just mentioned fact about F together with
the technique of presenting 3{cobordisms by ribbon graphs in R3 , see [Tu,
Sect. IV.2] and in particular [Tu, Formula (IV.2.3.a)]. (Alternatively, (32) fol-
lows directly from the de�nition of �(Y ), cf. [Tu, p. 160].)

By (24) and the de�nition of T ,

T (�(1;)) = Ψ(1;) =
M
i2I

Hom(I; Vi ⊗ V �i )

is a free K{module of rank card(I) with basis fbi : I! Vi⊗V �i gi2I (Hom(I; Vi⊗
V �i ) �= Hom(Vi; Vi) �= K since Vi is a simple object).

Lemma 5.4 Let the situation be as in Theorem 5.3. Let gi : �(1;) ! �(1;) be

a homeomorphism such that (gi)� : H1(�(1;);Z)! H1(�(1;);Z) has matrix BCi
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with respect to the basis f[�]; [�]g, i = 1; : : : ;m. Then

�(M 0;Ω) = (�D−1)�
X

�2col(L)

�(M;Γ(L; �) [ Ω)

 
mY
i=1

A
(i)
�(Li);0

!
;

where A(i) =
�
A

(i)
k;l

�
k;l2I

is the matrix of �(gi) : Ψ(1;) ! Ψ(1;) with respect to

the basis fbigi2I . The integer � is given by the sum of Maslov indices

� =
mX
i=1

�((@Qi)�(�(1;)); (@Qi � gi)�(�(1;));N(Xi)); (33)

where Xi = (Mi−1 n int(Ui); @Ui; ;). Here Mi is the manifold obtained by doing

surgery on M along
�
qij=1Lj ;qij=1Qj

�
with surgery coe�cients fpj=qjgij=1 ,

i = 1; 2; : : : ;m, and M0 = M .

The N(Xi) are here subspaces of the H1(@Ui;R). The integer � in (33) does
not depend on the colored ribbon graph Ω. Moreover � is independent of the
choice of the gi since (gi)�(�(1;)) = SpanRfpi[�] + qi[�]g.

Proof Let hi : @Ui ! @Ui be the orientation preserving homeomorphisms
determined by the commutative diagrams

�(1;)

gi
��

@Qi
// @Ui

hi
��

�(1;)
@Qi

// @Ui:

The disjoint union h of the hi is an attaching map for the surgery considered
in Theorem 5.3. According to the axioms for a TQFT (actually a cobordism
theory), see [Tu, Sect. III.1.3], we can perform this surgery by consecutive
gluings of the Ui to the corresponding boundary components in M n int(U)
along hi : @Ui ! @Ui �M n int(U), and we see that the general result follows
from the case m = 1. Therefore, assume m = 1 and let g = g1 . Denote by X
the decorated 3{cobordism (M n int(U); @U; ;), where @U = −@(M n int(U))
is parametrized by @Q. Denote by X 0 the decorated 3{cobordism equal to
X , except that the base is parametrized by @Q � g . We identify U with the
decorated 3{cobordism (U; ;; @U) with the empty ribbon graph, where @U is
parametrized by @Q. Then h : @+U ! @−X 0 is a d-morphism of parametrized
d-surfaces and

�(M 0;Ω) = km1�(X 0)�(U)
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by (27), where k = D�−1 and m1 is determined by (28). By (30) we get
�(X 0)�(g−1) = k−�−�(X), and by the remarks following (29) we have �(g−1) =
�(g)−1 , so

�(M 0;Ω) = km1−�−�(X)�(g)�(U):

Let Y be the decorated 3{cobordism in (32). By Conventions 5.2, Q : Y ! U
is a d-homeomorphism, so �(U) = �(Y ) by the axioms for a TQFT. Since �(X)
is K{linear we therefore have (use also (32))

�(M 0;Ω) = km1−�−�(X)�(g)b0 = km1−�−
X
j2I

Aj;0�(X)bj ;

where A = (Ai;j)i;j2I is the matrix of �(g) with respect to the basis fbjgj2I .
The set col(L) is identi�ed with I since L has only one component. For j 2 I
we let Uj = ((U;Γ(L; j)); ;; @U) be the decorated 3{cobordism identical with
U , except that Uj has the colored ribbon graph Γ(L; j) sitting inside. The pair
(M;Γ(L; j) [ Ω) can be obtained by gluing of Uj to X along id@U : @+Uj =
@U ! @U = @−X (which is a d-morphism). By (27) we therefore get

�(M;Γ(L; j) [ Ω) = km2�(X)�(Uj);

where the integer m2 = �((N(Uj)); �(−@X);N(X)) by (28). Here N(Uj) =
N(U) since the Lagrangian relation of a decorated 3{cobordism does not de-
pend on the colored ribbon graph sitting inside. By the commutative diagram

�(1;)

@Q

��

i
// U(1;)

Q

��

@U
j

// U;

i and j being inclusions, we get N(U) = ker(j� : H1(@U ;R) ! H1(U ;R)) =
@Q�(�), where � = �(1;) . Moreover, �(−@X) = �(@U) = @Q�(�), so m2 = 0.
We have �(Uj) = �(Yj) since Q : Yj ! Uj is a d-homeomorphism of decorated
3{cobordisms by Conventions 5.2. By (31) we therefore get

�(M 0;Ω) = km1−�−
X
j2I

�(M;Γ(L; j) [ Ω)Aj;0:

From (30) we have �− = �(�−(X); �−(X 0);N(X)) since �+(X 0) = 0. Here
�−(X) = �(@U) = @Q�(�) and �−(X 0) = (@Q � g)�(�), so

�− = �(@Q�(�); (@Q � g)�(�);N(X)):

By (28), m1 = �(h�(N(U)); �(−@X 0);N(X 0)). Here N(U) = @Q�(�), see
above, so h�(N(U)) = (h � @Q)�(�) = (@Q � g)�(�). Moreover, �(−@X 0) =
(@Q � g)�(�), so m1 = 0.
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To express the matrices A(i) in terms of the S{ and T {matrices we use the
description of � : Ψ(1;) ! Ψ(1;) given in [Tu, Sect. IV.5.4]. We have an iso-
morphism [f ] 7! M(f) : Mod1 ! SL(2;Z), where [f ] is the isotopy class
represented by f : �(1;) ! �(1;) and M(f) is the matrix of the induced au-
tomorphism on 1{homologies f� : H1(�(1;);Z) ! H1(�(1;);Z) with respect to
the basis f[�]; [�]g, see Conventions 5.2. Let [fA] be the element in Mod1 cor-
responding to the matrix A 2 SL(2;Z) under this isomorphism and let � and
� be the generators of SL(2;Z) given in (6). By [Tu, pp. 193-195], the matrices
of the K{module automorphisms �(f�); �(f�) : Ψ(1;) ! Ψ(1;) with respect to
the basis fbigi2I are given by DS−1 and T respectively. (Note here that �
and � correspond to respectively s and t in [Tu]. Moreover our basis f[�]; [�]g
corresponds to f−[�]; [�]g in [Tu, Fig. IV.5.1].)

Lemma 5.5 Let C = (a1; : : : ; an) 2 Zn and let g = fBC = fan� f�f
an−1

� f� � � �
fa1

� f� . The matrix of �(g) : Ψ(1;) ! Ψ(1;) with respect to the basis fbigi2I is
given by

G = D−n(�D−1)mGCS−1Ŝ;

where Ŝ = S if n is even and Ŝ = �S if n is odd. Here �S is the S{matrix for
the mirror of V . Moreover, m =

Pn−1
i=1 sign(�Ci �

C
i ) = 1

3

(Pn
i=1 ai − �(BC)

�
.

Proof Let h : �(1;) ! �(1;) be an arbitrary orientation preserving di�eomor-

phism, and let
�
a b
c d

�
2 SL(2;Z) be the matrix of the induced automor-

phism h� : H1(�(1;);Z)! H1(�(1;);Z) with respect to the basis f[�]; [�]g. We
have �1 = �(1;) = SpanRf[�]g. Therefore (f�)�(�1) = �1 , and we get directly
from (29) that

�(hfm� ) = �(h)�(fm� ); �(fm� h) = �(fm� )�(h)

and moreover �(fm� ) = (�(f�))m for all m 2 Z. Next consider composition with
f� . We have that (f�)�(�1) = �2 , where �2 = SpanRf[�]g. Let �3 = h�(�1) =
SpanRfa[�] + c[�]g, and let ! be the intersection pairing (26) with � = �(1;) .
Let W = (�1 +�2)\�3 = �3 and let h: ; :i be the bilinear form on W de�ned in
(25). For x = a[�]+c[�] we have hx; xi = !(c[�]; a[�]+c[�]) = ac!([�]; [�]). By
de�nition, the Maslov index �(h�(�1); �1; (f�)−1

� (�1)) = �(�1; �2; �3) is equal
to the signature of h: ; :i which again is equal to −sign(ac) since !([�]; [�]) =
−!([�]; [�]) = −1. Therefore

�(f�h) = (�D−1)sign(ac)�(f�)�(h):

Let gi = fai� f�f
ai−1

� � � � fa1
� f� . In particular g = gn , and (gi)� : H1(�(1;);Z)!

H1(�(1;);Z) has the matrix BCi with respect to the basis f[�]; [�]g. For i � 1
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we have

�(gi+1) = �(fai+1

� f�gi) = (�D−1)sign(�Ci �
C
i )(�(f�))ai+1�(f�)�(gi):

Also note that �(g1) = (�(f�))a1�(f�). We therefore get

G = (�D−1)mT an(DS−1)T an−1(DS−1) � � � T a1(DS−1);

where m =
Pn−1

i=1 sign(�Ci �
C
i ). We also have m = 1

3

(Pn
i=1 ai − �(BC)

�
by (19).

By (1) we have that S−1 = D−2 �S . Recall here that �Si;j = Si�;j . The result
now follows by using that vi� = vi and Si�;j� = Si;j for all i; j 2 I , see [Tu,
Formulas (II.3.3.a-b)], and by using that i 7! i� is an involution in I .

Note that (GCS−1Ŝ)j;0 = GCj;0 for all j 2 I since 0� = 0.

Remark 5.6 We have chosen in this paper to work with the generators � and
� for SL(2;Z) since it seems to be the standard. However, the above result
suggests that in the above setting it is more natural to work with �−1 = −�
and �. If we do this we will not need the strange factor S−1Ŝ in the formula
for G in Lemma 5.5. Note also that the use of �−1 instead of � causes no
di�culties with respect to the matrices BCk in (7) since we actually only need
these as elements of PSL(2;Z) in any case. Another (more radical) way to
avoid a factor such as S−1Ŝ is to use �S as the S{matrix for a modular category
instead of S , see [Kir], [BK].

6 A second proof of formula (9)

In this section we use the surgery formula in Theorem 5.3 to calculate the
invariant of M = (o; g j b; (�1; �1); : : : ; (�n; �n)). First assume that b 6= 0. Let
�n+1 = 1 and �n+1 = b, let �g be a closed oriented surface of genus g , let
D1; : : : ;Dn+1 be disjoint closed disks in �g , and let Q0i : Di � S1 ,! �g � S1

be the inclusion, i = 1; : : : ; n + 1. Let B2 � S1 be the oriented standard
solid torus in R3 , see Conventions 5.2, and let ki : B2 ! Di be orientation
preserving homeomorphisms, i = 1; : : : ; n + 1. Moreover let Qi = Q0i � (ki �
idS1) : B2 � S1 ! �g � S1 and Li = Qi(0� S1). The manifold M is given by
surgery on �g � S1 along the link L = qn+1

i=1 Li with framing Q = qn+1
i=1 Qi and

surgery coe�cients f�i=�ign+1
i=1 . (The orientation of �g � S1 is given by the

orientation of �g followed by the orientation of S1 , where S1 is oriented as in
the oriented standard solid torus B2 � S1 .) Let Ci be as above Theorem 4.1,
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i = 1; : : : ; n, let Cn+1 = (−b; 0) (a continued fraction expansion of �n+1=�n+1 ),
and let mn+1 = 2. By Theorem 5.3 we have

�(M) = (�D−1)�+
∑n+1
i=1 ciD−

∑n+1
i=1 mi

�
X

�2col(L)

�(�g � S1;Γ(L; �))

 
n+1Y
i=1

GCi�(Li);0

!
:

Here (�g � S1;Γ(L; �)) = �t � S1 with t = (g; (V�(L1); 1); : : : ; (V�(Ln+1); 1)).
For an arbitrary type t we have

�(�t � S1) = Dim(Ψt);

where Ψt is the projective K{module given in (24) and Dim is the dimension
in the (ribbon) category of �nitely generated projective K{modules, see [Tu,
Sect. I.1.7.1 and Appendix I]. This follows by [Tu, Theorem IV.7.2.1], the re-
marks following this theorem, and [Tu, Sect. IV.6.7]. The dimension Dim(Ψt)
is calculated for an arbitrary type in [Tu, Sect. IV.12]. (The formula for this
dimension is a generalization of Verlinde’s well-known formula [V] to the set-
ting of modular categories.) For t = (g; (Vi1 ; 1); : : : ; (Vim ; 1)), i1; : : : ; im 2 I ,
we have

Dim(Ψt) = D2g−2
X
j2I

(dim(j))2−2g−m
 

mY
k=1

Sik;j

!
(34)

by [Tu, Theorem IV.12.1.1]. Putting the above together we get

�(M) = (�D−1)�+
∑n+1
i=1 ciD2g−2−

∑n+1
i=1 mi

�
X
j2I

(dim(j))2−2g−n−1

 
n+1Y
i=1

(SGCi)j;0

!
:

Here SGCn+1 = S2T−bS , so by (1) we get

(SGCn+1)j;0 = D2
X
k;l2I

�j�;k�k;lv
−b
k Sl;0 = D2v−bj dim(j);

where we use that vj� = vj , cf. [Tu, p. 90], and that dim(j�) = dim(j) by [Tu,
Corollary I.2.8.2] and the de�nition of a modular category. Therefore

�(M) = (�D−1)�+
∑n+1
i=1 ciD2g−2−

∑n
i=1mi

�
X
j2I

v−bj (dim(j))2−2g−n
 

nY
i=1

(SGCi)j;0

!
:
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This expression is identical with (9) and (20) if

�+ cn+1 = n+ sign(e): (35)

Since Cn+1 = (−b; 0) and �−b� =
�

b 1
−1 0

�
we immediately get cn+1 =

−sign(b) by Lemma 5.5. By notation from Lemma 5.4 we have M0 = �g � S1

and

Mi = (o; g j 0; (�1; �1); : : : ; (�i; �i)); i = 1; 2; : : : ; n:

Moreover Xi = Mi−1nint(Ui) is obtained from Yi = (�gnint(D1[: : :[Di))�S1

by pasting in i− 1 solid tori U1; : : : ; Ui−1 as explained above leaving one torus
shaped cave. We have

�1(Yi) = < a1; b1; : : : ; ag; bg; q1; : : : ; qi; h j
iY

j=1

qj

gY
j=1

[aj ; bj ] = 1;

[h; ak] = [h; bk] = [h; ql] = 1; k = 1; : : : ; g; l = 1; : : : ; i >;

cf. [JN, Sect. 6 pp. 34{35], [Se2, Sect. 10]. Here qj corresponds to the ‘partial
cross-section’ @Dj �f1g, and h is a �ber. The generators a1; b1; : : : ; ag; bg are
induced by the usual generators of �1(�g) =< a1; b1; : : : ; ag; bg j

Qg
j=1[aj ; bj ] =

1 >. By the theorem of Seifert and Van Kampen, gluing in the torus Uj adds
a new generator t and two new relations q

�j
j h

�j = 1 and q
�j
j h

�j = t. The
generator t and the last relation can be deleted by a Tietze transformation, so
we get

�1(Xi) = < a1; b1; : : : ; ag; bg; q1; : : : ; qi; h j
iY

j=1

qj

gY
j=1

[aj ; bj ] = 1;

[h; ak] = [h; bk] = [h; ql] = q�ss h�s = 1;
k = 1; : : : ; g; l = 1; : : : ; i; s = 1; : : : ; i− 1 > :

By abelianizing we see that H1(Xi;Z) = Z2g � T , where

T =< q1; : : : ; qi; h j
iX

j=1

qj = �sqs + �sh = 0; s = 1; : : : ; i− 1 >;

and by the universal coe�cient theorem we have H1(Xi;R) = R2g � (T ⊗Z R).
Let

�
(i)
1 = (@Qi)�(�(1;)) = SpanRfqig;

�
(i)
2 = (@Qi)�(SpanRf�i[�] + �i[�]g) = SpanRf�iqi + �ihg;
�

(i)
3 = ker (i� : H1(@Ui;R)! H1(Xi;R)) ;
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i = 1; 2; : : : ; n + 1. Here H1(@Ui;R) = SpanRfqi; hg. A small calculation
shows that �(i)

3 = SpanRfyig, where y1 = q1 and yi = qi −
�Pi−1

j=1
�j
�j

�
h for

i = 2; : : : ; n + 1. Let h ; ii be the bilinear form on (�(i)
1 + �

(i)
2 ) \ �(i)

3 = �
(i)
3

de�ned by (25) with H = H1(@Ui;R), ! equal to the intersection pairing !i

on H1(@Ui;R), and �j = �
(i)
j , j = 1; 2; 3. Moreover, let �i = �(�(i)

1 ; �
(i)
2 ; �

(i)
3 )

be the Maslov index equal to the signature of h: ; :ii . We get immediately that
�1 = 0. Let i 2 f2; : : : ; n+1g and let xi = �iqi+�ih and ti =

Pi−1
j=1

�j
�j

. Then

yi =
�

1 + �i
�i
ti

�
qi − ti

�i
xi . Therefore

hyi; yiii = !i(−
ti
�i
xi; qi − tih) =

�i
�i
ti+1ti;

where tn+2 = −e. Here ti > 0, and for i � n we have �i=�i > 0 and ti+1 > 0.
Therefore �i = 1 for i = 2; : : : ; n. Finally, �n+1 = −sign(b)sign(e), so � =Pn+1

i=1 �i = n−1− sign(b)sign(e). The identity (35) is therefore equivalent with
the identity sign(e) + sign(b) + sign(b)sign(e) + 1 = 0 which is true. Note that
the above also holds in case n = 0 (no exceptional �bers). In this case e = −b.
In case b = 0 we ignore everything concerning the surgery along the component
Ln+1 . If n > 0 we have to show that � = n + sign(e), where � =

Pn
i=1 �i

and e = −
Pn

i=1
�i
�i
< 0. Since � =

Pn
i=1 �i = n − 1 this identity is true. If

n = 0 the surgery formula is of no use. In this case �(M) = �(�g � S1) =
D2g−2

P
j2I (dim(j))2−2g by (34) in accordance with Theorem 4.1.

7 A third proof of formula (9)

In this section we will use the formula in [Tu, Theorem X.9.3.1] for the RT{
invariant of graph manifolds to derive (9). This formula is valid for unimodular
categories with a rank, see Sect. 3.

Let M = (o; g j b; (�1; �1); : : : ; (�n; �n)). It turns out to be an advantage to
work with −M instead of M . According to Theorem 2.1, −M = (o; g j − b−
n; (�1; �1 − �1); : : : ; (�n; �n − �n)). Let Cj = (a(j)

1 ; : : : ; a
(j)
mj ) be a continued

fraction expansion of �j=�j with ajl � 2 and let A be the m �m{matrix in
(14), m = 1 +

Pn
j=1mj . By [O, Corollary 5 p. 30] and [Tu, Sect. X.9.2], the 3{

manifold −M is the 3{dimensional graph manifold determined by the matrix
−A and the integers g1; g2; : : : ; gm , where g1 = g and g2 = : : : = gm = 0.

Let (V; fVigi2I) be a unimodular category with a �xed rank D . By [Tu, The-
orem X.9.3.1], the RT{invariant of the graph manifold N , determined by the
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symmetric square matrix B = (ap;q)mp;q=1 over Z and a sequence of non-negative
integers g1; g2; : : : ; gm , is given by

�(V ;D)(N) = ��(B)Db (36)

�
X
’2Im

0@ mY
p=1

v
ap;p
’(p)(dim(’(p)))2−2gp−ap

Y
p<q

(s’p;q)
jap;qj

1A ;

where b = b1(N)− b0(N)−m− null(B)− �(B), where null(B) and �(B) are
the nullity and signature of B respectively, and ap =

P
q 6=p jap;qj. Moreover,

s’p;q = S’(p);’(q) if ap;q � 0 and s’p;q = S’(p)�;’(q) if ap;q < 0.

We have b0(−M) = 1 and �(−A) = −�o , where �o is given by (10), (20). By
[JN, Corollary 6.2], b1(−M) = b1(M) = 2g + �e;0 , where �e;0 = 1 if e = 0 and
0 otherwise, and by the proof of (10) we have null(−A) = null(A) = �e;0 . If we
write −A = (ap;q)

m
p;q=1 then

ap =

8<:
n ; p = 1
2 ; p 2 f1; 2; : : : ;mg n f1;m1 + 1;m1 +m2 + 1; : : : ;mg
1 ; p 2 f1;m1 + 1;m1 +m2 + 1; : : : ;mg:

According to [Tu, Exercise II.2.5] we have

�(V ;D)(M) = �(V ;D)(−M);

where V is the mirror of V , see Sect. 3. The modular category
(
V; fVigi2I

�
is

also unimodular, cf. [Tu, Exercise VI.2.3.1]. By (36) we get

�(V ;D)(−M) = (�VD
−1)−�oD2g−2−

∑n
j=1mj

�
X

j;k1
1;::: ;k

1
m1
;k2

1;::: ;k
n
mn
2I

�vbj(dim(j))2−2g−n

�
nY
j=1

mj−1Y
l=1

�v
−a(j)

mj+1−l

kjl

�S
(kjl )

�;kjl+1

nY
j=1

�v−a
(j)
1

kjmj
dim(kjmj )

�S
j�;kj1

:

Here �vi = v−1
i and �Sj�;k = Sj;k . By (3) we then get

�(V ;D)(M) = (�D−1)�oD2g−2−
∑n
j=1mj

�
X

j;k1
1;::: ;k

1
m1

;k2
1;::: ;k

n
mn2I

v−bj (dim(j))2−2g−n

�
nY
j=1

mj−1Y
l=1

v
a

(j)
mj+1−l

kjl
S
kjl ;k

j
l+1

nY
j=1

v
a

(j)
1

kjmj
dim(kjmj )Sj;kj1
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= (�D−1)�oD2g−2−
∑n
j=1mj

�
X
j2I

v−bj (dim(j))2−2g−n
 

nY
i=1

(SGCi)j;0

!
:

This expression is identical with (9).

8 The case of sl2(C)

Let t = exp(i�=(2r)), where r is an integer � 2, and let Ut be the Hopf algebra
considered in [RT2, Sect. 8], see below for details. With notation from [RT2]
we have that

(
Ut; R; v

−1; fVigi2I
�

is a modular Hopf algebra as de�ned in [Tu,
Chap. XI]. Let (Vt; fVigi2I) be the modular category induced by this modular
Hopf algebra, cf. [Tu, Chap. XI].

Let us recall some notation and results from [RT2]. The quantum group Uq(sl2),
q = t4 , is the Q(t){algebra with generators K;K−1;X; Y subject to the rela-
tions

XY − Y X =
K2 −K−2

t2 − t−2
;

XK = t−2KX; YK = t2KY; KK−1 = K−1K = 1:

The algebra Ut is given by the quotient of Uq(sl2) by the two-sided ideal gen-
erated by the elements Xr; Y r;K4r− 1. In the following we will consider Ut as
an algebra over C.

To determine the RT{invariants of the Seifert manifolds with non-orientable
base we need to determine the signs "i in Lemma 3.1 for all self-dual i 2 I =
f0; 1; : : : ; r−2g. It is a well-known fact that all the simple objects Vi in Vt are
self-dual. Let us provide some details. We let

[k] =
t2k − t−2k

t2 − t−2
=

sin(�k=r)
sin(�=r)

for an integer k . Let � 2 f−
p
−1;
p
−1;−1; 1g. Then we have irreducible Ut{

modules fV i(�)gi2I with a basis (over C) of weight vectors fein(�)gin=0 such
that

Kein(�) = �ti−2nein(�);
Xein(�) = �2[n][i+ 1− n]ein−1(�);
Y ein(�) = ein+1(�)
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for n = 0; 1; : : : ; i, where ei−1(�) = eii+1(�) = 0. Let ff in(�)gin=0 be the basis
of V i(�)� dual to fein(�)gin=0 as in [RT2, Sect. 8]. By using the antipode γ of
Ut determined by γ(K) = K−1 , γ(X) = −t2X and γ(Y ) = −t−2Y , see [RT2,
(8.1.4)], one gets

Kf in(�) = �−1t2n−if in(�);
Xf in(�) = −�2t2[n+ 1][i− n]f in+1(�);
Y f in(�) = −t−2f in−1(�)

for n = 0; 1; : : : ; i, where f i−1(�) = f ii+1(�) = 0. We have Vi = V i(1), i 2 I .
The following lemma follows by a straightforward computation using the above
Ut{module structures.

Lemma 8.1 Let �; � 2 f−
p
−1;
p

1;−1; 1g. A C{linear map h : V i(�)� !
V i(�) is a Ut{module isomorphism if and only if � = �−1 and

h(f in(�)) = �i(−1)nt−2neii−n(�−1) (37)

for a �i 2 C n f0g.

The lemma shows, as claimed above, that the module Vi is self-dual for all
i 2 I .

Lemma 8.2 We have "i = (−1)i for all i 2 I . In particular the modular
category (Vt; fVigi2I) is not unimodal.

Proof We use Lemma 8.1 together with Lemma 3.2 to determine the signs "i ,
i 2 I . To this end note that v = uK−2 , where u is the element u in Lemma 3.2.
As indicated in the beginning of this section we shall use v−1 as the element
v in Lemma 3.2. (This is due to di�erent conventions in [Tu] and [RT2].) We
see that uv−1 = K2 (use that v−1 is central). Fix i 2 I and let ! = h−1 ,
where h : V �i ! Vi is given by (37) (with � = 1). Moreover, let en = ein(1),
fn = f in(1). Then

!(en) = �−1
i (−1)i−nt2(i−n)fi−n:

Let z = G � (!−1)�(fi−n) 2 Vi , where G : V ��i ! Vi is the canonical isomor-
phism as in Lemma 3.2. Then

G−1(z)(fm) = fi−n(!−1(fm)) = �i(−1)mt−2mfi−n(ei−m) = �i(−1)nt−2n�n;m:

On the other hand G−1(z)(fm) = fm(z), so we see that z = �i(−1)nt−2nen .
But then

G � (!−1)� � !(en) = �−1
i (−1)i−nt2(i−n)z = (−1)it2i−4nen = (−1)iK2en:
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Let �(i), i 2 I , be the quantity in (5). The R{matrix calculation of �(i) gives
the result �(i) = (−1)i�v2

i (dim(i))−1 , � =
P

u2I (dim(u))2 , so gives together
with Lemma 4.2 another proof of Lemma 8.2 and the fact that all the simple
modules Vi , i 2 I , are self-dual.

Let �vi be equal to the vi in [RT2], i.e. �viidVi is equal to the map Vi ! Vi given
by multiplication with v , i 2 I . Moreover, let �di be equal to di in [RT2], i.e.X

i2I

�di�viSi;j = �v−1
j dim(j); j 2 I:

Since i = i� here, this can also be writtenX
i2I

�di�viSi�;j = �v−1
j dim(j); j 2 I:

It follows that the �vi and �di are equal to the vi and di associated to V t in [Tu,
Sect. II.3], where Vt is the mirror of Vt , see Sect. 3. By [RT2, Sect. 8.3],

�vi = t−i(i+2);

�di =

r
2
r

sin(�=r)C0 dim(i)

for i 2 I . Here C0 = exp(
p
−1d) is a square root of C =

P
i2I �v−1

i dim(i) �di =
exp(2

p
−1d), where d = 3�(r−2)

4r and dim(i) = [i + 1]. In particular �d0 =q
2
r sin(�=r) exp(

p
−1d). According to [Tu, pp. 88{89] we have that �d0 =

�Vt�
−1 and C = �Vt

�d0 . (Here we use that the dimensions of any object of
Vt with respect to Vt and Vt are equal, cf. [Tu, Corollary I.2.8.5], so � is the
same element in these two categories. By the same reason D is a rank of V t if
and only if D is a rank of Vt .) We see that � = C �d−2

0 = r
2

1
sin2(�=r)

. As a rank
we choose

D =
r
r

2
1

sin(�=r)
: (38)

Let fvigi2I be the vi associated to Vt . Then

vi = �v−1
i = ti(i+2) = t−1t(i+1)2

; i 2 I: (39)

By (3) we get � = �Vt = D2�−1
Vt

= D2 �d0C
−1 , so

�D−1 = D �d0C
−1 = exp(−

p
−1d) = exp

�p
−1�
4

3(2− r)
r

�
: (40)
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The S{matrix of Vt is given by

Si;j =
sin(�(i+ 1)(j + 1)=r)

sin(�=r)
; i; j 2 I; (41)

cf. [RT2, Sect. 8].

Inspired by the Chern{Simons path integral invariant of Witten, see [Wi] and
the introduction, the RT{invariant �(Vt;D) is also called the quantum SU(2){
invariant at level r−2 and is denoted �r . We will take advantage of the fact that
the projective action of Mod1 = SL(2;Z) considered in (29) can be normalized
to a linear action (in fact to a linear action of PSL(2;Z)) in the sl2(C){case.
Let R : PSL(2;Z)! GL(r − 1;C) be the unitary representation given by

~�jl =

r
2
r

sin
�
jl�

r

�
; ~�jl = e−

i�
4 exp

�
i�

2r
j2

�
�jl (42)

for j; l 2 I 0 = f1; 2; : : : ; r − 1g. Here we write ~M for the matrix R(M). By
changing the index set of the basis fbigi2I to I 0 (so that the new Vj and bj
are equal to the old Vj−1 and bj−1 , j 2 I 0 ) and comparing (42) with (38), (39)
and (41) we get

Sjl = D~�jl; (43)

Tjl = exp
�
− i�

2r

�
exp

�
i�

2r
j2

�
�jl = e

i�
4 exp

�
− i�

2r

�
~�jl

for j; l 2 I 0 . The representations R have been carefully studied by Je�rey in
[J] where she gives rather explicit formulas for ~M in terms of the entries in
M 2 SL(2;Z), see also the proof of Theorem 8.4 below. These representations
are known from the study of a�ne Lie algebras, cf. [K].

The following corollary is an sl2(C){version of Theorem 5.3. It simply follows
by choosing tuples of integers Ci such that Bi = BCi , i = 1; 2; : : : ;m. By
the �rst remark following Theorem 4.1, Ci is a continued fraction expansion of
pi=qi . Besides note that �D−1 = w−3 with w = e

i�
4 exp

(
− i�

2r

�
by (40), and

that GC = w
∑m
k=1 akDm ~BC for C = (a1; : : : ; am) 2 Zm by (43), (7), and (8).

Corollary 8.3 Let the situation be as in Theorem 5.3 and let Bi 2 SL(2;Z)

with �rst column equal to �
�
pi
qi

�
, i = 1; 2; : : : ;m. Then

�r(M 0;Ω) =
�

e
i�
4 exp

�
− i�

2r

��∑m
i=1 �(Bi)−3�

�
X

�2col(L)

�r(M;Γ(L; �) [ Ω)

 
mY
i=1

( ~Bi)�(Li);1

!
;
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where � is given by (33).

The following theorem generalizes results in [Roz] to include the case of Seifert
manifolds with non-orientable base. Speci�cally the expressions (44) and (45)
are equivalent to [Roz, Formulas (2.7) and (2.8)] for � = o. (Rozansky uses non-
normalized Seifert invariants.) To state the theorem we need some notation.
Multi-indices are denoted by an underline (e.g. m). For k = (k1; : : : ; kn); l =
(l1; : : : ; ln) 2 Zn , k < l if and only if kj < lj for all j = 1; : : : ; n. We let 1 =
(1; : : : ; 1). For k = (k1; : : : ; kn) 2 Zn+ we write

Pk
m=0 for

Pk1
m1=0 : : :

Pkn
mn=0

etc. In all expressions below e denotes the Seifert Euler number (except in
factors such as e

i�
4 ). Let ao = 2 and an = 1. For a pair of coprime integers

�; � we let �� be the invers of � in the group of (multiplicative) units in Z=�Z.

Theorem 8.4 The RT{invariant at level r−2 of the Seifert manifold M with
(normalized) Seifert invariants (�; g j b; (�1; �1); : : : ; (�n; �n)), � 2 fo;ng, is

�r(M) = exp

0@ i�
2r

243(a� − 1)sign(e)− e− 12
nX
j=1

s(�j ; �j)

351A (44)

�(−1)a�g
inra�g=2−1

2n+a�g=2−1

1p
A
ei

3�
4

(1−a�)sign(e)Z�(M ; r);

where s(�j ; �j) is given by (18), A =
Qn
j=1 �j , and

Z�(M ; r) =
r−1X
γ=1

(−1)γa�g
exp

(
i�
2r eγ

2
�

sinn+a�g−2
(
�
r γ
� X
�2f�1gn

0@ nY
j=1

�j

1A (45)

�
�−1X
m=0

exp

0@− i�
r
γ

nX
j=1

2rmj + �j
�j

1A
� exp

0@−2�i
nX
j=1

��j
�j

[rm2
j + �jmj]

1A :

The RT{invariant at level r−2 of the Seifert manifold M with non-normalized
Seifert invariants f�; g; (�1; �1); : : : ; (�n; �n)g is given by the same expression.

The theorem is also valid in case n = 0. In this case one just has to put A = 1
and

Pn
j=1 s(�j ; �j) = 0. Moreover, the sum

P
�2f�1gn

P�−1
m=0 in Z�(M ; r) has

to be put equal to 1, � = o;n.
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Proof Let M = (�; g j b; (�1; �1); : : : ; (�n; �n)), � 2 fo;ng. Choose tuples of

integers Cj = (a(j)
1 ; : : : ; a

(j)
mj ) such that BCj =

�
�j �j
�j �j

�
for some �j; �j 2 Z,

j = 1; 2; : : : ; n. By Theorem 4.1, the �rst remark after Theorem 4.1, Lemma 8.1
and Lemma 8.2 we have

�r(M) = (�D−1)��Da�g−2−
∑n
j=1mj

�
r−1X
j=1

(−1)(j−1)a�gv−bj dim(j)2−n−a�g
 

nY
i=1

(SGCi)j;1

!
;

where �� is given by (10) if � = o and by (12) if � = n. Here �D−1 = w−3 ,
where w = e

i�
4 exp

(
− i�

2r

�
, see (40). Moreover, vj = t−1tj

2
, see (39), dim(j) =

[j] =
q

2
rD sin

�
�j
r

�
, and SGCi = w

∑mi
k=1 a

(i)
k Dmi+1 ~Ni , where Ni = �BCi , so

�r(M) = ��(r)
�r

2

�a�g=2+n=2−1
r−1X
j=1

(−1)ja�g
t−bj

2 Qn
i=1( ~Ni)j;1

sinn+a�g−2
�
�j
r

� ; (46)

where ��(r) = (−1)a�gw
∑n
i=1

∑mi
k=1 a

(i)
k −3�� exp

(
i�
2r b
�
. By (20) and the equivalent

expression for �n we get

��(r) = (−1)a�gw
∑n
i=1 �(BCi )−3

∑n
j=1 sign(�j�j)−3(a�−1)sign(e) exp

�
i�

2r
b

�
:

If A =
�
a b
c d

�
2 SL(2;Z) with c 6= 0 we have by [J, Proposition 2.7 (a) and

Proposition 2.8] that

~Aj;k = C
X
�=�1

X
γ (mod 2rc)

γ=j (mod 2r)

� exp
�
i�

2rc
[aγ2 − 2�γk + dk2]

�

= C

8<:
jcj−1+m1X
n=m1

exp
�
i�

2rc
[a(j + 2rn)2 − 2k(j + 2rn) + dk2]

�

−
jcj−1+m2X
n=m2

exp
�
i�

2rc
[a(j + 2rn)2 + 2k(j + 2rn) + dk2]

�9=;
for all m1;m2 2 Z, where C = i sign(c)p

2rjcj
e−

i�
4

�(A) . For m1 = 0 and m2 = −jcj+ 1

we get

~Aj;k = C
X
�=�1

jcj−1X
n=0

� exp
�
i�

2rc
[a(j + 2rn�)2 − 2�k(j + 2rn�) + dk2]

�
:
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If Ai =
�
ai bi
ci di

�
2 SL(2;Z) such that A3 = A1A2 we have

�(A3) = �(A1) + �(A2)− 3sign(c1c2c3): (47)

Since the representation R is unitary we have R(A−1) = R(A)� , so ~Aj;k =

(gA−1)k;j , where �� is complex conjugation. Here A−1 =
�

d −b
−c a

�
, and (47)

implies that �(A−1) = −�(A), so

~Aj;k = i
sign(c)p

2rjcj
e−

i�
4

�(A)

�
X
�=�1

jcj−1X
n=0

� exp
�
i�

2rc
[d(k + 2rn�)2 − 2�j(k + 2rn�) + aj2]

�
:

By this expression we get

( ~Ni)j;1 = i
e−

i�
4

�(Ni)

p
2r�i

X
�=�1

�i−1X
n=0

�

� exp
�

i�

2r�i
[−�ij2 − 2j(2rn + �) + �i(2rn+ �)2]

�
:

By inserting this in (46) and using that e = −b −
Pn

j=1
�j
�j

we get �r(M) =
�Z�(M ; r), where

� =
inra�g=2−1

2n+a�g=2−1

1p
A
��(r) exp

0@ i�
2r

nX
j=1

�j
�j

1A exp

0@− i�
4

nX
j=1

�(Nj)

1A :

By (47) we have �(Ni) = �(BCi)− 3sign(�i�i) and get

� = (−1)a�g
inra�g=2−1

2n+a�g=2−1

1p
A

exp
�
i
3�
4

(1− a�)sign(e)
�

� exp

0@ i�
2r

243(a� − 1)sign(e) + b+
nX
j=1

�j
�j
−

nX
j=1

�(Nj)

351A :

The theorem now follows by using (17) together with the facts that s(a; b) =
s(a0; b) if a0a � 1 (mod b) and s(−a; b) = −s(a; b), cf. [RG, Chap. 3]. The case
with non-normalized Seifert invariants follows as above by letting b be equal to
zero everywhere.
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Let M = (�; g j b; (�1; �1); : : : ; (�n; �n)). By (46) we have the following compact
formula

�r(M) = ��(r)
r−1X
j=1

(−1)ja�g
t−bj

2 Qn
i=1( ~Ni)j;1

~�n+a�g−2
j;1

; (48)

where ��(r) = (−1)a�gw
∑n
i=1 �(Ni)−3(a�−1)sign(e) exp

(
i�
2r b
�
, w = e

i�
4 exp

(
− i�

2r

�
,

and Ni =
�
−�j −�j
�j �j

�
for any integers �j , �j such that �j�j − �j�j = 1.

Let us �nally give a formula for �r(L(p; q)). To this end let b; d be any inte-

gers such that U =
�
q b
p d

�
2 SL(2;Z). Assume q 6= 0, let V = −�U =�

p d
−q −b

�
, and let C 0 = (a1; a2; : : : ; am−1) 2 Zm−1 such that BC

0
= V .

Then C0 is a continued fraction expansion of −p=q and U = �V = BC where
C = (a1; a2; : : : ; am−1; 0). By Corollary 4.4 and (43) we therefore get

�r(L(p; q)) =
�

e
i�
4 exp

�
− i�

2r

���(U)
~U1;1: (49)

If q = 0 we have p = 1 and L(p; q) = S3 . In this case we have U = ��d and
we immediately �nd from (43) that (49) is also true in this case. The identity
(49) coincides with [J, Formula (3.7)].

Remark 8.5 It should not come as a surprise that we �nd the same result
as Rozansky for the invariants of Seifert manifolds with orientable base. The
calculation in [Roz] of these invariants follows the very same line as in the �rst
part of Sect. 6. He uses a surgery formula [Roz, Formula (1.6)] which is identical
with the surgery formula in Corollary 8.3 and a Verlinde formula [Roz, Formula
(2.4)] which by (43) is identical with the Verlinde formula (34) of Turaev.

Remark 8.6 In more recent literature the symbol Uq(sl2(C)) normally refers
to a Hopf algebra de�ned in a slightly di�erent way than in the above text. It
is well known [Kir], [BK], [Le] that Lusztig’s version [Lu, Part V] of quantum
deformations of simple complex �nite dimensional Lie algebras at roots of unity
is particular well suited to produce modular categories. Let us specialize to the
sl2{case. Let � = exp(i�=r), r an integer � 2, and let U�(sl2(C)) be Lusztig’s
version of the quantum group associated to � and sl2(C). This is a Hopf
algebra over C, see the above references for the de�nition. (The root of unity
� is denoted q in [BK] and " in [Kir].) The representation theory of U�(sl2(C))
induces a modular category (V 0�; fV 0i gi2I), I = f0; 1; : : : ; r − 2g, with S{ and
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T {matrices identical with the S{ and T {matrices for the modular category
Vt , t = exp(i�=(2r)), considered above, cf. [Kir, Theorem 3.9], [BK, Theorem
3.3.20]. (One should note di�erent notation in [Kir] and [BK]. Note that the
~s{matrix in [BK] is Turaev’s S{matrix of the mirror of V 0� , i.e. ~si;j = Si�;j ,
i; j 2 I , and that s in [Kir] is identical with ~s in [BK] and vice versa.) The
dimension of the simple object V 0i of V 0� is equal to the dimension of the simple
object Vi of Vt . The categories Vt and V 0� therefore also have the same ranks
and the same �. Similar to the proofs of Lemma 8.1 and Lemma 8.2 we �nd
that V 0i is self-dual with associated "i = (−1)i , i 2 I . We conclude that
V 0� and Vt give the same invariants of the Seifert manifolds. Probably these
two categories are equivalent giving the same invariants for all closed oriented
3{manifolds, but we will not check the details here.

In [Tu, Problems, question 8 p. 571] it is asked whether there exist unitary (or at
least Hermitian) modular categories that are not unimodal. By combining the
above with [Kir], [W] we can answer this question by a yes. The non-unimodal
modular categories (V 0�; fV 0i gi2I) provide such examples.

In [Tu, Chap. XII] Turaev constructs a unimodular category (Vp(a); fWigi2I)
for any primitive 4r ’th root of unity a using Kau�man’s skein theoretical ap-
proach to the Jones polynomial together with the Jones{Wenzl idempotens.
Here I = f0; 1; : : : ; r− 2g as above and all the simple objects are self-dual. (In
[Tu] Wi is denoted Vi .) In [Tu, Problems, question 24 p. 572] it is asked whether
Vp(a) (with ground ring C) is equivalent (as modular category) to the modular
category

(
V 00q ; fV 00i gi2I

�
induced by the representation theory of Uq(sl2(C)) for

q = −a2 . Here Uq(sl2(C)) is given in [Ka, Sections VI.1 and VII.1] and di�ers
slightly from the Uq(sl2(C)) given in this section and also from Lusztig’s ver-
sion, see above. For any primitive 2r ’th root of unity q the modular category
V 00q is non-unimodal, so the answer to the above question is no. In fact, by
using arguments similar to the proofs of Lemma 8.1 and Lemma 8.2, one �nds
that V 00i is self-dual with associated "i = (−1)i , i 2 I . One can construct a
non-unimodal modular category V 0p(a) by changing the twist � in Vp(a) slightly
preserving all other structure. In fact one can construct a new twist �0 satisfy-
ing �0Wi

= (−1)i�Wi , i 2 I . (One simply changes the twist �n , n = 0; 1; 2; : : : ,
in the skein category in [Tu, Sect. XII.2] into (−1)n�n .) By the de�nition of
the elements "i , see Sect. 3 above Lemma 3.1, we immediately get "i = (−1)i ,
i 2 I , for V 0p(a). In his thesis [Th1] H. Thys shows that the modular category
V 0p(a) is equivalent to the modular category V 00q , if q is a primitive root of unity
satisfying q = a2 , see also [Th2]. By using the twist �0 instead of � in the
last part of the proof of [Tu, Theorem XII.7.1] and in [Tu, Exercise XII.6.10 1)]
one �nds that the S{ and T {matrices for V 0p(a) are identical to these matrices
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for Va . Moreover the dimension of the simple object Wi of V 0p(a) is equal to
the dimension of the simple object Vi of Va , i 2 I (use [Tu, Sect. XII.6.8]).
We conclude that these two modular categories give the same invariants of the
Seifert manifolds. Probably these two categories are equivalent giving the same
invariants for all closed oriented 3{manifolds, but we will not check the details
here.

9 Appendices

A. Normalizations of the RT{invariants

As a convenience to the reader we compare in this appendix the normalizations
of the RT{invariants used in the literature in particular the ones used in [RT2],
[KM1], [TW1], [Le] and [Tu]. The invariants of 3{manifolds with embedded
colored ribbon graphs constructed in [RT2], see also [TW1], are based on mod-
ular Hopf algebras. The de�nition of a modular Hopf algebra in [Tu, Chap. XI]
is slightly simpli�ed compared to [RT2], [TW1]. If (A;R; v; fVigi2I) is a mod-
ular Hopf algebra as de�ned in [RT2], [TW1], then

(
A;R; v−1; fVigi2I

�
is a

modular Hopf algebra as de�ned in [Tu]. (The de�nition of the vi ’s on p. 557
in [RT2] has to be changed according to [TW1]. That is, viidVi should be equal
to the map Vi ! Vi given by multiplication with v−1 instead of the map given
by multiplication with v .) Let (V; fVigi2I) be the modular category induced
by the modular Hopf algebra

(
A;R; v−1; fVigi2I

�
, cf. [Tu, Chap. XI], and let

(M;Ω) be as in (2). The invariant of the pair (M;Ω) as de�ned in [RT2] is
given by

F(M;Ω) = C−�−(L)
X

�2col(L)

 
mY
i=1

d�(Li)

!
FV(Γ(L; �) [ Ω):

Here C =
P

i2I v
−1
i dim(i)di , where fdigi2I is the unique solution toX

i2I
viSi;jdi = v−1

j dim(j) ; j 2 I; (50)

where S is the S{matrix of V . Moreover �−(L) is the number of negative
eigenvalues of the intersection form of WL . By comparing with [Tu, Sect. II.3]
we see that C = xd0 , where x =

P
i2I di dim(i) = � = �V , and F(M;Ω) =

� 0V(M;Ω) = (�D−1)b1(M)D�(V ;D)(M;Ω); where D is a rank of V and b1(M) is
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the �rst betti number of M . According to [Tu, p. 89] we also have C = xd0 =
(�D−1)2 . In [TW1] the invariant F(M;Ω) is slightly changed to

�A(M;Ω) = C
�(L)−m
0

X
�2col(L)

 
mY
i=1

d�(Li)

!
F (Γ(L; �) [ Ω);

where C0 is a square root of C . For C0 = �D−1 we have

�A(M;Ω) = C
−b1(M)
0 F(M;Ω) = D�(V ;D)(M;Ω);

which follows by using that �−(L) = (m− b1(M) − �(L))=2. In case A = Ut ,
t = exp(i�=(2r)), r � 2, see [RT2, Sect. 8] and the beginning of Sect. 8 in this
paper, �A(M) = �A(M; ;) is equal to the invariant �r(M) in [KM1].

To compare with [Le] we use a more symmetric expression for �(V ;D) . To this
end let �− = � and �+ = �V , so �� =

P
i2I v

�1
i (dim(i))2 . Moreover, let

�+(L) be the number of positive eigenvalues of the intersection form of WL .
Then, by using (3) and the above formula for �−(L), one gets

�(V ;D)(M;Ω) = D−b1(M)−1(�+)−�+(L)(�−)−�−(L)

�
X

�2col(L)

 
mY
i=1

dim(�(Li))

!
F (Γ(L; �) [ Ω):

The invariant Db1(M)+1�(V ;D)(M;Ω) is the invariant considered in [Le] in case
the modular categories are the ones induced by the quantum groups associated
to simple �nite dimensional complex Lie algebras.

B. Framed links in closed oriented 3{manifolds

In this appendix we discuss di�erent ways of presenting a framing of a link L in
an arbitrary closed oriented 3{manifold M . We will here explicitly work in the
smooth category so we can use di�erential topological concepts. To simplify
writing we restrict to the case of knots. The generalization to links will be
obvious.

Three ways of de�ning a framing Let K be a knot in a closed orientable
3{manifold M , let TM jK be the restriction of the tangent bundle of M to
K , and let NK = TM jK=TK be the normal bundle of K . Since M and
K are orientable, NK is an orientable 2{dimensional real vector bundle over
K . Isomorphism classes of oriented 2{dimensional real vector bundles over
K �= S1 are in 1-1 correspondence with �1(BSO(2)) �= �0(SO(2)) = 0, so NK
is trivializable. We let Str(K) be the set of isotopy classes of trivializations
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of NK . There is a 1-1 correspondence between Str(K) and �1(GL(2;R)) �=
�1(O(2)) �= Z through homotopy classes of transition functions. However,
there is in general no canonical choise of this bijection. A normal vector �eld
on K is a nowhere vanishing section in NK . Two normal vector �elds on K
are homotopic if they can be deformed into one another within the class of
normal vector �elds on K . We let Snvf(K) be the set of homotopy classes of
normal vector �elds on K . Finally let Semb(K) be the set of isotopy classes of
embeddings Q : B2�S1 !M with Q(0�S1) = K (nothing about orientations
here contrary to Conventions 5.2 in Sect. 5). A framing of K is an element in
one of the sets Snvf(K), Str(K), Semb(K).

Claim We have a diagram of maps

Semb(K)
J

//

F
&&L

LL
LL

LL
LL

L
Str(K)

H1;H2

oo

Snvf(K)
G1;G2

99sssssssss

with J �H� and F �H� �G� the identity maps, � = 1; 2. In particular H� and
G� are injective, � = 1; 2, and F and J surjective. The images of G1 and G2

have the same cardinality and they are disjoint with union Str(K). The union
of the images of H1 and H2 is Semb(K). Fix an orientation on K and let −K
be K with the opposite orientation. Then H1 = H2 if K and −K are isotopic,
so in particular this map is an isomorphism (with inverse J ). If K and −K are
non-isotopic then H1 and H2 have disjoint images with the same cardinality.

Proof of claim Let Q be an embedding as above and let �(x) = Q(0; x).
De�ne a normal vector �eld on K by XQ(�(x)) = �K �T(0;x)Q(e1; 0), where e1

is the �rst standard unit vector in R2 and �K : TM jK ! NK is the projection.
The map Q 7! XQ induces a map F : Semb(K) ! Snvf(K). By �Q(y; �(x)) =
�K � T(0;x)Q(y; 0) we get a trivialization of NK . The map Q 7! �Q induces
a map J : Semb(K) ! Str(K). Let X be a normal vector �eld on K . Fix an
orientation of NK and choose a normal vector �eld Y on K so fX;Y g is a
positively oriented frame for NK . Let �X be the corresponding trivialization
of NK , i.e. �X(ue1 + ve2; p) = uX(p) + vY (p). The map X 7! �X induces a
map G1 : Snvf(K)! Str(K). Let G2 be de�ned as G1 but using the opposite
orientation of NK . Finally for a trivialization � of NK , a parametrisation
� : S1 ! K , and a tubular map � : NK !M we get an embedding Q� : B2�
S1 ! M by Q�(y; x) = �(�(y; �(x))). Here � : NK ! M is an embedding,
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which on K is the inclusion K �M and for which the di�erential induces the
identity on the zero-section, cf. [BJ, p. 123]. The map � 7! Q� induces a map
H1 : Str(K)! Semb(K). Let H2 be de�ned as H1 but using � �� instead of � ,
where � : S1 ! S1 is an orientation reversing di�eomorphism. By the property
of the di�erential of � , we get immediately the �rst claim (use that �K �
T(0;x)Q�jT0B2�0 = �(−; �(x)).) Let g : R2 ! R2 be an orientation reversing
di�eomorphism. For an embedding Q : B2�S1 !M we let �Q = Q�(idB2��)
and Q̂ = Q � (gjB2 � idS1). Similarly for a trivialization � of NK we let
�̂ = ��(g�idK). Note that � and �̂ are non-isotopic. The claims about G1 and
G2 follows then basically by the observation G2([X]) = [�̂X ]. Fix an orientation
of K and let −K be K with the opposite orientation. Then Q and �Q are
isotopic if and only if K and −K are isotopic. The claims about H1 and H2

then basically follow from the observation H2([�]) = �Q� . (Use that the isotopy
class of Q is completely determined by Qj0�S1 and �K � T(0;x)QjT0B2�0 .)

Note that there are oriented knots K for which K and −K are not isotopic, cf.
[Tr]. Also note that for an embedding Q : B2 � S1 !M , F maps the isotopy
classes of Q, Q̂, �Q, and �̂Q to the same point. Here Q and Q̂ are always
non-isotopic.

Integral homology spheres Let us consider the case where M = S3 or more
generally where M is an integral homology sphere (meaning that H�(M ;Z) =
H�(S3;Z)). Then we have a well-de�ned linking number lk(: ; :) between knots
in M . If Q : B2 � S1 ! M is an embedding with Q(0 � S1) = K we let K 0

be the knot Q(e1 � S1). Fix an orientation of K and give K 0 the induced
orientation, i.e. [K] = [K 0] in H1(U ;Z), U = Q(B2 � S1). Note that we get
the same parallel K 0 (up to isotopy) if we use Q̂ or �Q instead (see the above
proof). We therefore have an identi�cation Snvf(K) �= Z by lk(K;K 0). The
framing corresponding to zero is sometimes called the preferred framing, cf.
[Ro1, p. 31 and p. 136]. (We also have Snvf(K) �= Z in the general case, see the
claim above, but we do not in general have a canonical choice of a zero.)

Notes on surgery Assume that M is an arbitrary closed oriented 3{manifold
and that Q : B2 � S1 ! M is an orientation preserving embedding, where
B2 � S1 is the oriented standard solid torus and U = Q(B2 � S1) is given
the orientation induced by that of M , see Conventions 5.2. Then �̂Q is also
orientation preserving. However from a surgical point of view this causes no
problems since rational surgery along (K;Q), K = Q(0 � S1), with surgery
coe�cient p=q as de�ned in (23) is identical with rational surgery along (K; �̂Q)
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with the same surgery coe�cient p=q . If we change the orientation of M (M
is connected) then by Conventions 5.2 we must use �Q (or Q̂) when doing
surgery along K . This changes the signs of all surgery coe�cients for a given
surgery. If M = S3 = R3 [ f1g given the standard right-handed orientation,
then rational surgery on M along K as de�ned in (23), where K is given the
preferred framing, is ordinary rational surgery on S3 along K as de�ned in e.g.
[Ro1, Sect. 9.F].
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