Algebraic \& Geometric Topology

Volume 1 (2001) 57\{71
Published: 27 J anuary 2001
ATG
On asymptotic dimension of groups

G. Bell and A. Dranishnikov

Abstract

We prove a version of the countable union theorem for asymptotic dimension and we apply it to groups acting on asymptotically nite dimensional metric spaces. As a consequence we obtain the following nite dimensionality theorems. A) An amalgamated product of asymptotically nite dimensional groups has nite asymptotic dimension: asdimA с $\mathrm{B}<1$. B) Suppose that G^{0} is an HNN extension of a group G with asdimG $<$ 1. Then asdimG ${ }^{0}<1$. C) Suppose that Γ is Davis' group constructed from a group with asdim <1. Then asdim $\ll 1$.

A M S C lassi cation 20H15; 20E 34, 20F 69
Keywords Asymptotic dimension, amalgamated product, HNN extension

1 Introduction

The notion of the asymptotic dimension was introduced by Gromov [8] as an asymptotic analog of Ostrand's characterization of covering dimension. Two sets U_{1}, U_{2} in a metric space are called d-disjoint if they are at least d-apart, i.e. inff dist $\left(x_{1} ; x_{2}\right) j x_{1} 2 U_{1} ; x_{2} 2 U_{2} g \quad d$. A metric space X has asymptotic dimension asdimX n if for an arbitrarily large number d one can $n d n+1$ uniformly bounded families $U^{0} ;::: ; U^{n}$ of d-disjoint sets in X such that the union [${ }_{i} U^{i}$ is a cover of X. A generating set S in a group Γ de nes the word metric on Γ by the following rule: $d_{S}(x ; y)$ is the minimal length of a presentation of the element $x^{-1} y 2 \Gamma$ in the alphabet S. Gromov applied the notion of asymptotic dimension to studying asymptotic invariants of discrete groups. It follows from the de nition that the asymptotic dimension asdim($\Gamma ; \mathrm{d}_{S}$) of a nitely generated group does not depend on the choice of the nite generating set S . Thus, asdimГ is an asymptotic invariant for nitely generated groups. Gromov proved [8] that asdimГ < 1 for hyperbolic groups Г. The corresponding question about nonpositively curved (or CAT (0)) groups remains open. In the case of Coxeter groups it was answered in [7].

In [13] G. Yu proved a series of conjectures, including thefamous Novikov Higher Signature conjecture, for groups Γ with asdim「 < 1 . Thus, the problem of determining the asymptotic nite dimensionality of certain discrete groups became very important. In fact, until the recent example of Gromov [9] it was unknown whether all nitely presented groups satisfy the inequality asdimГ < 1. In view of this, it is natural to ask whether the property of asymptotic nitedimensionality is preserved under the standard constructions with groups. Clearly, the answer is positive for the direct product of two groups. It is less clear, but still is not di cult to see that a semidirect product of asymptotically nite dimensional groups has a nite asymptotic dimension. The same question about the fre product does not seem clear at all. In this paper we show that the asymptotic nite dimensionality is preserved by the free product, by the amalgamated free product and by the HNN extension.

One of the motivations for this paper was to prove that Davis' construction pre serves asymptotic nite dimensionality. Given a group with a nite classifying space B , Davis found a canonical construction, based on Coxeter groups, of a group Γ with $\mathrm{B} \Gamma$ a closed manifold such that is a retract of Γ (see [1],[2],[3],[10]). We prove here that if asdim <1, then asdim $\ll 1$. This theorem together with the result of the second author [6] (see also [5]) about the hypereudlideanness of asymptotically nitedimensional manifolds allows one to get a shorter and more elementary proof of the Novikov Conjecture for groups Γ with asdim「 < 1 .

We note that the asymptotic dimension asdim is a coarse invariant, i.e it is an invariant of the coarse category introduced in [11]. We recall that the objects in the coarse category are metric spaces and morphisms are coarsely proper and coarsely uniform (not necessarily continuous) maps. A map f : X ! Y between metric spaces is called coarsely proper if the preimage $f^{-1}\left(B_{r}(y)\right)$ of every ball in Y is a bounded set in X. A map $f: X!Y$ is called coarsely uniform if there is a function : $\mathbf{R}_{+}!\mathbf{R}_{+}$, tending to in nity, such that $d_{y}(f(x) ; f(y)) \quad(d(x ; y))$ for all $x ; y 2 Y$. We note that every object in the coarse category is isomorphic to a discrete metric space

There is an analogy between the standard (local) topology and the asymptotic topology which is outlined in [4]. That analogy is not always direct. Thus, in Section 2 we prove the following nite union theorem for asymptotic dimension asdimX [Y maxf asdimX; asdimY g whereas the classical Menger-Urysohn theorem states: $\operatorname{dim} X[Y \quad \operatorname{dim} X+\operatorname{dim} Y+1$. Also the Countable Union Theorem in the classical dimension theory cannot have a straightforward analog, since all interesting objects in the coarse category are countable unions of points but not all of them are asymptotically 0-dimensional. In Section 2 we formulated a countable union theorem for asymptotic dimension which we
found useful for applications to the case of discrete groups.
The second author was partially supported by NSF grant DMS-9971709,

2 Countable union theorem

De nition A family of metric spaces $f F \mathrm{~g}$ satis es the inequality asdimF n uniformly if for arbitrarily large $\mathrm{d}>0$ there are R and R -bounded d-disjoint families $U^{0}::: U^{n}$ of subsets of F such that the union [${ }_{i} U^{i}$ is a cover of F.
A typical example of such family is when all F are isometric to a space F with asdimF n .

A discrete metric space X has bounded geometry if for every R there is a constant $c=c(R)$ such that every R-ball $B_{R}(x)$ in X contains at most c points.

Proposition 1 Let f : F ! X be a family of 1-Lipschitz injective maps to a discrete metric space of bounded geometry with asdimX n. Then asdimF n uniformly.

Proof For a metric space A we de ne its d-components as the classes under the following equivalence relation. Two points $a ; a^{0} 2 \mathrm{~A}$ are equivalent if there is a chain of points $a_{0} ; a_{1} ;::: ; a_{k}$ with $a_{0}=a, a_{k}=a^{0}$ and with $d\left(a_{i} ; a_{i+1}\right) d$ for all $\mathrm{i}<\mathrm{k}$. We note that the d-components are more than d apart and also note that the diameter of each d-component is less than or equal to $\operatorname{dj} \mathrm{Aj}$, where $j A j$ is the number of points in A.
Let d be given. Then there are R -bounded d-disjoint families $\mathrm{V}^{0} ;::: ; \mathrm{V}^{\mathrm{n}}$ covering X. For every $V 2 V^{i}$ and every we present the set $f^{-1}(V)$ as the union of d-components: $f^{-1}(V)=\left[C^{j}(V)\right.$. Note that the diameter of every d-component is $\mathrm{dc}(\mathrm{R})$ where the function c is taken from the bounded geometry condition on X. We take $U^{i}=f^{j}(V) j V 2 V^{i} g$.

Theorem 1 Assume that $X=[F$ and asdimF n uniformly. Suppose that for any r there exists $Y_{r} \quad X$ with asdim $Y_{r} \quad n$ and such that the family $\mathrm{fF} \mathrm{n} \mathrm{Y}_{\mathrm{r}} \mathrm{i}$ is r -disjoint. Then asdimX n .

Finite Union Theorem Suppose that a metric space is presented as a union A [B of subspaces. Then asdimA [B maxfasdimA;asdimBg.

Proof We apply Theorem 1 to the case when the family of subsets consists of A and B and we take $Y_{r}=B$.

The proof of Theorem 1 is based on the idea of saturation of one family by the other. Let V and U be two families of subsets of a metric space X.

De nition For $V 2 \mathrm{~V}$ and $\mathrm{d}>0$ we denote by $\mathrm{N}_{\mathrm{d}}(\mathrm{V} ; \mathrm{U})$ the union of V and all elements $U 2 \mathrm{U}$ with $\mathrm{d}(\mathrm{V} ; \mathrm{U})=\operatorname{minfd}(\mathrm{x} ; \mathrm{y}) \mathrm{j} \times 2 \mathrm{~V} ; \mathrm{y} 2 \mathrm{Ug} \quad \mathrm{d}$. By dsaturated union of V and U we mean the following family $V\left[{ }_{d} U=f N_{d}(V ; U) j\right.$ V $2 \mathrm{Vg}[\mathrm{fU} 2 \mathrm{Ujd}(\mathrm{U} ; \mathrm{V})>\mathrm{d}$ for all V 2 Vg .

Note that this is not a commutative operation. Also note that $\mathrm{f} ; \mathrm{g}[\mathrm{d} \mathrm{U}=\mathrm{U}$ and $V\left[{ }_{d} f ; g=V\right.$ for all d.

Proposition 2 Assume that U is d-disjoint and R -bounded, R d. Assume that V is $5 R$-disjoint and D-bounded. Then $V\left[{ }_{d} U\right.$ is d-disjoint and $D+$ 2(d+R)-bounded.

Proof First we note that elements of type U are d-disjoint in the saturated union. The same is true for elements of type U and $N_{d}(V ; U)$. Now consider elements $\mathrm{N}_{\mathrm{d}}(\mathrm{V} ; \mathrm{U})$ and $\mathrm{N}_{\mathrm{d}}\left(\mathrm{V}^{0} ; \mathrm{U}\right)$. Note that they are contained in the $\mathrm{d}+\mathrm{R}-$ neighborhoods of V and V^{0} respectively. Since V and V^{0} are $5 R$-disjoint, and $R \quad d$, the neighborhoods will be d-disjoint.
Clearly, diamN ${ }_{d}(V ; U) \quad d i a m V+2(d+R) \quad D+2(d+R)$.
Proof of Theorem 1 Let d be given. Consider R and families $U^{0}::: U^{n}$ from the de nition of the uniform inequality asdimF n. We may assume that $R>d$. We take $r=5 R$ and consider Y_{r} satisfying the conditions of the Theorem. Consider r-disjoint D -bounded families $\mathrm{V}^{0} ;::: ; \mathrm{V}^{\mathrm{k}}$ from the de nition of asdimY $Y_{r} \quad k$. Let U^{i} be the restriction of U^{i} over $F n Y_{r}$, i.e. $U^{i}=f U n Y_{r} j U 2 U^{i} g$. Le $U^{i}=\left[\quad U^{i}\right.$. Note that the family U^{i} is d-disjoint and R-bounded. For every i we de ne $W^{i}=V^{i}\left[{ }_{d} U^{i}\right.$. By Proposition 2 the family W^{i} is d-disjoint and uniformly bounded. Clearly [${ }_{i} W^{i}$ covers X.

3 Groups acting on nite dimensional spaces

A norm on a group A is a map k k : A! \mathbf{Z}_{+}such that kabk kak + kbk and $\mathrm{kxk}=0$ if and only if x is the unit in A. A set of generators S A de nes the norm kxk_{s} as the minimal length of a presentation of x in terms of S. A norm on a group de nes a left invariant metric d by $d(x ; y)=k x^{-1} y k$. If G
is a nitely generated group and S and S^{0} are two nite generating sets, then the corresponding metrics d_{s} and d_{s} o de ne coarsely equivalent metric spaces ($\mathrm{G} ; \mathrm{d}_{\mathrm{S}}$) and ($\mathrm{G} ; \mathrm{d}_{\mathrm{s} 0}$). In particular, asdim($\mathrm{G} ; \mathrm{d}_{\mathrm{s}}$) = asdim($\mathrm{G} ; \mathrm{d}_{\mathrm{s}}$), and we can speak about the asymptotic dimension asdimG of a nitely generated group G.

Assume that a group Γ acts on a metric space X. For every $R>0$ we de ne the R-stabilizer $W_{R}\left(x_{0}\right)$ of a point $x_{0} 2 X$ as the set of all $g 2 \Gamma$ with $g\left(x_{0}\right) 2 B_{R}\left(x_{0}\right)$. Here $B_{R}(x)$ denotes the closed ball of radius R centered at x .

Theorem 2 Assume that a nitely generated group Γ acts by isometries on a metric space X with a base point X_{0} and with asdimX k. Suppose that asdimW $\mathrm{m}_{\mathrm{R}}\left(\mathrm{x}_{0}\right) \quad \mathrm{n}$ for all R . Then asdim「 $\quad(\mathrm{n}+1)(\mathrm{k}+1)-1$.

Proof We de ne a map : Γ ! X by the formula $(g)=g\left(x_{0}\right)$. Then $W_{R}\left(x_{0}\right)={ }^{-1}\left(B_{r}\left(x_{0}\right)\right)$. Let $=\operatorname{maxf} d_{x}\left(s\left(x_{0}\right) ; x_{0}\right)$ j s 2 Sg. We show now that is -Lipschitz. Since the metric d_{s} on γ is induced from the geodesic metric on the Cayley graph, it su ces to check that $\mathrm{d}_{\mathrm{x}}(\mathrm{g})$; ($\left.\mathrm{g}^{\mathrm{g}}\right)$) for all $g ; g^{0} 2 \Gamma$ with $d_{s}\left(g ; g^{9}\right)=1$. Without loss of generality we assume that $g^{0}=g s$ where s 2 S . Then $\mathrm{d}_{\mathrm{x}}\left((\mathrm{g}) ;\left(\mathrm{g}^{0}\right)\right)=\mathrm{dx}_{\mathrm{x}}\left(\mathrm{g}\left(\mathrm{x}_{0}\right) ; \mathrm{gs}\left(\mathrm{x}_{0}\right)\right)=\mathrm{d}_{\mathrm{x}}\left(\mathrm{x}_{0} ; \mathrm{s}\left(\mathrm{x}_{0}\right)\right)$

Note that $\gamma B_{R}(x)=B_{R}(\gamma(x))$ and $\gamma\left({ }^{-1}\left(B_{R}(x)\right)\right)={ }^{-1}\left(B_{R}(\gamma(x))\right)$ for all $\mathrm{y} 2 \Gamma, x 2 \mathrm{x}$ and all R .
Given $r>0$, thereare r-disjoint, R-bounded families F^{0};:::; F^{k} on the orbit $\Gamma \mathrm{x}_{0}$. Let $\mathrm{V}^{0} ;::: ; \mathrm{V}^{\mathrm{n}}$ on $\mathrm{W}_{2 R}\left(\mathrm{x}_{0}\right)$ be r -disjoint uniformly bounded families given by the de nition of the inequality asdi $\mathrm{mW}_{\mathrm{R}}\left(\mathrm{x}_{0}\right) \quad \mathrm{n}$. For every element F $2 \mathrm{~F}^{\mathrm{i}}$ we choose an element $\mathrm{g}_{\mathrm{F}} 2$ 「 such that $\mathrm{g}_{\mathrm{F}}\left(\mathrm{x}_{0}\right) 2 \mathrm{~F}$. We de ne $(k+1)(n+1)$ families of subsets of Γ as follows:

$$
W^{i j}=f g_{F}(C) \backslash{ }^{-1}(F) j F 2 F^{i} ; C 2 V^{j} g
$$

Since multiplication by g_{F} from the left is an isometry, every two distinct sets $g_{F}(C)$ and $g_{F}\left(C 9\right.$ are r-disjoint. Note that $\left(g_{F}(C) \backslash{ }^{-1}(F)\right)$ and $\left(\mathrm{g}_{\mathrm{F}}(\mathrm{C}) \backslash{ }^{-1}\left(\mathrm{~F}^{9}\right)\right.$ are r -disjoint for $\mathrm{F} \in \mathrm{F}^{0}$. Since is -Lipschitz, the sets $g_{F}(C) \backslash{ }^{-1}(F)$ and $g_{F} o(C 9) \backslash{ }^{-1}\left(F 9\right.$ are r-disjoint. The families $W^{i j}$ are uniformly bounded, since the families V^{j} are, and multiplication by g from the left is an isometry on Γ. We check that the union of the families $W^{\text {ij }}$ forms a cover of Γ. Let $g 2 \Gamma$ and let $(g)=F$, i.e. $g\left(x_{0}\right) 2 F$. Since diamF R, $x_{0} 2 g_{F}^{-1}(F) \quad R$ and g_{F}^{-1} acts as an isometry, we have $g_{F}^{-1}(F) \quad B_{R}\left(x_{0}\right)$. Therefore, $g_{F}^{-1} g\left(x_{0}\right) 2 B_{R}\left(x_{0}\right)$, i. e $g_{F}^{-1} g 2 W_{R}\left(x_{0}\right)$. Hence $g_{F}^{-1} g$ lies in some set C $2 \mathrm{~V}^{\mathrm{j}}$ for some j . Therefore $\mathrm{g} 2 \mathrm{~g}_{\mathrm{F}}(\mathrm{C})$. Thus, $\mathrm{g} 2 \mathrm{~g}_{\mathrm{F}}(\mathrm{C}) \backslash{ }^{-1}(\mathrm{~F})$.

Theorem 3 Let : G! H be an epimorphism of a nitely generated group G with kernel ker $=\mathrm{K}$. Assume that asdimK k and asdimH n . Then asdimG $\quad(\mathrm{n}+1)(\mathrm{k}+1)-1$.

Proof The group G acts on H by the rule $\mathrm{g}(\mathrm{h})=(\mathrm{g}) \mathrm{h}$. This is an action by isometries for every left invariant metric on H . Let S bea nite generating set for G. We consider the metric on H de ned by the set (S). Below we prove that the R-stabilizer of the identity $W_{R}(e)$ coincides with $N_{R}(K)$, the R-neighborhood of K in G. Since $N_{R}(K)$ is coarsely isomorphic to K, we have the inequality asdimW $W_{R}(e) \quad k$.

Let $g 2 W_{R}(e)$, then $k(g) k \quad R$. Therefore there is a sequence $i_{1} ;::: ; i_{k}$ with $k \quad R$ such that $(g)=s_{i_{1}}::: s_{i_{k}}$ where $s=(s), s 2 S$. Let $u=s_{i_{1}}::: s_{i_{k}}$. Then $d_{s}\left(g ; \mathrm{gu}^{-1}\right) \quad R$ and hence, $d_{s}(g ; K) \quad R$. In the opposite direction, if $d_{s}(\mathrm{~g} ; \mathrm{K}) \quad \mathrm{R}$, then $\mathrm{d}(\mathrm{g} ; \mathrm{z}) \quad \mathrm{R}$ for some z 2 K . Hence $\left.\mathrm{d}_{(\mathrm{s})}(\mathrm{g}) ; \mathrm{e}\right) \quad \mathrm{R}$.

We apply Theorem 2 to complete the proof.

Remark The estimate $(n+1)(k+1)-1$ in Theorems 2 and 3 is far from being sharp. Since in this paper we are interested in nite dimensionality only, we are not trying to give an exact estimate which is $n+k$. Besides, it would be di cult to get an exact estimate just working with covers. Even for proving the inequality

$$
\text { asdim }_{1} \quad \Gamma_{2} \quad \text { asdim } \Gamma_{1}+\operatorname{asdim} \Gamma_{2}
$$

it is better to use a di erent approach to asdim (see [7]).

4 Free and amalgamated products

Let $f A_{i} ; k k_{i} g$ be a sequence of groups with norms. Then these norms generate a norm on the free product A_{i} as follows. Let $x_{i_{1}} x_{i_{2}}::: x_{i_{m}}$ be the reduced presentation of $x 2 A_{i}$, where $x_{i_{k}} 2 A_{i_{k}}$. We denote by $I(x)=m$ the length of the reduced presentation of x and we de ne $k x k=k x_{i_{1}} k_{i_{1}}+:::+k x_{i_{m}} k_{i_{m}}$.

Theorem 4 Let $f A_{i} ; k k_{i} g$ be a sequence of groups satisfying asdimA $A_{i} n$ uniformly and let $k k$ be the norm on the fre product A_{i} generated by the norms $k k_{i}$. Then asdim($\left.A_{i} ; k k\right) \quad 2 n+1$.

Proof First we note that the uniform property asdimA $A_{i} \quad \mathrm{n}$ and Theorem 1 applied with $Y_{r}=B_{r}(e)$, the r-ball in A_{i} centered at the unit e, imply that asdim[$A_{i} \quad n$.

We let G denote A_{i}. Then we consider a tree T with vertices left cosets $x A_{j}$ in G. Two vertices $x A_{i}$ and $y A_{j}$ are joined by an edge if and only if there is an element $z 2 G$ such that $x A_{i}=z A_{i}$ and $y A_{j}=z A_{j}$ and $i \sigma j$. The multiplication by elements of G from the left de nes an action of G on T. We note that the m-stabilizer $W_{m}\left(A_{1}\right)$ of the vertex A_{1} is the union of all possible products $A_{i_{1}}::: A_{i_{1}} A_{1}$ of the length $m+1$, where $i_{k} G i_{k+1}$ and $i_{1} G 1$. Let $P_{m}=f \times 2 \quad A_{i} j I(x)=m g$ and let $P_{m}^{k}=f \times 2 P_{m} j x=x_{i_{1}}::: x_{i_{m}} ; x_{i_{m}} z$ $A_{k} g$. Put $R_{m}=W_{m}\left(A_{1}\right) n W_{m-1}\left(A_{1}\right)$. Then $R_{m} \quad P_{m+1}$

By induction on m we show that asdimP $\mathrm{m}_{\mathrm{m}} \quad \mathrm{n}$. This statement holds true when $m=0$, since $P_{0}=$ feg. Assume that it holds for P_{m-1}. We note that $P_{m}=\left[\times 2 P_{m-1}^{i} \times A_{i}\right.$. Since multiplication from the left is an isometry, the hypothesis of the theorem implies that the inequality asdimxA $\mathrm{m}_{\mathrm{i}} \quad \mathrm{n}$ holds uniformly. Given r we consider the set $Y_{r}=P_{m-1} B_{r}(e)$ where $B_{r}(e)$ is the r-ball in A_{i}. Since Y_{r} contains P_{m-1} and is contained in r-neighborhood of $\mathrm{P}_{\mathrm{m}-1}$, it is isomorphic in the coarse category to $\mathrm{P}_{\mathrm{m}-1}$. Hence by the induction assumption we have asdim $m Y_{r} \quad n$. We show that the family $x A_{i} n Y_{r}, x 2 P_{m-1}^{i}$ is r-disjoint. Assume that $x A_{i} \in x^{0} A_{j}$. This means that $x \in x^{0}$ if $i=j$. If i σj the inequality $k a_{i}^{-1} x^{-1} x^{0} a_{j} k \quad k a_{i}^{-1} a_{j} k=k a_{i} k+k a_{j} k$ holds for any choice of $a_{i} 2 A_{i}$ and $a_{j} 2 A_{j}$. If $i=j$, the same inequality holds, since $x \in x^{0}$ and they are of the same length. If $x a_{i} 2 x A_{i} n Y_{r}$ and $x a_{j} 2 x A_{j} n Y_{r}$, then $k a_{i} k ; k a_{j} k \quad r$ and hence dist $\left(x a_{i} ; x^{0} a_{j}\right) \quad 2 r$. Theorem 1 implies that asdi $m P_{m} \quad n$. TheFinite Union Theorem implies that asdi $m W_{m}\left(A_{1}\right) \quad n$ for all n.
It is known that every tre T has asdimT $=1$ (see [7]). Thus by Theorem 2 asdim($\left.A_{i} ; k k\right) 2 n+1$.

Corollary Let $A_{i}, i=1 ;::: ; k$, be nitely generated groups with asdimA A_{i} n. Then asdim ${ }_{i=1}^{k} A_{i} \quad 2 n+1$.

Theorem 5 Let A and B be nitely generated groups with asdimA n and asdimB n and let C betheir common subgroup. Then asdimA c B $2 n+1$.

We recall that every element $\times 2 \mathrm{~A}$ c B admits a unique normal presentation $C x_{1}::: x_{k}$ where $c 2 C, x_{i}=C x_{i}$ are nontrivial alternating right cosets of C in A or B . Thus, $\mathrm{x}=\mathrm{Cx}_{1}::: \mathrm{x}_{\mathrm{k}}$. Let dist(;) be a metric on the group $G=A \subset B$. We assume that this metric is generated
by the union of the nite sets of generators $S=S_{A}$ [S_{B} of the groups A and B. On the space of the right cosets $C n G$ of a subgroup C in G one can de ne the metric $d(C x ; C y)=\operatorname{dist}(C x ; C y)=\operatorname{dist}(x ; C y)$. The following chain of inequalities implies the triangle inequality for d : $\operatorname{dist}(\mathrm{Ca} ; \mathrm{Cb})$
 We chose c such that $\operatorname{dist}(a ; Z)=\operatorname{dist}(a ; C z)=d(C a ; C z)$ and c^{0} such that $\operatorname{dist}\left(c z ; c^{9}\right)=\operatorname{dist}(c z ; C b)=d(C z ; C b)$.

For every pair of pointed metric spaces X and Y we de ne a free product $X{ }^{\wedge}$ as a metric space whose elements are alternating words formed by the alphabets $X n f x_{0} g$ and Y nf $y_{0} g$ plus the trivial word $x_{0}=y_{0}=e$. We de ne the norm of the trivial word to be zero and for a word of type $x_{1} y_{1}::: x_{r} y_{r}$ we set $k x_{1} y_{1}::: x_{r} y_{r} k={ }_{i} d_{x}\left(x_{i} ; x_{0}\right)+d_{r}\left(y_{i} ; y_{0}\right)$. If the word starts or ends by a di erent type of letter, we consider the corresponding sum. To de nethe distance $\mathrm{d}\left(\mathrm{w} ; \mathrm{w}^{9}\right)$ between two words w and w^{0} we cut o their common part u if it is not empty: $w=u x v, w^{0}=u x^{0} v^{0}$ and set $d\left(w ; w^{0}\right)=d\left(x ; x^{9}\right)+k v k+k v^{9} k$. If the common part is empty, we de ne $d\left(w ; w^{0}\right)=k w k+k w^{0} k$. Thus, $d(w ; e)=$ kwk.

Proposition 3 Let $x_{1}::: x_{r}$ bethe normal presentation of $x 2 A c B$. Then kxk $\quad \mathrm{i}\left(\mathrm{x}_{\mathrm{i}} ; \mathrm{C}\right)$.

Proof We de nea map : A c B ! ($C n A)^{\mathcal{M}}(\mathrm{CnB})$ as follows. If $c x_{1}::: \mathrm{x}_{\mathrm{r}}$ is the normal presentation of x, then we set $(x)=x_{1}::: x_{r}$ and de ne (e) $=e$. We verify that is 1-Lipschitz. Since A с B is a discrete geodesic metric space space, it su ces to show that $d((x)$; ($x y)$) 1 where y is a generator in A or in B. Let $x=c x_{1}::: x_{r}$ be a presentation corresponding to the normal presentation $\alpha_{1}::: x_{r}$. Then the normal presentation of $x y$ will be either $c x_{1}:::\left(x_{r} \gamma\right)$ or $x_{1}::: x_{r} \gamma$. In the rst case, $\left.d(x) ;(x y)\right)=$ $\mathrm{d}\left(\mathrm{x}_{\mathrm{r}} ; \mathrm{X}_{\mathrm{r}} \mathrm{Y}\right)=\operatorname{dist}\left(\mathrm{C} \mathrm{x}_{\mathrm{r}} ; \mathrm{C} \mathrm{x}_{\mathrm{r}} \gamma\right) \quad$ dist $\left(\mathrm{x}_{\mathrm{r}} ; \mathrm{x}_{\mathrm{r}} \mathrm{Y}\right)=1$. In the second case we have $d(\quad(x) ;(x \gamma))=d(C ; C \gamma)=\operatorname{dist}(C ; C \gamma) \quad \operatorname{dist}(e ; \gamma)=1$.

Then $k x k=\operatorname{dist}(x ; e) \quad d(x) ; e)=d\left(x_{1}::: x_{r} ; e\right)=k x_{1}::: x_{r} k={ }_{i} d\left(x_{i} ; e\right)$.

Proposition 4 Suppose that the subset $(B A)^{m}=B A::: B A \quad A \subset B$ is supplied with the induced metric and let asdimA; asdimB n. Then asdim(BA) $\quad n$ for all m.

Proof Let $I(x)$ denotethe length of the normal presentation $\alpha_{1}::: x_{1(x)}$ of x. De ne $P_{k}=f x j l(x)=k g, P_{k}^{A}=f x 2 P_{k} j x_{l(x)} 2 C n A g$ and $P_{k}^{B}=f x 2 P_{k} j$ $x_{l(x)} 2 \mathrm{CnBg}$. Note that $P_{k}=P_{k}^{A}\left[P_{k}^{B}\right.$. Also we note that (BA) ${ }^{m} \quad\left[{ }_{k=1}^{2 m} P_{k}\right.$. In view of the Finite Union Theorem it is su cient to show that asdimP ${ }_{k} \quad n$ for all k. We proceed by induction on k. It is easy to se that $P_{k+1}^{A} \quad P_{k}^{B} A$. Assuming the inequality asdimP $P_{k} \quad n$, we show that asdi $m P_{k}^{B} A \quad n$. We de ne $Y_{r}=P_{k} N_{r}^{A}(C)$ where $N_{r}^{A}(C)$ denotes an r-neighborhood of C in A. First we show that $Y_{r} \quad N_{r}\left(P_{k}\right)$. Let y $2 Y_{r}$, then y has theform uz where $u 2$ $P_{k}^{B}, z 2 A$ and $\operatorname{dist}(z ; C) \quad r$, i.e $k z^{-1} c k \quad r$ for some $c 2 C$. Let $C^{2} x_{1}::: x_{k}$ be the normal presentation of u, then $u z=c^{c} x_{1} x_{2}::: x_{k-1} x_{k} z$ where $x_{k} 2$ $B n C$. We note that the element uc has the normal presentation $C^{0} x_{1}::: x_{k} C$ and hence uc $2 P_{k}$. Then dist $\left.(y ; u c)\right)=k z^{-1} c k \quad r$, therefore $\operatorname{dist}\left(y ; P_{k}\right) \quad r$, i.e. y $2 N_{r}\left(P_{k}\right)$. Since the r-neighborhood $N_{r}\left(P_{k}\right)$ is coarsely isomorphic to the space P_{k}, by the induction assumption we have asdi $m N_{r}\left(Y_{r}\right) \quad n$ and hence, asdimY ${ }_{r} n$.

We consider families $x A$ with $\times 2 P_{k}^{B}$. Let $x A$ and $x^{0} A$ betwo di erent cosets. Since x and x^{0} are di erent elements with $I(x)=I\left(x^{9}\right)$, and $x^{-1} x^{0} z A$, the normal presentation of $a^{-1} x^{-1} x^{0} a^{0}$ ends by the coset $C a^{0}$.

Then by Proposition 3 dist $\left(x A n Y_{r} ; x^{0} A n Y_{r}\right)=k a^{-1} x^{-1} x^{0} a_{k} \quad d\left(C a^{0} ; C\right)=$ $\operatorname{dist}\left(\mathrm{Ca} a^{0} ; \mathrm{C}\right)=\operatorname{dist}\left(a^{0} ; C\right)>r$: Note that $P_{k}^{B} A$ is the union of these sets $x A$. Since all $X A$ are isometric, wehave a uniforminequality asdimxA n. According to T heorem 1 we obtain that asdimP $\mathrm{K}_{\mathrm{k}}^{\mathrm{B}} \mathrm{A} \quad \mathrm{n}$ and hence asdi $m P_{k+1}^{A} \quad \mathrm{n}$. Similarly one obtains the inequality asdi $\mathrm{mP}_{\mathrm{k}+1}^{\mathrm{B}} \quad \mathrm{n}$. The Finite Union Theorem implies that asdi $\mathrm{mP}_{\mathrm{k}+1} \quad \mathrm{n}$.

Proof of Theorem 5 We de ne a graph T as follows. The vertices of T are the left cosets $x A$ and $y B$. Two vertices $x A$ and $y B$ are joined by an edge if there is z such that $x A=z A$ and $y B=z B$. To check that T is a tree we introduce the weight of a vertex Y 2 T given by $w(\mathrm{Y})=\operatorname{minfl}(\mathrm{y})$ j y 2 Yg . Note that for every vertex e with $\mathrm{w}(\mathrm{e})>0$ there is a unique neighboring vertex e_ with $w\left(e_{-}\right)<w(e)$. Since we always have $w(z A) \in w(z B)$, we get an orientation on T with $w\left(e_{-}\right)<w\left(\mathrm{e}_{+}\right)$for every edge $\mathrm{e}^{\text {. The existence this }}$ orientation implies that T does not contain cydes. Since every vertex of T can be connected with the vertex A , the graph T is connected. Thus, T is a tree. The action of A c B on T is de ned by left multiplication. We note that the k-stabilizer $W_{k}(A)$ is contained in $(B A)^{k}$. Then by Proposition 4 asdimW $\mathrm{m}_{\mathrm{k}}(\mathrm{A}) \quad \mathrm{n}$. By Theorem 2 asdimA с $\mathrm{B} \quad 2 \mathrm{n}+1$.

Let $f A_{i} ; k k_{i} g$ bea sequence of groups with norms and let C A_{i} be a common subgroup. These norms de ne a norm $k k$ on the amalgamated product $c A_{i}$
by taking kxk equal the minimum of sums ${ }_{k=1} k a_{i_{k}} k_{i_{k}}$ where $x=a_{i_{1}}::: a_{i_{1}}$ and $\mathrm{a}_{\mathrm{i}_{\mathrm{k}}} 2 \mathrm{~A}_{\mathrm{i}_{\mathrm{k}}}$.
The following theorem generalizes Theorem 4 and Theorem 5.
Theorem 6 Let $f A_{i} ; k k_{i} g$ be a sequence of groups satisfying asdimA $A_{i} n$ uniformly and let $k k$ be the norm on a free product A_{i} generated by the norms $k k_{i}$. Let C be a common subgroup. Then asdim(c $\left.A_{i} ; k k\right) 2 n+1$.

The proof is omitted since it follows exactly the same scheme.
The following fact will be used in Section 6 in the case of the fre product.
Proposition 5 Assumethat the groups A_{i} aresupplied with the norms which generate the norm on the amalgamated product c A_{i}. Let : c A_{i} ! 「 bea monomorphism to a nitely generated group such that the restriction $\mathrm{j}_{\mathrm{A}_{i}}$ is an isometry for every i . Then is a coarsely uniform embedding.

Proof Since is a bijection onto the image, both maps and ${ }^{-1}$ are coarsely proper. We check that both are coarsely uniform. First we show that is 1-Lipschitz. Let $x ; y 2, A_{i}$ and let $x^{-1} y=a_{i_{1}}::: a_{i_{n}}$ with $k x^{-1} y k=$ ${ }_{k=1}^{n} \mathrm{ka}_{\mathrm{i}_{\mathrm{k}}} \mathrm{k}_{\mathrm{i}_{\mathrm{k}}}$. Then $\mathrm{d}_{\Gamma}((\mathrm{x}) ;(\mathrm{y}))$
$d_{\Gamma}\left((x) ; \quad\left(x a_{i_{1}}\right)\right)+d_{\Gamma}\left(\left(x a_{i_{1}}\right) ; \quad\left(x a_{i_{1}} a_{i_{2}}\right)\right)+:::+d_{\Gamma}\left(\quad\left(x a_{i_{1}}::: a_{i_{n-1}}\right) ; \quad(y)\right)$
$={ }_{k=1}^{n} k\left(a_{i_{k}}\right) k_{\Gamma}={ }_{k=1}^{n} k a_{i_{k}} k_{i_{k}}=k x^{-1} y k=\operatorname{dist}(x ; y):$
Now we show that ${ }^{-1}$ is uniform. For every r the preimage ${ }^{-1}\left(B_{r}(e)\right)$ is nite, since $B_{r}(e)$ is nite and is injective. We de ne $(r)=$ maxfkzkjz 2
${ }^{-1}\left(B_{r}(e)\right) g$. Let bestrictly monotonic function which tends to in nity and . Let be the inverse function of . Then

$$
\begin{aligned}
& d_{\Gamma}((x) ; \quad(y))=k\left(x^{-1} y\right) k_{\Gamma}=\left(\left(k\left(x^{-1} y\right) k_{\Gamma}\right)\right) \quad\left(\left(k\left(x^{-1} y\right) k_{\Gamma}\right)\right) \\
& \left(k x^{-1} y k\right)=(d(x ; y))
\end{aligned}
$$

The last inequality follows from the inequality (k (z)k) kzk and the fact that is an increasing function.

5 HNN extension

Let A bea subgroup of a group G and let : A! G bea monomorphism. We denote by G^{0} the HNN extension of G by means of , i.e. a group G^{0} generated by G and an element y with the relations yay $^{-1}=$ (a) for all a 2 A .

Theorem 7 Le : A! G be a monomorphism of a subgroup A of a group G with asdimG n and let G^{0} be the HNN extension of G. Then asdimG ${ }^{0} \quad 2 n+1$.

We recall that a reduced presentation of an element $\times 2 \mathrm{G}^{0}$ is a word

$$
g_{0} y^{1} g_{1}::: y^{n} g_{n}=x ;
$$

where $\mathrm{g}_{\mathrm{i}} 2 \mathrm{G}, \mathrm{i}=1$, with the property that $\mathrm{g}_{\mathrm{i}} \neq \mathrm{A}$ whenever $\mathrm{i}_{\mathrm{i}}=1$ and $i+1=-1$ and $g \not z(A)$ whenever $i=-1$ and $i+1=1$. The number n is called the length of the reduced presentation $g_{0} y{ }^{1} g_{1}::: y^{n} g_{n}$.

The following facts are well-known [12]:
A) (uniqueness) Every two reduced presentations of the same element have the same length and can be obtained from each other by a sequence of the following operations:
(1) replacement of y by (a) ya^{-1},
(2) replacement of y^{-1} by $a^{-1} y$ (a), a 2 A
B) (existence) Every word of type $g_{0} y^{1} g_{1}::: y^{n} g_{n}$ can be deformed to a re duced form by a sequence of the following operations:
(1) replacement of ygy^{-1} by (g) for g 2 A , (2) replacement of y^{-1} (g)y by g for $g 2 A$, (3) replacement of $g^{0} g$ by $g=g^{0} g 2 G$ if $g^{0} ; g 2 G$.

In particular the uniqueness implies that for any two reduced presentations $g_{0} y^{1} g_{1}::: y^{n} g_{n}$ and $g_{0}^{0} y^{0}{ }^{0} g_{1}::: y^{0} g_{n}^{0}$ of the same element $\times 2 G^{0}$ we have ($1 ;::: ; n^{\prime}$) (${ }_{1}^{0} ;:: 3 ; n_{n}^{0}$).
Let G be a nitely generated group and let S bea nite set of generators. We consider the norm on G^{0} de ned by the generating set $S^{0}=S\left[f y ; y^{-1} g\right.$.

Proposition 6 Let $g_{0} y^{1} g_{1}::: y^{n} g_{n}$ be a reduced presentation of $x 2 \mathrm{G}^{0}$. Then $k x k \quad d\left(g_{n} ; A\right)$ if $n=1$ and $k x j j d\left(g_{n} ;(A)\right)$ if $n=-1$.

Proof We consider herethe case when $n=1$. A shortest presentation of x in the alphabet S^{0} gives rise an alternating presentation $x=r_{0}^{0} y^{0}{ }_{1} r_{1}^{0}::: y^{0}{ }_{0} 0 r_{m_{0}}^{0}$, $r_{i}^{0} 2 \mathrm{G},{ }_{i}^{0}=1$ with $k x k=m_{0}+k r_{0}^{0} k+:::+k r_{m_{0}}^{0} k$. We consider a sequence of presentations of x connecting the above presentation with a reduced presentation $r_{0}^{1} y^{1} r_{1}^{1}::: y^{\frac{1}{m_{1}}} r_{m_{1}}^{1}$ by means of operations (1)-(3) of B). Then by A) we have that $m_{1}=n,{ }_{n}^{1}={ }_{n}=1$ and $g_{n}=a r_{n}^{1}, a 2 A$. Because of the nature of transformations (1)-(3) of B), we can trace out to the shortest presentation the letter $y=y^{\frac{1}{n}}$ from the reduced word. This means that the 0 -th word has
the form $r_{0}^{0} y^{0} r_{1}^{0}::: y{ }^{0} r_{1}^{0} y w$ where w is an alternating word representing $r_{m_{k}}^{k}$. Then $k x k \quad k w k=k r_{m_{k}}^{k} k=k a^{-1} g_{n} k \quad d\left(g_{n} ; A\right)$.
We denote by $I(x)$ the length of a reduced presentation of $x 2 \mathrm{G}^{0}$. Let $\mathrm{P}_{1}=$ $\mathrm{fx} 2 \mathrm{Gjl}(\mathrm{x})=\mathrm{lg}$.

Proposition 7 Supposethat asdimG $n, n>0$. Then asdimP ${ }_{\mid} \quad n$ for all 1.

Proof We use induction on I. We note that $P_{0}=G$ and $P_{1} \quad P_{1-1} y G[$ $P_{1-1} y^{-1} G$. Weshow rst that asdim $\left(P_{\mid} \backslash P_{1-1} y G\right) \quad n$. Let r begiven. Wede ne $Y_{r}=P_{l-1} y N_{r}(A)$ where $N_{r}(A)$ isther-neighborhood of A in G. Wecheck that $Y_{r} \quad N_{r+1}\left(P_{l-1}\right)$. Let $z 2 Y_{r}$, then $z=x y g=x y a a^{-1} g=x$ (a) $y a^{-1} g$ where $x 2 P_{l_{-1}}, g 2 N_{r}(A)$ and a $2 A$ with $k a^{-1} g k \quad r$. Then $x(a) 2 P_{l-1}$ and $d(x(a) ; z)=k \mathrm{kya}^{-1} \mathrm{gk} \quad k y k+\mathrm{ka}^{-1} \mathrm{gk}=r+1$. Since Y_{k} is coarsely isomorphic to P_{1-1}, by the induction assumption we have asdi $m Y_{k} \quad n$. We consider the family of sets $x y G$ with $x 2 P_{1-1}$. If $x y G \in x^{9} y G$, then $y^{-1} x^{-1} x^{9} y z G$. A reduction in this word can occur only in the middle. Therefore $x^{-1} x^{0} z$ (A). Moreover the reduced presentation of $y^{-1} x^{-1} x^{9} y$ after these reductions in the middle will be of the form $y^{-1} r_{1}::: r_{s} y$. Then $d\left(x y G n Y_{r} ; x^{9} y G n Y_{r}\right)=$ $d\left(x y g ; x^{9} y g^{9}\right)=k g^{-1} y^{-1} x^{-1} x^{9} y^{0} g g^{2}$. Since $g^{-1} y^{-1} x^{-1} x^{9} y^{0} g^{0}$ is a reduced pre sentation, by Proposition $6 \mathrm{~kg}^{-1} \mathrm{y}^{-1} \mathrm{x}^{-1} \mathrm{x}^{9} \mathrm{y}^{0} \mathrm{~g}_{\mathrm{k}} \mathrm{k} \quad \mathrm{d}(\mathrm{g} ; \mathrm{A})>\mathrm{r}$. So, all the conditions of Theorem 1 are satis ed and, hence asdimP $\mathrm{P}_{1-1} \mathrm{yG} \quad \mathrm{n}$. Similarly one can show that asdim $\left(P_{\mid} \backslash P_{1-1} y^{-1} G\right) \quad n$. Then the inequality asdimP $P_{1} \quad n$ follows from the Finite Union Theorem.

Proof of Theorem 7 We consider a graph T with vertices the left cosets $x G$. A vertex $x G$ is joined by an edge with a vertex xgy $\mathrm{G}, \mathrm{g} 2 \mathrm{G},=1$ whenever both x and $x g y$ are reduced presentations. Since $I(x)=I(x g)$ for all g2 G, we can de ne the length of a vertex $x G$ of the graph. Thus all edges in T aregiven an orientation and every vertex is connected by a path with the vertex G. Since the length of vertices grows along the orientation, there are no oriented cydes in T. We also note that no vertex can be the end point of two di erent edges. All this implies that T is a tree. The group G^{0} acts on T by multiplication from the left. We note that the r-stabilizer $W_{r}(G)$ is contained in P_{r}. Hence by Proposition 7 asdi $\mathrm{mW}_{\mathrm{r}}(\mathrm{G}) \quad \mathrm{n}$. Then Theorem 2 implies that asdimG ${ }^{0} \quad 2 n+1$.

Remark Both the amalgamated product and the HNN extension are the fundamental groups of the simplest graphs of thegroup [12]. We notethat theorems of Sections $4-5$ can be extended to the fundamental groups of general graph of groups, since all of them are acting on the trees with the R -stabilizers having an explicit description.

6 Davis' construction

We recall that a rightangled Coxeter group W is a group given by the following presentation:

$$
W=h s 2 S j s^{2}=1 ;\left(s s^{9}\right)^{2}=1 ;\left(s ; s^{9}\right) 2 E i
$$

where S is a nite set and $\mathrm{E} \quad \mathrm{S} \quad \mathrm{S}$. A barycentric subdivision N of any nite polyhedron de nes a rightangled Coxeter group by the rule: $\mathrm{S}=\mathrm{N}^{(0)}$ and $E=f\left(s ; s^{9}\right) j\left(s ; s^{9}\right) 2 N^{(1)} g$. The complex N is called the nerve of W (see [1]). We recall that the group W admits a proper cocompact action on the Davis complex X which is formed as the union $X=[\mathrm{w} 2 \mathrm{wwC}$, where $\mathrm{C}=\operatorname{cone}(\mathrm{N})$ is called the chamber. Note that the action of W on the set of centers of the chambers (i.e cone vertices) is transitive The orbit space of this action is C, and all isotropy groups are nite. Note that the Davis complex X is contractible. There is a nite index subgroup W^{0} in W for which the complex $X=W^{0}$ is a classifying space. We denote $@=N$. Let X @ denote a subcomplex $X=[\mathrm{w} 2 \mathrm{w} w @ C X$. In [1] it was shown that there is a linear order on W, e $\quad \mathrm{w}_{1} \quad \mathrm{w}_{2} \quad \mathrm{w}_{3} \quad:::$ such that the union $\mathrm{X}_{\mathrm{n}+1}^{@}=\left[{ }_{i=1}^{n+1} \mathrm{w}_{\mathrm{i}} @\right.$ is obtained by attaching $w_{n+1} @$ to $X_{n}^{@}$ along a contractible subset. Assume that $N \quad M$ is a subset of an aspherical complex M. We can build the space X^{M} with an action of the group W on it by attaching a copy of M to each $w @$. Then by induction one can show that every complex X_{n}^{M} is aspherical and therefore X^{M} is aspherical.

For every group with $K=K(; 1)$ a nite complex, M. Davis considered the following manifold. Let M be a regular neighborhood of $K \quad \mathbf{R}^{k}$ in some Euclidean space and let N bea barycentric subdivision of a triangulation of the boundary of M. Then Davis' manifold is the orbit space $X^{M}=W^{0}$. It is aspherical, since X^{M} is aspherical. We refer to the fundamental group $\Gamma={ }_{1}\left(X^{M}=W V^{9}\right.$ as Davis' extension of the group . By taking a su ciently large k , we may assume that the inclusion $\mathrm{N} \quad \mathrm{M}$ induces an isomorphism of the fundamental groups. Then in the above notation $\Gamma={ }_{1}(X @=N 9)$.

Theorem 8 If asdim <1, then asdi $\mathrm{m} \Gamma<1$.
Proof Since X @ is path connected, the inclusion X @ X induces an epimorphism $: \Gamma={ }_{1}(X @=W 9)!\quad{ }_{1}(X \neq N 9)=W^{0}$. Let K be the kerne. We note that $K={ }_{1}\left(X^{M}\right)={ }_{1}\left(X^{@}\right)=\lim _{1} f_{i}{ }_{1}\left(w_{i} @\right) g$. It was proven in [7] that asdi $\mathrm{mW}<1$. The following lemma and Theorem 3 complete the proof.

Lemma 1 Assume that $K \quad \Gamma$ is supplied with the induced metric from Γ. Then asdimK asdim .

Proof We x a nite generating set S for Γ. We consider $\mathrm{A}_{\mathrm{w}}={ }_{1}(\mathrm{w} @)$, w 2 W as a subgroup of K de ned by a xed path I_{w} joining x_{0} with $\mathrm{w}\left(\mathrm{x}_{0}\right)$. Assume that A_{w} is supplied with the norm induced from Γ. We show that the inequality asdi mA_{w} asdim holds uniformly and by Theorem 4 we obtain that asdim($\left.{ }_{w} A_{w} ; k k\right)$ asdim for the norm $k k$ generated by the norms on A_{w}. Then we complete the proof applying Proposition 5.

Let $\mathrm{p}: \mathrm{X}$ @! @ be projection onto the orbit space under the action of W . Then $p=q \quad p^{0}$ where $p^{0}: X^{@}!X^{@}=W^{0}$ is a covering map. We consider the norm on $={ }_{1}(@)$ de ned by the generating set q (S). This turns
into a metric space of bounded geometry. Then the homomorphism q : ${ }_{1}\left(X^{@}\right)=\Gamma!\quad{ }_{1}(@)=$ is 1-Lipschitz map. The restriction of q onto A_{w} de nes an isomorphism acting by conjugation with an element generated by the loop $p\left(I_{w}\right)$. Then according to Proposition 1 we have the inequality asdimA A_{w} asdim uniformly.

R eferences

[1] M. D avis, Groups generated by reflections and aspherical manifolds not covered by Euclidean space, Ann. Math., (2) 117, (1983), 293-325.
[2] M. Davis, Coxeter groups and aspherical manifolds, Lecture Notes in Math. 1051 (1984), 197-221.
[3] M. D avis and J.-C. H ausmann, Aspherical manifolds without smooth or PL structure, Lecture Notes in Math., (2) 1370 (1989), 135-142.
[4] A. Dranishnikov, Asymptotic topology Russian Mathematical Surveys, 55 (6), (2000).
[5] A. Dranishnikov, On large scale properties of manifolds, Preprint, 1999 ar xi v: nath. GT/ 9912062
[6] A. Dranishnikov, Hypereuclidean manifolds and the Novikov Conjecture, Preprint of MPI, Bonn, 2000.
[7] A. D ranishnikov and T. J anuszkiewicz, Every Coxeter group acts amenably on a compact space, Preprint, to appear in Topology Proceedings. ar xi v: nath. GT/ 9911245
[8] M. G romov, Asymptotic invariants of in nite groups, Cambridge University Press, Geometric Group Theory, vol 21993.
[9] M. G romov, Spaces and questions, Preprint, 1999.
[10] G. Mess, Examples of Poincare duality groups, Proc. Amer. Math. Soc. 110, no 4, (1990), 1145-1146.
[11] J. R oe, Coarse cohomology and index theory for complete Riemannian manifolds, M emoirs Amer. Math. Soc. No. 497, 1993.
[12] J.-P. Serre, Trees, Springer-Verlag, 1980.
[13] G. Yu, The Novikov conjecture for groups with nite asymptotic dimension, Ann. of Math., 147, no 2, (1998), 325-355.

University of Florida, Department of Mathematics, PO Box 118105, 358 Little Hall,
Gainesville, FL 32611-8105, USA
Email: drani sh@rath. ufl. edu, bel I @nat h. uf I . edu
Received: 11 December 2000 Revised: 12 J anuary 2001

