Presentations for the punctured mapping class groups in terms of Artin groups

Cat her ine Labruere

Luis Par is

Abstract

Consider an oriented compact surface F of positive genus, possibly with boundary, and a nite set P of punctures in the interior of F, and de ne the punctured mapping class group of F relatively to P to be the group of isotopy classes of orientation-preserving homeomorphisms $h: F!F$ which pointwise x the boundary of F and such that $h(P)=P$. In this paper, we calculate presentations for all punctured mapping class groups. More precisely, we show that these groups are isomorphic with quotients of Artin groups by some reations involving fundamental elements of parabolic subgroups.

AMS Classi cation 57N05; 20F 36, 20F 38
Keywords Artin groups, presentations, mapping class groups

1 Introduction

Throughout the paper $F=F_{g ; r}$ will denote a compact oriented surface of genus g with r boundary components, and $P=P_{n}=f P_{1} ;::: ; P_{n g}$ a nite set of points in the interior of F, called punctures. We denote by $H(F ; P)$ the group of orientation-preserving homeomorphisms h: F ! F that pointwise x the boundary of F and such that $h(P)=P$. The punctured mapping class group $M(F ; P)$ of F relatively to P is de ned to be the group of isotopy classes of elements of $H(F ; P)$. Note that the group $M(F ; P)$ only depends up to isomorphism on the genus g , on the number r of boundary components, and on the cardinality n of P. If P is empty, then we write $M(F)=M(F ;$; , and call $M(F)$ the mapping class group of F.

The pure mapping class group of F relatively to P is de ned to bethesubgroup $P M(F ; P)$ of isotopy classes of elements of $H(F ; P)$ that pointwise $x P$. Let n denote the symmetric group of $\mathrm{f} 1 ;::: ;$ ng. Then the punctured mapping
class group and the pure mapping class group are related by the following exact sequence

$$
1!P M\left(F ; P_{n}\right)!M\left(F ; P_{n}\right)!n!1:
$$

A Coxeter matrix is a matrix $M=\left(m_{i ; j}\right)_{i ; j}=1, \cdots ; ;$ satisfying:

$$
\begin{aligned}
& m_{i ; i}=1 \text { for all } i=1 ;::: ; 1 ; \\
& m_{i ; j}=m_{j ; i} 2 f 2 ; 3 ; 4 ;::: ; 1 \mathrm{~g}, \text { for } \mathrm{i} \in \mathrm{j} .
\end{aligned}
$$

A Coxeter matrix $M=\left(m_{i ; j}\right)$ is usually represented by its Coxeter graph Γ. This is de ned by the following data:
Γ has I vertices: $x_{1} ;::: ; x_{1}$;
two vertices x_{i} and x_{j} are joined by an edge if $m_{i ; j} \quad 3$;
the edge joining two vertices x_{i} and x_{j} is labelled by $m_{i ; j}$ if $m_{i, j} \quad 4$.
For i;j 2 f1;:::; Ig, we write:

$$
\operatorname{prod}\left(x_{i} ; x_{j} ; m_{i ; j}\right)=\begin{array}{ll}
\left(x_{i} x_{j}\right)^{m_{i, j}=2} & \text { if } m_{i ; j} \text { is even; } \\
\left(x_{i} x_{j}\right)^{\left(m_{i, j}-1\right)=2} x_{i} & \text { if } m_{i ; j} \text { is odd: }
\end{array}
$$

TheArtin group $A(\Gamma)$ associated with Γ (or with M) is the group given by the presentation:
$A(\Gamma)=h x_{1} ;::: ; x_{l} j \operatorname{prod}\left(x_{i} ; x_{j} ; m_{i j}\right)=\operatorname{prod}\left(x_{j} ; x_{i} ; m_{i ; j}\right)$ if $i \sigma_{j}$ and $m_{i ; j}<1 i:$
The Coxeter group $W(\Gamma)$ associated with Γ is the quotient of $A(\Gamma)$ by the relations $x_{i}^{2}=1, i=1 ;::: ; 1$. We say that Γ or $A(\Gamma)$ is of nite type if $W(\Gamma)$ is nite
For a subset X of the set $\mathrm{f}_{\mathrm{x}} ;::: ; \mathrm{x}_{\mathrm{l}} \mathrm{g}$ of vertices of Γ, we denote by Γ_{X} the Coxeter subgraph of Γ generated by X, by W_{X} the subgroup of $W(\Gamma)$ generated by X, and by A_{X} the subgroup of $A(\Gamma)$ generated by X. It is a non-trivial but well known fact that W_{X} is the Coxeter group associated with Γ_{x} (see [3]), and A_{x} is the Artin group associated with Γ_{X} (see [16], [19]). Both W_{X} and A_{x} are called parabolic subgroups of $W(\Gamma)$ and of $A(\Gamma)$, respectively.
De nethequasi-center of an Artin group $A(\Gamma)$ to bethesubgroup of elements in $A(\Gamma)$ satisfying $X^{-1}=X$, where X is the natural generating set of $A(\Gamma)$. If Γ is of nite type and connected, then the quasi-center is an in nite cyclic group generated by a special element of $A(\Gamma)$, called fundamental element, and denoted by (Γ) (se [8], [4]).

The most signi cant work on presentations for mapping class groups is certainly the paper [10] of Hatcher and Thurston. In this paper, the authors introduced a simply connected complex on which the mapping class group $\mathrm{M}\left(\mathrm{F}_{\mathrm{g} ; 0}\right)$ acts, and, using this action and following a method due to Brown [5], they obtained a presentation for $\mathrm{M}\left(\mathrm{F}_{\mathrm{g} ; 0}\right)$. However, as pointed out by Wajnryb [25], this presentation is rather complicated and requires many generators and relations. Wajnryb [25] used this presentation of Hatcher and Thurston to calculate new presentations for $M\left(F_{g ; 1}\right)$ and for $M\left(F_{g ; 0}\right)$. He actually presented $M\left(F_{g ; 1}\right)$ as the quotient of an Artin group by two relations, and presented $M\left(F_{g ; 0}\right)$ as the quotient of the same Artin group by the same two relations plus another one. In [18], Matsumoto showed that these three relations are nothing else than equalities among powers of fundamental elements of parabolic subgroups. Moreover, he showed how to interpret these powers of fundamental elements insidethe mapping class group. Once this interpretation is known, the relations in Matsumoto's presentations become trivial. At this point, one has \good" presentations for $\mathrm{M}\left(\mathrm{F}_{\mathrm{g} ; 1}\right)$ and for $\mathrm{M}\left(\mathrm{F}_{\mathrm{g} ; 0}\right)$, in the sencethat one can remember them. Of course, the de nition of a \good" presentation depends on the memory of the reader and on the time he spends working on the presentation.
One can nd in [17] another presentation for $\mathrm{M}\left(\mathrm{F}_{\mathrm{g} ; 1}\right)$ as the quotient of an Artin group by relations involving fundamental elements of parabolic subgroups. Recently, Gervais [9] found another \good" presentation for M ($\mathrm{F}_{\mathrm{g} ; \mathrm{r}}$) with many generators but simple relations.
In the present paper, starting from Matsumoto's presentations, we calculate pre sentations for all punctured mapping class groups $M\left(F_{g ; r} ; P_{n}\right)$ as quotients of Artin groups by some relations which involve fundamental elements of parabolic subgroups. In particular, $\mathrm{M}\left(\mathrm{F}_{\mathrm{g} ; 0} ; \mathrm{P}_{\mathrm{n}}\right)$ is presented as the quotient of an Artin group by ve relations, all of them being equalities among powers of fundamental elements of parabolic subgroups.

Thegenerators in our presentations areDehn twists and braid twists. We de ne them in Subsection 2.1, and weshow that they verify some\ braid" relationsthat allow us to de ne homomorphisms from Artin groups to punctured mapping class groups. The main algebraic tool we use is Lemma 2.5, stated in Subsection 2.2, which says how to nd a presentation for a group G from an exact sequence 1 ! K! G! H! 1 and from presentations of K and H . We also state in Subsection 2.2 some exact sequences involving punctured mapping class groups on which Lemma 2.5 will be applied. In order to nd our presentations, we
rst need to investigate some homomorphisms from nite type Artin groups to punctured mapping class groups, and to calculate the images under these homomorphisms of some powers of fundamental elements. This is the object
of Subsection 2.3. Once these images are known, one can easily verify that the relations in our presentations hold. Of course, it remains to provethat no other relation is needed. We state our presentation for $\mathrm{M}\left(\mathrm{F}_{\mathrm{g} ; \mathrm{r}+1} ; \mathrm{P}_{\mathrm{n}}\right)$ (where g 1 , and $r ; n 0$) in Theorem 3.1, and we state our presentation for $M\left(F_{g ; 0} ; P_{n}\right)$ (where g; n 1) in Theorem 3.2. Then, Subsection 3.1 is dedicated to the proof of Theorem 3.1, and Subsection 3.2 is dedicated to the proof of Theorem 3.2 .

2 Preliminaries

2.1 Dehn twists and braid twists

We introduce in this subsection some dements of the punctured mapping class group, the Dehn twists and the braid twists, which will play a prominent role throughout the paper. In particular, the generators for the punctured mapping class group will be chosen among them.
By an essential circle in F nP we mean an embedding $s: S^{1}!F n P$ of the circle whose image is in the interior of FnP and does not bound a disk in FnP . Two essential circles $s ; s^{0}$ are called isotopic if there exists $h 2 \mathrm{H}(\mathrm{F} ; \mathrm{P})$ which represents the identity in $M(F ; P)$ and such that $h \quad s=s^{0}$. Isotopy of circles is an equivalence relation which we denote by $s^{\prime} s^{0}$. Let $s: S^{1}!F n P$ bean essential circle We choose an embedding $A:[0 ; 1] \quad S^{1}!\mathrm{FnP}$ of the annulus such that $A\left(\frac{1}{2} ; z\right)=s(z)$ for all z $2 S^{1}$, and we consider the homeomorphism T $2 \mathrm{H}(\mathrm{F} ; \mathrm{P})$ de ned by

$$
(\mathrm{T} \quad \mathrm{~A})(\mathrm{t} ; \mathrm{z})=\mathrm{A}\left(\mathrm{t} ; \mathrm{e}^{2 \mathrm{i}} \mathrm{t} \mathrm{z}\right) ; \quad \mathrm{t} 2[0 ; 1] ; \mathrm{z} 2 \mathrm{~S}^{1} \text {; }
$$

and T is the identity on the exterior of the image of A (see Figure 1). The Dehn twist alongs is de ned to be the element $2 \mathrm{M}(\mathrm{F} ; \mathrm{P})$ represented by T. Note that:
the de nition of does not depend on the choice of A;
the element does not depend on the orientation of s ;
if s and s^{0} are isotopic, then their corresponding Dehn twists are equal;
if s bounds a disk in F which contains exactly one puncture,then $=1$; otherwise, is of in nite order;
if $2 \mathrm{M}(\mathrm{F} ; \mathrm{P})$ is represented by $\mathrm{f} 2 \mathrm{H}(\mathrm{F} ; \mathrm{P})$, then $\quad{ }^{-1}$ is the Dehn twist along $\mathrm{f}(\mathrm{s})$.

Figure 1: Dehn twist along s
By an arc we mean an embedding a: $[0 ; 1]$! F of the segment whose image is in the interior of F, such that $a((0 ; 1)) \backslash P=$; , and such that both $a(0)$ and $a(1)$ are punctures. Two arcs $a ; a^{0}$ are called isotopic if thereexists h $2 \mathrm{H}(\mathrm{F} ; \mathrm{P})$ which represents the identity in $M(F ; P)$ and such that $h \quad a=a^{0}$. Note that $a(0)=a^{9}(0)$ and $a(1)=a^{9}(1)$ if a and a^{0} are isotopic. Isotopy of arcs is an equivalence relation which we denote by $a{ }^{\prime} a^{0}$. Let a be an arc. We choose an embedding $A: D^{2}!F$ of the unit disk satisfying:
$a(t)=A\left(t-\frac{1}{2}\right)$ for all $t 2[0 ; 1]$,
$A\left(D^{2}\right) \backslash P=f a(0) ; a(1) g$,
and we consider the homeomorphism T $2 \mathrm{H}(\mathrm{F} ; \mathrm{P})$ de ned by

$$
\text { (T } \quad \mathrm{A})(\mathrm{z})=\mathrm{A}\left(\mathrm{e}^{2 \mathrm{ijzj}} \mathrm{z}\right) ; \quad \mathrm{z} 2 \mathrm{D}^{2} \text {; }
$$

and T is the identity on the exterior of the image of A (see Figure 2). The braid twist along a is de ned to be the element $2 M(F ; P)$ represented by T. Note that:
the de nition of does not depend on the choice of A;
if a and a^{0} are isotopic, then their corresponding braid twists are equal;
if $2 M(F ; P)$ is represented by $f 2 H(F ; P)$, then $\quad{ }^{-1}$ is the braid twist along $\mathrm{f}(\mathrm{a})$;
if $s: S^{1}!F n P$ is the essential circle de ned by $s(z)=A(z)$ (see Figure 2), then ${ }^{2}$ is the Dehn twist along s.

We turn now to describe some relations among Dehn twists and braid twists which will be essential to de ne homomorphisms from Artin groups to punctured mapping class groups.
The rst family of relations are known as \backslash braid relations" for Dehn twists (see [2]).

Figure 2: Braid twist along a
Lemma 2.1 Let s and s^{0} be two essential circles which intersect transversely, and let and ${ }^{0}$ be the Dehn twists along s and s^{0}, respectively. Then:

$$
\begin{aligned}
& { }^{0}=0 \quad \text { if } s \backslash s^{0}=; ; \\
& 0=0 \quad 0 \quad \text { if } j s \backslash s 9=1 \text { : }
\end{aligned}
$$

The next family of relations are simply the usual braid relations viewed inside the punctured mapping class group.

Lemma 2.2 Let a and a^{0} betwo arcs, and let and ${ }^{0}$ be be the braid twists along a and a^{0}, respectively. Then:

$$
\begin{array}{lll}
0=0 & \text { if } a \backslash a^{0}=; ; \\
0=0 & 0 & \text { if } a(0)=a^{9}(1) \text { and } a \backslash a^{0}=f a(0) g:
\end{array}
$$

To our knowledge, the last family of relations does not appear in the literature. However, their proofs are easy and are left to the reader.

Lemma 2.3 Let s be an essential circle, and let a be an arc which intersects s transversely. Let be the Dehn twist along s, and let be the braid twist along a . Then:

$$
\begin{array}{ll}
= & \text { if } s \backslash a=; ; \\
= & \text { if } j s \backslash a j=1:
\end{array}
$$

We nish this subsection by recalling another relation called lantern relation (see [13]) which is not used to de ne homomorphisms between Artin groups and punctured mapping class groups, but which will be useful in the remainder.

We point out rst that we use the convention in gures that a letter which appears over a circle or an arc denotes the corresponding Dehn twist or braid twist, and not the circle or the arc itself.

Lemma 2.4 Consider an embedding of $\mathrm{F}_{0 ; 4}$ in F nP and the Dehn twists $\mathrm{e}_{1} ; \mathrm{e}_{2} ; \mathrm{e}_{3} ; \mathrm{e}_{4} ; \mathrm{a} ; \mathrm{b}, \mathrm{c}$ represented in Figure 3. Then

$$
\mathrm{e}_{1} \mathrm{e}_{2} \mathrm{e}_{3} \mathrm{e}_{4}=\mathrm{abc}:
$$

Figure 3: Lantern relation

2.2 Exact sequences

Now, we introduce in Lemma 2.5 our main tool to obtain presentations for the punctured mapping dass groups. Briefly, this lemma says how to nd a presentation for a group G from an exact sequence 1! K! G! H ! 1 and from presentations of H and K . This lemma will be applied to the exact sequences (2.1), (2.2), and (2.3) given after Lemma 2.5.

Consider an exact sequence

$$
1!\mathrm{K}!\mathrm{G}+\mathrm{H} \text { ! } 1
$$

and presentations $\mathrm{H}=\mathrm{h} \mathrm{S}_{\mathrm{H}} \mathrm{j} \mathrm{R}_{\mathrm{H}} \mathrm{i}, \mathrm{K}=\mathrm{h} \mathrm{S}_{\mathrm{K}} \mathrm{j} \mathrm{R}_{\mathrm{K}} \mathrm{i}$ for H and K , respectively. For all $\times 2 S_{H}$, we x some $x-2 G$ such that $(x)=x$, and we write

$$
S_{H}=f x ; x 2 S_{H} g:
$$

Let $r=x_{1}^{\prime \prime}::: x_{1}^{\prime \prime}$ in R_{H}. Write $f=x_{1}^{\prime \prime} 1::: x_{1}^{\prime \prime} 2 \mathrm{G}$. Since r is a relator of H, we have $(F)=1$. Thus, S_{K} being a generating set of the kernel of , one may choose a word w_{r} over S_{k} such that both k and w_{r} represent the same element of G. Set

$$
R_{1}=f r w_{r}^{-1} ; r 2 R_{H} g:
$$

Let $x 2 S_{H}$ and y $2 S_{K}$. Since K is a normal subgroup of $G, x y x^{-1}$ is also an element of K, thus one may choose a word $v(x ; y)$ over S_{k} such that both $x y x^{-1}$ and $v(x ; y)$ represent the same element of G. Set

$$
R_{2}=f x y x^{-1} v(x ; y)^{-1} ; x-2 S_{H} \text { and y } 2 S_{K} g:
$$

The proof of the following lemma is left to the reader.
Lemma 2.5 G admits the presentation

$$
G=h \widetilde{S}_{H}\left[S _ { K } j R _ { 1 } \left[R _ { 2 } \left[R_{K} i:\right.\right.\right.
$$

The rst exact sequence on which we will apply Lemma 2.5 is the one given in the introduction:

$$
\begin{equation*}
1!P M\left(F ; P_{n}\right)!M\left(F ; P_{n}\right)!n!1 ; \tag{2:1}
\end{equation*}
$$

where ${ }_{n}$ denotes the symmetric group of $f 1 ;::: ;$ ng.
The inclusion $P_{n-1} \quad P_{n}$ gives rise to a homomorphism ${ }^{\prime}{ }_{n}: P M\left(F ; P_{n}\right)$! PM ($F ; P_{n-1}$). By [1], if $(g ; r ; n) \in(1 ; 0 ; 1)$, then we have the following exact sequence:

$$
\begin{equation*}
1!\quad 1\left(F n P_{n-1} ; P_{n}\right) \xrightarrow{!} P M\left(F ; P_{n}\right) \xrightarrow{ִ} P M\left(F ; P_{n-1}\right)!\quad 1: \tag{2:2}
\end{equation*}
$$

We will need later a more precise description of the images by n of certain elements of ${ }_{1}\left(F \mathrm{FP}_{\mathrm{n}-1} ; \mathrm{P}_{\mathrm{n}}\right)$. Consider an essential circle : S^{1} ! $\mathrm{FnP}_{\mathrm{n}-1}$ such that $(1)=P_{n}$. Here, we assume that is oriented. Let bethe element of ${ }_{1}\left(\mathrm{~F} \mathrm{nP}_{\mathrm{n}-1} ; \mathrm{P}_{\mathrm{n}}\right)$ represented by . Wechoose an embedding $\mathrm{A}:[0 ; 1] \mathrm{S}^{1}$! $\mathrm{Fn} \mathrm{P}_{\mathrm{n}-1}$ of the annulus such that $\mathrm{A}\left(\frac{1}{2} ; \mathrm{z}\right)=(\mathrm{z})$ for all $\mathrm{z} 2 \mathrm{~S}^{1}$ (see Figure 4). Let $\mathrm{s}_{0} ; \mathrm{s}_{1}: \mathrm{S}^{1}$! $\mathrm{FnP} \mathrm{P}_{\mathrm{n}}$ bethe essential circles de ned by

$$
S_{0}(z)=A(0 ; z) ; \quad S_{1}(z)=A(1 ; z) ; \quad \text { z } 2 S^{1} ;
$$

and let $0 ; 1$ be the Dehn twists along s_{0} and s_{1}, respectively. Then the following holds.

Lemma 2.6 We have $n()=0_{0}^{-1} 1$.
Now, consider a surface $F_{g ; r+m}$ of genus g with $r+m$ boundary components, and a set $P_{n}=f P_{1} ;::: ; P_{n} g$ of n punctures in the interior of $F_{g ; r+m}$. Choose m boundary curves $\mathrm{c}_{1} ;::: ; \mathrm{c}_{\mathrm{m}}: \mathrm{S}^{1}!\oint_{\mathrm{g} ; \mathrm{r}+\mathrm{m}}$. Let $\mathrm{F}_{\mathrm{g} ; \mathrm{r}}$ be the surface of genus g with r boundary components obtained from $F_{g ; r+m}$ by gluing a disk D_{i}^{2} along c_{i}, for all $i=1 ;::: ; m$, and let $P_{n+m}=f P_{1} ;::: ; P_{n} ; Q_{1} ;::: ; Q_{m} g$

Figure 4: Image of a simple circle by n
be a set of punctures in the interior of $\mathrm{F}_{\mathrm{g} ; \mathrm{r}}$, where Q_{i} is chosen in the interior of D_{i}^{2}, for all $i=1 ;::: ; m$. The proof of the following exact sequence can be found in [21].

Lemma 2.7 Assume that $(\mathrm{g} ; \mathrm{r} ; \mathrm{m}) \mathrm{E} \mathrm{f}(0 ; 0 ; 1) ;(0 ; 0 ; 2) \mathrm{g}$. Then we have the exact sequence:

$$
\begin{equation*}
1!Z^{m}!P M\left(F_{g ; r+m} ; P_{n}\right)!P M\left(F_{g ; r} ; P_{n+m}\right)!1 ; \tag{2:3}
\end{equation*}
$$

where \mathbf{Z}^{m} stands for the free abelian group of rank m generated by the Dehn twists along the c_{i} 's.

2.3 Geometric representations of Artin groups

De ne a geometric representation of an Artin group $A(\Gamma)$ to be a homomorphism from $A(\Gamma)$ to some punctured mapping class group. In this subparagraph, we describe some geometric representations of Artin groups whose properties will be used later in the paper.

The rst family of geometric representations has been introduced by Perron and Vannier for studying geometric monodromies of simple singularities [22]. A chord diagram in the disk D^{2} is a family $S_{1} ;::: ; S_{1}:[0 ; 1]!D^{2}$ of segments satisfying:
$S_{i}:[0 ; 1]!D^{2}$ is an embedding for all $i=1 ;::: ; 1 ;$
$\mathrm{S}_{\mathrm{i}}(0) ; \mathrm{S}_{\mathrm{i}}(1) 2 @^{2}$, and $\mathrm{S}_{\mathrm{i}}((0 ; 1)) \backslash @^{2}=$; , for all $\mathrm{i}=1 ;::: ; 1$;
either S_{i} and S_{j} are disjoint, or they intersect transversely in a unique point in the interior of D^{2}, for $\mathrm{i} \boldsymbol{\epsilon} \mathrm{j}$.

From this data, one can rst de ne a Coxeter matrix $M=\left(m_{i ; j}\right)_{i ; j}=1 ; \ldots ; 1$ by seting $m_{i ; j}=2$ if S_{i} and S_{j} are disjoint, and $m_{i ; j}=3$ if S_{i} and S_{j} intersect
transversely in a point. The Coxeter graph 「 associated with M is called intersection diagram of the chord diagram. It is an \ordinary" graph in the sence that none of the edges has a label. From the chord diagram we can also de nea surface F by attaching to D^{2} a handle H_{i} which joins both extremities of S_{i}, for all $i=1 ;::: ; 1$ (seeFigure5). Let i betheDehn twist along thecircle made up with the segment S_{i} together with the central curve of H_{i}. By Lemma 2.1, one has a geometric representation $A(\Gamma)!M(F)$ which sends x_{i} on i for all $i=1 ;:: ;$; . This geometric representation will be called Perron-Vannier representation.

Figure 5: Chord diagram and associated surface and Dehn twists
If Γ is connected, then the Perron-Vannier representation is injective if and only if Γ is of type A_{1} or D_{1} [15], [26]. In the case where Γ is of type A_{1}, D_{1}, E_{6}, or E_{7}, the vertices of Γ will be numbered according to Figure 6 , and the Dehn twists $1 ;::: ;$ । are those represented in Figures 7, 8, 9.

Figure 6: Some nite type Coxeter graphs

Figure 7: Perron-Vannier representations of type A_{1}

The Perron-Vannier representation of the Artin group of type A_{I-1} can be extended to a geometric representation of the Artin group of type B_{\mid}as follows. First, we number the vertices of B_{\mid}according to Figure 6. Then $A_{\mid-1}$ is the subgraph of B_{1} generated by the vertices $x_{2} ;::: ; x_{1}$. We start from a chord diagram $\mathrm{S}_{2} ;::: ; \mathrm{S}_{1}$ whose intersection diagram is A_{1-1}, and we denote by F the associated surface For $i=2 ;::: ; 1$, we denote by s_{i} the essential circle of F made up with S_{i} and the central curve of the handle H_{i}. We can choose two points $P_{1} ; P_{2}$ in the interior of F and an arc a_{1} from P_{1} to P_{2} satisfying:
$f P_{1} ; P_{2} g \backslash s_{i}=$; for all $i=2 ;:: ; 1 ;$
$a_{1} \backslash s_{i}=;$ for all $i=3 ;::: ; 1$, and a_{1} and s_{2} intersect transversely in a unique point (se Figure 10).

Let ${ }_{1}$ be the braid twist along a_{1}, and let $;$ be the Denn twist along s_{i}, for $\mathrm{i}=2 ;::: ; 1$. By Lemma 2.3, there is a well de ned homomorphism $\mathrm{A}\left(\mathrm{B}_{\mathrm{I}}\right)$! M ($\mathrm{F} ; \mathrm{f} \mathrm{P}_{1} ; \mathrm{P}_{2} \mathrm{~g}$) which sends x_{1} on ${ }_{1}$, and x_{i} on i for $\mathrm{i}=2 ;::: ;$ I. It is shown in [14] that this geometric representation is injective

Now, consider a graph G embedded in a surface F. Here, we assumethat G has no loop and no multipleedge. Let $P=f P_{1} ;::: ; P_{n} g$ bethe set of vertices of G, and let $a_{1} ;::: ; a_{\mathrm{a}}$ be the edges. De ne the Coxeter matrix $M=\left(m_{i ; j}\right)_{i ; j=1 ;: \ldots ; 1}$ by $m_{i ; j}=3$ if a_{i} and a_{j} have a common vertex, and $m_{i ; j}=2$ otherwise Denote by Γ the Coxeter graph associated with M. By Lemma 2.2, one has

Type $D_{2 p}$

Figure 8: Perron-Vannier representations of type D_{1}
a homomorphism $A(\Gamma)!M(F ; P)$ which associates with x_{i} the braid twist i along a_{i}, for all $\mathrm{i}=1 ;::: ; \mid$. This homomorphism will be called graph representation of $\mathrm{A}(\Gamma)$. Its image clearly belongs to the surface braid group of F based at P. The particular case where F is a disk has been studied by Sergiescu [23] to nd new presentations for the Artin braid groups. Graph representations have been also used by Humphries [12] to solve some Tits' conjecture
Assume now that G is a line in a cylinder $F=S^{1} \quad I$. Let $a_{2} ;:: ;$; a_{1} be the edges of G, and let $P_{1}=f P_{1} ;::: ; P_{1} g$ be the set of vertices. Choose an essential circle s_{1} : S^{1} ! $F n P$ such that:
s_{1} does not bound a disk in F ;
$s_{1} \backslash a_{i}=;$ for all $i=3 ;:: ;$; , and s_{1} and a_{2} intersect transversely in a unique point (see Figure 11).
Let l_{1} be the Dehn twist along s_{1}, and let ; be the braid twist along a_{i} for $i=2 ;::: ; 1$. By Lemma 2.3, there is a well de ned homomorphism $A\left(B_{\mid}\right)$! $M\left(S^{1} \quad 1 ; P_{1}\right)$ which sends x_{1} on 1 , and x_{i} on i for $i=2 ;:: ; \mid$. This homomorphism is clearly an extension of the graph representation of $A\left(A_{I-1}\right)$ in $M\left(S^{1} \quad 1 ; P_{1}\right)$.
Let Γ be a nite type connected graph. Recall that the quasi-center of $A(\Gamma)$ is the subgroup of elements in $A(\Gamma)$ satisfying $X^{-1}=X$, where X is

Type E_{6}

Type E_{7}

Figure 9: Perron-Vannier representations of type E_{6} and E_{7}
the natural generating set of $A(\Gamma)$, and that this subgroup is an in nite cyclic group generated by some special element of $A(\Gamma)$, called fundamental element, and denoted by (Γ). (se [4] and [8]). The center of $A(\Gamma)$ is an in nite cydic group generated by (Γ) if Γ is $\mathrm{B}_{1}, \mathrm{D}_{1}$ (I even), $\mathrm{E}_{7}, \mathrm{E}_{8}, \mathrm{~F}_{4}, \mathrm{H}_{3}, \mathrm{H}_{4}$, and $I_{2}(p)$ (p even), and by ${ }^{2}(\Gamma)$ if Γ is $A_{1}, D_{1}\left(I\right.$ odd), E_{6}, and $I_{2}(p)(p$ odd). Explicit expressions of (Γ) and of ${ }^{2}(\Gamma)$ can be found in [4]. In the remainder, we will need the following ones.

Proposition 2.8 (Brieskorn, Saito [4]) We number the vertices of A_{1}, B_{1}, D_{1}, E_{6}, and E_{7} according to Figure 6.

$$
\begin{aligned}
{ }^{2}\left(A_{1}\right) & =\left(x_{1} x_{2}::: x_{1}\right)^{1+1} ; \\
\left(B_{1}\right) & =\left(x_{1} x_{2}::: x_{1}\right)^{1} ; \\
\left(D_{2 p}\right) & =\left(x_{1} x_{2}::: x_{2 p}\right)^{2 p-1} ; \\
{ }^{2}\left(D_{2 p+1}\right) & =\left(x_{1} x_{2}::: x_{2 p+1}\right)^{4 p} ; \\
{ }^{2}\left(E_{6}\right) & =\left(x_{1} x_{2}::: x_{6}\right)^{12} ; \\
\left(E_{7}\right) & =\left(x_{1} x_{2}::: x_{7}\right)^{15}:
\end{aligned}
$$

We will also need the following well known equalities (see [20]).
Proposition 2.9 We number the vertices of A_{1}, B_{1}, and D_{1} according to Figure 6. Then:

$$
\begin{aligned}
& \left(A_{1}\right)=x_{1}::: x_{1} \quad\left(A_{1-1}\right) ; \\
& \left(B_{1}\right)=x_{1}::: x_{2} x_{1} x_{2}:: x_{1} \quad\left(B_{1-1}\right) ; \\
& \left(D_{1}\right)=x_{1}::: x_{3} x_{1} x_{2} x_{3}::: x_{1} \quad\left(D_{1-1}\right):
\end{aligned}
$$

Our goal now is to determine the images under Perron-Vannier representations and under graph representations of some powers of fundamental elements

Figure 10: Perron-Vannier representation of type B_{\mid}

Figure 11: Graph representation of type B_{1}
(Proposition 2.12). To do so, we rst need to know generating sets for the punctured mapping dass groups. So, we prove the following.

Proposition 2.10 Let $g \quad 1$ and $r ; n \quad 0$.
(i) $\mathrm{PM}\left(\mathrm{F}_{\mathrm{g} ; \mathrm{r}+1} ; \mathrm{P}_{\mathrm{n}}\right)$ is generated by the Dehn twists $\mathrm{a}_{0} ;::: ; \mathrm{a}_{\mathrm{n}+\mathrm{r}} ; \mathrm{b}_{1} ;::: ; \mathrm{b}_{2 g-1}$, $\mathrm{C}, \mathrm{d}_{1} ;::: ; \mathrm{d}_{\mathrm{r}}$ represented in Figure 12.
(ii) $M\left(F_{g ; r+1} ; P_{n}\right)$ is generated by the Dehn twists $a_{0} ;::: ; a_{r} ; a_{r+1}, b_{1} ;: ; ; b_{2 g-1}$, c, $d_{1} ;::: ; d_{r}$, and the braid twists $1 ;::: ; n-1$ represented in Figure 12.

Corollary 2.11 Let g 1 and $\mathrm{n} \quad 0$.
(i) $\mathrm{PM}\left(\mathrm{F}_{\mathrm{g} ; 0} ; \mathrm{P}_{\mathrm{n}}\right)$ is generated by the Dehn twists $\mathrm{a}_{0} ;::: ; \mathrm{a}_{\mathrm{n}}, \mathrm{b}_{1} ;:: ; ; \mathrm{b}_{2 \mathrm{~g}-1}, \mathrm{c}$ represented in Figure 13.
(ii) $M\left(F_{g ; 0} ; P_{n}\right)$ is generated by the Dehn twists $a_{0} ; a_{1}, b_{1} ;::: ; b_{2 g-1}, c$, and the braid twists $1 ;::: ;{ }_{n-1}$ represented in Figure 13.

Algebraic \& Geometric Topology, Volume 1 (2001)

Figure 12: Generators for $P M\left(F_{g ; r+1} ; P_{n}\right)$ and $M\left(F_{g ; r+1} ; P_{n}\right)$

Figure 13: Generators for $\mathrm{PM}\left(\mathrm{F}_{\mathrm{g} ; 0} ; \mathrm{P}_{\mathrm{n}}\right)$ and $\mathrm{M}\left(\mathrm{F}_{\mathrm{g} ; 0} ; \mathrm{P}_{\mathrm{n}}\right)$

Proof The key argument of the proof of Proposition 2.10 is the following remark stated as Assertion 1, and which we apply to the exact sequences (2.1), (2.2), and (2.3) of Subsection 2.2.

Assertion 1 Let

$$
1!\mathrm{K}!\mathrm{G}+\mathrm{H}!1
$$

be an exact sequence, and let $S_{H} ; S_{K}$ be generating sets of H and K, respectively. For each $x 2 S_{H}$ we choose $x-2 G$ such that $(x)=x$, and we write $S_{H}=f x, x 2 S_{H} g$. Then $S_{K}\left[S_{H}\right.$ generates G.

First, we prove by induction on n that $P M\left(F_{g ; 1} ; P_{n}\right)$ is generated by $a_{0} ;::: ; a_{n}$, $b_{1} ;::: ; b_{2 g-1}, c$. The case $n=0$ is proved in [11]. So, we assume that $n>0$. By the inductive hypothesis, $P M\left(F_{g ; 1} ; P_{n-1}\right)$ is generated by $a_{0} ;::: ; a_{n-1}$, $b_{1} ;::: ; b_{2 g-1}, c$. On the other hand, ${ }_{1}\left(F_{g ; 1} n P_{n-1} ; P_{n}\right)$ is the free group generated by the loops $1 ;::: ; n$ n $1 ;::: ; 2 g-1$ represented in Figure 14. Applying

Assertion 1 to the exact sequence (2.2), one has that $P M\left(F_{g ; 1} ; P_{n}\right)$ is generated by $a_{0} ;::: ; a_{n-1}, b_{1} ;::: ; b_{2 g-1}, c, 1 ;::: ; n, 1 ;::: ; 2 g-1$. One can directly verify the following equalities:

$$
\begin{array}{ll}
i=\left(b_{1} a_{n} a_{i-1} b_{1} a_{n-1}\right)^{-1} n^{-1}\left(b_{1} a_{n} a_{i-1} b_{1} a_{n-1}\right) ; & i=1 ;::: ; n-1 ; \\
1=\left(b_{1} a_{n-1}\right)^{-1}{ }_{n}\left(b_{1} a_{n-1}\right) ; & j=2 ;::: ; 2 g-1: \\
j=\left(b b_{-1}\right)^{-1}{ }_{j-1}\left(b b_{-1}\right) ; &
\end{array}
$$

and, from Proposition 2.6, one has:

$$
\mathrm{n}=\mathrm{a}_{\mathrm{n}-1}^{-1} \mathrm{a}_{\mathrm{n}} ;
$$

thus PM $\left(F_{g ; 1} ; P_{n}\right)$ is generated by $a_{0} ;::: ; a_{n}, b_{1} ;::: ; b_{2 g-1}, c$.

Figure 14: Generators for ${ }_{1}\left(F_{\mathrm{g} ; 1} \mathrm{n} \mathrm{P}_{\mathrm{n}-1} ; \mathrm{P}_{\mathrm{n}}\right)$

Now, applying Assertion 1 to (2.3), one has that $\mathrm{PM}\left(\mathrm{F}_{\mathrm{g} ; \mathrm{r}+1} ; \mathrm{P}_{\mathrm{n}}\right)$ is generated by $a_{0} ;::: ; a_{n+r}, b_{1} ;:: ; b_{2 g-1}, c, d_{1} ;::: ; d_{r}$.

Assertion 2 Let $a_{0} ; a_{1} ; a_{2}$ betheDehn twists and thebraid twist in M (S^{1} $\left.\mathrm{I} ; \mathrm{fP}_{1} ; \mathrm{P}_{2} \mathrm{~g}\right)$ represented in Figure 15. Then

$$
a_{1} a_{1}=a_{0} a_{2}:
$$

Algebraic \& Geometric Topology, Volume 1 (2001)

Figure 15: A relation in $M\left(S^{1} \quad I ; f P_{1} ; P_{2} g\right)$

Proof of Assertion 2 We consider the Dehn twist a_{3} along a circle which bounds a small disk in $\mathrm{S}^{1} \quad \mathrm{I}$ which contains P_{1}, and the Dehn twist a_{4} along a circle which bounds a small disk in $S^{1} \quad I$ which contains P_{2}. As pointed out in Subsection 2.1, we have $a_{3}=a_{4}=1$. The lantern relation of Lemma 2.4 says:

$$
2 a_{1} \quad a_{1}^{-1}=a_{0} a_{2} a_{3} a_{4}
$$

Thus, since commutes with a_{0} and a_{2}, we have:

$$
a_{1} a_{1}=a_{0} a_{2}:
$$

Now, we prove (ii). Applying Assertion 1 to (2.1), one has that $M\left(F_{g ; r+1} ; P_{n}\right)$ is generated by $a_{0} ;::: ; a_{n+r} ; b_{1} ;:: ; b_{2 g-1} ; c ; d_{1} ;::: ; d_{r} ; 1 ;:: ;{ }_{n-1}$. But, Assertion 2 implies

$$
a_{r+i}={ }_{i-1} a_{r+i-1} i-1 a_{r+i-1} a_{r+i-2}^{-1}
$$

for $i=2 ;::: ; r$, thus $M\left(F_{g ; r+1} ; P_{n}\right)$ is generated by $a_{0} ;::: ; a_{r+1}, b_{1} ;::: ; b_{2 g-1}$, c, $d_{1} ;::: d_{r}, 1 ;::: ; n-1$.

Proposition 2.12 (i) For Γ equal to A_{1}, D_{1}, E_{6}, or E_{7}, we denote by $P V: A(\Gamma)!M(F)$ the Perron-Vannier representation of $A(\Gamma)$. In each case, b denotes the Dehn twist represented in the corresponding gure (Figure 7, 8, or 9), for $i=1 ; 2 ; 3$. Then:

$$
\begin{aligned}
\operatorname{PV}\left({ }^{2}\left(A_{2 p+1}\right)\right) & =b_{1} b_{2} ; \\
\operatorname{PV}\left({ }^{4}\left(A_{2 p}\right)\right) & =b_{1} ; \\
\operatorname{PV}\left({ }^{2}\left(D_{2 p+1}\right)\right) & =b_{1} b_{2}^{2 p-1} ; \\
\operatorname{PV}\left(\left(_{2 p}\right)\right) & =b_{1} b_{2} b_{3}^{p-1} ; \\
\operatorname{PV}\left({ }^{2}\left(E_{6}\right)\right) & =b_{1} ; \\
\left.\operatorname{PV}\left(E_{7}\right)\right) & =b_{1} b_{2}^{2}:
\end{aligned}
$$

(ii) We denote by $P V: A\left(B_{1}\right)$! $M\left(F ; f P_{1} ; P_{2} g\right)$ the Perron-Vannier representation of $A\left(B_{1}\right)$. In each case, b denotes the Dehn twist represented in Figure 10, for $\mathrm{i}=1 ; 2$. Then:

$$
\begin{aligned}
\operatorname{PV}\left(\left(B_{2 p}\right)\right) & =b_{1} b_{2} ; \\
\operatorname{PVV}\left({ }^{2}\left(B_{2 p+1}\right)\right) & =b_{1}:
\end{aligned}
$$

(iii) We denote by $G: A\left(B_{\mid}\right)!M\left(S^{1} \quad I ; P_{\mid}\right)$the graph representation of $A\left(B_{1}\right)$ in the punctured mapping dass group of the cylinder. Let $b_{1} ; b_{2}$ denote the Dehn twists represented in Figure 11. Then:

$$
G\left(\quad\left(B_{1}\right)\right)=b_{1}^{-1} b_{2}:
$$

Part (i) of Proposition 2.12 is proved in [18] with di erent techniques from the ones used in this paper. Matsumoto's proof is based on the study of geometric monodromies of simple singularities. Our proof consists rst on showing that the image of the considered element lies in the center of the punctured mapping class group, and, afterwards, on identifying this image using the action of the center on some curves.

Proof We only prove the equality

$$
\left(\left(B_{2 p}\right)\right)=b_{1} b_{2}
$$

of Part (ii): the other equalities can be proved in the same way.
By Proposition 2.10, M ($F ; \mathrm{fP}_{1} ; \mathrm{P}_{2} g$) is generated by the Dehn twists $\mathrm{a}_{1} ; \mathrm{a}_{2} ; \mathrm{a}_{3}$, $b_{1}, \quad 2 ;::: ; 2 p-1$ and the braid twist ${ }_{1}$ represented in Figure 10. Since ($B_{2 p}$) is in the center of $A\left(B_{2 p}\right), \operatorname{pv}\left(\left(B_{2 p}\right)\right)$ commutes with $1 ; 2 ;::: ; 2 p-1$. The Dehn twist b_{1} belongs to the center of $M\left(F ; f P_{1} ; P_{2} g\right)$, thus $\mathrm{Pv}\left(\left(B_{2 p}\right)\right)$ also commutes with b_{1}. Let s_{i} be the de ning circle of a_{i}, for $i=1 ; 2 ; 3$. Using the expression of $\left(B_{2 p}\right)$ given in Proposition 2.8, we verify that $\operatorname{Pv}\left(\quad\left(B_{2 p}\right)\right)\left(s_{i}\right)$ is isotopic to s_{i}, thus $\operatorname{pv}\left(\left(B_{2 p}\right)\right)$ commutes with a_{i}.
So, $\operatorname{Pv}\left(\left(B_{2 p}\right)\right)$ is an element of the center of $M\left(F ; f P_{1} ; P_{2} g\right)$. By [21], this center is a free abelian group of rank 2 generated by b_{1} and b_{2}. Thus $\operatorname{Pv}\left(\left(B_{2 p}\right)\right)=b_{1}^{q_{1}} b_{2}^{q_{2}}$ for some $q_{1} ; q_{2} 2 \mathbf{Z}$.
Now, consider thecurve γ of Figure 10. Clearly, the only element of thecenter of $\mathrm{M}\left(\mathrm{F} ; \mathrm{fP}_{1} ; \mathrm{P}_{2} \mathrm{~g}\right.$) which xes Y up to isotopy is the identity. Using the expression of $\left(B_{2 p}\right)$ given in Proposition 2.8, we verify that $\operatorname{pv}\left(\left(B_{2 p}\right)\right) b_{1}^{-1} b_{2}^{-1}$ xes γ up to isotopy, thus $q_{1}=q_{2}=1$ and $\operatorname{pv}\left(\left(B_{2 p}\right)\right)=b_{1} b_{2}$.

2.4 Matsumoto's presentation for $M\left(F_{g ; 1}\right)$ and $M\left(F_{g ; 0}\right)$

This subparagraph is dedicated to the statement of Matsumoto's presentations for $\mathrm{M}\left(\mathrm{F}_{\mathrm{g} ; 1}\right)$ and $\mathrm{M}\left(\mathrm{F}_{\mathrm{g} ; 0}\right)$.

We rst introduce some notation. Let 「 be a Coxeter graph, and let X be a subset of the set $\mathrm{f}_{1} ;::: ; \mathrm{x}_{1} \mathrm{~g}$ of vertices of Γ. Recall that Γ_{x} denotes the Coxeter subgraph generated by X , and A_{X} denotes the parabolic subgroup of $A(\Gamma)$ generated by X. If Γ_{X} is a nite type connected Coxeter graph, then we denote by (X) the fundamental element of A_{X}, viewed as an element of $A(\Gamma)$.

Theorem 2.13 (Matsumoto [18]). Let g 1, and let Γ_{g} be the Coxeter graph drawn in Figure 16.
(i) $\mathrm{M}\left(\mathrm{F}_{\mathrm{g} ; 1}\right)$ is isomorphic with thequotient of $\mathrm{A}\left(\Gamma_{\mathrm{g}}\right)$ by thefollowing relations:

$$
\begin{array}{rlll}
{ }^{4}\left(y_{1} ; y_{2} ; y_{3} ; z\right) & ={ }^{2}\left(x_{0} ; y_{1} ; y_{2} ; y_{3} ; z\right) & \text { if } g & 2 ; \\
{ }^{2}\left(y_{1} ; y_{2} ; y_{3} ; y_{4} ; y_{5} ; z\right) & =\left(x_{0} ; y_{1} ; y_{2} ; y_{3} ; y_{4} ; y_{5} ; z\right) & \text { if } g & 3: \tag{2}
\end{array}
$$

(ii) $\mathrm{M}\left(\mathrm{F}_{\mathrm{g} ; 0}\right)$ is isomorphic with the quotient of $\mathrm{A}\left(\Gamma_{\mathrm{g}}\right)$ by the relations (1) and
(2) above plus the following relation:

Figure 16: Coxeter graph associated with $\mathrm{M}\left(\mathrm{F}_{\mathrm{g} ; 1}\right)$ and with $\mathrm{M}\left(\mathrm{F}_{\mathrm{g} ; 0}\right)$

Set $\mathrm{r}=\mathrm{n}=0$, and consider the Dehn twists $\mathrm{a}_{0}, \mathrm{~b}_{1} ;::: ; \mathrm{b}_{2 \mathrm{~g}-1}, \mathrm{c}$ of Figure 12. By Lemma 2.1, there is a well de ned homomorphism : $A\left(\Gamma_{g}\right)!M\left(F_{g ; 1}\right)$ which sends x_{0} on $\mathrm{a}_{0}, \mathrm{y}_{\mathrm{i}}$ on b for $\mathrm{i}=1 ;::: ; 2 \mathrm{~g}-1$, and z on c . By [11] (see Proposition 2.10), this homomorphism is surjective. By Proposition 2.12, both
(${ }^{4}\left(y_{1} ; y_{2} ; y_{3} ; z\right)$) and (${ }^{2}\left(x_{0} ; y_{1} ; y_{2} ; y_{3} ; z\right)$) are equal to the Dehn twist 1 of Figure 17. Similarly, both (${ }^{2}\left(y_{1} ;::: ; y_{5} ; z\right)$) and ($\left(x_{0} ; y_{1} ;::: ; y_{5} ; z\right)$) are equal to the Dehn twist 2 of Figure 17. Let G_{g} denote the quotient of $A\left(\Gamma_{g}\right)$ by the relations (1) and (2). So, the homomorphism : $A\left(\Gamma_{g}\right)!M\left(F_{g ; 1}\right)$ induces a surjective homomorphism : G_{g} ! $\mathrm{M}\left(\mathrm{F}_{\mathrm{g} ; 1}\right)$. In order to prove
that this homomorphism is in fact an isomorphism, Matsumoto [18] showed that the presentation of G_{g} as a quotient of $A\left(\Gamma_{g}\right)$ is equivalent to Wajnryb's presentation of $\mathrm{M}\left(\mathrm{F}_{\mathrm{g} ; 1}\right)$ [25].

Similar remarks can be made for the presentation of $M\left(F_{g ; 0}\right)$.

Figure 17: Relations in $M\left(F_{g ; 1}\right)$

3 The presentation

Recall that, if Γ is a nite type connected Coxeter graph, then (Γ) denotes the fundamental element of $A(\Gamma)$. If Γ is any Coxeter graph and X is a subset of the set $f x_{1} ;::: ; x_{1} g$ of vertices of Γ such that Γ_{x} is nitetypeand connected, then we denote by (X) the fundamental element of $A_{X}=A\left(\Gamma_{X}\right)$ viewed as an element of $A(\Gamma)$.

Theorem 3.1 Let g 1, let r;n 0 , and let $\Gamma_{g ; r ; n}$ be the Coxeter graph drawn in Figure 18. Then $\mathrm{M}\left(\mathrm{F}_{\mathrm{g} ; \mathrm{r}+1} ; \mathrm{P}_{\mathrm{n}}\right)$ is isomorphic with the quotient of $\mathrm{A}\left(\Gamma_{\mathrm{g} ; \mathrm{r} ; \mathrm{n}}\right)$ by the following relations.

Relations from $M\left(F_{g ; 1}\right)$:

$$
\begin{array}{rlrl}
{ }^{4}\left(\mathrm{y}_{1} ; \mathrm{y}_{2} ; \mathrm{y}_{3} ; \mathrm{z}\right) & ={ }^{2}\left(\mathrm{x}_{0} ; \mathrm{y}_{1} ; \mathrm{y}_{2} ; \mathrm{y}_{3} ; \mathrm{z}\right) & \text { if } \mathrm{g} & 2 ; \tag{R1}\\
{ }^{2}\left(\mathrm{y}_{1} ; \mathrm{y}_{2} ; \mathrm{y}_{3} ; \mathrm{y}_{4} ; \mathrm{y}_{5} ; \mathrm{z}\right) & =\left(\mathrm{x}_{0} ; \mathrm{y}_{1} ; \mathrm{y}_{2} ; \mathrm{y}_{3} ; \mathrm{y}_{4} ; \mathrm{y}_{5} ; \mathrm{z}\right) & \text { if } \mathrm{g} & 3:
\end{array}
$$

Relations of commutation:

$$
\begin{align*}
& ={ }^{\left.x_{k}{ }^{-1}\left(x_{i+1} ; x_{j} ; y_{1}\right) x_{i} \quad x_{i} ; y_{1}\right) x_{i}} \begin{array}{ll}
\left.\left(x_{i+1} ; x_{j} ; x_{j} ; y_{1}\right) x_{k}\right) \\
x_{1}
\end{array} \tag{R3}\\
& \text { if } 0 \quad k<j<i \quad r ; \\
& \text { (R4) } \quad y_{2}{ }^{-1}\left(x_{i+1} ; x_{j} ; y_{1}\right) x_{i} \quad\left(x_{i+1} ; x_{j} ; y_{1}\right) \\
& ={ }^{-1}\left(x_{i+1} ; x_{j} ; y_{1}\right) x_{i}\left(x_{i+1} ; x_{j} ; y_{1}\right) y_{2} \quad \text { if } 0 \quad j<i \quad r \text { and } g \quad 2
\end{align*}
$$

Expressions of the u_{i} 's:
$\begin{array}{lllll}\text { (R5) } u_{1}= & \left(x_{0} ; x_{1} ; y_{1} ; y_{2} ; y_{3} ; z\right)^{-2}\left(x_{1} ; y_{1} ; y_{2} ; y_{3} ; z\right) & \text { if } g & 2 ; \\ \text { (R6) } u_{i+1}= & \left(x_{i} ; x_{i+1} ; y_{1} ; y_{2} ; y_{3} ; z\right)^{-2}\left(x_{i+1} ; y_{1} ; y_{2} ; y_{3} ; z\right) \\ { }^{2}\left(x_{0} ; x_{i+1} ; y_{1}\right)^{-1}\left(x_{0} ; x_{i} ; x_{i+1} ; y_{1}\right) \text { if } 1 & & r-1 ; g & 2:\end{array}$
Other reations:
(R7) $\quad\left(x_{r} ; x_{r+1} ; y_{1} ; v_{1}\right)={ }^{2}\left(x_{r+1} ; y_{1} ; v_{1}\right) \quad$ if $n \quad 2$;
(R8a) $\quad\left(x_{0} ; x_{1} ; y_{1} ; y_{2} ; y_{3} ; z\right)={ }^{2}\left(x_{1} ; y_{1} ; y_{2} ; y_{3} ; z\right)$ if $n \quad 1 ; g \quad 2 ; r=0$;
(R8b) ($\left.x_{r} ; x_{r+1} ; y_{1} ; y_{2} ; y_{3} ; z\right){ }^{-2}\left(x_{r+1} ; y_{1} ; y_{2} ; y_{3} ; z\right)$
$=\left(x_{0} ; x_{r} ; x_{r+1} ; y_{1}\right)^{-2}\left(x_{0} ; x_{r+1} ; y_{1}\right) \quad$ if $n \quad 1 ; g \quad 2 ; r \quad 1$:

Figure 18: Coxeter graph associated with $M\left(F_{g ; r+1} ; P_{n}\right)$
Notice that only the relations (R1), (R2), (R7), and (R8a) remain in the pre sentation of $M\left(F_{g ; 1} ; P_{n}\right)$, and (R8a) has to be replaced by (R8b) if $r \quad 1$.
Assume that g 2. From the relations (R5) and (R6) we see that we can remove $u_{1} ;::: ; u_{r}$ from the generating sed. However, to do so, one has to add relations comming from the ones in the Artin group $A\left(\Gamma_{g ; r ; n}\right)$. For example, one has that $\left(\mathrm{x}_{0} ; \mathrm{x}_{1} ; \mathrm{y}_{1} ; \mathrm{y}_{2} ; \mathrm{y}_{3} ; \mathrm{z}\right){ }^{-2}\left(\mathrm{x}_{1} ; \mathrm{y}_{1} ; \mathrm{y}_{2} ; \mathrm{y}_{3} ; \mathrm{z}\right)$ commutes with y_{4} in the quotient, since u_{1} commutes with y_{4} in $A\left(\Gamma_{g ; r ; n}\right)$.
Consider the Dehn twists $a_{0} ;::: ; a_{r+1}, b_{1} ;::: ; b_{2 g-1}, c, d_{1} ;::: ; d_{r}$ and the braid twists 1;:::; $n-1$ represented in Figure 12. From Subsection 2.1 follows that there is a well de ned homomorphism : $\mathrm{A}\left(\Gamma_{\mathrm{g} ; \mathrm{r} ; \mathrm{n}}\right)!\mathrm{M}\left(\mathrm{F}_{\mathrm{g} ; \mathrm{r}+1} ; \mathrm{P}_{\mathrm{n}}\right)$ which sends x_{i} on a_{i} for $i=0 ;::: ; r+1, y_{i}$ on b for $i=1 ;::: ; 2 g-1, z$ on c, u_{i} on d_{i} for $i=1 ;::: ; r$, and v_{i} on i for $i=1 ;::: ; n-1$. This homomorphism is surjective by Proposition 2.10. If $w_{1}=w_{2}$ is one of the relations (R1), $\ldots,(R 7)$, (R8a), (R8b), then wehave $\left(w_{1}\right)=\left(w_{2}\right)$. This fact can beeasily proved using Proposition 2.12 in the case of the relations (R1), (R2), (R5), (R6), (R7), (R8a), and (R8b), and comes from the following reason in the case of the relations (R3) and (R4). We have the equality

$$
{ }^{-1}\left(x_{i+1} ; x_{j} ; y_{1}\right) x_{i} \quad\left(x_{i+1} ; x_{j} ; y_{1}\right)=y_{1}^{-1} x_{i+1}^{-1} x_{j}^{-1} y_{1}^{-1} x_{i} y_{1} x_{j} x_{i+1} y_{1} ;
$$

and the image by $b_{1}^{-1} a_{i+1}^{-1} a_{j}^{-1} b_{1}^{-1}$ of the de ning circle of a_{i} is disjoint from the de ning circle of a_{k}, up to isotopy, if $k<j$, and is disjoint from the de ning circle of b_{2}, up to isotopy.
Let $G(g ; r ; n)$ denote the quotient of $A\left(\Gamma_{g ; r ; n}\right)$ by the relations (R1),...(R7), (R8a), (R8b). By the above considerations, the homomorphism :

$$
: A\left(\Gamma_{g ; r ; n}\right)!M\left(F_{g ; r+1} ; P_{n}\right)
$$

induces a surjective homomorphism : $G(g ; r ; n)!M\left(F_{g ; r+1} ; P_{n}\right)$. In order to prove Theorem 3.1, it remains to show that this homomorphism is in fact an isomorphism. This will be the object of Subsection 3.1.

Theorem 3.2 Let g 1, let $n \quad 1$, and let $\Gamma_{g ; 0 ; n}$ be theCoxeter graph drawn in Figure 18. Then $M\left(F_{g ; 0} ; P_{n}\right)$ is isomorphic with the quotient of $A\left(\Gamma_{g ; 0 ; n}\right)$ by the following relations.

Relations from $\mathrm{M}\left(\mathrm{F}_{\mathrm{g} ; 1} ; \mathrm{P}_{\mathrm{n}}\right)$:

$$
\begin{align*}
& { }^{4}\left(y_{1} ; y_{2} ; y_{3} ; z\right)={ }^{2}\left(x_{0} ; y_{1} ; y_{2} ; y_{3} ; z\right) \quad \text { if } g \quad 2 ; \tag{R1}\\
& \text { (R2) } \quad{ }^{2}\left(y_{1} ; y_{2} ; y_{3} ; y_{4} ; y_{5} ; z\right)=\left(x_{0} ; y_{1} ; y_{2} ; y_{3} ; y_{4} ; y_{5} ; z\right) \text { if } g \quad 3 \text {; } \\
& \text { (R7) } \quad\left(x_{0} ; x_{1} ; y_{1} ; v_{1}\right)={ }^{2}\left(x_{1} ; y_{1} ; v_{1}\right) \quad \text { if } n \quad 2 ; \\
& \text { (R8a) } \quad\left(x_{0} ; x_{1} ; y_{1} ; y_{2} ; y_{3} ; z\right)={ }^{2}\left(x_{1} ; y_{1} ; y_{2} ; y_{3} ; z\right) \quad \text { if } n \quad 1 \text { and } g \quad 2:
\end{align*}
$$

Other relations:
(R9a) $\quad x_{0}^{2 g-n-2}\left(x_{1} ; v_{1} ;::: ; v_{n-1}\right)={ }^{2}\left(z_{;} y_{2} ;::: ; y_{2 g-1}\right)$ if $g \quad 2$
(R9b) $\quad x_{0}^{n}=\left(x_{1} ; v_{1} ;::: ; v_{n-1}\right)$ if $g=1$;
(R9c) $\quad{ }^{4}\left(x_{0} ; y_{1}\right)={ }^{2}\left(v_{1} ;:: ; v_{n-1}\right) \quad$ if $g=1$:
Note that, in the above presentation, the relation (R9a), which holds if g 2, has to be replaced by the relations (R9b) and (R9c) when $\mathrm{g}=1$.
Consider the Dehn twists $a_{0} ; a_{1}, b_{1} ;::: ; b_{2 g-1}, c$ and the braid twists $1 ;:: ; n-1$ represented in Figure 13. From Subsection 2.1 follows that there is a well de ned homomorphism $0: A\left(\Gamma_{g ; ; n}\right)!M\left(F_{g ; 0} ; P_{n}\right)$ which sends x_{i} on a_{i} for $\mathrm{i}=0 ; 1, \mathrm{y}_{\mathrm{i}}$ on b for $\mathrm{i}=1 ;::: ; 2 \mathrm{~g}-1, \mathrm{z}$ on c , and v_{i} on i for $\mathrm{i}=$ $1 ;::: ; \mathrm{n}-1$. This homomorphism is surjective by Corollary 2.11 . Let $\mathrm{G}_{0}(\mathrm{~g} ; \mathrm{n})$ denote the quotient of $A\left(\Gamma_{g ; 0 ; n}\right)$ by the relations (R1), (R2), (R7), (R8), (R9a), (R9b), and (R9c). As before, using Proposition 2.12, one can easily prove that the homomorphism $0: A\left(\Gamma_{g ; 0 ; n}\right)!M\left(F_{g ; 0 ;} P_{n}\right)$ induces a surjective homomorphism $0: \mathrm{G}_{0}(\mathrm{~g} ; \mathrm{n})$! $\mathrm{M}\left(\mathrm{F}_{\mathrm{g} ; 0} ; \mathrm{P}_{\mathrm{n}}\right)$. In order to prove Theorem 3.2, it remains to show that this homomorphism is in fact an isomorphism. This will be the object of Subsection 3.2.

3.1 Proof of Theorem 3.1

The proof of Theorem 3.1 is organized as follows. In the rst step, starting from Matsumoto's presentation of $\mathrm{M}\left(\mathrm{F}_{\mathrm{g} ; 1}\right)$ [18] (see Theorem 2.13), we determine by induction on n a presentation of $\mathrm{PM}\left(\mathrm{F}_{\mathrm{g} ; 1} ; \mathrm{P}_{\mathrm{n}}\right)$ (Proposition 3.3), applying Lemma 2.5 to the exact sequence (2.2) of Subsection 2.2. In the second step, we determine a presentation of PM ($\mathrm{F}_{\mathrm{g} ; \mathrm{r}+1} ; \mathrm{P}_{\mathrm{n}}$) (Proposition 3.7), applying Lemma 2.5 to the exact sequence (2.3). Finally, we prove Theorem 3.1 applying Lemma 2.5 to the exact sequence (2.1).

Proposition 3.3 Let g 1, let $n \quad 0$, and let $P \Gamma_{g ; 0 ; n}$ be the Coxeter graph drawn in Figure 19. Then $\mathrm{PM}\left(\mathrm{F}_{\mathrm{g} ; 1} ; \mathrm{P}_{\mathrm{n}}\right)$ is isomorphic with the quotient of $A\left(P \Gamma_{g ; 0 ; n}\right)$ by the following relations.

Relations from $M\left(F_{g ; 1}\right)$:
(PR1) $\quad{ }^{4}\left(y_{1} ; y_{2} ; y_{3} ; z\right)={ }^{2}\left(x_{0} ; y_{1} ; y_{2} ; y_{3} ; z\right) \quad$ if $g \quad 2 ;$
(PR2) ${ }^{2}\left(y_{1} ; y_{2} ; y_{3} ; y_{4} ; y_{5} ; z\right)=\left(x_{0} ; y_{1} ; y_{2} ; y_{3} ; y_{4} ; y_{5} ; z\right)$ if $g \quad 3:$
Relations of commutation:
(PR4)

$$
\begin{align*}
& ={ }^{\left.x_{k}{ }^{-1}\left(x_{i+1} ; x_{j} ; x_{1} ; x_{1}\right) x_{i}\right) x_{i} \quad\left(x_{i+1} ; x_{j} ; y_{1}\right)} \\
& \text { if } 0 \quad k<j<i \quad n-1 ; \\
& ={ }^{\left.y_{2}{ }^{-1}\left(x_{i+1} ; x_{i} ; x_{1}\right) x_{i} ; x_{1}\right) x_{i} \quad\left(x_{i+1} ; x_{j} ; y_{1}\right)} \tag{PR4}\\
& \text { if } 0 \quad j<i \quad n-1 ; g
\end{align*}
$$

Relations between fundamental elements:
(PR5) $\quad\left(x_{0} ; x_{1} ; y_{1} ; y_{2} ; y_{3} ; z\right)={ }^{2}\left(x_{1} ; y_{1} ; y_{2} ; y_{3} ; z\right)$ if $g \quad 2$;
(PR6) $\quad\left(x_{i} ; x_{i+1} ; y_{1} ; y_{2} ; y_{3} ; z\right)^{-2}\left(x_{i+1} ; y_{1} ; y_{2} ; y_{3} ; z\right)$ $=\left(x_{0} ; x_{i} ; x_{i+1} ; y_{1}\right)^{-2}\left(x_{0} ; x_{i+1} ; y_{1}\right) \quad$ if $1 \quad i \quad n-1 ; g \quad 2:$

Figure 19: Coxeter graph associated with $\mathrm{PM}\left(\mathrm{F}_{\mathrm{g} ; 1} ; \mathrm{P}_{\mathrm{n}}\right)$
The following lemmas 3.4, 3.5, and 3.6 are preliminary results to the proof of Proposition 3.3.

Lemma 3.4 Let 「 be the Coxeter graph drawn in Figure 20, and let G be the quotient of $A(\Gamma)$ by the following relation:

$$
x_{4}{ }^{-1}\left(x_{1} ; x_{3} ; y\right) x_{2} \quad\left(x_{1} ; x_{3} ; y\right)={ }^{-1}\left(x_{1} ; x_{3} ; y\right) x_{2} \quad\left(x_{1} ; x_{3} ; y\right) x_{4}:
$$

Then the following equalities hold in G.

$$
\begin{aligned}
& x_{3}{ }^{-1}\left(x_{2} ; x_{4} ; y\right) x_{1} \quad\left(x_{2} ; x_{4} ; y\right)={ }^{-1}\left(x_{2} ; x_{4} ; y\right) x_{1} \quad\left(x_{2} ; x_{4} ; y\right) x_{3} ; \\
& x_{2}{ }^{-1}\left(x_{1} ; x_{3} ; y\right) x_{4}\left(x_{1} ; x_{3} ; y\right)={ }^{-1}\left(x_{1} ; x_{3} ; y\right) x_{4}\left(x_{1} ; x_{3} ; y\right) x_{2} ; \\
& x_{1}{ }^{-1}\left(x_{2} ; x_{4} ; y\right) x_{3}\left(x_{2} ; x_{4} ; y\right)={ }^{-1}\left(x_{2} ; x_{4} ; y\right) x_{3}\left(x_{2} ; x_{4} ; y\right) x_{1} \text { : }
\end{aligned}
$$

Figure 20
Proof It clearly su ces to prove the rst equality.

$$
\begin{aligned}
& x_{3}{ }^{-1}\left(x_{2} ; x_{4} ; y\right) x_{1} \quad\left(x_{2} ; x_{4} ; y\right) x_{3}^{-1} \quad-1\left(x_{2} ; x_{4} ; y\right) x_{1}^{-1} \quad\left(x_{2} ; x_{4} ; y\right) \\
= & x_{3} y^{-1} x_{2}^{-1} x_{4}^{-1} y^{-1} x_{1} y x_{2} x_{4} y x_{3}^{-1} y^{-1} x_{2}^{-1} x_{4}^{-1} y^{-1} x_{1}^{-1} y_{2} x_{4} y \\
= & y^{-1} x_{3}^{-1} y x_{3} x_{2}^{-1} x_{4}^{-1} x_{1} y x_{1}^{-1} x_{2} x_{4} x_{3}^{-1} y^{-1} x_{3} x_{2}^{-1} x_{4}^{-1} x_{1} y^{-1} x_{1}^{-1} x_{2} x_{4} y \\
= & y^{-1} x_{2}^{-1} x_{3}^{-1} x_{2} y x_{2}^{-1} x_{1} x_{3} x_{4}^{-1} y x_{4} x_{1}^{-1} x_{3}^{-1} x_{2} y^{-1} x_{2}^{-1} x_{1} x_{3} x_{4}^{-1} y^{-1} x_{4} x_{1}^{-1} x_{3}^{-1} \\
& x_{3} x_{2} y \\
= & y^{-1} x_{2}^{-1} x_{3}^{-1} y^{-1} x_{2} y x_{1} x_{3} y x_{4} y^{-1} x_{1}^{-1} x_{3}^{-1} y^{-1} x_{2}^{-1} y x_{1} x_{3} y x_{4}^{-1} y^{-1} x_{1}^{-1} x_{3}^{-1} x_{3} x_{2} y \\
= & y^{-1} x_{2}^{-1} x_{3}^{-1} y^{-1} x_{2}\left(x_{1} ; x_{3} ; y\right) x_{4}{ }^{-1}\left(x_{1} ; x_{3} ; y\right) x_{2}^{-1}\left(x_{1} ; x_{3} ; y\right) x_{4}^{-1} \\
& { }^{-1}\left(x_{1} ; x_{3} ; y\right) \text { yx } y x_{3} y \\
= & 1:
\end{aligned}
$$

Lemma 3.5 We number the vertices of the Coxeter graph $D_{\|}$according to Figure 6. Then the following equalities hold in $A\left(D_{1}\right)$.

$$
\begin{aligned}
& \quad{ }^{-1}\left(x_{2} ;::: ; x_{1-1}\right) x_{1}^{-1} x_{2} \quad\left(x_{2} ;::: ; x_{1-1}\right)^{-1}\left(x_{2} ;::: ; x_{1}\right) x_{2}^{-1} x_{1} \quad\left(x_{2} ;::: ; x_{1}\right) \\
&= x_{1}{ }^{-1}\left(x_{2} ;::: ; x_{1-1}\right) x_{1}^{-1} x_{2} \quad\left(x_{2} ;:: ; ; x_{1-1}\right) x_{1}^{-1} ; \\
& \quad{ }^{-1}\left(x_{2} ;::: ; x_{1}\right) x_{2}^{-1} x_{1}\left(x_{2} ;::: ; x_{1}\right)^{-1}\left(x_{2} ;:: ; x_{1-1}\right) x_{2}^{-1} x_{1} \quad\left(x_{2} ;::: ; x_{1-1}\right) \\
&= x_{1-1}{ }^{-1}\left(x_{2} ;::: ; x_{1}\right) x_{2}^{-1} x_{1} \quad\left(x_{2} ;:: ;: x_{1}\right) x_{1-1}^{-1}:
\end{aligned}
$$

Proof

$$
\begin{aligned}
& x_{1}^{-1}{ }^{-1}\left(x_{2} ;::: ; x_{1-1}\right) x_{1}^{-1} x_{2}\left(x_{2} ;::: ; x_{1-1}\right)^{-1}\left(x_{2} ;::: ; x_{1}\right) x_{2}^{-1} x_{1} \\
& \left(x_{2} ;::: ; x_{1}\right) x_{1}{ }^{-1}\left(x_{2} ;::: ; x_{1-1}\right) x_{2}^{-1} x_{1}\left(x_{2} ;::: ; x_{1-1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =x_{1}^{-1}-1\left(x_{2} ;::: ; x_{I-2}\right)\left(x_{I-1}^{-1}::: x_{2}^{-1}\right) x_{2} x_{1}^{-1}\left(x_{1}^{-1}::: x_{2}^{-1}\right) x_{2}^{-1} x_{1} x_{2} \quad\left(x_{2} ;::: ; x_{1}\right) \\
& { }^{-1}\left(x_{2} ;::: ; x_{1-1}\right) x_{1} x_{2}^{-1}\left(x_{2}::: x_{1-1}\right) \quad\left(x_{2} ;::: ; x_{1-2}\right) \\
& ={ }^{-1}\left(x_{2} ;::: ; x_{1-2}\right) x_{1}^{-1}\left(x_{1-1}^{-1}::: x_{3}^{-1}\right) x_{1}^{-1}\left(x_{1}^{-1}::: x_{2}^{-1}\right) x_{1}\left(x_{2}::: x_{1}\right) x_{1} \\
& \text { (} \left.x_{3}::: x_{1-1}\right)\left(x_{2} ;::: ; x_{1-2}\right) \\
& ={ }^{-1}\left(x_{2} ;::: ; x_{1-2}\right)\left(x_{1}^{-1}::: x_{3}^{-1}\right) x_{1}^{-1}\left(x_{1}^{-1}::: x_{3}^{-1}\right)\left(x_{3}::: x_{1}\right) x_{1}\left(x_{3}::: x_{1}\right) \\
& \text { (} x_{2} ;::: ; x_{1}-2 \text {) } \\
& =1 \text { : } \\
& \begin{aligned}
& \quad{ }^{-1}\left(x_{2} ;::: ; x_{1}\right) x_{2}^{-1} x_{1} \quad\left(x_{2} ;::: ; x_{1}\right){ }^{-1}\left(x_{2} ;::: ; x_{1-1}\right) x_{2}^{-1} x_{1} \quad\left(x_{2} ;::: ; x_{1-1}\right) \\
& x_{1-1} \quad-1\left(x_{2} ;::: ; x_{1}\right) x_{1}^{-1} x_{2} \quad\left(x_{2} ;::: ; x_{1}\right) x_{1-1}^{-1} \\
= & \quad-1\left(x_{2} ;::: ; x_{1}\right) x_{2}^{-1} x_{1}\left(x_{2}::: x_{1}\right) x_{2}^{-1} x_{1} x_{2} \quad\left(x_{2} ;::: ; x_{1-1}\right) \quad-1\left(x_{2} ;::: ; x_{1}\right) x_{1}^{-1} \\
& x_{2} x_{3}^{-1} \quad\left(x_{2} ;::: ; x_{1}\right) \\
= & -1\left(x_{2} ;::: ; x_{1}\right) x_{1}\left(x_{3}::: x_{1}\right) x_{1}\left(x_{1}^{-1}::: x_{2}^{-1}\right) x_{1}^{-1} x_{2} x_{3}^{-1} \quad\left(x_{2} ;::: ; x_{1}\right) \\
= & { }^{-1}\left(x_{2} ;::: ; x_{1}\right) x_{3} x_{1}\left(x_{3}::: x_{1}\right)\left(x_{1}^{-1}::: x_{3}^{-1}\right) x_{1}^{-1} x_{3}^{-1}\left(x_{2} ;::: ; x_{1}\right) \\
= & 1:
\end{aligned}
\end{aligned}
$$

Several algorithms to solve the word problem in nite type Artin groups are known (see [4], [8], [6], [7]). We use the one of [7] implemented in a Maple program to prove the following.

Lemma 3.6 (i) We number the vertices of D_{6} according to Figure 6. Let

$$
\begin{aligned}
& w_{1}=-1\left(x_{1} ; x_{3}\right) x_{1}^{-1} x_{2}\left(x_{1} ; x_{3}\right) \\
& w_{2}=-1\left(x_{1} ; x_{3} ; x_{4}\right) x_{1}^{-1} x_{2}\left(x_{1} ; x_{3} ; x_{4}\right) \\
& w_{3}={ }^{-1}\left(x_{1} ; x_{3} ; x_{4} ; x_{5}\right) x_{1}^{-1} x_{2}\left(x_{1} ; x_{3} ; x_{4} ; x_{5}\right)
\end{aligned}
$$

Then the following equality holds in $A\left(D_{6}\right)$.

$$
x_{2}^{-1} x_{1} w_{1}^{-1} w_{2}^{-1} w_{3}^{-1} x_{6} w_{3} x_{6}^{-1} w_{1}={ }^{-2}\left(x_{2} ; x_{3} ;:: ; ; x_{6}\right) \quad\left(x_{1} ; x_{2} ; x_{3} ;:: ; ; x_{6}\right):
$$

(ii) We number the vertices of D_{4} according to Figure 6. Let

$$
w=x_{2}^{-1} \quad-1\left(x_{1} ; x_{3} ; x_{4}\right) x_{1}^{-1} x_{2} \quad\left(x_{1} ; x_{3} ; x_{4}\right) x_{2}:
$$

Then the following equality holds in $A\left(D_{4}\right)$.

$$
x_{1}^{-1} x_{2} w={ }^{-2}\left(x_{1} ; x_{3} ; x_{4}\right) \quad\left(x_{1} ; x_{2} ; x_{3} ; x_{4}\right):
$$

Proof of Proposition 3.3 We set $r=0$ and we consider the Dehn twists $a_{0} ;::: ; a_{n} b_{1} ;::: ; b_{2 g-1}$, c represented in Figure 12. From Subsection 2.1 follows that thereis a well de ned homomorphism : A(P $\left.\Gamma_{g ; 0 ; n}\right)!\mathrm{PM}\left(\mathrm{F}_{\mathrm{g} ; 1} ; \mathrm{P}_{\mathrm{n}}\right)$ which sends x_{i} on a_{i} for $i=0 ;::: ; n, y_{i}$ on b for $i=1 ;:: ; 2 g-1$, and z
on c . This homomorphism is surjective by Proposition 2.10. Let $\mathrm{PG}(\mathrm{g} ; 0 ; \mathrm{n})$ denote the quotient of $A\left(P \Gamma_{g ; 0 ; n}\right)$ by the relations (PR1),...,(PR6). One can easily prove using Proposition 2.12 that: if $w_{1}=w_{2}$ is one of the re lations (PR1),...,(PR6), then $\left(w_{1}\right)=\left(w_{2}\right)$. So, the homomorphism : $A\left(P \Gamma_{g ; 0 ; n}\right)!P M\left(F_{g ; i} ; P_{n}\right)$ induces a surjective homomorphism :

$$
: P G(g ; 0 ; n)!\quad P M\left(F_{g ; 1} ; P_{n}\right):
$$

Now, we prove by induction on n that is an isomorphism. The case $\mathrm{n}=0$ is proved in [18] (sæ Theorem 2.13). So, we assume that $n>0$. By the inductive hypothesis, $\mathrm{PM}\left(\mathrm{F}_{\mathrm{g} ;} ; \mathrm{P}_{\mathrm{n}-1}\right)$ is isomorphic with $\mathrm{PG}(\mathrm{g} ; 0 ; \mathrm{n}-1)$. On the other hand, ${ }_{1}\left(\mathrm{~F}_{\mathrm{g} ; 1} \mathrm{nP} \mathrm{n}_{\mathrm{n}-1} ; \mathrm{P}_{\mathrm{n}}\right)$ is thefreegroup $\mathrm{F}(1 ;::: ; \mathrm{n} ; 1 ;::: ; 2 \mathrm{~g}-1)$ freedy generated by the loops 1;:::; n, 1;:::; 2g-1 represented in Figure 14. Applying Lemma 2.5 to the exact sequence (2.2) of Subsection 2.2, one has that $\mathrm{PM}\left(\mathrm{F}_{\mathrm{g} ;} ; \mathrm{P}_{\mathrm{n}}\right)$ is isomorphic with the quotient of the free product PG(g;0;n-1) F($1 ;::: ; n ; 1 ;:: ; 2 g-1)$ by the following relations.

Relations involving the i 's:

Relations involving the i 's:

Consider thehomomorphism f:PG(g;0;n-1) F(1;:::; n; 1;:::; 2g-1)! PG(g; 0;n) de ned by:

Assertion 1 f induces a homomorphism $\mathrm{f}: \mathrm{PM}\left(\mathrm{F}_{\mathrm{g} ;} ; \mathrm{P}_{\mathrm{n}}\right)!\mathrm{PG}(\mathrm{g} ; 0 ; \mathrm{n})$.
One can easily verify on the generators of $\mathrm{PG}(\mathrm{g} ; 0 ; \mathrm{n})$ that f is the identity of $\mathrm{PG}(\mathrm{g} ; 0 ; \mathrm{n})$. So, Assertion 1 shows that is injective and, therefore, nishes the proof of Proposition 3.3.

Proof of Assertion 1 We have to show that: if $w_{1}=w_{2}$ is one of the relations (PT 1), ...,(PT 12), then $f\left(w_{1}\right)=f\left(w_{2}\right)$.

By an easy case we mean a relation $\mathrm{w}_{1}=\mathrm{w}_{2}$ such that the equality $\mathrm{f}\left(\mathrm{w}_{1}\right)=$ $f\left(w_{2}\right)$ in $P G(g ; 0 ; n)$ is a direct consequence of the braid relations in $A\left(P \Gamma_{g ; 0 ; n}\right)$. For instance, (PT5), (PT6), and (PT8) are easy cases.

Relation (PT1): (PT1) is an easy case if either $\mathrm{j}=\mathrm{i}-1$ or $\mathrm{i}=\mathrm{n}$. So, we assume that $0 \mathrm{j}<\mathrm{i}-1<\mathrm{n}-1$. Then:

$$
\begin{aligned}
& f\left(x_{j} x_{j}^{-1}\right) f\left(\quad i^{-1}\right. \\
= & x_{j} x_{n-1}^{-1}-1\left(x_{n} ; x_{i-1} ; y_{1}\right) x_{n}^{-1} x_{n-1} \quad\left(x_{n} ; x_{i-1} ; y_{1}\right) x_{n-1} x_{j}^{-1} x_{n-1}^{-1} \\
& \quad-1\left(x_{n} ; x_{i-1} ; y_{1}\right) x_{n-1}^{-1} x_{n} \quad\left(x_{n} ; x_{i-1} ; y_{1}\right) x_{n-1} \\
= & x_{n-1}^{-1} x_{i-1}^{-1} \quad x_{j} \quad-1\left(x_{n} ; x_{i-1} ; y_{1}\right) x_{n-1} \quad\left(x_{n} ; x_{i-1} ; y_{1}\right) x_{j}^{-1} \quad-1\left(x_{n} ; x_{i-1} ; y_{1}\right) x_{n-1}^{-1} \\
& \quad\left(x_{n} ; x_{i-1} ; y_{1}\right) \quad x_{i-1} x_{n-1} \\
= & 1 \quad(\text { by }(\text { PR3 })):
\end{aligned}
$$

Relation (PT2): (PT2) is an easy case if $j=n-1$. So, we assume that $\mathrm{j}<\mathrm{n}-1$. Then:

$$
\begin{aligned}
& f\left(x_{j} \quad i x_{j}^{-1}\right) f\left(\begin{array}{ccc}
-1 & i & j+1
\end{array}\right)^{-1} \\
& =x_{j} x_{n-1}^{-1}{ }^{-1}\left(x_{n} ; x_{i-1} ; y_{1}\right) x_{n}^{-1} x_{n-1} \quad\left(x_{n} ; x_{i-1} ; y_{1}\right) x_{n-1} x_{j}^{-1} x_{n-1}^{-1}{ }^{-1}\left(x_{n} ; x_{j} ; y_{1}\right) \\
& x_{n-1}^{-1} x_{n} \quad\left(x_{n} ; x_{j} ; y_{1}\right) x_{n-1} x_{n-1}^{-1} \quad{ }^{-1}\left(x_{n} ; x_{i-1} ; y_{1}\right) x_{n-1}^{-1} x_{n} \quad\left(x_{n} ; x_{i-1} ; y_{1}\right) x_{n-1} \\
& x_{n-1}^{-1}{ }^{-1}\left(x_{n} ; x_{j} ; y_{1}\right) x_{n}^{-1} x_{n-1} \quad\left(x_{n} ; x_{j} ; y_{1}\right) x_{n-1} \\
& =x_{j} x_{n-1}^{-1} x_{i-1}^{-1} \quad{ }^{-1}\left(x_{n} ; x_{i-1} ; y_{1}\right) x_{n-1} \quad\left(x_{n} ; x_{i-1} ; y_{1}\right)^{-1}\left(x_{n} ; x_{j} ; y_{1}\right) x_{n-1}^{-1} \\
& \left(x_{n} ; x_{j} ; y_{1}\right) \quad{ }^{-1}\left(x_{n} ; x_{i-1} ; y_{1}\right) x_{n-1}^{-1} \quad\left(x_{n} ; x_{i-1} ; y_{1}\right) x_{i-1} \quad{ }^{-1}\left(x_{n} ; x_{j} ; y_{1}\right) x_{n-1} \\
& \left(x_{n} ; x_{j} ; y_{1}\right) x_{n-1} x_{j}^{-1} \\
& =x_{j} x_{n-1}^{-1} x_{i-1}^{-1} \quad{ }^{-1}\left(x_{n} ; x_{i-1} ; y_{1}\right) x_{n-1} \quad\left(x_{n} ; x_{i-1} ; y_{1}\right)^{-1}\left(x_{n} ; x_{j} ; y_{1}\right) x_{n-1}^{-1} \\
& \left(x_{n} ; x_{j} ; y_{1}\right)^{-1}\left(x_{n} ; x_{i-1} ; y_{1}\right) x_{n-1}^{-1} \quad\left(x_{n} ; x_{i-1} ; y_{1}\right)^{-1}\left(x_{n} ; x_{j} ; y_{1}\right) x_{n-1} \\
& \left(x_{n} ; x_{j} ; y_{1}\right) x_{i-1} x_{n-1} x_{j}^{-1} \text { (by (PR3)) } \\
& =x_{j} x_{n-1}^{-1} x_{i-1}^{-1} y_{1}^{-1} x_{n}^{-1} x_{i-1}^{-1} y_{1}^{-1} x_{n-1} y_{1} x_{n} x_{i-1} y_{1} y_{1}^{-1} x_{n}^{-1} x_{j}^{-1} y_{1}^{-1} x_{n-1}^{-1} y_{1} x_{n} x_{j} \\
& y_{1} y_{1}^{-1} x_{n}^{-1} x_{i-1}^{-1} y_{1}^{-1} x_{n-1}^{-1} y_{1} x_{n} x_{i-1} y_{1} y_{1}^{-1} x_{n}^{-1} x_{j}^{-1} y_{1}^{-1} x_{n-1} y_{1} x_{n} x_{j} y_{1} x_{i-1} x_{n-1} x_{j}^{-1} \\
& =x_{j} x_{n-1}^{-1} x_{i-1}^{-1} y_{1}^{-1} x_{n}^{-1} x_{i-1}^{-1} x_{n-1} y_{1} x_{n-1}^{-1} x_{i-1} x_{j}^{-1} x_{n-1} y_{1}^{-1} x_{n-1}^{-1} x_{j} x_{i-1}^{-1} x_{n-1} \\
& y_{1}^{-1} x_{n-1}^{-1} x_{i-1} x_{j}^{-1} x_{n-1} y_{1} x_{n-1}^{-1} x_{j} x_{n} y_{1} x_{i-1} x_{n-1} x_{j}^{-1}
\end{aligned}
$$

$$
\begin{aligned}
& =x_{j} x_{n-1}^{-1} x_{i-1}^{-1} y_{1}^{-1} x_{n}^{-1} x_{n-1} y_{1} x_{i-1} y_{1}^{-1} y_{1} x_{j}^{-1} y_{1}^{-1} y_{1} x_{i-1}^{-1} y_{1}^{-1} y_{1} x_{j} y_{1}^{-1} x_{n-1}^{-1} x_{n} y_{1} x_{i-1} \\
& \quad x_{n-1} x_{j}^{-1} \\
& =1:
\end{aligned}
$$

Relation (PT3): (PT3) is an easy case if $\mathrm{i}=\mathrm{n}$. So, we assume that $\mathrm{i}<\mathrm{n}$. Then:

$$
\begin{aligned}
& f\left(y_{1}{ }^{1} y_{1}^{-1}\right) f\binom{-1}{i}^{-1} \\
= & y_{1} x_{n-1}^{-1}{ }_{-1}\left(x_{n} ; x_{i-1} ; y_{1}\right) x_{n}^{-1} x_{n-1} \quad\left(x_{n} ; x_{i-1} ; y_{1}\right) x_{n-1} y_{1}^{-1} x_{n-1}^{-1} \\
& \quad-1\left(x_{n} ; x_{i-1} ; y_{1}\right) x_{n}^{-1} x_{n}\left(x_{n} ; x_{i-1} ; y_{1}\right) x_{n-1}{ }_{-1}\left(x_{n-1} ; y_{1}\right) x_{n-1}^{-1} x_{n} \quad\left(x_{n-1} ; y_{1}\right) \\
= & y_{1} x_{n-1}^{-1} y_{1}^{-1} x_{n}^{-1} x_{i-1}^{-1} y_{1}^{-1} x_{n}^{-1} x_{n-1} y_{1} x_{n} x_{i-1} y_{1} x_{n-1} y_{1}^{-1} x_{n-1}^{-1} y_{1}^{-1} x_{n}^{-1} x_{i-1}^{-1} y_{1}^{-1} x_{n-1}^{-1} \\
& x_{n} y_{1} x_{n} x_{i-1} y_{1} x_{n-1} x_{n}^{-1} y_{1}^{-1} x_{n-1}^{-1} x_{n} y_{1} x_{n-1} \\
= & x_{n-1}^{-1} y_{1}^{-1} x_{n-1} x_{n}^{-1} x_{i-1}^{-1} y_{1}^{-1} x_{n}^{-1} x_{n-1} y_{1} x_{n} x_{i-1} y_{1} x_{n-1} x_{n-1}^{-1} y_{1}^{-1} x_{n-1}^{-1} x_{n}^{-1} x_{i-1}^{-1} y_{1}^{-1} \\
& x_{n}^{-1} 1_{1} x_{n} y_{1} x_{n} x_{i-1}^{-1} x_{n-1}^{-1} x_{n} y_{1} x_{n-1} \\
= & x_{n-1}^{-1} y_{1}^{-1} x_{n-1} x_{n}^{-1} x_{i-1}^{-1} y_{1}^{-1} x_{n}^{-1} x_{n-1} y_{1} y_{1}^{-1} x_{n-1}^{-1} y_{1}^{-1} y_{1} x_{n} y_{1} x_{i-1} x_{n} x_{n-1}^{-1} y_{1} x_{n-1} \\
= & :
\end{aligned}
$$

Relation (PT4): (PT4) is an easy case if either $\mathrm{i}=\mathrm{n}$ or j
3. So, we assume that $\mathrm{j}=2$ and $\mathrm{i} \mathrm{n}-1$. Then:

$$
\begin{aligned}
& y_{2} f\left({ }_{(i)}\right) y_{2}^{-1} \\
= & y_{2} x_{n}^{-1}-1 \\
= & x_{n}^{-1}-1 x_{i-1}^{-1}\left(x_{n} ; x_{i-1} ; y_{1}\right) x_{n}^{-1}\left(x_{n-1} ; x_{i-1} ; y_{1}\right) x_{n-1} \quad\left(x_{n} ; x_{i-1} ; y_{1}\right) x_{n-1} y_{2}^{-1} \\
= & \left.x_{n-1}^{-1} x_{i-1}^{-1} x_{i-1} ; y_{1}\right) y_{2}^{-1} x_{n-1}^{-1}\left(x_{n} ; x_{i-1} ; y_{1}\right) x_{n-1} \quad\left(x_{n} ; x_{i-1} ; y_{1}\right) x_{n-1} \quad \text { (by (PR4)) } \\
= & f\left(\begin{array}{ll}
\text { i }
\end{array}\right):
\end{aligned}
$$

Relation (PT7): (PT7) is an easy case if $j=n-1$. So, we assume that $j \quad n-2$. We prove by induction on $i \quad 2$ that x_{j} and $f(i)$ commute. Assume rst that $\mathrm{i}=2$. (PR4) and Lemma 3.4 imply:

$$
x_{j}{ }^{-1}\left(x_{n-1} ; y_{1} ; y_{2}\right) x_{n} \quad\left(x_{n-1} ; y_{1} ; y_{2}\right)={ }^{-1}\left(x_{n-1} ; y_{1} ; y_{2}\right) x_{n} \quad\left(x_{n-1} ; y_{1} ; y_{2}\right) x_{j} ;
$$

and this last equality implies:

$$
x_{j} f(2) x_{j}^{-1}=f(2):
$$

Now, we assume that $\mathrm{i}>2$. The rst equality of Lemma 3.5 implies:

$$
f(i)=f(i-1) y_{i} f(i-1)^{-1} y_{i}^{-1}:
$$

Thus, since x_{j} commutes with y_{i} and with $f(i-1)$ (inductive hypothesis), x_{j} also commutes with $f(i)$.

Relation (PT9): The equality

$$
y_{i-1} f(i) y_{i-1}^{-1}=f(i) f(i-1)
$$

is a straightforward consequence of the second equality of Lemma 3.5.
Relation (PT10): The equality

$$
y_{i+1} f(i) y_{i+1}^{-1}=f(i+1)^{-1} f(i)
$$

is a straightforward consequence of the rst equality of Lemma 3.5.
Relation (PT11): Assume rst that $\mathrm{n}=1$. Then:

$$
\begin{aligned}
& f\left(\begin{array}{c}
1
\end{array}\right)^{-1} f\left({ }_{1}\right)^{-1} f(2)^{-1} f(3)^{-1} z f(3) z^{-1} f\left({ }_{1}\right) \\
= & \left.\quad-2\left(x_{1} ; y_{1} ; y_{2} ; y_{3} ; z\right) \quad\left(x_{0} ; x_{1} ; y_{1} ; y_{2} ; y_{3} ; z\right) \quad \text { (by Lemma } 3: 6:(i)\right) \\
= & 1 \quad(b y \text { (PR5)) : }
\end{aligned}
$$

Now, assume that $\mathrm{n} \quad$ 2. Lemma 3.6.(i) implies:
and Lemma 3.6.(ii) implies:

$$
x_{n}^{-1} x_{n-1} f\left({ }_{1}\right)={ }^{-2}\left(x_{0} ; x_{n} ; y_{1}\right) \quad\left(x_{0} ; x_{n-1} ; x_{n} ; y_{1}\right):
$$

Thus:

$$
\begin{aligned}
& f\left(\begin{array}{l}
1
\end{array}\right)^{-1} f\left({ }_{1}\right)^{-1} f(2)^{-1} f(3)^{-1} z f(3) z^{-1} f\left({ }_{1}\right) \\
= & \quad{ }^{-1}\left(x_{0} ; x_{n-1} ; x_{n} ; y_{1}\right)^{2}\left(x_{0} ; x_{n} ; y_{1}\right) \quad{ }^{-2}\left(x_{n} ; y_{1} ; y_{2} ; y_{3} ; z\right) \quad\left(x_{n-1} ; x_{n} ; y_{1} ; y_{2} ; y_{3} ; z\right) \\
= & 1 \text { (by (PR6)): }
\end{aligned}
$$

Relation (PT 12): (PT 12) is an easy case if $i=1 ; 2$. We prove by induction on i 4 that z and $\mathrm{f}(\mathrm{i})$ commute. Recall rst that the rst equality of Lemma 3.5 implies:

$$
f(i)=f(i-1) y_{i} f(i-1)^{-1} y_{i}^{-1}:
$$

Assume that $\mathrm{i}=4$. Then:

$$
\begin{aligned}
& \text { zf (} 4 \text {) } \mathrm{z}^{-1} \\
& =z f(3) y_{4} f(3)^{-1} y_{4}^{-1} z^{-1} \\
& =f\left(\begin{array}{ll}
3
\end{array}\right) f\left({ }_{2}\right) f\left({ }_{1}\right) f\left(1_{1}\right) f\left({ }_{1}\right)^{-1} y_{4} f\left({ }_{1}\right) f\left({ }_{1}\right)^{-1} f\left({ }_{1}\right)^{-1} f\left({ }_{2}\right)^{-1} f(3)^{-1} y_{4}^{-1} \\
& \text { by (PT11) } \\
& =f(3) y_{4} f(3)^{-1} y_{4}^{-1} \quad(b y \text { (PT4) and (PT8)) } \\
& =f(4) \text { : }
\end{aligned}
$$

Now, we assume that $i>4$. Then z commutes with $f(i)$, since it commutes with y_{i} and with $f(i-1)$ (inductive hypothesis).

Now, in view of Proposition 3.3, and applying Lemma 2.5 to the exact sequences (2.3) of Subsection 2.2, one has immediately the following presentation for $P M\left(F_{g ; r+1} ; P_{n}\right)$.

Proposition 3.7 Let g; r 1, let $n \quad 0$, and let $P \Gamma_{g ; r ; n}$ betheCoxeter graph drawn in Figure 21. Then $P M\left(F_{g ; r+1} ; P_{n}\right)$ is isomorphic with the quotient of $A\left(P \Gamma_{g ; r ; n}\right)$ by the following relations.

Relations from $M\left(F_{g ; 1}\right)$:

$$
\begin{equation*}
{ }^{4}\left(y_{1} ; y_{2} ; y_{3} ; z\right)={ }^{2}\left(x_{0} ; y_{1} ; y_{2} ; y_{3} ; z\right) \quad \text { if } g \quad 2 ; \tag{PR1}
\end{equation*}
$$

(PR2) ${ }^{2}\left(y_{1} ; y_{2} ; y_{3} ; y_{4} ; y_{5} ; z\right)=\left(x_{0} ; y_{1} ; y_{2} ; y_{3} ; y_{4} ; y_{5} ; z\right)$ if $g \quad 3$:
Relations of commutation:

$$
\begin{aligned}
& \text { (PR3) } \quad x_{k}{ }^{-1}\left(x_{i+1} ; x_{j} ; y_{1}\right) x_{i} \quad\left(x_{i+1} ; x_{j} ; y_{1}\right) \\
& ={ }^{-1}\left(x_{i+1} ; x_{j} ; y_{1}\right) x_{i}\left(x_{i+1} ; x_{j} ; y_{1}\right) x_{k} \text { if } 0 \quad k<j<i \quad r+n-1 ; \\
& \text { (PR4) } \quad y_{2}{ }^{-1}\left(x_{i+1} ; x_{j} ; y_{1}\right) x_{i} \quad\left(x_{i+1} ; x_{j} ; y_{1}\right) \\
& ={ }^{-1}\left(x_{i+1} ; x_{j} ; y_{1}\right) x_{i}\left(x_{i+1} ; x_{j} ; y_{1}\right) y_{2} \text { if } 0 \quad j<i \quad r+n-1 ;
\end{aligned}
$$

Relations between fundamental elements:
(PR5a) $u_{1}=\left(x_{0} ; x_{1} ; y_{1} ; y_{2} ; y_{3} ; z\right)^{-2}\left(x_{1} ; y_{1} ; y_{2} ; y_{3} ; z\right)$;
(PR6a) $u_{i+1}=\left(x_{i} ; x_{i+1} ; y_{1} ; y_{2} ; y_{3} ; z\right)^{-2}\left(x_{i+1} ; y_{1} ; y_{2} ; y_{3} ; z\right)$

$$
{ }^{2}\left(x_{0} ; x_{i+1} ; y_{1}\right)^{-1}\left(x_{0} ; x_{i} ; x_{i+1} ; y_{1}\right) \quad \text { if } \quad 1 \quad r-1 \text {; }
$$

(PR6b) $\quad\left(x_{i} ; x_{i+1} ; y_{1} ; y_{2} ; y_{3} ; z\right)^{-2}\left(x_{i+1} ; y_{1} ; y_{2} ; y_{3} ; z\right)$

$$
=\left(x_{0} ; x_{i} ; x_{i+1} ; y_{1}\right)^{-2}\left(x_{0} ; x_{i+1} ; y_{1}\right) \text { if } r \text { i } n+r-1 \text { : }
$$

Figure 21: Coxeter graph associated with $\mathrm{PM}\left(\mathrm{F}_{\mathrm{g} ; \mathrm{r}+1} ; \mathrm{P}_{\mathrm{n}}\right)$

Let $P \mathrm{G}(\mathrm{g} ; \mathrm{r} ; \mathrm{n})$ denotethequotient of $\mathrm{A}\left(\mathrm{P} \Gamma_{\mathrm{g} ; \mathrm{r} ; \mathrm{n}}\right)$ by therelations (PR1),(PR2), (PR3),(PR4),(PR5a), (PR6a), (PR6b). Consider the Dehn twists $a_{0} ;::: ; a_{n+r}$, $b_{1} ;::: ; b_{2 g-1}, c, d_{1} ;::: ; d_{r}$ represented in Figure 12. Then an isomorphism : PG($\mathrm{g} ; \mathrm{r} ; \mathrm{n})$! $\mathrm{PM}\left(\mathrm{F}_{\mathrm{g} ; \mathrm{r}+1} ; \mathrm{P}_{\mathrm{n}}\right)$ between $\mathrm{PG}(\mathrm{g} ; \mathrm{r} ; \mathrm{n})$ and $\mathrm{PM}\left(\mathrm{F}_{\mathrm{g} ; \mathrm{r}+1} ; \mathrm{P}_{\mathrm{n}}\right)$
is given by $\left(x_{i}\right)=a_{i}$ for $\mathrm{i}=0 ;::: ; \mathrm{n}+\mathrm{r},\left(\mathrm{y}_{\mathrm{i}}\right)=\mathrm{b}$ for $\mathrm{i}=1 ;::: ; 2 \mathrm{~g}-1$, $(z)=c$, and $\quad\left(u_{i}\right)=d_{i}$ for $i=1 ;::: ; r$.
As in Lemma 3.6, we use the algorithm of [7] to prove the following.
Lemma 3.8 (i) We number the vertices of the Coxeter graph D_{6} according to Figure 6. Then the following equality holds in $A\left(D_{6}\right)$.

$$
\begin{aligned}
& { }^{2}\left(x_{1} ; x_{3} ;::: ; x_{6}\right){ }^{-1}\left(x_{1} ; x_{2} ; x_{3} ;::: ; x_{6}\right)=x_{6} x_{5} x_{4} x_{3} x_{1} x_{2}^{-1} x_{3}^{-1} x_{4}^{-1} x_{5}^{-1} x_{6}^{-1} x_{5} x_{4} \\
& x_{3} x_{2} x_{1}^{-1} x_{3}^{-1} x_{4}^{-1} x_{5}^{-1} x_{4} x_{3} x_{1} x_{2}^{-1} x_{3}^{-1} x_{4}^{-1} x_{2} x_{3} x_{2} x_{1}^{-1} x_{3}^{-1} x_{2}^{-1}:
\end{aligned}
$$

(ii) We number the vertices of the Coxeter graph D_{4} according to Figure 6. Then the following equality holds in $A\left(D_{4}\right)$.

$$
\left(x_{1} ; x_{2} ; x_{3} ; x_{4}\right)^{-2}\left(x_{1} ; x_{3} ; x_{4}\right)=x_{2} x_{3} x_{2}^{-1} x_{1} x_{3}^{-1} x_{2}^{-1} x_{4} x_{3} x_{2} x_{1}^{-1} x_{3}^{-1} x_{4}^{-1}:
$$

Proof of Theorem 3.1 Recall that $\Gamma_{\text {g;r;n }}$ denotes theCoxeter graph drawn in Figure 18, and that $\mathrm{G}(\mathrm{g} ; \mathrm{r} ; \mathrm{n})$ denotes the quotient of $\mathrm{A}\left(\Gamma_{\mathrm{g} ; ; \mathrm{n}}\right)$ by the relations (R1),...,(R7), (R8a), (R8b). Recall also that there is a well de ned epimorphism : $G(g ; r ; n)!M\left(F_{g ; r+1} ; P_{n}\right)$ which sends x_{i} on a_{i} for $i=0 ;::: ; r+1$, y_{i} on b for $i=1 ;::: ; 2 g-1, z$ on c, u_{i} on d_{i} for $i=1 ;::: ; r$, and v_{i} on i for $\mathrm{i}=1 ;::: ; \mathrm{n}-1$. Our aim now is to construct a homomorphism $\mathrm{f}: \mathrm{M}\left(\mathrm{F}_{\mathrm{g} ; \mathrm{r}+1} ; \mathrm{P}_{\mathrm{n}}\right)!\mathrm{G}(\mathrm{g} ; \mathrm{r} ; \mathrm{n})$ such that f is the identity of $\mathrm{G}(\mathrm{g} ; \mathrm{r} ; \mathrm{n})$. The existence of such a homomorphism clearly proves that is an isomorphism.

We set $A_{0}=x_{r}, A_{1}=x_{r+1}$, and

$$
A_{i}=x_{r}^{1-i} \quad\left(x_{r+1} ; v_{1} ;::: ; v_{i-1}\right) \quad \text { for } i=2 ;::: ; n:
$$

These expressions are viewed as elements of $\mathrm{G}(\mathrm{g} ; \mathrm{r} ; \mathrm{n})$. Note that, by Proposition 2.12, we have $\left(A_{i}\right)=a_{r+i}$ for all $i=0 ; 1 ;::: ; n$.

Assertion 1 (i) The following relations hold in $G(g ; r ; n)$:

$$
\begin{array}{rlrl}
A_{i-1} A_{i+1} & =v_{i} A_{i} v_{i} A_{i} & & \\
& =A_{i} v_{i} A_{i} v_{i} & \text { for } 1 \quad n \quad n-1 ; \\
A_{i} A_{j} & =A_{j} A_{i} & & \text { for } 0 \quad i<j \quad n ; \\
A_{i} v_{j} & =v_{j} A_{i} & & \text { for } i \sigma j ; \\
y_{1} A_{i} y_{1} & =A_{i} y_{1} A_{i} & & \text { for } 0 \quad i \quad n: \tag{T4}
\end{array}
$$

(ii) The relations (T1),...,(T4) imply that there is a well de ned homomorphism $h_{i}: A\left(B_{4}\right)!G(g ; r ; n)$ which sends x_{1} on v_{i}, x_{2} on A_{i}, x_{3} on y_{1}, and x_{4} on A_{i-1}. Then the following relation holds in $G(g ; r ; n)$:

$$
\begin{equation*}
h_{i}\left(\left(x_{1} ; x_{2} ; x_{3} ; x_{4}\right)\right)=h_{i}\left({ }^{2}\left(x_{1} ; x_{2} ; x_{3}\right)\right) \text { for } 1 \quad i \quad n: \tag{T5}
\end{equation*}
$$

Proof of Assertion 1 Relation (T1):

$$
\begin{aligned}
A_{i+1} & =x_{r}^{-i} \quad\left(x_{r+1} ; v_{1} ;::: ; v_{i}\right) \\
& =x_{r}^{-i} v_{i} v_{i-1}::: v_{1} x_{r+1} v_{1}::: v_{i-1} v_{i} \quad\left(x_{r+1} ; v_{1} ;::: ; v_{i-1}\right) \quad(b y 2: 9) \\
& =x_{r}^{-i} v_{i} \quad\left(x_{r+1} ; v_{1} ;::: ; v_{i-1}\right)^{-1}\left(x_{r+1} ; v_{1} ;::: ; v_{i-2}\right) v_{i} \\
& \quad\left(x_{r+1} ; v_{1} ;::: ; v_{i-1}\right) \\
& =x_{r}^{i-2}-1\left(x_{r+1} ; v_{1} ;::: ; v_{i-2}\right) v_{i} x_{r}^{1-i} \quad\left(x_{r+1} ; v_{1} ;::: ; v_{i-1}\right) v_{i} x_{r}^{1-i} \\
& \quad\left(x_{r+1} ; v_{1} ;::: ; v_{i-1}\right) \\
& =A_{i-1}^{-1} v_{i} A_{i} v_{i} A_{i}:
\end{aligned}
$$

Similarly:

$$
A_{i+1}=A_{i-1}^{-1} A_{i} v_{i} A_{i} v_{i}:
$$

The relations (T2) and (T3) are direct consequences of the \backslash braid" relations in $A\left(\Gamma_{\text {g; } ; ; n}\right)$.

Now, we prove (T4) and (T5) by induction on i . First, assume $\mathrm{i}=1$. Then (T4) follows from the \backslash braid" relation $y_{1} x_{r+1} y_{1}=x_{r+1} y_{1} x_{r+1}$ in $A\left(\Gamma_{g ; r ; n}\right)$, and (T5) follows from the relation (R7) in the de nition of $\mathrm{G}(\mathrm{g} ; \mathrm{r} ; \mathrm{n})$.
Now, assume $\mathrm{i}>1$. Then the relation (T4) follows from the following sequence of equalities.

$$
\begin{aligned}
& A_{i} y_{1} A_{i} y_{1}^{-1} A_{i}^{-1} y_{1}^{-1} \\
= & A_{i-2}^{-1} V_{i-1} A_{i-1} v_{i-1} A_{i-1} y_{1} A_{i-1} v_{i-1} A_{i-1} v_{i-1} A_{i-2}^{-1} y_{1}^{-1} A_{i-2} v_{i-1}^{-1} A_{i-1}^{-1} v_{i-1}^{-1} A_{i-1}^{-1} y_{1}^{-1} \\
& (\text { by }(T 1)) \\
= & A_{i-2}^{-1} v_{i-1} A_{i-1} v_{i-1} A_{i-1} y_{1} A_{i-1} v_{i-1} A_{i-1} y_{1} A_{i-2}^{-1} y_{1}^{-1} A_{i-1}^{-1} v_{i-1}^{-1} A_{i-1}^{-1} y_{1}^{-1} A_{i-2}^{-1} \\
& A_{i-2} \quad(\text { by (T2);(T3); induction) } \\
= & A_{i-2}^{-1} h_{i-1}\left({ }^{2}\left(x_{1} ; x_{2} ; x_{3}\right) \quad{ }^{-1}\left(x_{1} ; x_{2} ; x_{3} ; x_{4}\right)\right) \quad A_{i-2} \quad \text { (by Proposition 2:9) } \\
= & 1 \text { (by induction): }
\end{aligned}
$$

The Relation (T5) follows from the following sequence of equalities.

$$
\begin{aligned}
& h_{i}\left({ }^{-1}\left(x_{1} ; x_{2} ; x_{3} ; x_{4}\right)^{2}\left(x_{1} ; x_{2} ; x_{3}\right)\right) \\
& =A_{i-1}^{-1} y_{1}^{-1} A_{i}^{-1} v_{i}^{-1} A_{i}^{-1} y_{1}^{-1} A_{i-1}^{-1} y_{1} A_{i} v_{i} y_{1} A_{i} v_{i} y_{1} A_{i} v_{i} \quad \text { (by Propositions 2:8; 2:9) } \\
& =A_{i-1}^{-1} y_{1}^{-1} A_{i-2} v_{i-1}^{-1} A_{i-1}^{-1} v_{i-1}^{-1} A_{i-1}^{-1} v_{i}^{-1} v_{i-1}^{-1} A_{i-1}^{-1} v_{i-1}^{-1} A_{i-1}^{-1} A_{i-2} y_{1}^{-1} A_{i-1}^{-1} y_{1} A_{i-2}^{-1} A_{i-1} \\
& v_{i-1} A_{i-1} v_{i-1} v_{i} y_{1} A_{i-2}^{-1} A_{i-1} v_{i-1} A_{i-1} v_{i-1} v_{i} y_{1} v_{i-1} A_{i-1} v_{i-1} A_{i-1} A_{i-2}^{-1} v_{i} \quad(T 1) \\
& =A_{i-2} \quad A_{i-1}^{-1} A_{i-2}^{-1} y_{1}^{-1} A_{i-2} v_{i-1}^{-1} A_{i-1}^{-1} v_{i-1}^{-1} A_{i-1}^{-1} v_{i}^{-1} v_{i-1}^{-1} A_{i-1}^{-1} v_{i-1}^{-1} A_{i-1}^{-1} A_{i-2} A_{i-1} y_{1}^{-1} \\
& A_{i-1}^{-1} A_{i-2}^{-1} A_{i-1} V_{i-1} A_{i-1} V_{i-1} V_{i} y_{1} A_{i-2}^{-1} A_{i-1} V_{i-1} A_{i-1} V_{i-1} V_{i} y_{1} V_{i-1} A_{i-1} V_{i-1} A_{i-1} V_{i} \\
& A_{i-2}^{-1}(\text { by (T2); (T3); induction) } \\
& =A_{i-2} A_{i-1}^{-1} v_{i-1}^{-1} \quad y_{1} A_{i-2}^{-1} y_{1}^{-1} A_{i-1}^{-1} v_{i-1}^{-1} v_{i}^{-1} A_{i-1}^{-1} v_{i-1}^{-1} A_{i-1}^{-1} y_{1}^{-1} A_{i-2}^{-1} y_{1} A_{i-1} v_{i-1} v_{i} y_{1} \\
& A_{i-2}^{-1} A_{i-1} v_{i-1} A_{i-1} v_{i-1} v_{i} y_{1} v_{i-1} A_{i-1} v_{i-1} v_{i} v_{i-1}^{-1} \quad v_{i-1} A_{i-1} A_{i-2}^{-1}
\end{aligned}
$$

(by (T2); (T3); induction)

$$
\begin{aligned}
& =A_{i-2} A_{i-1}^{-1} v_{i-1}^{-1} y_{1} \quad A_{i-2}^{-1} y_{1}^{-1} A_{i-1}^{-1} v_{i-1}^{-1} v_{i}^{-1} y_{1} A_{i-2} \quad h_{i-1}\left({ }^{-1}\left(x_{1} ; x_{2} ; x_{3} ; x_{4}\right)\right. \\
& \left.\left(x_{1} ; x_{2} ; x_{3}\right)\right) y_{1} A_{i-1} v_{i-1} v_{i} y_{1} A_{i-2}^{-1} A_{i-1} v_{i-1} A_{i-1} v_{i-1} v_{i} v_{i-1} y_{1} A_{i-1} v_{i}^{-1} v_{i-1} v_{i} y_{1} \\
& y_{1}^{-1} v_{i-1} A_{i-1} A_{i-2}^{-1} \text { (by Proposition 2:9) } \\
& =A_{i-2} A_{i-1}^{-1} v_{i-1}^{-1} y_{1} \quad A_{i-2}^{-1} y_{1}^{-1} A_{i-1}^{-1} v_{i-1}^{-1} v_{i}^{-1} y_{1} A_{i-2} v_{i-1}^{-1} A_{i-1}^{-1} y_{1}^{-1} v_{i-1}^{-1} A_{i-1}^{-1} y_{1}^{-1} v_{i-1}^{-1} \\
& A_{i-1}^{-1} y_{1}^{-1} y_{1} A_{i-1} V_{i-1} v_{i} y_{1} A_{i-2}^{-1} A_{i-1} V_{i-1} A_{i-1} V_{i-1} v_{i} v_{i-1} y_{1} A_{i-1} v_{i}^{-1} v_{i-1} v_{i} y_{1} \\
& y_{1}^{-1} V_{i-1} A_{i-1} A_{i-2}^{-1} \text { (by induction) } \\
& =A_{i-2} A_{i-1}^{-1} v_{i-1}^{-1} y_{1} \quad A_{i-2}^{-1} y_{1}^{-1} A_{i-1}^{-1} y_{1} v_{i-1}^{-1} v_{i}^{-1} v_{i-1}^{-1} A_{i-1}^{-1} A_{i-2} y_{1}^{-1} A_{i-2}^{-1} v_{i-1}^{-1} v_{i} v_{i-1} \\
& A_{i-1} V_{i} V_{i-1} V_{i} y_{1} A_{i-1} V_{i}^{-1} y_{1} V_{i-1} V_{i} y_{1}^{-1} V_{i-1} A_{i-1} A_{i-2}^{-1}(\text { (T2); (T3); induction) } \\
& =A_{i-2} A_{i-1}^{-1} v_{i-1}^{-1} y_{1} \quad A_{i-2}^{-1} A_{i-1} y_{1}^{-1} A_{i-1}^{-1} v_{i-1}^{-1} v_{i}^{-1} v_{i-1}^{-1} A_{i-1}^{-1} y_{1}^{-1} A_{i-2}^{-1} y_{1} v_{i} v_{i-1} v_{i}^{-1} A_{i-1} \\
& v_{i} V_{i-1} y_{1} A_{i-1} y_{1} v_{i-1} V_{i} y_{1}^{-1} v_{i-1} A_{i-1} A_{i-2}^{-1} \text { (by (T2); (T3); induction) } \\
& =A_{i-2} A_{i-1}^{-1} v_{i-1}^{-1} y_{1} A_{i-1} \quad A_{i-2}^{-1} y_{1}^{-1} A_{i-1}^{-1} v_{i-1}^{-1} v_{i}^{-1} v_{i-1}^{-1} A_{i-1}^{-1} y_{1}^{-1} A_{i-2}^{-1} v_{i} \quad y_{1} v_{i-1} A_{i-1} y_{1} \\
& v_{i-1} A_{i-1} y_{1} v_{i-1} A_{i-1} \quad v_{i} A_{i-1}^{-1} y_{1}^{-1} v_{i-1} A_{i-1} A_{i-2}^{-1} \quad \text { (}(T 2) ;(T 3) \text {; induction) } \\
& =A_{i-2} A_{i-1}^{-1} v_{i-1}^{-1} y_{1} A_{i-1} \quad A_{i-2}^{-1} y_{1}^{-1} A_{i-1}^{-1} v_{i-1}^{-1} v_{i}^{-1} v_{i-1}^{-1} A_{i-1}^{-1} y_{1}^{-1} A_{i-2}^{-1} v_{i} \\
& h_{i-1}\left(\quad\left(x_{1} ; x_{2} ; x_{3}\right)\right) v_{i} A_{i-1}^{-1} y_{1}^{-1} v_{i-1} A_{i-1} A_{i-2}^{-1} \quad \text { (by Proposition 2:8) } \\
& =A_{i-2} A_{i-1}^{-1} v_{i-1}^{-1} y_{1} A_{i-1} \quad A_{i-2}^{-1} y_{1}^{-1} A_{i-1}^{-1} v_{i-1}^{-1} v_{i}^{-1} v_{i-1}^{-1} A_{i-1}^{-1} y_{1}^{-1} A_{i-2}^{-1} v_{i} A_{i-2} y_{1} A_{i-1} \\
& v_{i-1} A_{i-1} y_{1} A_{i-2} v_{i} \quad A_{i-1}^{-1} y_{1}^{-1} v_{i-1} A_{i-1} A_{i-2}^{-1} \text { (by induction) } \\
& =A_{i-2} A_{i-1}^{-1} v_{i-1}^{-1} y_{1} A_{i-1} \quad A_{i-2}^{-1} y_{1}^{-1} A_{i-1}^{-1} v_{i-1}^{-1} v_{i}^{-1} v_{i} v_{i-1} v_{i}^{-1} A_{i-1} y_{1} A_{i-2} v_{i} \quad A_{i-1}^{-1} y_{1}^{-1} \\
& v_{i-1} A_{i-1} A_{i-2}^{-1}(\text { by (T2); (T3); induction) } \\
& =1 \text { (by (T2);(T3); induction) }
\end{aligned}
$$

Assertion 2 Recall that $P \Gamma_{\text {gir; }}$ denotes the Coxeter graph drawn in Figure 21. There is a well de ned homomorphism $\mathrm{g}: \mathrm{A}\left(\mathrm{P} \Gamma_{\mathrm{g} ; \mathrm{r} ; \mathrm{n}}\right)$! $\mathrm{G}(\mathrm{g} ; \mathrm{r} ; \mathrm{n})$ which sends x_{i} on x_{i} for $i=0 ;::: ; r+1, x_{r+i}$ on A_{i} for $i=2 ;::: ; n, y_{i}$ on y_{i} for $i=1 ;::: ; 2 g-1, z$ on z, and u_{i} on u_{i} for $i=1 ;::: ; r$.

Proof of Assertion 2 We have to verify that the following relations hold in G(g;r;n).

The relations (T6) and (T8) hold by Assertion 1, and the other retations are direct consequences of the \backslash braid" relations in $A\left(\Gamma_{g ; r ; n}\right)$.

Recall that $\mathrm{PG}(\mathrm{g} ; \mathrm{r} ; \mathrm{n})$ denotes the quotient of $\mathrm{A}\left(\mathrm{P} \Gamma_{\mathrm{g} ; \mathrm{r} ; \mathrm{n}}\right)$ by the relations (PR1), ...,(PR4), (PR5a), (PR6a), (PR6b), and that this quotient is isomorphic with PM ($\mathrm{F}_{\mathrm{g} ; \mathrm{r}+1} ; \mathrm{P}_{\mathrm{n}}$) (see Proposition 3.7).

Assertion 3 The homomorphism $\mathrm{g}: \mathrm{A}\left(\mathrm{P} \Gamma_{\mathrm{g} ; \mathrm{r} ; \mathrm{n}}\right)!\mathrm{G}(\mathrm{g} ; \mathrm{r} ; \mathrm{n})$ induces a homomorphism $\mathrm{g}: \mathrm{PG}(\mathrm{g} ; \mathrm{r} ; \mathrm{n}) \mathrm{l} \mathrm{G}(\mathrm{g} ; \mathrm{r} ; \mathrm{n})$.

Proof of Assertion 3 It su ces to show that the following relations hold in G(g;r;n).
(T12) $g\left(x_{k}{ }^{-1}\left(x_{i+1} ; x_{j} ; y_{1}\right) x_{i} \quad\left(x_{i+1} ; x_{j} ; y_{1}\right)\right)$

$$
=g\left({ }^{-1}\left(x_{i+1} ; x_{j} ; y_{1}\right) x_{i} \quad\left(x_{i+1} ; x_{j} ; y_{1}\right) x_{k}\right) \text { for } 0 \quad k<j<i \quad r+n-1 ;
$$

(T13) $\quad g\left(y_{2}{ }^{-1}\left(x_{i+1} ; x_{j} ; y_{1}\right) x_{i} \quad\left(x_{i+1} ; x_{j} ; y_{1}\right)\right)$

$$
=g\left({ }^{-1}\left(x_{i+1} ; x_{j} ; y_{1}\right) x_{i} \quad\left(x_{i+1} ; x_{j} ; y_{1}\right) y_{2}\right) \text { for } 0 \quad j<i \quad r+n-1 ;
$$

(T14) $g\left(\left(x_{i} ; x_{i+1} ; y_{1} ; y_{2} ; y_{3} ; z\right)^{-2}\left(x_{i+1} ; y_{1} ; y_{2} ; y_{3} ; z\right)\right)$ $=g\left(\left(x_{0} ; x_{i} ; x_{i+1} ; y_{1}\right)^{-2}\left(x_{0} ; x_{i+1} ; y_{1}\right)\right)$ for $r+1$ i $r+n-1$:

Relation (T12): for $\mathrm{i} \quad \mathrm{r}+1$ and $\mathrm{j}<\mathrm{i}-1$, we have:
(E1) $\quad g\left({ }^{-1}\left(x_{i+1} ; x_{j} ; y_{1}\right) x_{i} \quad\left(x_{i+1} ; x_{j} ; y_{1}\right)\right)$
$=y_{1}^{-1} g\left(x_{j}\right)^{-1} A_{i-r+1}^{-1} y_{1}^{-1} A_{i-r} y_{1} A_{i-r+1} g\left(x_{j}\right) y_{1}$
$=y_{1}^{-1} g\left(x_{j}\right)^{-1} A_{i-r-1} v_{i-r}^{-1} A_{i-r}^{-1} v_{i-r}^{-1} A_{i-r}^{-1} y_{1}^{-1} A_{i-r} y_{1} A_{i-r} v_{i-r} A_{i-r} v_{i-r}$ $A_{i-r-1}^{-1} g\left(x_{j}\right) y_{1} \quad$ (by (T1))
$=v_{i-r}^{-1} y_{1}^{-1} g\left(x_{j}\right)^{-1} A_{i-r}^{-1} A_{i-r-1} v_{i-r}^{-1} A_{i-r}^{-1} A_{i-r} y_{1} A_{i-r}^{-1} A_{i-r} v_{i-r} A_{i-r-1}^{-1} A_{i-r}$ $g\left(x_{j}\right) y_{1} v_{i-r}$ (by (T2); (T3); (T4))
$=v_{i-r}^{-1} y_{1}^{-1} g\left(x_{j}\right)^{-1} A_{i-r}^{-1} y_{1}^{-1} A_{i-r-1} y_{1} A_{i-r} g\left(x_{j}\right) y_{1} v_{i-r} \quad$ (by (T2);(T3);(T4))
$=v_{i-r}^{-1} g\left({ }^{-1}\left(x_{i} ; x_{j} ; y_{1}\right) x_{i-1} \quad\left(x_{i} ; x_{j} ; y_{1}\right)\right) v_{i-r}$:
For $\mathrm{i} \quad \mathrm{r}+1$ and $\mathrm{j}=\mathrm{i}-1$ we have:
(E2) $\quad g\left({ }^{-1}\left(x_{i+1} ; x_{i-1} ; y_{1}\right) x_{i} \quad\left(x_{i+1} ; x_{i-1} ; y_{1}\right)\right)$
$=y_{1}^{-1} A_{i-r-1}^{-1} A_{i-r+1}^{-1} y_{1}^{-1} A_{i-r} y_{1} A_{i-r+1} A_{i-r-1} y_{1}$
$=y_{1}^{-1} A_{i-r-1}^{-1} A_{i-r-1} V_{i-r}^{-1} A_{i-r}^{-1} v_{i-r}^{-1} A_{i-r}^{-1} y_{1}^{-1} A_{i-r} y_{1} A_{i-r} V_{i-r} A_{i-r} V_{i-r}$
$A_{i-r-1}^{-1} A_{i-r-1} y_{1} \quad$ (by (T1))
$=v_{i-r}^{-1} y_{1}^{-1} A_{i-r}^{-1} v_{i-r}^{-1} A_{i-r}^{-1} A_{i-r} y_{1} A_{i-r}^{-1} A_{i-r} v_{i-r} A_{i-r} y_{1} v_{i-r}$
(by (T2);(T3);(T4))
$=v_{i-r}^{-1} y_{1}^{-1} y_{1} A_{i-r} y_{1}^{-1} y_{1} v_{i-r} \quad$ (by (T2); (T3); (T4))
$=v_{i-r}^{-1} A_{i-r} v_{i-r}$:
First, assume that $i \quad r$. Then the relation (T12) follows from the relation (R3) in the de nition of $G(g ; r ; n)$. Now, we assume that $j<r \quad i \quad r+n-1$,
and we prove by induction on i that the relation (T12) holds. The case $i=r$ follows from the relation (R3) in the de nition of $G(g ; r ; n)$, and the case $i>r$ follows from the inductive hypothesis and from the equality (E1) above. Now, we assume that $\mathrm{r} \quad \mathrm{j}<\mathrm{i} \quad \mathrm{r}+\mathrm{n}-1$, and we prove, again by induction on i, that the relation (T12) holds. The case $i=j+1$ follows from the equality (E2) above, and the case $\mathrm{i}>\mathrm{j}+1$ follows from the inductive hypothesis and from the equality (E1).

The relation (T13) can be shown in the same manner as the relation (T12).
Redation (T14): We prove by induction on i supf r; $1 g$ that the redation (T14) holds in $G(g ; r ; n)$. If $i=r \quad 1$, then the relation (T14) follows from the relation ($R 8 b$) in the de nition of $G(g ; r ; n$). Assume $r=0$ and $i=1$. Then:

$$
\begin{aligned}
& g\left({ }^{2}\left(x_{2} ; y_{1} ; y_{2} ; y_{3} ; z\right)^{-1}\left(x_{1} ; x_{2} ; y_{1} ; y_{2} ; y_{3} ; z\right)\left(x_{0} ; x_{1} ; x_{2} ; y_{1}\right){ }^{-2}\left(x_{0} ; x_{2} ; y_{1}\right)\right) \\
& =z y_{3} y_{2} y_{1} A_{2} A_{1}^{-1} y_{1}^{-1} y_{2}^{-1} y_{3}^{-1} z^{-1} y_{3} y_{2} y_{1} A_{1} A_{2}^{-1} y_{1}^{-1} y_{2}^{-1} y_{3}^{-1} y_{2} y_{1} A_{2} A_{1}^{-1} y_{1}^{-1} y_{2}^{-1} A_{1} y_{1} \\
& A_{1} A_{2}^{-1} y_{1}^{-1} A_{1}^{-1} \quad A_{1} y_{1} A_{1}^{-1} A_{2} y_{1}^{-1} A_{1}^{-1} A_{0} y_{1} A_{1} A_{2}^{-1} y_{1}^{-1} A_{0}^{-1} \quad \text { (by Lemma 3:8) } \\
& =z y_{3} y_{2} y_{1} V_{1} A_{1} V_{1} A_{1} A_{0}^{-1} A_{1}^{-1} y_{1}^{-1} y_{2}^{-1} y_{3}^{-1} z^{-1} y_{3} y_{2} y_{1} A_{1} A_{0} A_{1}^{-1} v_{1}^{-1} A_{1}^{-1} v_{1}^{-1} y_{1}^{-1} y_{2}^{-1} \\
& y_{3}^{-1} y_{2} y_{1} v_{1} A_{1} v_{1} A_{1} A_{0}^{-1} A_{1}^{-1} y_{1}^{-1} y_{2}^{-1} A_{0} y_{1} A_{1} A_{0} A_{1}^{-1} v_{1}^{-1} A_{1}^{-1} v_{1}^{-1} y_{1}^{-1} A_{0}^{-1} \text { (T1) } \\
& =v_{1} \quad z y_{3} y_{2} y_{1} A_{1} A_{0}^{-1} y_{1}^{-1} y_{2}^{-1} y_{3}^{-1} z^{-1} y_{3} y_{2} y_{1} A_{0} A_{1}^{-1} y_{1}^{-1} y_{2}^{-1} y_{3}^{-1} y_{2} y_{1} A_{1} A_{0}^{-1} y_{1}^{-1} y_{2}^{-1} \\
& \mathrm{~A}_{0} \mathrm{y}_{1} \mathrm{~A}_{0} \mathrm{~A}_{1}^{-1} \mathrm{y}_{1}^{-1} \mathrm{~A}_{0}^{-1} \mathrm{~V}_{1}^{-1} \text { (by (T2); (T3); (T4)) } \\
& =v_{1}{ }^{2}\left(x_{1} ; y_{1} ; y_{2} ; y_{3} ; z\right)^{-1}\left(x_{0} ; x_{1} ; y_{1} ; y_{2} ; y_{3} ; z\right) v_{1}^{-1} \quad \text { (by Lemma 3:8) } \\
& =1 \text { (by (R8a)): }
\end{aligned}
$$

Now, we assume that $\mathrm{i}>\operatorname{supf} \mathrm{r} ; 1 \mathrm{~g}$. Then:

$$
\begin{aligned}
& g\left({ }^{2}\left(x_{i+1} ; y_{1} ; y_{2} ; y_{3} ; z\right)^{-1}\left(x_{i} ; x_{i+1} ; y_{1} ; y_{2} ; y_{3} ; z\right) \quad\left(x_{0} ; x_{i} ; x_{i+1} ; y_{1}\right)\right. \\
& \left.{ }^{-2}\left(x_{0} ; x_{i+1} ; y_{1}\right)\right) \\
& =z y_{3} y_{2} y_{1} A_{i-r+1} A_{i-r}^{-1} y_{1}^{-1} y_{2}^{-1} y_{3}^{-1} z^{-1} y_{3} y_{2} y_{1} A_{i-r} A_{i-r+1}^{-1} y_{1}^{-1} y_{2}^{-1} y_{3}^{-1} y_{2} y_{1} A_{i-r+1} \\
& A_{i-r}^{-1} y_{1}^{-1} y_{2}^{-1} A_{i-r} y_{1} A_{i-r} A_{i-r+1}^{-1} y_{1}^{-1} A_{i-r}^{-1} \quad A_{i-r} y_{1} A_{i-r}^{-1} A_{i-r+1} y_{1}^{-1} A_{i-r}^{-1} x_{0} y_{1} \\
& A_{i-r} A_{i-r+1}^{-1} y_{1}^{-1} x_{0}^{-1} \quad \text { (by Lemma 3:8) } \\
& =z y_{3} y_{2} y_{1} v_{i-r} A_{i-r} V_{i-r} A_{i-r} A_{i-r-1}^{-1} A_{i-r}^{-1} y_{1}^{-1} y_{2}^{-1} y_{3}^{-1} z^{-1} y_{3} y_{2} y_{1} A_{i-r} A_{i-r-1} A_{i-r}^{-1} \\
& v_{i-r}^{-1} A_{i-r}^{-1} v_{i-r}^{-1} y_{1}^{-1} y_{2}^{-1} y_{3}^{-1} y_{2} y_{1} v_{i-r} A_{i-r} v_{i-r} A_{i-r} A_{i-r-1}^{-1} A_{i-r}^{-1} y_{1}^{-1} y_{2}^{-1} x_{0} y_{1} A_{i-r} \\
& A_{i-r-1} A_{i-r}^{-1} v_{i-r}^{-1} A_{i-r}^{-1} v_{i-r}^{-1} y_{1}^{-1} x_{0}^{-1} \text { (by (T1)) } \\
& =v_{i-r} \quad z y_{3} y_{2} y_{1} A_{i-r} A_{i-r-1}^{-1} y_{1}^{-1} y_{2}^{-1} y_{3}^{-1} z^{-1} y_{3} y_{2} y_{1} A_{i-r-1} A_{i-r}^{-1} y_{1}^{-1} y_{2}^{-1} y_{3}^{-1} y_{2} y_{1} \\
& A_{i-r} A_{i-r-1}^{-1} y_{1}^{-1} y_{2}^{-1} x_{0} y_{1} A_{i-r-1} A_{i-r}^{-1} y_{1}^{-1} x_{0}^{-1} \quad v_{i-r}^{-1} \quad \text { (by (T2); (T3); (T4)) } \\
& =v_{i-r} g\left({ }^{2}\left(x_{i} ; y_{1} ; y_{2} ; y_{3} ; z\right) \quad{ }^{-1}\left(x_{i-1} ; x_{i} ; y_{1} ; y_{2} ; y_{3} ; z\right) \quad\left(x_{0} ; x_{i-1} ; x_{i} ; y_{1}\right)\right. \\
& \left.\left.{ }^{-2}\left(x_{0} ; x_{i} ; y_{1}\right)\right) \quad v_{i-r}^{-1} \quad \text { (by Lemma } 3: 8\right) \\
& =1 \text { (by induction): }
\end{aligned}
$$

Let $\mathrm{V}_{1} ;::: ; \mathrm{V}_{\mathrm{n}-1}$ denote the natural generators of the Artin group $\mathrm{A}\left(\mathrm{A}_{\mathrm{n}-1}\right)$, numbered according to Figure 6. Applying Lemma 2.5 to the exact sequence
(2.1) of Subsection 2.2, one has that $M\left(F_{g ; r+1} ; P_{n}\right)$ is isomorphic with the quotient of the free product $P G(g ; r ; n) \quad A\left(A_{n-1}\right)$ by the following relations.

Relations from n :

$$
\begin{align*}
& V_{i}^{2}={ }^{2}\left(x_{r+i-1} ; x_{r+i+1} ; y_{1}\right)^{-1}\left(x_{r+i-1} ; x_{r+i} ; x_{r+i+1} ; y_{1}\right) \tag{T15}\\
& \quad \text { for } 1 \quad i \quad n-1:
\end{align*}
$$

Relations from conjugation by the V_{i} 's:
(T16) $V_{i} w V_{i}^{-1}=w$ for $1 \quad i \quad n-1$ and

$$
\text { w } 2 \text { fx } x_{0} ;::: ; x_{r+i-1} ; x_{r+i+1} ;::: ; x_{r+n} ; y_{1} ;::: ; y_{2 g-1} ; z ; u_{1} ;::: ; u_{r} g ;
$$

(T 17) $V_{i} x_{r+i} V_{i}^{-1}=y_{1} x_{r+i-1} x_{r+i}^{-1} y_{1}^{-1} x_{r+i+1} y_{1} x_{r+i} x_{r+i-1}^{-1} y_{1}^{-1}$ for $1 \quad i \quad n-1$:
We can easily prove using Proposition 2.12 that the relation (T15) \holds" in $M\left(F_{g ; r+1} ; P_{n}\right)$. The relation (T16) is obvious, while the relation (T17) has to be veri ed by hand.

Now, the homomorphism $g: P G(g ; r ; n)!G(g ; r ; n)$ extends to a homomorphism $f: P G(g ; r ; n) \quad A\left(A_{n-1}\right)!G(g ; r ; n)$ which sends V_{i} on v_{i} for all $i=1 ;::: ; n-1$.

Assertion 4 The homomorphism $f: P G(g ; r ; n) \quad A\left(A_{n-1}\right)!G(g ; r ; n)$ induces a homomorphism $f: M\left(F_{g ; r+1} ; P_{n}\right)!G(g ; r ; n)$.

One can easily verify on the generators of $G(g ; r ; n)$ that f is the identity of $G(g ; r ; n)$. So, Assertion 4 nishes the construction of f and the proof of Theorem 3.1.

Proof of Assertion 4 We have to show that: if $w_{1}=w_{2}$ is one of the relations (T15), (T16), (T17), then $f\left(w_{1}\right)=f\left(w_{2}\right)$.

Relation (T15):

$$
\begin{aligned}
& f\left({ }^{-1}\left(x_{r+i-1} ; x_{r+i} ; x_{r+i+1} ; y_{1}\right) \quad{ }^{2}\left(x_{r+i-1} ; x_{r+i+1} ; y_{1}\right)\right) v_{i}^{-2} \\
& =A_{i}^{-1} y_{1}^{-1} A_{i-1}^{-1} A_{i+1}^{-1} y_{1}^{-1} A_{i}^{-1} y_{1} A_{i-1} A_{i+1} y_{1} A_{i-1} A_{i+1} v_{i}^{-2} \\
& \text { (by Propositions 2:8 and 2:9) } \\
& =A_{i}^{-1} y_{1}^{-1} A_{i-1}^{-1} A_{i-1} v_{i}^{-1} A_{i}^{-1} v_{i}^{-1} A_{i}^{-1} y_{1}^{-1} A_{i}^{-1} y_{1} A_{i-1} A_{i-1}^{-1} A_{i} v_{i} A_{i} v_{i} y_{1} A_{i-1} A_{i-1}^{-1} A_{i} v_{i} \\
& A_{i} v_{i} v_{i}^{-2} \text { (by (T1)) } \\
& =A_{i}^{-1} y_{1}^{-1} v_{i}^{-1} A_{i}^{-1} v_{i}^{-1} A_{i}^{-1} A_{i} y_{1}^{-1} A_{i}^{-1} A_{i} v_{i} A_{i} v_{i} y_{1} A_{i} v_{i} A_{i} v_{i}^{-1} \quad \text { (by (T2); (T3); (T4)) } \\
& =A_{i}^{-1} y_{1}^{-1} v_{i}^{-1} y_{1} A_{i}^{-1} y_{1}^{-1} v_{i} y_{1} v_{i}^{-1} A_{i} v_{i} A_{i} \quad \text { (by (T1);:::; (T4)) } \\
& =1 \text { (by (T2);(T3);(T4)): }
\end{aligned}
$$

Therelation (T16) is a direct consequence of the braid relations in $A\left(\Gamma_{g ; r ; n}\right)$.

Relation (T17):

$$
\begin{aligned}
& f\left(y_{1} x_{r+i-1} x_{r+c}^{-1} y_{1}^{-1} x_{r+i+1} y_{1} x_{r+i} x_{r+i-1}^{-1} y_{1}^{-1}\right) v_{i} f\left(x_{r+i}^{-1}\right) v_{i}^{-1} \\
= & y_{1} A_{i-1} A_{i}^{-1} y_{1}^{-1} A_{i+1}^{-1} y_{1} A_{i} A_{i-1}^{-1} y_{1}^{-1} v_{i} A_{i}^{-1} v_{i}^{-1} \\
= & y_{1} A_{i}^{-1} A_{i-1}^{-1} y_{1}^{-1} A_{i-1}^{-1} A_{i} v_{i} A_{i} v_{i} y_{1} A_{i} v_{i} A_{i-1}^{-1} y_{1}^{-1} A_{i}^{-1} v_{i}^{-1} \quad \text { (by (T1); (T2); (T3)) } \\
= & y_{1} A_{i}^{-1} y_{1}^{-1} A_{i-1}^{-1} y_{1} A_{i} v_{i} A_{i} v_{i} y_{1} A_{i} v_{i} A_{i-1}^{-1} y_{1}^{-1} A_{i}^{-1} v_{i}^{-1} \quad \text { (by (T4)) } \\
= & A_{i}^{-1} y_{1}^{-1} A_{i} A_{i-1}^{-1} y_{1} A_{i} v_{i} A_{i} v_{i} y_{1} A_{i} v_{1} A_{i-1}^{-1} y_{1}^{-1} A_{i}^{-1} v_{i}^{-1} \quad \text { (by (T4)) } \\
= & A_{i}^{-1} y_{1}^{-1} A_{i-1}^{-1} y_{1} A_{i} v_{i} y_{1} A_{i} v_{i} y_{1} A_{i} v_{i} A_{i-1}^{-1} y_{1}^{1} 1 A_{i}^{-1} v_{i}^{-1} \quad \text { (by (T2); (T3); (T4)) } \\
= & A_{i}^{-1} y_{1}^{-1} A_{i-1}^{-1} h_{i}\left(\quad\left(x_{1} ; x_{2} ; x_{3}\right)\right) A_{i-1}^{-1} y_{1}^{-1} A_{i}^{-1} v_{i}^{-1} \quad \text { (by Proposition 2:8) } \\
= & A_{i}^{-1} y_{1}^{-1} A_{i-1}^{-1} A_{i-1} y_{1} A_{i} v_{i} A_{i} y_{1} A_{i-1} A_{i-1}^{-1} y_{1}^{-1} A_{i}^{-1} v_{i}^{-1} \text { (by (T5) Proposition 2:9) } \\
= & 1:
\end{aligned}
$$

3.2 Proof of Theorem 3.2

Let $\mathrm{C}_{1}: \mathrm{S}^{1}$! $\oint_{\mathrm{g} ; 1}$ be the boundary curve of $\mathrm{F}_{\mathrm{g} ; 1}$. We regard $\mathrm{F}_{\mathrm{g} ; 0}$ as obtained from $F_{g ; 1}$ by gluing a disk D^{2} along c_{1}, and we denote by ' : $M\left(F_{g ; 1} ; P_{n}\right)$! $\mathrm{M}\left(\mathrm{F}_{\mathrm{g} ; 0} ; \mathrm{P}_{\mathrm{n}}\right)$ the homomorphism induced by the inclusion of $\mathrm{F}_{\mathrm{g} ; 1}$ in $\mathrm{F}_{\mathrm{g} ; 0}$. The next proposition is the key of the proof of Theorem 3.2.

Proposition 3.9 (i) Let g 2, and let $a_{n} ; a_{n}^{0}$ betheDehn twists represented in Figure 22. Then ' is surjective and its kerne is the normal subgroup of $\mathrm{M}\left(\mathrm{F}_{\mathrm{g} ;} ; \mathrm{P}_{\mathrm{n}}\right)$ normaly generated by $\mathrm{f} \mathrm{a}_{\mathrm{n}}^{-1} \mathrm{a}_{\mathrm{n}}^{0} \mathrm{~g}$.
(ii) Let $\mathrm{g}=1$, and let e e e^{0} be the Dehn twists represented in Figure 22. Then , is surjective and its kerne is the normal subgroup of M ($F_{1 ; 1} ; P_{n}$) normaly generated by $f a_{n}^{-1} a_{0} ; e^{-1} e^{0} g$.

Figure 22: Relations in $M\left(F_{g ; 0} ; P_{n}\right)$

Proof We choose a point Q in the interior of the disk D^{2}, and we denote by $M_{Q}\left(F_{g ; 0} ; P_{n}[f Q g)\right.$ the subgroup of $M\left(F_{g ; 0} ; P_{n}[f Q g)\right.$ of isotopy classes of elements of $H\left(F_{g ; 0} ; P_{n}[f Q g)\right.$ that $x Q$. An easy algebraic argument on the
exact sequences (2.1), (2.2), and (2.3) of Subsection 2.2 shows that we have the following exact sequences.
(2:2:a) $1!\quad{ }_{1}\left(F_{g ; 0} n P_{n} ; Q\right)!M_{Q}\left(F_{g ; 0} ; P_{n}[f Q g) \dagger^{1} M\left(F_{g ; 0} ; P_{n}\right)!\quad 1 ;\right.$

$$
\begin{equation*}
1!Z!M\left(F_{g ; 1} ; P_{n}\right) \stackrel{ب^{2}}{+} M_{Q}\left(F_{g ; 0} ; P_{n}[f Q g)!1:\right. \tag{2:3:a}
\end{equation*}
$$

Moreover, we have ' = ' 1 ' 2 .
A rst consequence of these exact sequences is that ' is surjective Now, we use them for nding a normal generating set of ker'.
The group ${ }_{1}\left(\mathrm{~F}_{\mathrm{g} ; 0} \mathrm{n} \mathrm{P}_{\mathrm{n}} ; \mathrm{Q}\right)$ is the free group freely generated by the loops
 hand that the following equalities hold in $\mathrm{M}_{\mathrm{Q}}\left(\mathrm{F}_{\mathrm{g} ; 0} ; \mathrm{P}_{\mathrm{n}}[\mathrm{fQg})\right.$:

$$
\begin{aligned}
& i={ }^{\prime}{ }_{2}\left(b_{1} a_{n}^{0} a_{i} b_{1} a_{n}\right)^{-1} \quad n^{-1} \quad{ }_{2}\left(b_{1} a_{n}^{0} a_{i} b_{1} a_{n}\right) \quad \text { for } i=1 ;:: ; n-1 ; \\
& { }_{1}={ }_{2}\left(b_{1} a_{n}\right)^{-1} n^{\prime}{ }_{2}\left(b_{1} a_{n}\right) \text {; } \\
& j={ }_{2}^{\prime}\left(\mathrm{g}_{\mathrm{g}}^{-1}\right)^{-1} \quad{ }_{j-1}^{\prime}{ }_{2}\left(\mathrm{~g} \mathrm{~g}_{-1}\right) \quad \text { for } \mathrm{j}=2 ;::: ; 2 g-1 \text { : }
\end{aligned}
$$

Moreover, by Lemma 2.6, we have:

$$
n={ }^{\prime} 2\left(a_{n}^{-1} a_{n}^{0}\right):
$$

On the other hand, by Lemma 2.7, the Dehn twists 1 along the boundary curve of $\mathrm{F}_{\mathrm{g} ; 1}$ generates the kerne of ' 2 . So, the kernel of ' is the normal subgroup normaly generated by $f a_{n}^{-1} a_{n}^{0} ; 1 g$.

Now, assumeg 2. Let G^{0} denote the quotient of $\mathrm{M}\left(\mathrm{F}_{\mathrm{g} ; 1} ; \mathrm{P}_{\mathrm{n}}\right)$ by the relation $a_{n}=a_{n}^{0}$. De ne a spinning pair of Dehn twists to be a pair (; 9 of Dehn twists conjugated to $\left(a_{n} ; a_{n}^{0}\right)$, namely, a pair ($; 9$ of Dehn twists satisfying: there exists $2 \mathrm{M}\left(\mathrm{F}_{\mathrm{g} ; 1} ; \mathrm{P}_{\mathrm{n}}\right)$ such that $=\mathrm{a}_{\mathrm{n}}{ }^{-1}$ and ${ }^{0}=\mathrm{a}_{\mathrm{n}}^{0}{ }^{-1}$. Note that we have the equality $={ }^{0}$ in G^{0} if $(; 9$ is a spinning pair. Consider the Dehn twists $e_{1} ; e_{2} ; e_{3} ; e_{1}^{0} ; e_{2}^{0} ; e_{3}^{0}$ represented in Figure 24. The pairs ($e_{1} ; e_{1}^{0}$), $\left(e_{2} ; e_{2}^{0}\right)$, ($e_{3} ; e_{3}^{0}$) arespinning pairs, thus we have the equalities $e_{1}=e_{1}^{0}, e_{2}=e_{2}^{0}$, $e_{3}=e_{3}^{0}$ in G^{0}. Moreover, the lantern relation of Lemma 2.4 implies:

$$
\mathrm{e}_{1} \mathrm{e}_{2} \mathrm{e}_{3} \quad 1=\mathrm{e}_{1}^{0} \mathrm{e}_{2}^{0} e_{3}^{0}:
$$

Thus, the equality $I_{1}=1$ holds in G^{0}. This shows that the kernel of ' is the normal subgroup of $M\left(F_{g ; 1} ; P_{n}\right)$ normaly generated by $f a_{n}^{-1} a_{n}^{0} g$.

Now, we assume $g=1$. Then $a_{n}^{0}=a_{0}$. Let G^{0} be the quotient of $M\left(F_{1 ; 1} ; P_{n}\right)$ by the relation $a_{n}=a_{0}$. By Proposition 2.12, we have the following equalities in G^{0}.

Figure 23: Generators of ${ }_{1}\left(F_{g ; 0} n P_{n} ; Q\right)$

$$
\begin{aligned}
{ }_{1} \mathrm{e} & =\left(a_{0} b_{1} a_{n} a_{0} b_{1} a_{0}\right)^{2}=\left(a_{0} b_{1} a_{0} a_{0} b_{1} a_{0}\right)^{2} \\
e^{0} & =\left(a_{0} b_{1} a_{0}\right)^{4}
\end{aligned}
$$

Thus, we have the equality $\quad 1=e^{-1} e^{0}$ in G^{0}. So, the kernel of ' is the normal subgroup of $M\left(F_{1 ; 1} ; P_{n}\right)$ normaly generated by $f a_{n}^{-1} a_{0} ; e^{-1} e^{0} g$.

Proof of Theorem 3.2 Recall that $\Gamma_{g ; 0 ; n}$ denotes the Coxeter graph drawn in Figure 18, and that $G(g ; 0 ; n)$ denotes the quotient of $A\left(\Gamma_{g ; 0 ; n}\right)$ by the re Iations (R1), (R2), (R7), (R8a). By Theorem 3.1, there is an isomorphism : $G(g ; 0 ; n)!M\left(F_{g ; 1} ; P_{n}\right)$ which sends x_{i} on a_{i} for $i=0 ; 1, y_{i}$ on b for $i=1 ;::: ; 2 g-1, z$ on c, and v_{i} on i for $i=1 ;::: ; n-1$.
First, assume g 2. Let $G_{0}(g ; n)$ denote the quotient of $G(g ; 0 ; n)$ by the relation (R9a). Proposition 2.12 implies:

$$
\begin{aligned}
& a_{n}=\left(x_{0}^{1-n}\left(x_{1} ; v_{1} ;::: ; v_{n-1}\right)\right) \\
& a_{n}^{0}=\left(x_{0}^{3-2 g}\left(z ; y_{2} ;::: ; y_{2 g-1}\right)\right):
\end{aligned}
$$

Thus, by Proposition 3.9, induces an isomorphism :

$$
0: G_{0}(g ; n)!\quad M\left(F_{g ; 0} ; P_{n}\right):
$$

Figure 24: Lantern relation in $M\left(F_{g ; 1} ; P_{n}\right)$

Now, assume $\mathrm{g}=1$. Let $\mathrm{G}_{0}(1 ; \mathrm{n})$ denote the quotient of $\mathrm{G}(1 ; 0 ; n)$ by the relations (R9b), (R9c). Proposition 2.12 implies:

$$
\begin{aligned}
\mathrm{a}_{\mathrm{n}} & =\left(\mathrm{x}_{0}^{1-\mathrm{n}}\left(\mathrm{x}_{1} ; \mathrm{v}_{1} ;::: ; \mathrm{v}_{\mathrm{n}-1}\right)\right) ; \\
\mathrm{e} & =\left({ }^{2}\left(\mathrm{v}_{1} ;::: ; \mathrm{v}_{\mathrm{n}-1}\right)\right) ; \\
\mathrm{e}^{0} & =\left({ }^{4}\left(\mathrm{x}_{0} ; \mathrm{y}_{1}\right)\right):
\end{aligned}
$$

Thus, by Proposition 3.9, induces an isomorphism :

$$
0: G_{0}(1 ; n)!M\left(F_{1 ; 0} ; P_{n}\right):
$$

References

[1] J.S. B irman, Mapping class groups and their relationship to braid groups, Commun. Pure Appl. Math. 22 (1969), 213\{238.
[2] J.S. Birman, Mapping class groups of surfaces, Braids, AMS-IMS-SIAM Jt. Summer Res. Conf., Santa Cruz/ Calif. 1986, Contemp. Math. 78, 1988, pp. 13\{43.
[3] N. B ourbaki, \Groupes et algebres de Lie, Chapitres IV, V et VI", Hermann, Paris, 1968.
[4] E. B rieskorn, K. Saito, Artin-Gruppen und Coxeter-Gruppen, Invent. Math. 17 (1972), 245\{271.
[5] K.S. Brown, Presentations for groups acting on simply-connected complexes, J. Pure Appl. Algebra 32 (1984), 1\{10.
[6] R. Charney, Artin groups of nite type are biautomatic, Math. Ann. 292 (1992), $671\{684$.
[7] P. Dehornoy, L. Paris, Gaussian groups and Garside groups, two generalizations of Artin groups, Proc. London Math. Soc. 79 (1999), $569\{604$.

Algebraic \& Geometric Topology, Volume 1 (2001)
[8] P. Deligne, Les immeubles des groupes de tresses generalises, Invent. Math. 17 (1972), 273\{302.
[9] S. Gervais, A nite presentation of the mapping class group of an oriented surface, Topology, to appear.
[10] A. Hatcher, W. Thurston, A presentation for the mapping class group of a closed orientable surface, Topology 19 (1980), 221 \{237.
[11] S. Humphries, Generators for the mapping class group, Topology of lowdimensional manifolds, Proc. 2nd Sussex Conf., 1977, Lect. Notes Math. 722, 1979, pp. $44\{47$.
[12] S. Humphries, On representations of Artin groups and the Tits conjecture, J. Algebra 169 (1994), 847\{862.
[13] D. J ohnson, The structure of the Torelli group I: A nite set of generators for I , Ann. Math. 118 (1983), 423\{442.
[14] C. Labruere, \Groupes d'Artin et mapping class groups", Ph. D. Thesis, Universite de Bourgogne, 1997.
[15] C. Labruere, Generalized braid groups and mapping class groups, J. K not Theory Rami cations 6 (1997), 715\{726.
[16] H. van der Lek, \The homotopy type of complex hyperplane complements", Ph. D. Thesis, University of Nijmegen, 1983.
[17] E. Looijenga, A ne Artin groups and the fundamental groups of some moduli spaces, preprint.
[18] M. Matsumoto, A presentation of mapping class groups in terms of Artin groups and geometric monodromy of singularities, Math. Ann. 316 (2000), $401\{$ 418.
[19] L. Paris, Parabolic subgroups of Artin groups, J. Algebra 196 (1997), 369\{399.
[20] L. Paris, Centralizers of parabolic subgroups of Artin groups of type A_{1}, B_{1}, and D_{1}, J. Algebra 196 (1997), 400\{435.
[21] L. Paris, D. R olfsen, Geometric subgroups of mapping class groups, J. Reine Angew. Math. 521 (2000), 47 \{83.
[22] B. Perron, J.P. Vannier, Groupe de monodromi e geometrique des singularites simples, Math. Ann. 306 (1996), $231\{245$.
[23] V. Sergiescu, Graphes planaires et presentations des groupes de tresses, Math. Z. 214 (1993), 477\{490.
[24] J. Tits, Le probleme des mots dans les groupes de Coxeter, Sympos. Math., Roma 1, Teoria Gruppi, Dic. 1967 e Teoria Continui Polari, Aprile 1968, 1969, pp. $175\{185$.
[25] B. Wajnryb, A simple presentation for the mapping class group of an orientable surface, Israel J . Math. 45 (1983), $157\{174$.
[26] B. Wajnryb, Artin groups and geometric monodromy, Invent. Math. 138 (1999), 563\{571.

Laboratoire de Topologie, UMR 5584 du CNRS
Universite de Bourgogne, BP 4787021078 Dijon Cedex, France
Email: cl abruer@-bour gogne. fr, I pari s@-bour gogne. fr
Received: 6 February 2001

