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Abstract We show that in the mapping class group of a surface any
relation between Dehn twists of the form T jxT

k
y = M (M a multitwist)

is the lantern relation, and any relation of the form (TxTy)k = M (where
Tx commutes with M ) is the 2-chain relation.
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1 Introduction

There is interesting interplay between the algebraic and topological aspects of
the mapping class group of a surface. One instance is the algebraic charac-
terization of certain topological relations between Dehn twists. For example,
consider the following well-known relations (see, e.g. [6, Chapter 4]):

geometric relation algebraic relation
reflexiveness a = b Ta = Tb
disjointness relation i(a, b) = 0 TaTb = TbTa
braid relation i(a, b) = 1 TaTbTa = TbTaTb

Here a and b are isotopy classes of simple closed curves on a surface, Ta and
Tb are the corresponding Dehn twists, and i(a, b) is the geometric intersection
number between a and b (see below).

One can check directly that the given topological relations imply the corre-
sponding algebraic relations. The algebraic relations characterize the topologi-
cal relations in the sense that the algebraic relations imply the geometric ones.
In other words, the algebraic relations only come from specific configurations
of curves on the surface (see Section 2.4).

Ivanov-McCarthy give even more general statements [7]:

· T ja = T kb if and only if a = b and j = k .

c© Geometry & Topology Publications



1180 Dan Margalit

· T jaT kb = T kb T
j
a if and only if i(a, b) = 0.

· T jaT kb T
j
a = T kb T

j
aT kb if and only if j = k = ±1 and i(a, b) = 1.

McCarthy recently asked whether there was a similar characterization of the
lantern relation, which is a relation between Dehn twists about curves which
lie on a sphere with four punctures:

Lantern relation TxTyTz = Tb1Tb2Tb3Tb4 where the curves are as in Figure 1.

Theorem 1 answers the question in the affirmative.

The lantern relation was discovered by Dehn [3, Section 7g], and later by John-
son [8, Section IV]. Its significance arises in part from the fact that it is one
of very few relations needed to give a finite presentation of the mapping class
group with the finite generating set of Humphries.

x y

z 

b1

b2

b3

b4

Figure 1: The lantern configuration on a sphere with four punctures

For the statement of Theorem 1, recall that the lantern relation can be written
as TxTy = M , where M is a multitwist (see Section 2).

Theorem 1 (Lantern characterization) Suppose T jxT ky = M , where M is a
multitwist word and j, k ∈ Z, is a nontrivial relation between Dehn twists in
Mod(S). Then the given relation (or its inverse) is the lantern relation; that
is, j = k = 1, a regular neighborhood of x ∪ y is a sphere with four bound-
ary components, and M = Tb1Tb2Tb3Tb4T

−1
z , where the bi are the boundary

components of the sphere, and z is a curve on the sphere which has geometric
intersection number 2 with both x and y (the sequence of curves x, y , z should
move clockwise around the punctured sphere as in Figure 1).
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A lantern lemma 1181

In the theorem, the inverse of a relation w1 = w2 between two words w1 and
w2 is the equivalent relation w−1

1 = w−1
2 .

We also prove a similar theorem for the relation (TaTb)6 = Tc , where i(a, b) = 1
and c is the class of the boundary of a regular neighborhood of a ∪ b.

Theorem 2 (2-chain characterization) Suppose M = (TxTy)k , where M is
a multitwist word and k ∈ Z, is a nontrivial relation between powers of Dehn
twists in Mod(S), and [M,Tx] = 1. Then the given relation is the 2-chain
relation—that is, M = T jc , where c is the boundary of a neighborhood of x∪y ,
and k = 6j

In Section 2 we prove the characterizations of the disjointness relation and the
braid relation, and introduce ideas required for the proofs of our theorems.
Section 3 is a proof of Theorem 1 in the case j = k = 1, Section 4 generalizes
to arbitrary j and k , Section 5 contains the proof of Theorem 2, Section 6
contains supporting lemmas, and Section 7 contains further questions related
to this work.

Acknowledgements The author would like to thank John McCarthy for
posing the problem, Benson Farb for relaying the problem and for discussing
it in detail, and Feng Luo, Pallavi Dani, Angela Barnhill, and Kevin Wortman
for helpful conversations and valuable input. The author is also indebted to
the referee, Joan Birman, and Keiko Kawamuro for thoroughly reading a draft
and making many suggestions and corrections. Hessam Hamidi-Tehrani, who
has also been supportive, has obtained similar results [4].

2 Preliminaries

2.1 Notation

Let S be an orientable surface. We denote by Mod(S) the mapping class group
of S (the group of orientation preserving self-homeomorphisms of S , modulo
isotopy). When convenient, we use the same notation for a curve on S , its
isotopy class, and its homology class. Brackets around a curve will be used to
denote the homology class of the curve.

For two isotopy classes of simple closed curves a and b on S , the geometric
intersection number of a and b, denoted i(a, b), is the minimum number of
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intersection points between representatives of the two classes. By definition,
i(a, b) = i(b, a). The algebraic intersection number of a and b, denoted î(a, b),
is the sum of the indices of the intersection points between any representatives
of a and b, where an intersection point is of index 1 when the orientation
of the intersection agrees with some given orientation of the surface, and −1
otherwise. Note that î(a, b) = − î(b, a).

If a is an isotopy class of simple closed curves on S , we denote by Ta the
mapping class of a Dehn twist about a representative of a. As a matter of
convention, Dehn twists will be twists to the left. Explicitly, if a neighborhood
of a representative of a is an annulus A parameterized (with orientation) by
{(r, θ) ∈ R2 : 1 ≤ r ≤ 2, 0 ≤ θ ≤ 2π}, then a representative of Ta is the
diffeomorphism which is given by (r, θ) 7→ (r, θ+ (r− 1)2π) on A (in the given
coordinates) and the identity elsewhere.

A multitwist in Mod(S) is a product of Dehn twists
∏n
j=1 T

ej
aj , where i(aj , ak) =

0 for any j and k and ej ∈ Z.

The term multitwist word is used to describe a word in Mod(S) consisting of
Dehn twists about disjoint curves. If M =

∏n
j=1 T

ej
aj is a multitwist word in

Mod(S), we can say that (for any j ) the curve aj is in M.

2.2 Formulas

Ishida and Poénaru proved Formulas 1 and 2, respectively, using elementary
counting arguments [5, Lemma 2.1][1, Appendice Exposé 4]. These inequalities
are very useful in computations below.

Formula 1 Let a, b, and c be any simple closed curves on S , and let n ∈ Z.
Then:

|n| i(a, b) i(a, c) − i(T na (c), b) ≤ i(b, c)

Formula 2 Let M =
∏n
j=1 T

ej
aj be a multitwist word with ej > 0 for all j (or

ej < 0 for all j ), and let b and c be arbitrary simple closed curves on S . Then:

| i(M(c), b) − Σn
j=1ej i(aj , c) i(aj , b)| ≤ i(b, c)

As a special case of Formula 2, where M = T na and b = c, we have:

Formula 3 Let a and b be any simple closed curves on S . Then:

i(T na (b), b) = |n| i(a, b)2
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It will be essential in the proof of the Theorem 1 to be able to compute the
action of a product of Dehn twists on the homology of a subsurface of S . The
well-known formula below is the pertinent tool.

Formula 4 Let a and b be simple closed curves on S , and k an integer. Then:

[T ka (b)] = [b] + k î(b, a)[a]

where brackets denote equivalence classes in H1(S).

2.3 Basic facts

The following two facts are well-known and elementary [6, Corollary 4.1B,
Lemma 4.1C].

Fact 1 Let a and b be simple closed curves on S . If Ta = Tb , then a is
isotopic to b.

Fact 2 For f ∈ Mod(S) and a any simple closed curve on S , fTaf
−1 = Tf(a) .

We now show that a Dehn twist about a given curve has a nontrivial effect
on every curve intersecting it. This will be used, for example, in the proof of
Proposition 1.

Fact 3 Let a and b be simple closed curves on on S . If i(a, b) 6= 0, then
Ta(b) 6= b.

Proof Using Formula 3 we have i(Ta(b), b) = i(a, b)2 6= 0. On the other hand,
i(b, b) = 0. Therefore Ta(b) 6= b.

2.4 Basic relation characterizations

In the introduction, we stated characterizations of reflexiveness, the disjointness
relation, and the braid relation. The characterization of reflexiveness is Fact 1.
We present the proofs of the latter two characterizations here for completeness,
and as a warmup for our main result.

Proposition 1 Let a and b be simple closed curves on S . If TaTb = TbTa
then i(a, b) = 0.

Algebraic & Geometric Topology, Volume 2 (2002)
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Proof Assume TaTb = TbTa . Then, using Fact 2:

TaTb = TbTa

TaTbT
−1
a = Tb

TTa(b) = Tb

So Ta(b) = b by Fact 1. By Fact 3, i(a, b) = 0.

McCarthy proved the following characterization of the braid relation in Mod(S)
[9, Lemma 4.3]:

Proposition 2 Let a and b be non-isotopic simple closed curves on S . If
TaTbTa = TbTaTb , then i(a, b) = 1.

Proof From the given algebraic relation and Fact 2, we have:

TaTbTa = TbTaTb

(TaTb)Ta(TaTb)−1 = Tb

TTaTb(a) = Tb

So TaTb(a) = b by Fact 1. Applying Formula 3, we have:

i(a, b)2 = i(Tb(a), a) = i(TaTb(a), a) = i(b, a) = i(a, b)

Therefore i(a, b) ∈ {0, 1}. If i(a, b) = 0, then we have T 2
aTb = TaT

2
b , and hence

Ta = Tb , i.e. a is isotopic to b, which contradicts the assumptions.

Ivanov-McCarthy showed that actually the following more general phenomena
hold [7, Theorems 3.14-3.15]:

Proposition 3 Let a and b be simple closed curves on S , and let j and k be
nonzero integers. If T ja = T kb , then a is isotopic to b and j = k .

Proposition 4 Let a and b be simple closed curves on S , and let j and k be
nonzero integers. If T jaT kb = T kb T

j
a then i(a, b) = 0.

Proposition 5 Let a and b be non-isotopic simple closed curves on S , and
let j and k be nonzero integers. If T jaT kb T

j
a = T kb T

j
aT kb , then i(a, b) = 1.

Algebraic & Geometric Topology, Volume 2 (2002)



A lantern lemma 1185

3 Proof of lantern characterization, j = k = 1

The idea is to build up, step by step, the lantern relation using only the given
algebraic information. In particular, we show that each of the following must be
true for any algebraic relation TxTy = M , where M is a multitwist: i(x, y) > 0,
[M,Tx] 6= 1, there is a curve z in the multitwist word M with i(x, z) > 0,
TxTy(z) = z , i(x, z) = i(y, z), i(x, z) = i(x, Ty(z)), i(x, y) = 2, and î(x, y) =
0. From this information, it will follow that the given relation is the lantern
relation.

Step 1 i(x, y) > 0.

If i(x, y) = 0, then TxTy is a multitwist word, and so the multitwist word M
must also be TxTy by Lemma 1, i.e. the equality between the words M and
TxTy in Mod(S) is trivial.

Step 2 [M,Tx] 6= 1.

Assuming that [M,Tx] = 1, we will arrive at a contradiction:

TxTyT
−1
x T−1

y = MT−1
x T−1

y = T−1
x MT−1

y = T−1
x TxTyT

−1
y = 1

So TxTy = TyTx , which implies i(x, y) = 0 (Proposition 4), contradicting Step 1.

Step 3 There is a curve z in the multitwist word M with i(x, z) > 0.

If i(x, z) = 0 for each curve z in M , then [M,Tx] = 1, which contradicts Step 2.
Therefore, there is a curve z in M which has nontrivial intersection with the
curve x.

Step 4 TxTy(z) = z .

This is clear since z is one of the curves in the multitwist word M : TxTy(z) =
M(z) = z .

Step 5 i(x, z) = i(y, z).

Using Formula 3: i(Ty(z), z) = i(y, z)2 and i(T−1
x (z), z) = i(x, z)2 . But since

T−1
x (z) = Ty(z) (Step 4), all four expressions are the same, and so i(y, z)2 =

i(x, z)2 . Since geometric intersection number is a non-negative integer, we have
i(x, z) = i(y, z).
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Step 6 i(y, z) = i(x, Ty(z)).

Using i(Ty(z), z) = i(y, z)2 (Formula 3) and z = TxTy(z) (Step 4), we have:

i(y, z)2 = i(Ty(z), z) = i(z, Ty(z)) = i(Tx(Ty(z)), Ty(z)) = i(x, Ty(z))2

So i(y, z) = i(x, Ty(z)).

Step 7 i(x, y) = 2.

Using Formula 1:
i(y, z) i(y, x) − i(x, Ty(z)) ≤ i(z, x)

But by Steps 5 and 6, i(y, z) = i(x, z) = i(x, Ty(z)), so we can rewrite this as:

i(x, z)(i(x, y)− 2) ≤ 0

Since i(x, z) > 0 (Step 3), this gives i(x, y) ∈ {0, 1, 2}. The case i(x, y) = 0 is
ruled out by Step 1.

We will now rule out i(x, y) = 1. In this case, a neighborhood of x ∪ y on
S is a punctured torus S′ . We will show that the induced action of TxTy on
H1(S′), denoted (TxTy)? , fails to fix any of the nontrivial elements of H1(S′);
this contradicts the assumption that TxTy is equal to a multitwist in Mod(S)
(Lemma 2).

Using {[x], [y]} as an ordered basis for H1(S′), and î(x, y) = 1, Formula 4
yields:

(TxTy)? = (Tx)?(Ty)? =
(

1 1
0 1

)(
1 0
−1 1

)
=
(

0 −1
1 1

)
This matrix does not have an eigenvalue of 1, so (TxTy)? fixes no nontrivial
element of H1(S′).

Thus, i(x, y) = 2.

Step 8 î(x, y) = 0.

Since i(x, y) = 2, either î(x, y) = 0 or î(x, y) = ±2. We assume the latter and
arrive at a contradiction.

Assuming î(x, y) = ±2 and i(x, y) = 2, a neighborhood of x ∪ y (call it S′ ) is
a genus one surface with two boundary components (Figure 2).

As in Step 7, we will show that (TxTy)? (the induced action of TxTy on H1(S′))
does not fix any nontrivial, nonperipheral (see Lemma 2) class in H1(S′). This

Algebraic & Geometric Topology, Volume 2 (2002)



A lantern lemma 1187

v w

y

x

Figure 2: The picture for two simple closed curves with algebraic intersection number 2

will again contradict the assumption that TxTy is equal to a multitwist in
Mod(S) (Lemma 2).

Let x, v , and w be generators of H1(S′) with î(x, v) = î(x,w) = 1, such that
the two boundary components of S′ are in the homology classes v − w and
w − v (Figure 2).

Applying Formula 4 and using y = x+v+w (the case î(x, y) = +2), the action
of (TxTy)? = (Tx)?(Ty)? on H1(S′) (with ordered basis {x, v,w}) is found to
be:

(TxTy)? =

 1 −1 −1
0 1 0
0 0 1

 3 −1 −1
2 0 −1
2 −1 0

 =

 −1 0 0
2 0 −1
2 −1 0


In the case î(x, y) = −2, y = x− v − w and the action is:

(TxTy)? =

 1 −1 −1
0 1 0
0 0 1

 −1 −1 −1
2 2 1
2 1 2

 =

 −5 −4 −4
2 2 1
2 1 2


A basis for the fixed set of each of these linear operations is {v − w}, which is
the homology class of a boundary component of S′ , i.e. the set of peripheral
classes.

We have a contradiction, so î(x, y) = 0.

Step 9 The relation TxTy = M is the lantern relation.

Since x and y have geometric intersection number 2 (Step 7) and algebraic
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intersection number 0 (Step 8), a neighborhood of x ∪ y is a sphere with four
boundary components S′ . Let M be the word

Tb1Tb2Tb3Tb4T
−1
z

where bi are the four boundary components of S′ , and z is one of the two
simple closed curves on S′ that hits each of x and y twice (the one pictured in
Figure 1), then it is well-known that TxTy = M (To check this, draw any three
arcs which cut S′ into a disk, and see that TxTy and M have the same effect
on each of these arcs. Then apply the Alexander lemma, which says that the
mapping class group of a disk is trivial). By Lemma 1, M is uniquely written
as a product of twists about disjoint curves, and we are done.

4 Proof of general lantern characterization

To show that any relation of the form T jxT ky = M (where M is a multitwist
word, j, k ∈ Z) is the lantern relation, we use the same program as in the proof
for the case j = k = 1 for the first 7 steps. Then, instead of homing in on
i(x, y), and î(x, y), we show that j = k = 1, which leaves us in the case of
Section 3.

Step 0 Assumptions on j and k .

We only consider ordered pairs of exponents (j, k) in the set {(j, k) : j > 0, k >
0}∪{(j, k) : j > 0 > k} because T jxT ky is equal to a multitwist word if and only
if its inverse T−ky T−jx is equal to a multitwist word. Also, we can assume that
both j and k are nonzero, because if at least one of them is zero, then T jxT ky is
a multitwist about one or no curves, and the relation T jxT ky = M is trivial by
Lemma 1.

Steps 1 through 4 are exactly the same as for the case j = k = 1, so we omit
the proofs.

Step 1 i(x, y) > 0.

Step 2 [M,Tx] 6= 1.

Step 3 There is a curve z in the multitwist word M with i(x, z) > 0.

Algebraic & Geometric Topology, Volume 2 (2002)
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Step 4 T jxT ky (z) = z .

Step 5 |k| i(y, z)2 = |j| i(x, z)2 .

Using Formula 3: i(T ky (z), z) = |k| i(y, z)2 and i(T−jx (z), z) = |j| i(x, z)2 . Since
T−jx (z) = T ky (z) (Step 4), all four expressions are equal, so we have |j| i(x, z)2 =
|k| i(y, z)2 and i(y, z) =

√
|j/k| i(x, z).

Step 6 i(x, T ky (z)) = i(x, z).

Applying Step 5, Formula 3, Step 4, and again Formula 3, we have:

|j| i(x, z)2 = |k| i(y, z)2 = i(z, T ky (z)) = i(T jx(T ky (z)), T ky (z)) = |j| i(x, T ky (z))2

So |j| i(x, z)2 = |j| i(x, T ky (z))2 , and further i(x, T ky (z)) = i(x, z).

Step 7 i(x, y) ≤ 2/
√
|jk| .

Using Formula 1:

|k| i(y, z) i(y, x) − i(x, T ky (z)) ≤ i(z, x)

But i(y, z) =
√
|j/k| i(x, z) (Step 5) and i(x, T ky (z)) = i(x, z) (Step 6), so we

can rewrite this as:
i(x, z)(

√
|jk| i(x, y)− 2) ≤ 0

Since i(x, z) > 0 (Step 3), this gives i(x, y) ≤ 2/
√
|jk| .

Step 8 0 < |jk| ≤ 4.

If |jk| > 4, then the inequality of Step 7 says i(x, y) < 1, which contradicts
Step 1. The inequality |jk| > 0 is part of Step 0.

Step 9 (j, k) = (1,±1).

If (j, k) 6= (1,±1), then |jk| > 1 and Step 7 implies that i(x, y) < 2. This,
coupled with i(x, y) > 0 (Step 1), gives i(x, y) = 1. In this case, a neighborhood
of x ∪ y is a punctured torus S′ , and (T jxT ky )? acts on H1(S′) (with basis
elements represented by x and y) via the matrix:

(T jxT
k
y )? =

(
1 1
0 1

)j ( 1 0
−1 1

)k
=
(

1 j
0 1

)(
1 0
−k 1

)
=
(

1− jk j
−k 1

)
which has eigenvalues:

e(j, k) =
(2− jk)±

√
(jk)2 − 4jk

2
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By Lemma 2, since T jxT ky is equal to a multitwist supported on S′ , (T jxT ky )?
must have a fixed point on H1(S′), so it must have an eigenvalue of 1. We will
show, however, that e(j, k) does not equal 1 for 1 < |jk| ≤ 4, and so |jk| = 1.

By the standing assumption that either j and k are positive or j > 0 > k
(Step 0), and the fact that e(j, k) = e(k, j) = e(1, jk), it suffices to check
e(1, jk) for 2 ≤ |jk| ≤ 4. Using the formula, we have e(1, 4) = −1, e(1, 3) =
(−1 ±

√
3i)/2, e(1, 2) = ±i, e(1,−2) = 2 ±

√
3, e(1,−3) = (5 ±

√
21)/2, and

e(1,−4) = 3± 2
√

2.

Step 10 (j, k) = (1, 1).

By Step 9, the only possibilities left for (j, k) are (1, 1) and (1,−1). Our goal
now is to show that (j, k) = (1,−1) leads to a contradiction. Step 7 implies
that i(x, y) ≤ 2 in this case.

As in Step 9, we know i(x, y) 6= 1 because e(1,−1) = (3±
√

5)/2. In particular
(T 1
xT
−1
y )? does not have an eigenvalue of 1, contradicting Lemma 2.

We can also check that i(x, y) 6= 2. There are three subcases: î(x, y) = 2,
î(x, y) = −2, and î(x, y) = 0.

For î(x, y) = 2, we can compute (TxT−1
y )? = (Tx)?(Ty)−1

? as follows (using the
ordered basis {x, v,w} as in Section 3, Step 8):

(TxT−1
y )? =

 1 −1 −1
0 1 0
0 0 1

 −1 1 1
−2 2 1
−2 1 2

 =

 3 −2 −2
−2 2 1
−2 1 2


And for î(x, y) = −2, we have:

(TxT−1
y )? =

 1 −1 −1
0 1 0
0 0 1

 3 1 1
−2 0 −1
−2 −1 0

 =

 7 2 2
−2 0 −1
−2 −1 0


The only fixed points of the above two matrices are peripheral classes (multiples
of v −w). By Lemma 2, both of these cases are impossibilities.

The final subcase for (j, k) = (1,−1) and i(x, y) = 2 is î(x, y) = 0. In this
situation, a regular neighborhood of x ∪ y is a sphere with four punctures S′ .
Since H1(S′) contains only peripheral elements, Lemma 2 does not apply. We
employ a similar idea, with curve classes playing the role of homology classes.
In particular, we will show that TxT−1

y is irreducible on S′ (i.e. it does not fix
any nontrivial isotopy class of simple closed curves on S′ ). By Lemma 3, this
is a contradiction.
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It is well known that the isotopy classes of simple closed curves on S′ are
in one-to-one correspondence with the set {(p, q) : gcd(p, q) = 1}/ ∼, where
(p, q) ∼ (−p,−q), that PMod(S′) (the subgroup which preserves punctures) is
isomorphic to a finite-index subgroup of SL2(Z) with a matrix A acting on a
(p, q) curve by matrix multiplication, and that a Dehn twist about the (1, 0)
curve is given by the matrix ((1, 2), (0, 1)) [10, Section 3]. Therefore:

TxT
−1
y =

(
1 2
0 1

)(
1 0
−2 1

)−1

=
(

1 2
0 1

)(
1 0
2 1

)
=
(

5 2
2 1

)
This matrix does not fix any (p, q) (since it does not have an eigenvalue of
±1). In other words, the mapping class is irreducible, and by Lemma 3 this
contradicts the assumption that TxT−1

y is equal to a multitwist.

Step 11 The relation T jxT ky = M is the lantern relation.

We have eliminated all possibilities for the exponents except j = k = 1. By
Section 3, the given relation (or its inverse) is the lantern relation.

5 Proof of 2-chain characterization

Theorem 2 follows from a result proven by Ishida and Hamidi-Tehrani [5, The-
orem 1.2] [4]:

Theorem If i(x, y) ≥ 2, then there are no relations between Tx and Ty .

If we have the conditions of the theorem: (TxTy)k = M , where M is a multi-
twist word, and [Tx,M ] = 1. Then:

(TxTy)kTx = MTx = TxM = Tx(TxTy)k

which is a relation between Tx and Ty , assuming |k| > 1 (by Section 3, Step 2
there are no relations with |k| = 1 and [Tx,M ] = 1) . Therefore, i(x, y) ∈
{0, 1}. We can rule out i(x, y) = 0, because then the relation TxTy = M
is trivial by Lemma 1. Thus, i(x, y) = 1, and a neighborhood of x ∪ y is a
punctured torus S′ .

As in Section 3, Step 7, we consider the action of (TxTy)k on H1(S′) with
generators represented by x and y . The first 6 powers of (TxTy)? are(

0 1
−1 1

)
,

(
−1 1
−1 0

)
,

(
−1 0

0 −1

)
,

(
0 −1
1 −1

)
,

(
1 −1
1 0

)
,

(
1 0
0 1

)
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The first five of these matrices fix no nontrivial vector. Hence, by Lemma 2,
(TxTy)k cannot equal a multitwist in Mod(S) for k not a multiple of 6. When
k = 6j for some integer j , then it is well-known that (TxTy)k = T jc where c is
the boundary component of S′ [6, Lemma 4.1G]. One can check this relation
by using the Alexander lemma, as in Section 3, Step 9. By Lemma 1, the
multitwist word M is unique, and we are done.

6 Technical lemmas

Lemma 1 uses some new terminology: An essential reduction class of f ∈
Mod(S) is a class of simple closed curves α such that f(α) = α, and if i(α, γ) 6=
0 then fn(γ) 6= γ for any n ∈ N. The canonical reduction system for f ∈
Mod(S) is the set of essential reduction classes of f . Lemma 1 is really a
special case of the theorem of Birman-Lubotzky-McCarthy which states that
canonical reduction systems are unique.

Lemma 1 Suppose M =
∏m
j=1 T

ej
xj and N =

∏n
j=1 T

fj
yj are multitwist words

in Mod(S). If M = N in Mod(S), then m = n and {(xj , ej)} = {(yj , fj)}.

Proof Since M and N are multitwist words, i(xj, xk) = i(yj , yk) = 0, and so
M(xi) = xi and N(yj) = yj for all i and j . It then follows from the work of
Birman-Lubotzky-McCarthy that both {xj} and {yj} are canonical reduction
systems for M = N [2, Lemma 2.5], and hence the sets are the same by unique-
ness of such systems [2, Theorem C]. It then follows that the exponents are the
same: consider the surface obtained by cutting S along {xk}k 6=j ; the mapping
class induced by M on this surface is T ejxj = T

fj
xj (assuming xj = yj ), and no

two different powers of a Dehn twist are the same element (Proposition 4), so
ej = fj .

For Lemma 2, a peripheral homology class α ∈ H1(S′) on a subsurface S′ ⊂ S
is one which is contained in the subgroup of H1(S′) generated by the classes of
components of ∂S′ . For f ∈ Mod(S), f? denotes the induced action of f on
homology.

Lemma 2 Suppose M ∈ Mod(S) is a multitwist with support on a subsurface
S′ , and that there is a nontrivial and nonperipheral element of H1(S′). Then
there is a nontrivial and nonperipheral α ∈ H1(S′) with M?(α) = α.
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Proof Since M has its support on S′ , it must be of the form:

M =
m∏
i=1

T eiai

n∏
j=1

T
fj
bj

p∏
k=1

T gkck

where the ai represent the trivial class in H1(S′), the bj represent peripheral
homology classes in H1(S′), and the ck represent nontrivial, nonperipheral
classes in H1(S′). If p is nonzero, i.e. M consists of at least one twist about a
representative of a nontrivial, nonperipheral homology class, then M?([ck]) =
[ck] for any k since M(ck) = ck , and we are done. Otherwise, if p = 0, let s
be a simple closed curve on S′ representing any nontrivial, nonperipheral class
in H1(S′). Then î([s], [ai]) = 0 (the [ai] can be represented by the trivial curve
class) and î([s], [bi]) = 0 (the [bi] can be represented by boundary curves), so
M?([s]) = [s] by Formula 4.

Recall that an irreducible mapping class is one which fixes no isotopy class of
curves. Lemma 3 states that a multitwist in Mod(S) cannot restrict to an
irreducible mapping class on a subsurface of S .

Lemma 3 Suppose M ∈ Mod(S) is a multitwist with support on a subsurface
S′ , and that there is a nontrivial (not homotopic to a point or a boundary
component) isotopy class of curves on S′ . Then there is a nontrivial isotopy
class of curves on S′ which is fixed by M .

Proof Since M has support on S′ , it is of the form:

M =
m∏
i=1

T eiai

n∏
j=1

T
fj
bj

where the ai are boundary components of S′ and the bj are nontrivial curve
classes on S′ . If n 6= 0, then M(bj) = bj for any 1 ≤ j ≤ n. If n = 0, then
M(α) = α for any nontrivial curve class on S′ .

7 Questions

Powers of TxTy This paper gives a partial classification of relations of the
form (TxTy)k = M , where M is a multitwist word. If k = 1, then it is the
lantern relation. If k 6= 1 and [Tx,M ] = 1, then it is the 2-chain relation.
The author is unaware of relations where k 6= 1 and [Tx,M ] 6= 1. One way
to generalize this is to consider relations of the form W (Tx, Ty) = M , where
W (Tx, Ty) is any word in Tx and Ty .1

1Hamidi-Tehrani has successfully addressed this question [4].
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Noncommutativity The results of this paper rely heavily on the assumption
that certain mapping classes are multitwists. This is a strong assumption, as
multitwists a priori consist of disjoint curves. A more general problem is to
classify all relations of the form TxTyTz = TaTbTcTd , with no hypotheses of
commutativity or disjointness.

Multiple lanterns A natural question to ask is under what assumptions is
XY = M (M a multitwist word) the lantern relation for arbitrary mapping
classes. This is certainly not true for any X and Y . For example, there are
multiple lanterns: Let X = Tx1Tx2 and Y = Ty1Ty2 , where Tx1Ty1 = M1 and
Tx2Ty2 = M2 are lantern relations. Then XY is a multitwist if [M1,M2] = 1.
If the two lanterns have the same boundary components, then M = M2

1 = M2
2 .

Chain relations There is a canonical relation for any n-chain of curves on
S (a sequence of curves {a1, . . . , an} with i(aj , ak) = 1 for k = j ± 1 and
i(aj , ak) = 0 otherwise). When n is odd, the boundary of a neighborhood of
the n-chain consists of two curves d1 and d2 , and we have the relation:

(Ta1 . . . Tan)n+1 = Td1Td2

and when n is even, a neighborhood of the n-chain consists of one curve d1 ,
and we have:

(Ta1 . . . Tan)2n+2 = Td1

One can ask how well these relations can be characterized. Note that Theorem 2
is the special case n = 2, and that the case of n = 1 is Fact 1.
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