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1 Introduction

A group is said to be residually �nite if the intersection of its �nite index sub-
groups is trivial. Equivalently it is residually �nite if the trivial subgroup is
closed in the pro�nite topology. It is an open question whether or not word
hyperbolic groups are residually �nite. Evidence that they may be comes from
the observation that many familiar groups in this class are linear and there-
fore residually �nite by an application of Selberg’s lemma. Furthermore there
are geometric methods for establishing the residual �niteness of free groups
[5], surface groups [11] and some reflection groups [13] that may generalise.
Nonetheless the general question seems hard to settle, hindered by the appar-
ent di�culty of establishing that a given group contains any proper �nite index
subgroups at all. In [8] Long hypothesised this di�culty away by assuming that
the groups he studied satis�ed an engul�ng property:

De�nition 1.1 A subgroup H in a group G is said to be engulfed if H is
contained in a proper �nite index subgroup of G. The group G has the engul�ng
property with respect to a class H of subgroups of G if every subgroup in the
class H is engulfed in G.

As we will later see Long was able to deduce a strengthened form of resid-
ual �niteness for certain Kleinian groups satisfying a relatively mild engul�ng
hypothesis. In [7] Kapovich and Wise showed that the question of residual
�niteness for the class of word hyperbolic groups could be reduced to a ques-
tion concerning engul�ng.
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Theorem (Kapovich, Wise) The following are equivalent:

(i) Every word-hyperbolic group is residually �nite.

(ii) Every word-hyperbolic group has at least one proper �nite index sub-
group.

The second condition is equivalent to the assertion that every word hyperbolic
group engulfs the identity. While the result of Kapovich and Wise o�ers the
possibility of an attack on the question of residual �niteness for the class of
word-hyperbolic groups, there is a real possibility that non-residually �nite
word hyperbolic groups exist. In this paper we show how to tackle the more
restricted question of whether a given word-hyperbolic group is residually �nite
by suitably adapting Long’s method to obtain the following:

Theorem 4.1 Let G be a word-hyperbolic group and suppose that G engulfs
every �nitely generated free subgroup with limit set a proper subset of the
boundary of G. Then the intersection of all �nite index subgroups of G is
�nite. If G is torsion free then it is residually �nite.

It is hoped that this result may lead to a new attack on the question of residual
�niteness for certain classes of word hyperbolic groups.

Long’s principal aim in introducing engul�ng was to establish much stronger
residual properties. A subgroup H of a group G is said to be separable in G
if it is an interesection of �nite index subgroups (equivalently H is closed in
the pro�nite topology on G). Residual �niteness is equivalent to separability
of the trivial subgroup.

Theorem (Long) Let Γ be the fundamental group of a closed hyperbolic 3-
manifold. Suppose that Γ has the engul�ng property for those �nitely generated
subgroups H with �(H) < S2

1 . Then any geometrically �nite subgroup of Γ
has �nite index in its pro�nite closure.

There has been substantial recent progress in the �eld:

� In [4] Gitik showed how to construct examples of closed hyperbolic 3-
manifolds such that every quasi-convex subgroup of the fundamental
group is closed in the pro�nite topology. Gitik builds the manifolds by
a sequence of doubling operations each of which consists of glueing two
copies of a given compact hyperbolic 3-manifold with non-empty bound-
ary along an incompressible subsurface of the boundary. Gitik showed
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that, given appropriate constraints on the glueing, the fundamental group
of the doubled manifold has the property that all of its quasi-convex sub-
groups are closed in the pro�nite topology. Starting with a handlebody
(the fundamental group of which is free and therefore subgroup separable
by Hall’s theorem, [5]), Gitik constructs sequences of doubling operations
which yield examples of closed hyperbolic 3-manifolds with fundamental
groups satisfying this property.

� In [15] Wise showed that every quasi-convex subgroup of the fundamental
group of the Figure 8 knot complement is closed in the pro�nite topology
using a geometric method which generalises to many other link comple-
ments, and indeed to other examples arising in geometric group theory.
The conclusion is subsumed by the result of Long and Reid [10].

� Using arithmetic techniques and building on a method suggested by the
paper of Scott [13], Agol, Long and Reid [1] showed that the geometrically
�nite subgroups of Bianchi groups are closed in the pro�nite topology.

In our second main result we again adapt Long’s technique to show:

Theorem 5.2 Let G be a word-hyperbolic group which engulfs every �nitely
generated subgroup K such that the limit set �(K) is a proper subset of the
boundary of G. Then every quasi-convex subgroup of H has �nite index in its
pro�nite closure in G.

It may be that existing proofs of separability can be simpli�ed using this result,
but by way of caution we also generalise a construction of Long’s to show that
every non-elementary word hyperbolic group contains proper subgroups which
fail to be engulfed. However the construction sheds no light on the question of
engul�ng for �nitely generated subgroups.

The work of adapting Long’s argument to the context of torsion free word
hyperbolic groups formed part of the thesis of the second author [14]. The
main technical di�culties in this paper arise in adapting the argument to the
presence of torsion.

2 Word-hyperbolic groups

This section is a brief introduction to word-hyperbolic groups. The reader is
referred to [3] for a full treatment.
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Let G be a �nitely generated group, let S be a �nite generating set for G, and
consider G as a metric space with respect to the word metric corresponding to
this generating set.

The group G is said to be word-hyperbolic if it is a � -hyperbolic space for some
� � 0.

The boundary at in�nity of G, denoted @G is de�ned as a metric space whose
points are equivalence classes of rays converging to in�nity in the group. It is
the dynamics of the action of G (and its subgroups) on this boundary that we
will use to prove the main theorems in this paper. We take a moment to recall
the important features of the boundary and of those dynamics.

A word-hyperbolic group is called elementary if it is �nite or contains a �nite
index in�nite cyclic subgroup and is non-elementary otherwise. An elementary
word-hyperbolic group is either �nite, in which case it has an empty boundary
at in�nity, or it is virtually cyclic in which case its boundary consists of two
points. For any word hyperbolic group the boundary is compact and metrisable,
and non-elementary word-hyperbolic groups have in�nite boundaries in which
there are no isolated points.

Given a subgroup H of G, the limit set of H which is denoted �(H) is de�ned
as the subset of @G attainable by sequences of elements of H . H acts properly
discontinuously on @G n �(H).

The following describes the action of in�nite order elements on the boundary. If
g is an in�nite order element of G it acts on the Cayley graph G by translation
along a quasi-geodesic line, � say, (obtained by joining gi to gi+i for all i 2 Z
by a geodesic in G). Denote by @g = f@g+; @g−g = flimi!1gi; limi!1g−ig
the endpoints of � in @G (which are �xed by g). There exist disjoint neigh-
bourhoods U+ and U− of @g+ and @g− respectively such that for su�ciently
large r and all x 2 @G n (U+ [ U−) we have grx 2 U+ and g−rx 2 U− . We
say that the pair (U+; U−) is absorbing for gr . In fact any pair of disjoint
neighbourhoods of @g+ and @g− is absorbing for gk for su�ciently large k .
(See [3] Chapter 8.)

The following well known fact can be viewed as an alternative de�nition of the
limit set of a subgroup. A proof is included for the convenience of the reader.

Lemma 2.1 Let H be a non-elementary subgroup of a word-hyperbolic group
G. Then �(H) is the smallest non-empty closed H -invariant subset of @G.

Proof We prove that if A � @G is closed and H -invariant then �(H) � A.
Firstly, let B � @G. Denote by I(B) the set of points of G lying on geodesics
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between points of B . Suppose that B 6= ; and jBj 6= 1. Then I(B) 6= ;. Let
fxig � I(B) be a sequence such that xi ! x 2 @G. We claim that x 2 B .
To see this, for each i choose a geodesic li = [b0i; b

00
i ] with b0i; b

00
i 2 B . Passing

to a subsequence if necessary we get b0i ! b0 2 B , b00i ! b00 2 B , li ! l .
xi ! x 2 l [ fb0; b00g and hence x 2 fb0; b00g.

Now let A � @G be closed and H -invariant. Let I(A) be as above. Then I(A)
is H -invariant. First suppose that 1 2 I(A). Then H � I(A). Let x 2 �(H)
and fxig � H so that xi ! x. By the �rst paragraph of the proof x 2 A = A
and hence �(H) � A. Now suppose that 1 62 I(A). Then I(A) \H = ; and
I(A) is a union of right cosets of H . Suppose that Hg � I(A). Let x 2 �(H)
and fxig � H with xi ! x. Then since xig and xi are a distance exactly jgj
apart for all i we have xig ! x 2 �(H) and hence x 2 A = A and �(H) � A
as required.

It is clear that �(H) is H -invariant so it remains to prove that �(H) is closed.
We show that @Gn�(H) is open. Let y 2 @Gn�(H) and let fyig be a sequence
converging to y . Let �i be geodesics realising the distances d(yi;H). There is
no bound on the lengths of the �i . Let zi lie on �i so that there is no bound
on the distances d(yi; zi) and d(zi;H). Let fzig converge to z 2 @G then
the horoball N(y:z)(y) is an open set containing y and disjoint from �(H) as
required.

Corollary 1 Let H be a non-elementary subgroup of a word-hyperbolic group
G. Then �(H) is the closure of the set

S = f@h+; @h−jh 2 H, h has in�nite orderg � @G:

Proof By Lemma 2.1 �(H) is the minimum non-empty closed H -invariant
subset of @G. For any in�nite order element h 2 H , the limit points @h� both
lie in �H , hence the closure of S must be contained in �(H). On the other
hand S is clearly H -invariant and so by Lemma 2.1 its closure contains �(H)
as required.

We will need the following technical observation:

Lemma 2.2 Let G be a non-elementary word-hyperbolic group with genera-
tors g1; : : : gn , and N a subgroup of G with �N = @G. Then there are in�nite
order elements x1; : : : xn in N such that the elements xigixi generate a free
subgroup H < G with �H 6= @G. In particular G is generated by the subset
fx1; : : : xn; x1g1x1; : : : xngnxng which consists of elements of in�nite order.
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Proof Since G is non-elementary its boundary is in�nite, and since limit sets
of in�nite order elements of N are dense, given any non-empty open subset U
of the boundary we may choose elements y1; : : : ; yn 2 N of in�nite order with
@yi � U for all i and @yi \ @yj = ; for i 6= j . In particular if we let U be the
complement in @G of the union of the �xed sets of the in�nite order elements
in the set fg1; : : : ; gng then we can also ensure that @gi \ @yj = ; for all i; j

If a generator gi acts trivially on the boundary then set xi = yi . The element
xigixi acts on the boundary in the same way as the in�nite order element y2

i ,
and its two �xed points are @y�i 2 U . If the generator gi has in�nite order
then since its �xed points are disjoint from those of yi (and the boundary is
metrisable), we may choose small neighbourhoods U�i of the limit points @y�i
such that g�1

i (U+
i [ U

−
i ) \ (U+

i [ U
−
i ) = ;. We choose the neighbourhoods U�i

small enough to be disjoint and so that the complement of the closure of the
union of the neighbourhoods is non-empty.

The neighbourhoods U�i are absorbing for any su�ciently high power y�ri of
yi , and it follows easily that setting xi = yri the neighbourhoods are absorbing
for (xigixi)�1 . To see this choose any point p in the complement of U+

i [ U−i .
Its image xi(p) lies in U+

i , and since gi(U+
i [U−i )\ (U+

i [U−i ) = ; gixi(p) does
not lie in U+

i [U−i . Hence xigixi(p) lies in U+
i . A similar argument shows that

x−1
i g−1

i x−1
i (p) lies in U−i , and iterating shows that (xigixi)r(p) 2 U+

i [ U−i for
any non-zero power of the element xigixi .

We will now use the standard Schottky argument to show that these elements
generate a free subgroup. Let w = x

�i1
i1
g
�i1
i1
x
�i1
i1
: : : x

�is
is
g
�is
is
x
�is
is

be a reduced
word in the elements xigixi and their inverses, and choose a point p in the
complement of the union of the absorbing pairs U+

i [ U
−
i . As argued above

x
�is
is
g
�is
is
x
�is
is

(p) 2 U+
is
[ U−is . If is−1 = is then we may iterate to see that the

image of p under the element x
�is−1

is−1
g
�is−1

is−1
x
�is−1

is−1
also lies in U+

is
= U+

is−1
. If

is−1 6= is then, since the absorbing set U+
is
[U−is is disjoint from the absorbing set

U+
is−1
[U−is−1

, the image x
�is−1

is−1
g
�is−1

is−1
x
�is−1

is−1
: : : x

�is
is
g
�is
is
x
�is
is

(p) lies in U+
is−1
[U−is−1

.
Iterating the argument we see that the point p ends in the absorbing pair
U+
i1
[U−i1 . Since it did not start there it is not invariant under the action of the

element w which is therefore not the identity. Hence every reduced word in the
generators xigixi is non-trivial and the subgroup is free as required. Finally
we note that since the accumulation points for the action of this subgroup H
lie in the union of the absorbing pairs U+

i [ U−i the limit set of this subgroup
lies in the closure of their union. Since this closure is not all of @G neither is
�H .
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3 Separability

The pro�nite topology on a group G is de�ned by taking as a basis for the
closed sets the cosets of all �nite index normal subgroups of G. Note that �nite
index subgroups are themselves closed, and (since the complement is a �nite
union of cosets each of which is also open) they are also open. Given a subgroup
H < G we will denote the closure of H in the pro�nite topology on G by H .

De�nition 3.1 Given a group G, a �nitely generated subgroup H is separable
in G if it is closed in the pro�nite topology on G. A group G is residually �nite
if feg is closed and is subgroup separable or LERF (locally extended residually
�nite) if every �nitely generated subgroup H is separable in G. A word-
hyperbolic group is qc subgroup separable if every quasi convex subgroup is
closed in the pro�nite topology.

Note that if a group is subgroup separable then a fortiori it has the engulf-
ing property for its �nitely generated subgroups. On the other hand in [12]
examples are given of fundamental groups of geometric 3-manifolds which con-
tain two generator subgroups which are not even engulfed. These examples,
based on earlier examples of [2] are not word-hyperbolic, however Long showed
in [8] that the fundamental group of a hyperbolic 3-manifold always contains
(in�nitely generated) subgroups that are not engulfed.

4 (Almost) residual �niteness

For this section let N denote the residual core of G, i.e., intersection of all
�nite index subgroups. (This is the closure feg of the trivial subgroup in the
pro�nite topology.) This subgroup is normal and therefore [3] its limit set is
either empty (if N is �nite) or all of @G (if N is in�nite).We will say that the
group G is almost residually �nite if N is a �nite subgroup. Note that torsion
free almost residually �nite groups are residually �nite.

Theorem 4.1 Let G be a word-hyperbolic group and suppose that G engulfs
every �nitely generated free subgroup S such that �(S) is a proper subset of
@G. Then G is almost residually �nite. If G is torsion free, then it is residually
�nite.
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Proof If G is elementary then it is either �nite or virtually cyclic. In both
cases it is trivially residually �nite, so we may assume that G is non-elementary
and has in�nite boundary.

Let fgi j 1 � i � ng be a generating set for G. If G is not almost residually
�nite then �(N) = @G. It follows from Lemma 2.2 that we may choose elements
xi 2 N such that the elements xigixi generate a free subgroup H with �H 6=
@G. By hypothesis H is engulfed, so there is a proper �nite index subgroup
L < G with H < L. The subgroup L must contain the elements xigixi , but by
hypothesis N < L so it also contains the elements xi . Hence it contains all of
the generators gi of G. This is a contradiction. Hence G is almost residually
�nite, and if G is torsion free it is residually �nite.

5 (Almost) subgroup separability

Note that if H is a �nite subgroup of an almost residually �nite group G, and if
N is the intersection of the �nite index subgroups of G, then HN is �nite, and
is closed. Hence the intersection of the �nite index subgroups of G containing
H is a �nite extension of H .

De�nition 5.1 We will say that a subgroup H < G is almost separable if H
has �nite index in H .

Theorem 5.2 Let G be a non-elementary word-hyperbolic group. Suppose
that G has the engul�ng property for all �nitely generated subgroups K such
that �(K) is a proper subset of @G. Then every quasi-convex subgroup H � G
is almost separable in G.

Proof Applying Theorem 4.1 we see that the intersection N of all �nite index
subgroups of G is �nite. It is easy to see that G=N is itself residually �nite.

Let KN=N be any subgroup of G=N with limit set a proper subset of the
boundary of G=N . There is a G-equivariant quasi-isometry from G to G=N
taking KN to KN=N and it follows that the limit set of KN is a proper subset
of the boundary of G. By the hypothesis there is a proper �nite index subgroup
of G containing KN , and since it contains N its image is a proper �nite index
subgroup of G=N containing KN=N . Hence G=N satisifes the hypotheses of
the theorem, but in addition it is residually �nite.

Now suppose the theorem is true for G=N . Let H be a quasi-convex subgroup of
G, so HN=N is a quasi-convex subgroup of G=N . By the assumption, HN=N
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has �nite index in its closure HN=N under the pro�nite topology. Since the
map G −! G=N is continuous the preimage of HN=N is itself closed in G and
clearly contains H as a subgroup of �nite index. Hence in order to establish the
theorem for G it su�ces to establish it for G=N . This reduces us to the case
where G is residually �nite, so from now on we make this additional assumption.

Now since G is residually �nite, its �nite subgroups and its maximal abelian
subgroups (see [9]) are all closed in the pro�nite topology. Since G is word-
hyperbolic its maximal abelian subgroups are virtually cyclic, and therefore
every elementary subgroup of G has �nite index in its pro�nite closure. Hence
we can assume that H is non-elementary.

We will make use of the following observation. A proof is given in Kapovich
and Short [6].

Lemma 5.3 Let H be a quasiconvex subgroup of a word-hyperbolic group G.
If H < L < G with �(H) = �(L) then jH : Lj <1.

It follows from this that it su�ces to show that the pro�nite closure H of any
non-elementary quasi-convex subgroup H < G has the same limit set as H .
For the remainder of the argument �x a generating set fg1; g2; : : : ; gng for G.
By Lemma 2.2 we can choose this set to consist of in�nite order elements.

Since H � H clearly �(H) � �(H), and if �(H) = @G then the result is clear
so suppose that �(H) is a proper subset of @G. Assume, for a contradiction,
that �(H) 6= �(H).

Choose a point p 2 �(H) n�(H). By Corollary 1 there is a sequence of in�nite
order elements ki 2 H with �xed points pi 2 �(H) � @G such that the
sequence pi converges to p. Since �(H) is closed and p 62 �H almost all the
points pi are also not in �(H), so almost all the elements ki are in H nH and,
since limit sets of non-elementary quasi-convex subgroups have no isolated limit
points, without loss we can choose them to have distinct limit sets. Hence we
can choose one of them with limit points p� in @G distinct from the limit points
of the generators. Since p� are also not in �(H) we may choose an absorbing
pair of neighbourhoods U� of the pair p� disjoint from �(H)[fg1; g2; : : : ; gng.
Since G acts uniformly on its boundary and �H is a closed set disjoint from
the limit points of k , for some power kr the image kr(�(H)) is contained in
U+ and is therefore disjoint from �(H)[fg1; g2; : : : ; gng. The image kr(�(H))
is the limit set of krHk−r which by construction is a subgroup of H .

Since H is non-elementary so is krHk−r and we may choose elements y1; y2;
: : : ; yn 2 krHk−r with distinct �xed sets in the boundary. Notice that by our
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construction of the subgroup krHk−r the �xed points @y1; @y2; : : : ; @yn lie in
�(H) − �(H) and @yi 6= @gj for any i; j . We may later need to modify the
choice of these elements by taking powers of them. In doing so we do not change
their �xed points.

Let C � @G−�(H) be a compact set containing the �xed points of the elements
yi in its interior (the closure of a su�ciently small open metric ball around the
�xed points will do). H acts properly discontinuously on @G − �(H) so there
are �nitely many non-trivial elements of H , h1; h2; : : : hm say, taking C to
intersect itself. Since G is residually �nite so is H , and so there exists a �nite
index normal subgroup A /H containing none of the hi .

We now need the following technical Lemma taken from [8].

Lemma 5.4 Let G and H be as above and suppose that A / H is a normal
subgroup of index t in H . For any element h 2 H , ht 2 A.

Since taking powers of the elements yi does not change their �xed points we can
use this lemma to ensure that the elements yi all lie in the subgroup A. Since
@G is metrisable we can choose n mutually disjoint pairs of neighbourhoods
(U+

i ; U
−
i ) for the @yi so that the closure of each is contained in the interior of

C . Ensure that (U+
i ; U

−
i ) is absorbing for yi by again taking large powers and

relabelling.

Now let si = yigiyi and consider the group B generated by the elements si
together with the generators of A. Since A has �nite index in the �nitely
generated group H it too is �nitely generated and so is B . We claim that its
limit set is contained in the closure of [i(U+

i ; U
−
i ) [ (@G − C).

Let Ui = U+
i [ U−i .

The limit set is the closure of the H-orbit of any point in it (by 1). Choose a
point p 2 C − [iUi and write an arbitrary element b 2 B as a reduced word
s�1i1a1s

�2
i2
a2 : : : s

�k
ik
ak where ai 2 A, where possibly si1 or ak may be the identity

elements, but none of the other elements are trivial. We examine the image of
p under the action of b; there are four cases to consider:

Neither si1 nor ak is the identity:

b(p) = s�1i1a1s
�2
i2
a2 : : : s

�k
ik
ak(p) 2 s�1i1a1s

�2
i2
a2 : : : s

�k
ik

(@G − C)
� s�1i1a1s

�2
i2
a2 : : : s

�k
ik

(@G− (Uik)) � s�1i1a1s
�2
i2
a2 : : : aik−1

Uik
� s�1i1a1s

�2
i2
a2 : : : aik−1

C � s�1i1a1s
�2
i2
a2 : : : s

�k−1

ik−1
(@G− C)

...
� s�1i1a1C � s�1i1 (@G −C) � s�1i1 (@G − (Ui1)) � Ui1
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Only ak is the identity:

b(p) = s�1i1a1s
�2
i2
a2 : : : s

�k
ik
ak(p) 2 s�1i1a1s

�2
i2
a2 : : : s

�k
ik

(C − [iUi)
� s�1i1a1s

�2
i2
a2 : : : aik−1

Uik � s
�1
i1
a1s

�2
i2
a2 : : : aik−1

C

� s�1i1a1s
�2
i2
a2 : : : s

�k−1

ik−1
(@G −C)

...
� s�1i1a1C � s�1i1 (@G −C) � s�1i1 (@G − (Ui1)) � Ui1

Only si1 is the identity:

b(p) = a1s
�2
i2
a2 : : : s

�k
ik
ak(p) 2 a1s

�2
i2
a2 : : : s

�k
ik

(C − [iUi) � a1s
�2
i2
a2 : : : aik−1

Uik
� a1s

�2
i2
a2 : : : aik−1

C � a1s
�2
i2
a2 : : : s

�k−1

ik−1
(@G− C)

...
� a1C � (@G − C)

Both si1 and ak are the identity:

b(p) = a1s
�2
i2
a2 : : : s

�k
ik
ak(p) 2 a1s

�2
i2
a2 : : : s

�k
ik

(C − [iUi) � a1s
�2
i2
a2 : : : aik−1

Uik
� a1s

�2
i2
a2 : : : aik−1

C � a1s
�2
i2
a2 : : : s

�k−1

ik−1
(@G− C)

...
� a1C � (@G − C)

The conclusion is that p ends up in [iUi or in @G − C , and in particular the
closure of its orbit lies in the union of the closures of these subsets as required.

Hence B is a �nitely generated subgroup of G with �(B) a proper subset of
@G and our engul�ng hypothesis for such subgroups ensures that there exists a
proper �nite index subgroup K < G containing B . Since this subgroup contains
A it also contains A � K and hence K contains the elements y1; y2; : : : ; yn .
But K also contains the elements si = yigiyi and hence contains all of the
generators of G. So K = G contradicting the fact that K is a proper subgroup.

6 A non-engulfed proper (locally-free) subgroup

In this section we show that every non-elementary word hyperbolic group con-
tains subgroups which are not engulfed. More generally we show:

Theorem 6.1 Let G be a non-elementary word hyperbolic group and F a
countable collection of quotients of G each with in�nite kernel. Then G contains
a proper (in�nitely generated) subgroup K which surjects on every quotient in
the family F . In particular G contains a proper subgroup K which is not
engulfed.
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Proof Enumerate the kernels of the quotients, and for each kernel choose a
set of left coset representatives. Since G is �nitely generated each such set is
countable, and we can enumerate the union of the sets of coset representatives
as gi; i 2 N with associated kernels Ni .

Choose a proper open subset U in @G. Since the kernels are all in�nite the limit
set of each kernel is dense in the boundary of G. Hence given any �nite subset
Si � U we can choose an in�nite order element yi 2 Ni such that @yi � U n S
and @yi \ @gi = ;. Now for su�ciently high powers yrii of yi and any point
p 62 @yi the image yrii giy

ri
i (p) lies in U , hence the limit set of all these elements

lies in U . Setting the subset Si =
iS

j=1
@yj we may choose these elements yi and

their powers ri inductively to ensure that the subset fyrii giy
ri
i j i = 1; : : : ng

freely generates a subgroup of G with limit set contained in U , just as we did
in Lemma 2.2. (Again care must be taken over the choice of absorbing pairs
for the elements and we may need to raise the power of the elements yi .)

It follows that the subgroup generated by any �nite subset of these elements
has limit set contained in U . Any element of the subgroup K generated by all
of these elements lies in one of these �nitely generated subgroups and therefore
has its limit set insde U . Applying Corollary 1 we see that �K is a proper
subset of @G and so K is a proper (indeed in�nite index) subgroup of G.

Consider the image of this subgroup in one of the quotients G=N 2 F . By con-
struction for each left coset representative g of the subgroup N , the subgroup
K contains a generator yrgyr for some element y 2 N so K contains a full set
of left coset representatives for each of the kernels in F as required.

Now setting F to be the set of �nite quotients of G we obtain a proper sub-
group which surjects on every �nite quotient, and hence is not engulfed. The
ping-pong construction applied at each stage of the argument shows that we
can ensure that the subgroup is an ascending union of �nitely generated free
subgroups, and is therefore locally free.

Note that the subgroup K constructed in the theorem cannot be �nitely gen-
erated since if it were then the ascending chain of subgroups generated by the
�nite subsets fyrii giy

ri
i j i = 1; : : : ng would terminate, which it does not do by

construction.
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