On di eomorphisms over surfaces trivially embedded in the 4-sphere

Susumu Hir ose

Abstract

A surface in the 4-sphere is trivially embedded, if it bounds a 3dimensional handle body in the 4-sphere. For a surface trivially embedded in the 4-sphere, a di eomorphism over this surface is extensible if and only if this preserves the Rokhlin quadratic form of this embedded surface.

AMS Classi cation 57N10; 57N05, 20F 38
Keywords K notted surface, mapping class group, spin mapping class group

This paper is dedicated to Professor Mitsuyoshi K ato on his 60th birthday.

1 Introduction

Wedenotethe closed oriented surface of genus g by g, themapping class group of g by M_{g}. Let : g ! S^{4} bean embedding, and K beits image. We call $\left(S^{4} ; K\right)$ a $\left.g^{-k n o t . ~ T w o ~} g^{-k n o t s ~(~} S^{4} ; K\right)$ and ($S^{4} ; \mathrm{K} 9$ are equivalent if there is a di eomorphism of S^{4} which brings K to K^{0}. A 3-dimensional handlebody H_{g} is an oriented 3-manifold which is constructed from a 3-ball with attaching g 1-handles. Any embeddings of H_{g} into S^{4} are isotopic each other. Therefore, ($\mathrm{S}^{4} ; \mathrm{@H}_{\mathrm{g}}$) is unique up to equivalence We call this g -knot $\left(\mathrm{S}^{4} ; \mathrm{@H}_{\mathrm{g}}\right)$ a trivial g -knot and denote this by ($\mathrm{S}^{4} ; \mathrm{g}$). For a g -knot $\left(\mathrm{S}^{4} ; \mathrm{K}\right)$, we de ne the following group,

$$
\mathrm{E}\left(\mathrm{~S}^{4} ; \mathrm{K}\right)=2{ }_{0} \mathrm{Di}^{+}(\mathrm{K}) \begin{aligned}
& \text { there is an element } 2 \mathrm{Di}^{+}\left(\mathrm{S}^{4}\right)^{)} \\
& \text {such that } \mathrm{j}_{\mathrm{K}} \text { represents }
\end{aligned}
$$

and de nea quadratic form (the Rokhlin quadratic form) $q_{k}: H_{1}\left(K ; \mathbb{Z}_{2}\right)!\mathbb{Z}_{2}$: Le P be a compact surface embedded in S^{4}, with its boundary contained in K, normal to K along its boundary, and its interior is transverse to K. Let P^{0} be a surface transverse to P obtained by sliding P paralle to itself over K. De ne $q_{K}([@])=\#\left(\operatorname{intP} \backslash\left(P^{0}[K)\right)\right.$ mod 2 , where int means the
interior. This is a well-de ned quadratic form with respect to the \mathbb{Z}_{2}-homology intersection form $(;)_{2}$ on K, i.e. for each pair of elements x, y of $H_{1}\left(K ; \mathbb{Z}_{2}\right)$, $q_{k}(x+y)=q_{k}(x)+q_{k}(y)+(x ; y)_{2}$. For the trivial $\quad g$-knot $\left(S^{4} ; g\right)$, let $S P_{g}$ be the subgroup of M_{g} whose elements leave q_{g} invariant. This group SP_{g} is called the spin mapping class group [3]. In the case when $\mathrm{g}=1$, M ontesinos showed:

Theorem 1.1 [10] $E\left(S^{4} ;{ }_{1}\right)=S P_{1}$.
In this paper, we generalize this result to higher genus:
Theorem 1.2 For any $g 1, E\left(S^{4} ; \mathrm{g}\right)=S P_{g}$.
The group $E\left(S^{4} ; K\right)$ remains unknown for many non-trivial g-knots K. On the other hand, for some class of non-trivial 1 -knots $\left(S^{4} ; K\right)$, Iwase [6] and the author [5] determined the groups $\mathrm{E}\left(\mathrm{S}^{4} ; \mathrm{K}\right)$.

Finally, the author would like to express his gratitude to Professor Masahico Saito for his helpful comments, and to Professor Nariya K awazumi for introducing him results of J ohnson [8]. This paper was written while the author stayed at Midhigan State University as a visiting scholar sponsored by the J apanese Ministry of Education, Culture, Sports, Science and Technology. He is grateful to the Department of Mathematics, Michigan State University, for its hospitality.

2 Some elements of E(S $\left.{ }^{4} ; ~ g\right)$

For elements a, b and c of a group, we write $\mathrm{c}=\mathrm{c}^{-1}$, and $\mathrm{a} \mathrm{b}=\mathrm{aba}$. Here, we introduce a standard form of the trivial $g^{-k n o t}\left(S^{4} ; \mathrm{g}\right)$. We decompose $S^{4}=$ $D_{+}^{4}\left[D_{-}^{4}\right.$ and call $S^{3}=D_{+}^{4} \backslash D_{-}^{4}$ the equator S^{3}, and decompose $S^{3}=D_{+}^{3}\left[D_{-}^{3}\right.$ and call $S^{2}=D_{+}^{3} \backslash D_{-}^{3}$ the equator S^{2}. Let P_{g} bea planar surface constructed from a 2-disk by removing g copies of disjoint 2-disks. As indicated in Figure 1 , we denote the boundary components of P_{g} by $\gamma_{0} ; \gamma_{2} ;:: ; ; \gamma_{2 g}$, and denote some properly embedded arcs of P_{g} by $\gamma_{1} ; \gamma_{3} ;::: ; \gamma_{2 g+1}, 2 ; 4 ;::: ; 2 g-2$ and
${ }_{2}^{0} ; 4 ;::: ;{ }_{2 g-2}$. We parametrize the regular neighborhood of the equator S^{2} in the equator S^{3} by $S^{2} \quad[-1 ; 1]$, such that $S^{2} \quad f 0 g=$ the equator S^{2}, $S^{2}[-1 ; 1] D_{+}^{3}=S^{2} \quad[0 ; 1]$ and $S^{2} \quad[-1 ; 1] D^{3}=S^{2} \quad[-1 ; 0]$. Weput P_{g} on the equator S^{2}. Then, $\mathrm{P}_{\mathrm{g}}[-1 ; 1] \quad \mathrm{S}^{2}[-1 ; 1]$ is a 3-dimensional handlebody, so that, $\left(S^{4} ; @ P_{g}[-1 ; 1]\right)$) is the trivial $g-k n o t$. On $\left.@ P_{g} \quad[-1 ; 1]\right)=g$,

Figure 1

Figure 2

Figure 3
we de ne $\left.c_{2 i-1}=\left(\gamma_{2 i-1} \quad[-1 ; 1]\right)(1 \quad i \quad g+1), b_{2 j}=@{ }_{2 j} \quad[-1 ; 1]\right)$, $\left.\mathrm{b}_{2 \mathrm{j}}=@{ }_{2 \mathrm{j}}^{0} \quad[-1 ; 1]\right)(2 \mathrm{j} \quad \mathrm{g}-1)$, and $\mathrm{c}_{2 \mathrm{k}}=\gamma_{2 k} \mathrm{fOg}(1 \quad \mathrm{k} \quad \mathrm{g})$. In Figures 2 and 3, these circles are illustrated and some of them are oriented. For a simple closed curve a on g, we denote the Dehn twist about a by T_{a}. The order of composition of maps is the functional one: $\mathrm{T}_{\mathrm{b}} \mathrm{T}_{\mathrm{a}}$ means we apply

Algebraic \& Geometric Topology, Volume 2 (2002)
$T_{a} \quad r s t$, then T_{b}. We de ne some elements of M_{g} as follows:

$$
\begin{aligned}
& C_{i}=T_{C_{i}} ; B_{i}=T_{b} ; B_{i}^{0}=T_{b p} ; \\
& X_{i}=C_{i+1} C_{i} C_{i+1} ; X_{i}=\overline{C_{i+1}} C_{i} C_{i+1}\left(\begin{array}{lll}
1 & i & 2 g
\end{array}\right) ; \\
& Y_{2 j}=C_{2 j} B_{2 j} \overline{C_{2 j}} ; Y_{2 j}=\overline{C_{2 j}} B_{2 j} C_{2 j} \quad\left(\begin{array}{lll}
2 & j & g-1
\end{array}\right) ; \\
& D_{i}=C_{i}^{2}\left(\begin{array}{lll}
1 & i & 2 g+1
\end{array}\right) ; \\
& D B_{2 j}=B_{2 j}^{2}\left(\begin{array}{lll}
2 & j & g-1
\end{array}\right) ; \\
& T=C_{1} C_{3} C_{5} ; T_{1}=C_{1} C_{3} B_{4} ; T_{2}=B_{4} C_{5} C_{7} \\
& C_{2 g+1}:
\end{aligned}
$$

When $g \quad 3$, the subgroup of M_{g} generated by $X_{i}\left(\begin{array}{lll}1 & i & 2 g\end{array}\right), Y_{2 j}\left(\begin{array}{ll}2 & j\end{array}\right.$ $g-1), D_{i}(1$ i $2 g+1), D_{2 j}(2 \mathrm{j} \quad g-1), T_{1}$, and T_{2} is denoted by G_{g}. It is clear that X_{i} and $Y_{2 j}$ are elements of G_{g}. When $g=2$, the subgroup of M_{2} generated by $X_{i}\left(\begin{array}{llll}1 & i & 4\end{array}\right), D_{j}\left(\begin{array}{lll}1 & j & 5\end{array}\right)$, and T is denoted by G_{2}. For two simple closed curves I and m on g, I and m are called G_{g}-equivalent (denote by $\mathrm{I}_{\mathrm{G}_{\mathrm{g}}} \mathrm{m}$) if there is an element of G_{g} such that $(\mathrm{I})=\mathrm{m}$. We set

Figure 4
a basis of $H_{1}(g ; \mathbb{Z})$ as in Figure 4, then for the quadratic form q_{g} de ned in $x 1, q_{g}\left(x_{i}\right)=q_{g}\left(y_{i}\right)=0\left(\begin{array}{lll}1 & \mathrm{i} & \mathrm{g}\end{array}\right)$. By the de nitions of q_{g} and $\mathrm{SP} \mathrm{g}_{\mathrm{g}}$, we have:

Lemma 2.1 $\mathrm{E}\left(\mathrm{S}^{4} ; \mathrm{g}\right) \quad \mathrm{SP} \mathrm{g}$.
In this section, we show:
Lemma 2.2 $\mathrm{G}_{\mathrm{g}} \quad \mathrm{E}\left(\mathrm{S}^{4} ; \mathrm{g}_{\mathrm{g}}\right)$.
As a straightforward corollary of these lemmas, we have:
Corollary $2.3 \mathrm{G}_{\mathrm{g}} \quad \mathrm{SP} \mathrm{g}$.
If $\mathrm{G}_{\mathrm{g}} \quad \mathrm{SP}_{\mathrm{g}}$, then Theorem 1.2 is proved. We prove $\mathrm{G}_{\mathrm{g}} \quad \mathrm{SP}_{\mathrm{g}}$ in the next section.

Algebraic \& Geometric Topology, Volume 2 (2002)

Proof of Lemma 2.2 First we show that, if $\mathrm{g}=2, \mathrm{~T}=\mathrm{C}_{1} \mathrm{C}_{3} \mathrm{C}_{5}$ is an ele ment of $E\left(S^{4} ; 2\right)$. We parametrize the regular neighborhood of the equator S^{3} in S^{4} by $S^{3} \quad[-1 ; 1]$, such that $S^{3} \quad f 0 g=$ the equator $S^{3}, S^{3} \quad[-1 ; 1] \backslash D^{4}$ $=S^{3} \quad[-1 ; 0]$, and $S^{3} \quad[-1 ; 1] \backslash D_{+}^{4}=S^{3} \quad[0 ; 1]$. We deform 2 in S^{4}, in

Figure 5
such a way that the surface obtained as a result of this deformation projects onto the equator S^{3} as indicated in Figure 5. In this gure, there are 6 intersecting circles. For each circle, we take two regular neighborhoods N_{1} and N_{2} in ${ }_{2}$. For $0 \ll 1$, we put N_{1} into $S^{3} \quad f_{2} g$ and N_{2} into $S^{3} \quad f{ }_{2} g$. This deformation de nes an orientation preserving di eomorphism Ψ_{1} of S^{4}. Let $r(): S^{2}!S^{2}$ be the angle rotation whose axis passes through N. We de ne $R(): S^{3}!S^{3}$ by

$$
\begin{aligned}
& R()(x ; t)=(r(t)(x) ; t) \text { on } S^{2} \quad[0 ; 1] \\
& R()=\text { id on } D_{-}^{3} \\
& R()=\text { the angle rotation on } D_{+}^{3}-S^{2} \quad[0 ; 1]:
\end{aligned}
$$

We de ne an orientation preserving di eomorphism Ψ_{2} of S^{4} by

$$
\begin{aligned}
& \Psi_{2}(\mathrm{x} ; \mathrm{t})=(\mathrm{R}(2)(\mathrm{x}) ; \mathrm{t}) \quad \text { on } \mathrm{S}^{3} \quad[-;] ; \\
& \Psi_{2}(\mathrm{x} ; \mathrm{t})=\mathrm{R}\left(2 \frac{1-\mathrm{t}}{1-}\right)(\mathrm{x}) ; \mathrm{t} \quad \text { on } \mathrm{S}^{3} \quad[; 1] ; \\
& \Psi_{2}(\mathrm{x} ; \mathrm{t})=\mathrm{R}\left(2 \frac{\mathrm{t}+1}{1-}\right)(\mathrm{x}) ; \mathrm{t} \quad \text { on } \mathrm{S}^{3} \quad[-1 ;-] ; \\
& \Psi_{2}=\mathrm{id} \text { on } \mathrm{S}^{4}-\mathrm{S}^{3} \quad[-1 ; 1]:
\end{aligned}
$$

Then $\Psi_{1}^{-1} \Psi_{2} \Psi_{1} j_{2}=C_{1} C_{3} C_{5}$. In the same way as above, we can show for $g 3$ that T_{1} and T_{2} are elements of $E\left(S^{4} ; g\right)$.
Next, for $\mathrm{g}=3$, we show that $\mathrm{X}_{3}=\mathrm{C}_{4} \mathrm{C}_{3} \overline{\mathrm{C}_{4}}$ and $\mathrm{D}_{3}=\mathrm{C}_{3}^{2}$ are elements of $E\left(S^{4} ; \mathrm{g}\right)$. We review a theorem due to Montesinos [10]. We can construct S^{4} from $B^{3} \quad S^{1}$ and $S^{2} \quad D^{2}$ by attaching their boundary with the natural identi cation. Let $D^{2} S^{1}$ be the solid torus trivially embedded in B^{3}. We regard $D^{2} \quad S^{1} \quad S^{1} \quad B^{3} \quad S^{1} \quad S^{4}$ as the regular neighborhood of a trivial ${ }_{1}-\mathrm{knot}$. Let E^{4} be the exterior of this trivial $1_{1-\mathrm{knot}}$. The 3 simple closed curves $I=@^{2} \quad, r=S^{1} \quad, s=\quad S^{1}$ on Φ^{4} represent a basis of $\mathrm{H}_{1}\left(@^{4} ; \mathbb{Z}\right)$. Montesinos showed:

Theorem 2.4 [10, Theorem 5.3] Let g: © ${ }^{4}$! © ${ }^{4}$ be a di eomorphism which induces an automorphism on $\mathrm{H}_{1}\left(\Subset^{4} ; \mathbb{Z}\right)$,

$$
g(1 ; r ; s)=(1 ; r ; s) @_{n}^{m} \text { a } \begin{array}{lll}
b^{1} \\
p & \gamma^{A}:
\end{array}
$$

There is a di eomorphism $G: E^{4}!E^{4}$ such that $\mathrm{Gj}_{\Phi^{4}}=\mathrm{g}$ if and only if $a=b=0$ and $++\gamma+$ is even.

Let p be a point on $\quad S^{1} \quad S^{1}$ disjoint from $r[s, N(p)$ be a regular neighborhood of p in the equator S^{3}, then $N=S^{1} S^{1}-N(p)$ in a regular neighborhood of $r\left[s\right.$. Figure6illustrates deformation of g into $D^{2} \quad S^{1} S^{1}$. We bring c_{3} and c_{4} to r and s and deform as is indicated by arrows. Then, we can deform ${ }_{3}$ in such a way that a regular neighborhood N^{0} of C_{3} [C_{4} coincides with N and ${ }_{3}-N^{0} \quad N(p)$. Let di eomorphisms f_{1}, f_{2} over
 we present di eomorphisms on $\quad S^{1} \quad S^{1}$ by its action on the basis $\mathrm{fr} ; \mathrm{sg}$ of $H_{1}\left(\quad S^{1} \quad S^{1} ; \mathbb{Z}\right)$ and r and s are oriented as in Figure 6), then $f_{1} j_{2}=$

Figure 6
$C_{3}^{2}=D_{3}, f_{2 j}{ }_{2}=C_{4} C_{3} \bar{C}_{4}=X_{3}$. Since the actions of these homeomorphisms on $\mathrm{H}_{1}\left(\Subset^{4} ; \mathbb{Z}\right)$ are described by

$$
\begin{aligned}
& \left(f_{1} \varliminf^{4}\right)(I ; r ; s)=(I ; r ; s) @ 012 A ; \\
& { }_{0}^{0} 00 l_{1}^{1} \\
& \left(f_{2} \varliminf^{4}\right)(1 ; r ; s)=(l ; r ; s) @ \begin{array}{rcl}
0 & 2 & 1 \mathrm{~A} ; \\
0 & -1 & 0
\end{array}
\end{aligned}
$$

therearedi eomorphisms F_{1} and F_{2} such that $F_{1} j_{D^{2}} s^{1} s^{1}=f_{1}, F_{2 D_{D^{2}}} s^{1} s^{1}$ $=f_{2}$. These di eomorphisms F_{1}, F_{2} are extensions of f_{1}, f_{2} respectively. By the same method as above, we can show that other $X_{i}, Y_{2 j}, D_{i}$, and $D B_{2 j}$ are elements of $E\left(S^{4} ; g\right)$ for any $g 2$.

3 A nite set of generators for the spin mapping class group

In Corollary 2.3, we showed that $\mathrm{G}_{\mathrm{g}} \quad \mathrm{SP}$ g. In this section, we show that $\mathrm{G}_{\mathrm{g}}=\mathrm{SP} \mathrm{g}$. That is to say, we show:

Theorem 3.1 If $g=2, S P_{2}$ is generated by $C_{i+1} C_{i} \overline{C_{i+1}}$ (1 $\begin{array}{lll}1 & 4) \text {, }\end{array}$ $C_{j}^{2}(1 \quad j \quad 5)$, and $C_{1} C_{3} C_{5}$. If g 3, $S P_{g}$ is generated by $C_{i+1} C_{i} \overline{C_{i+1}}$ (1 i 2g), $C_{2 j} B_{2 j} \overline{C_{2 j}}(2 \quad j \quad g-1), C_{k}^{2}\left(\begin{array}{lll}1 & k & 2 g+1\end{array}\right), B_{1}^{2}$ (1 I g-1), $\mathrm{C}_{1} \mathrm{C}_{3} \mathrm{~B}_{4}$ and $\mathrm{B}_{4} \mathrm{C}_{5} \mathrm{C}_{7} \quad \mathrm{C}_{2 \mathrm{~g}+1}$.

When $\mathrm{g}=2$, we use Reidemeister\{Schreier's method to show this. On the other hand, when g 3, we use other methods. We start from the case when g 3 .

3.1 The hyperelliptic mapping class group

Le H_{g} be the subgroup of the mapping class group M_{g} generated by $\mathrm{C}_{1} ; \mathrm{C}_{2}$; :::; $\mathrm{C}_{2 \mathrm{~g}+1}$. This group is called the hyperelliptic mapping class group. In this group (and also in M_{g}), C_{i} 's satisfy the following equations:

$$
\begin{aligned}
\mathrm{C}_{i} \mathrm{C}_{i+1} \mathrm{C}_{\mathrm{i}} & =\mathrm{C}_{i+1} \mathrm{C}_{\mathrm{i}} \mathrm{C}_{\mathrm{i}+1} ;\left(\begin{array}{lll}
1 & \mathrm{i} & 2 \mathrm{~g}
\end{array}\right) \\
\mathrm{C}_{\mathrm{i}} \mathrm{C}_{j} & =\mathrm{C}_{\mathrm{j}} \mathrm{C}_{\mathrm{i}} ;\left(\begin{array}{ll}
\mathrm{ji}-\mathrm{jj} & 2
\end{array}\right):
\end{aligned}
$$

These equations are called braid equation. In this paper, we use these relations frequently. In this section, we show the following lemma for H_{g}.

Lemma 3.2 For any $\mathrm{i}=1 ; 2 ;::: ; 2 \mathrm{~g}+1$, and any element W of $\mathrm{H}_{\mathrm{g}}, \mathrm{WC}_{\mathrm{i}} \mathrm{C}_{\mathrm{i}} \overline{\mathrm{W}}$ is an element of G_{g}.

Proof We call C_{i} a positive letter and $\overline{C_{i}}$ a negative letter. A sequence of positive letters is called a positive word. If indices of two letters C_{i}, C_{j} satisfy $j i-j j=1$, then we say C_{i} is adjacent to C_{j}. If there is a negative letter \bar{B} in a sequence of letters W, which presents an element of H_{g}, we replace \bar{B} by a sequence of letters $\bar{B} \bar{B} \quad B$. This shows that every element of H_{g} is represented by a sequence of positive letters and $\overline{C_{j}} \overline{C_{j}}$'s (1 $\quad \mathrm{j} \quad 2 \mathrm{~g}+1$). If there is a sequence of letters $X X\left(X=C_{i}\right.$ or $\left.\overline{C_{i}}\right)$ in W, say $W=W_{1} X X W_{2}$, then we rewrite,

$$
\begin{aligned}
W C_{i} C_{i} \bar{W} & =W_{1} \times \times W_{2} C_{i} C_{i} \overline{W_{2}} \bar{X} \bar{X} \overline{W_{1}} \\
& =W_{1} \times \times \overline{W_{1}} W_{1} W_{2} C_{i} c_{i} \overline{W_{2}} \overline{W_{1}} W_{1} \bar{X} \bar{X} \overline{W_{1}}:
\end{aligned}
$$

Therefore, the following daim shows this lemma:
Claim For any positive word W without $C_{j} C_{j}\left(\begin{array}{ll}1 & j g+1\end{array}\right), W C_{i} C_{i} \bar{W}$ is an element of G_{g}.

If the word length of W is 0 , the above claim is trivial. We assume that the word length of W is at least 1, and we show this claim by the induction on the word length. If the right most letter L of W is not adjacent to A_{i}, and say $\mathrm{w}=\mathrm{wq}$, then

$$
W c_{i} c_{i} \bar{W}=W^{q} Q c_{i} c_{i} L \overline{W^{0}}=W^{0} c_{i} L \bar{L} c_{i} \overline{W^{0}}=W^{0} c_{i} c_{i} \overline{W^{0}}:
$$

By the induction hypothesis, $W C_{i} C_{i} \bar{W}$ is an element of G_{g}. Therefore, from here to the end of this proof, we assume that the right most letter of W is adjacent to C_{i}. Let I be the word length of W, and $W=x_{1} x_{1-1}::: x_{2} x_{1}$. The letter x_{i} of W is called a jump, if x_{i-1} and x_{i} are not adjacent. The letter x_{j}
of W is called a turn, if x_{j} and $\mathrm{x}_{\mathrm{j}-1}$ are not jumps and $\mathrm{x}_{\mathrm{j}}=\mathrm{x}_{\mathrm{j}-2}$. Considering jumps and turns, we need to show this claim for the following three cases.

Case 1 When there is not any jump or any turn: Since x_{\mid}and x_{1-1} are adjacent, $x_{1} x_{1-1} x_{1}$ is an element of G_{g}. We rewrite,

$$
W C_{i} C_{i} \bar{W}=x_{1} x_{1-1} x_{1} \quad x_{1} x_{1-2} x_{1-3} \quad x_{1} C_{i} C_{i} x_{1} \quad \overline{x_{1-3} x_{1-2} x_{1}} \quad x_{\mid} x_{1-1} x_{1}:
$$

By the induction hypothesis, $W_{i} C_{i} \bar{W}$ is an element of G_{g}.
Case 2 When there are jumps, but there is not any turn: We show in the induction on the number of jumps in W. Let x_{j} be the right most jump in W. First we consider the case when $j=2$, say $W=W^{6} x_{2} x_{1}$. If x_{2} is not adjacent to C_{i}, we rewrite,

$$
\begin{aligned}
W_{C_{i} c_{i} \bar{W}} & =W^{0} x_{2} x_{1} c_{i} c_{i} x_{1} x_{2} \overline{W^{0}} \\
& =W^{0} x_{1} x_{2} c_{i} c_{i} x_{2} x_{1} \overline{W^{0}} \\
& =W^{0} x_{1} c_{i} x_{2} x_{2} c_{i} x_{1} \overline{W^{0}} \\
& =W^{c_{1}} c_{i} c_{i} c_{i} x_{i} \overline{W^{0}}:
\end{aligned}
$$

By the induction hypothesis on the word length of $\mathrm{W}, \mathrm{WC}_{\mathrm{i}} \mathrm{C}_{\mathrm{i}} \overline{\mathrm{W}}$ is an element of G_{g}. If x_{2} is adjacent to C_{i}, we rewrite,

$$
\begin{aligned}
& W C_{i} C_{i} \bar{W}=W^{0} x_{2} x_{1} C_{i} c_{i} x_{1} x_{2} \overline{W^{0}} \\
& =W^{0} x_{2} \overline{C_{i}} x_{1} x_{1} c_{i} x_{2} \overline{W^{0}} \\
& =W^{0}{ }^{2} \overline{C_{i}} \overline{C_{i}} \quad C_{i} x_{1} x_{1} \overline{C_{i}} \quad C_{i} C_{i x_{2}} \overline{W^{0}} \\
& =W^{0} x_{2} \overline{C_{i}} \overline{C_{i}} x_{2} \overline{W^{0}} W^{0} x_{2} C_{i} x_{1} x_{1} \overline{C_{i}} x_{2} \overline{W^{0}} W^{0} x_{2} C_{i} C_{i} x_{2} \overline{W^{0}}:
\end{aligned}
$$

By the induction hypothesis on the word length of W , the rst and third terms are elements of G_{g}. By the induction hypothesis on the number of jumps in W , the second term is an element of G_{g}. Therefore, $\mathrm{WC}_{\mathrm{i}} \mathrm{C}_{\mathrm{i}} \overline{\mathrm{W}}$ is an element of G_{g}. Next, we consider on the case when j is at least 3 . If x_{j} is not adjacent to $\mathrm{x}_{\mathrm{j}-1} ;:::$; x_{1} then,

$$
W=::: x_{j} x_{j-1}::: x_{1}=::: x_{j-1}::: x_{1} x_{j}:
$$

Therefore, it comes down to the case $j=2$. If there are some letters adjacent to x_{j} in $f x_{j-1} ; \quad ; x_{1} g$, let x_{i} be the left most element among them. By the de nition of jumps, $\mathrm{j}>\mathrm{i}+1$, and by the de nition of $\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{j}}=\mathrm{x}_{\mathrm{i}-1}$. Therefore,

$$
\begin{aligned}
W & =x_{j} \quad x_{i+1} x_{i} x_{i-1} & x_{1} \\
& =x_{i+1} x_{j} x_{i} x_{i-1} & x_{1} \\
& =x_{i+1} x_{i-1} x_{i} x_{i-1} & x_{1} \\
& =x_{i+1} x_{i} x_{i-1} x_{i} & x_{1}:
\end{aligned}
$$

Since there is not any jump or any turn in the sequence $x_{i} x_{i-1} \quad x_{1}, x_{i}$ commutes with $x_{i-2} ;:: ; \mathrm{x}_{1}$. Therefore, $\mathrm{W}=\mathrm{x}_{1} \mathrm{x}_{\mathrm{i}}$ and it comes down to the case $\mathrm{j}=2$.

C ase 3 When there are turns in W: Let x_{t} be the right most turn in W. By the de nition of turn, t is at least 3. By applying the argument for Case 2 to $x_{t-1} x_{t-2} \quad x_{1}$, we assume that there is no turn and no jump in $x_{t-1} x_{t-2} \quad x_{1}$. Since we assume that x_{1} is adjacent to C_{i}, there may be a case when $x_{2}=C_{i}$. In that case, we rewrite,

$$
\begin{aligned}
W C_{i} C_{i} \bar{W} & =x_{3} x_{2} x_{1} C_{i} C_{i} x_{1} x_{2} x_{3} \\
& =x_{3} C_{i} x_{1} C_{i} C_{i} x_{1} \overline{C_{i}} x_{3} \\
& =x_{3} x_{1} c_{i} x_{1} \overline{x_{1}} \overline{C_{i}} x_{1} x_{3} \\
& =x_{3} x_{1} x_{1} x_{3} \quad:
\end{aligned}
$$

By the induction hypothesis on the word length of $\mathrm{W}, \mathrm{WC}_{i} \mathrm{C}_{\mathrm{i}} \bar{W}$ is an element of G_{g}. If $x_{2} \in C_{i}$, then $x_{t-1} ; x_{t-2} ; \quad ; x_{2}$ are not adjacent to C_{i}. We rewrite,

$$
\begin{array}{rlr}
W & =x_{t} x_{t-1} x_{t-2} x_{t-3} & x_{1} \\
& =x_{t-2} x_{t-1} x_{t-2} x_{t-3} & x_{1} \\
& =x_{t-1} x_{t-2} x_{t-1} x_{t-3} & x_{1}:
\end{array}
$$

Since we assume that there is no jump and no turn in $x_{t-1} x_{t-2} \quad x_{1}, x_{t-1}$ is not adjacent to $x_{t-3} ;::: ; x_{1}$. Therefore, $W=x_{t-1} x_{t-2} x_{t-3} \quad x_{1} x_{t-1}$. With remarking that x_{t-1} is not adjacent to C_{i}, we rewrite,

$$
\begin{aligned}
& W C_{i} C_{i} \bar{W}=x_{t-1} x_{t-2} x_{t-3} \quad x_{1} x_{t-1} C_{i} C_{i} X_{t-1} X_{1} \quad X_{t-3} X_{t-2} X_{t-1} \\
& =\begin{array}{lll}
x_{t-1} x_{t-2} x_{t-3} & x_{1} C_{i} x_{t-1} X_{t-1} C_{i} x_{1} \quad x_{t-3} X_{t-2} X_{t-1}
\end{array} \\
& =\begin{array}{lll}
x_{t-1} x_{t-2} x_{t-3} & x_{1} C_{i} C_{i} x_{1} & x_{t-3} X_{t-2} X_{t-1}
\end{array}:
\end{aligned}
$$

By the induction hypothesis on the word length of $W, W C_{i} C_{i} \bar{W}$ is an element of G_{g}.

3.2 The Torelli group I_{g}

In this subsection, we assume $\mathrm{g} \quad 3$. There is a natural surjection : M_{g} ! $\mathrm{Sp}(2 \mathrm{~g} ; \mathbb{Z})$ de ned by the action of M_{g} on the group $\mathrm{H}_{1}(\mathrm{~g} ; \mathbb{Z})$. We denote the kerne of by I_{g} and call this the Torelli group. In this subsection, we prove the following lemma:

Lemma 3.3 The Torelli group I_{g} is a subgroup of G_{g}.

Figure 7

J ohnson [7] showed that, when g is larger than or equal to $3, \mathrm{I}_{\mathrm{g}}$ is nitely generated. We review his result. We orient and call simple closed curves as indicated in Figure 2 , and call ($c_{1} ; c_{2} ;::: ; c_{2 g+1}$) and ($c ; c_{5} ;::: ; c_{2 g+1}$) as chains. For oriented simple closed curves d and e which mutually intersect in one point, we construct an oriented simple closed curve $\mathrm{d}+\mathrm{e}$ from $\mathrm{d}[\mathrm{e}$ as follows: choose a disk neighborhood of the intersection point and in it make a replacement as indicated in Figure 7. For a consecutive subset $f c_{i} ; c_{i+1} ;::: ; c_{j} g$ of a chain, let $c_{i}+\quad+c_{j}$ be the oriented simple closed curve constructed by repeated applications of the above operations. Let ($\mathrm{i}_{1} ;::: ; \mathrm{i}_{\mathrm{r}+1}$) be a subsequence of ($1 ; 2 ;::: ; 2 g+1$) (Resp. $(; 5 ;::: ; 2 g+1)$). We construct the union of circles $C=c_{1}+\quad+c_{i_{2}-1}\left[c_{i_{2}}+\quad+c_{i_{3}-1}\left[\quad\left[c_{i_{r}}+\quad+c_{i_{r+1}-1}\right.\right.\right.$. If r is odd, the regular neighborhood of C is an oriented compact surface with 2 boundary components. Le be the element of M_{g} de ned as the composition of the positive Dehn twist along the boundary curve to the left of C and the negative Dehn twist along the boundary curve to the right of C . Then, is an element of I_{g}. We denote by $\left[\mathrm{i}_{1} ;::: ; \mathrm{i}_{\mathrm{r}+1}\right]$, and call this the odd subchain map of ($\mathrm{c}_{1} ; \mathrm{c}_{2} ;::: ; \mathrm{c}_{2 \mathrm{~g}+1}$) (Resp. ($\left.\mathrm{c} ; \mathrm{c}_{5} ;::: ; \mathrm{c}_{2 \mathrm{~g}+1}\right)$). J ohnson [7] showed the following theorem:

Theorem 3.4 [7, Main Theorem] For g 3, the odd subchain maps of the two dhains ($\mathrm{c}_{1} ; \mathrm{c}_{2} ;::: ; \mathrm{c}_{2 \mathrm{~g}+1}$) and ($\mathrm{c} ; \mathrm{c}_{5} ;:: ; \mathrm{c}_{2 \mathrm{~g}+1}$) generate I g .

We use the following results by J ohnson [7].
Lemma 3.5 [7] (a) C_{j} commutes with $\left[i_{1} ; i_{2} ; \quad\right]$ if and only if j and $j+1$ are either both contained in or are disjoint from the i ' s
(b) If $\mathrm{i} G \mathrm{j}+1$, then $\overline{\mathrm{C}_{\mathrm{j}}}[\mathrm{j} ; \mathrm{i} ; \quad]=[\quad ; \mathrm{j}+1 ; \mathrm{i} ; \quad]$, and C_{j}
[;j;i;]=[;j;i;][;j+1;i;]-1[;j;i;].
(c) If $k \in j$, then $C_{j}[\quad ; k ; j+1 ; \quad]=[\quad ; k ; j ; \quad]$, and $\overline{C_{j}} \quad[\quad ; k ; j+$ 1; $\quad]=[\quad ; k ; j+1 ; \quad] \quad ; k ; j ; \quad]^{-1}[\quad ; k ; j+1 ; \quad]$.
(d) $[1 ; 2 ; 3 ; 4][1 ; 2 ; 5 ; 6 ;::: ; 2 n] B_{4}[3 ; 4 ; 5 ;::: ; 2 n]=[5 ; 6 ;::: 2 n][1 ; 2 ; 3 ; 4 ;::: ;$ $2 \mathrm{n}]$, where 3 n g .

First we show that some odd subchain maps are elements of G_{g}.

Lemma 3.6 [1; $2 ; 3 ; 4]$, $1 ; 3 ; 5 ; 7 ;::: ; 2 i+1 ;::: ; 2 n-1]$ (n is even, and 4 $\mathrm{n} \quad \mathrm{g}+1$), and $[1 ; 2 ; 4 ; 6 ;::: ; 2 \mathrm{i} ;::: ; 2 \mathrm{n}-2]$ (n is even, and $4 \mathrm{n} \mathrm{g}+2$) are elements of G_{g}.

Proof In this proof, for a sequence $f f_{i} g$ of elements of M_{g}, we write,

$$
\sum_{i=n}^{m} f_{i}=\begin{array}{llll}
\left(f_{n} f_{n+1}\right. & f_{m} ; & n & m ; \\
f_{n} f_{n-1} & f_{m} ; & n & m:
\end{array}
$$

(1) $[1 ; 2 ; 3 ; 4]$ is an element of G_{g} : $[1 ; 2 ; 3 ; 4]$ is equal to $B_{4} \overline{B_{4}^{0}}$. Since $\mathrm{C}_{4} \mathrm{C}_{3} \mathrm{C}_{2} \mathrm{C}_{1} \mathrm{C}_{1} \mathrm{C}_{2} \mathrm{C}_{3} \mathrm{C}_{4}\left(\mathrm{~b}_{4}\right)=\mathrm{b}_{4}^{\mathrm{o}}$,

$$
\begin{aligned}
{[1 ; 2 ; 3 ; 4]=} & \mathrm{B}_{4} \mathrm{C}_{4} \mathrm{C}_{3} \mathrm{C}_{2} \mathrm{C}_{1} \mathrm{C}_{1} \mathrm{C}_{2} \mathrm{C}_{3} \mathrm{C}_{4} \overline{\mathrm{~B}_{4}} \overline{\mathrm{C}_{4}} \overline{\mathrm{C}_{3}} \overline{\mathrm{C}_{2}} \overline{\mathrm{C}_{1}} \overline{\mathrm{C}_{1}} \overline{\mathrm{C}_{2}} \overline{\mathrm{C}_{3}} \overline{\mathrm{C}_{4}} \\
= & \mathrm{B}_{4} \mathrm{C}_{4} \overline{\mathrm{~B}_{4}} \\
\mathrm{C}_{3} \mathrm{C}_{2} \overline{\mathrm{C}_{3}} & \mathrm{C}_{1} \mathrm{C}_{1} \\
& \mathrm{C}_{3} \mathrm{C}_{2} \overline{\mathrm{C}_{3}} \\
\mathrm{C}_{2} \mathrm{C}_{3} \mathrm{C}_{3} & \mathrm{C}_{2} \\
\mathrm{C}_{2} & \mathrm{~B}_{4} \mathrm{C}_{4} \mathrm{C}_{2} \\
\mathrm{~B}_{4} & \overline{\mathrm{C}_{2}} \overline{\mathrm{C}_{4}} \overline{\mathrm{C}_{3}} \overline{\mathrm{C}}_{4} \mathrm{C}_{4} \\
\mathrm{C}_{3} \mathrm{C}_{4} & \overline{\mathrm{C}_{4}} \overline{\mathrm{C}_{4}}:
\end{aligned}
$$

Therefore, $[1 ; 2 ; 3 ; 4]$ is an element of G_{g}.
(2) $[1 ; 3 ; 5 ; 7 ;::: 2 i+1 ;::: ; 2 n-1]$ (n is even, and $4 n \quad \mathrm{~g}+1$) are elements of G_{g} : By (b) of Lemma 3.5,

$$
[1 ; 3 ; 5 ; 7 ;::: ; 2 i+1 ;::: ; 2 n-1]=\left(\underset{k=n-1}{Y_{i=2 k}^{n}} \overline{n \not \gamma_{i}-1}\right) \quad[1 ; 2 ; 3 ; 4 ;::: ; n]:
$$

Since $[1 ; 2 ; 3 ; 4 ;::: ; n]=B_{n} \overline{B_{n}^{0}}$, and $b_{n}^{p}={ }_{i=n} C_{i} C_{1} C_{1} Q_{i=2} C_{i}\left(b_{n}\right)$,

$$
\begin{aligned}
& {[1 ; 2 ; 3 ; 4 ; \quad ; n]=B_{n}{ }_{i=n}^{Y^{2}} C_{i} C_{1} C_{1}{ }_{i=2}^{n} C_{i} \overline{B_{n}}{ }_{i=n}^{Y_{i}^{2}} \overline{C_{i}} \overline{C_{1}} \overline{C_{1}}{ }_{i=2}^{Y_{i}} \overline{C_{i}}} \\
& ={ }_{k=2}^{Y_{n}} f\left(B_{n}{ }_{i=n}^{Y^{k}} C_{i}\right) \quad\left(C_{k-1} C_{k-1}\right) g \quad B_{n} \quad\left(C_{n} C_{n}\right) \\
& Y_{k=2}^{n}\left({ }_{i=n}^{Y_{i}}\right)\left(\overline{C_{k-1}} \overline{C_{k-1}}\right) g \overline{C_{n}} \overline{C_{n}} \text { : }
\end{aligned}
$$

Therefore,

$$
[1 ; 3 ; 5 ; 7 ;::: ; 2 n-1]={ }_{k=2}^{Y^{n}} f\left(Y_{l=n-1}^{Y^{1}}{ }_{i=2 l}^{n \psi 1-1} \overline{C_{i}} \quad B_{n}{ }_{i=n}^{Y^{k}} C_{i}\right) \quad\left(C_{k-1} C_{k-1}\right) g
$$

$$
\left(\begin{array}{lll}
Y_{1=n-1}^{1} & { }_{i=2 l}^{n \nmid-1} & \overline{C_{i}} \\
B_{n}
\end{array}\right) \quad\left(C_{n} C_{n}\right)
$$

$$
Y \quad n \nmid-1
$$

$$
\left(\begin{array}{ll}
& \left.\overline{C_{i}}\right)
\end{array}\right)\left(\overline{C_{n}} \overline{C_{n}}\right):
$$

$$
\mathrm{l}=\mathrm{n}-1 \quad \mathrm{i}=2 \mathrm{l}
$$

 $\left({ }_{l=n-1}{ }_{i=2 l}^{n+1-1} \overline{C_{i}}\right)\left(\overline{C_{n}} \frac{C_{n}}{C_{n}}\right)$ are elements of G_{g}. By braid relations for $M g$, (in the following equations $\mathrm{j} \mathrm{n}-1$)

By the above equation and the fact that B_{n} commutes with $C_{j}(1 \quad j \quad n-1)$,

Since, for $3 \mathrm{k}+1$,

Algebraic \& Geometric Topology, Volume 2 (2002)

$$
\begin{aligned}
& \left(C_{j-1}{ }_{i=n}^{i} C_{i}\right) \quad\left(C_{j-1} C_{j-1}\right)=C_{j-1}^{j}{ }_{i=n}^{j+1} C_{i} C_{j} C_{j-1} C_{j-1} C_{j} \quad \underset{i=j+1}{Y^{n}} \overline{C_{i}} \overline{C_{j-1}} \\
& ={ }_{i=n}^{\mathcal{Y}^{+1}} C_{i} C_{j-1} C_{j} C_{j-1} C_{j-1} \overline{C_{j}} \overline{C_{j-1}} \underset{i=j+1}{Y^{n}} \overline{C_{i}} \\
& ={ }_{i=n}^{\mathrm{j}^{+1}} C_{i} C_{j} C_{j-1} C_{j} \overline{C_{j}} \overline{C_{j-1}} C_{j}{ }_{i=j+1}^{Y_{i}^{n}} \overline{C_{i}}=\left({ }_{i=n}^{j+1} C_{i}\right) \quad\left(C_{j} C_{j}\right) ; \\
& \left(C_{n-1} C_{n}\right) \quad\left(C_{n-1} C_{n-1}\right)=C_{n-1} C_{n} C_{n-1} C_{n-1} \overline{C_{n}} \overline{C_{n-1}} \\
& =C_{n} C_{n-1} C_{n} \overline{C_{n}} \overline{C_{n-1}} C_{n}=C_{n} C_{n}:
\end{aligned}
$$

we obtain,

$$
\begin{aligned}
& \left.{\underset{l}{l=n-1}{ }^{Y} \quad{ }_{i=2 l}^{n \nmid-1} \overline{C_{i}}}_{j=k-2}^{Y} C_{j} \quad B_{n} Y_{i=n}^{2} C_{i}\right) \quad\left(C_{1} C_{1}\right) \\
& =\left({ }_{j=k-2}^{Y^{1}}\left(\overline{C_{2 j}} C_{2 j-1} C_{2 j}\right){ }_{l=n-1 \quad i=21}^{Y^{1}} \overline{C_{i}} \quad B_{n}{ }_{i=n}^{Y^{2}} C_{i}\right) \quad\left(C_{1} C_{1}\right):
\end{aligned}
$$

Therefore, for showing ${ }_{Q}$ hat $\left[1 ; 3 ; 5 ; 7 ;:: \dot{Q}_{2}^{2 n-1]}\right.$ is an element of G_{g}, it su ces to show that $\left({ }_{l=n-1}{ }_{n+1-1}^{Q_{1}^{2}} \bar{C}_{i} Q_{n+1-1}^{B_{n}} Q_{i=n} C_{i}\right) \quad\left(C_{1} C_{1}\right)$ is an element of G_{g}. Figure 8 illustrates $u={\underset{1}{l=n-1}}_{Q_{n=21}}^{Q_{i=1} 1} \bar{C}_{i} \quad B_{n} \quad Q_{i=n} C_{i}\left(c_{1}\right)$. We investigate

Figure 8
the action of elements of G_{g} on u . As indicated in Figure 9, $\mathrm{X}_{5} \mathrm{X}_{3} \mathrm{X}_{1}$ acts

$$
\boldsymbol{\chi} \mathrm{x}_{3}^{*}
$$

Figure 9
on u. We make $Q_{i=\frac{n}{2}-2} X_{4 i+1} X_{4 i-1}$ act on this circle. In the middle of this
action, $X_{4 i+1} X_{2 i-1}$ acts locally as in Figure 10. Hence ${ }_{i=n} X_{4 i+1} X_{4 i-1}$ action, $X_{4 i+1} X_{4 i-1}$ acts locally as in Figure 10. Hence, $Q_{i=\frac{n}{2}-2} X_{4 i+1} X_{4 i-1}$ $X_{1}(u)$ is as the rst of Figure 11. This gure shows that, by the action of $\overline{X_{6}} \overline{X_{4}} \bar{Y}_{6} X_{2 n-3} X_{2 n-5}$, this curve is changed to the u of $n-4$. Therefore, for our purpose, it su ces to show that $\mathrm{T}_{\mathrm{u}} \mathrm{T}_{\mathrm{u}}$ is an element of G_{g} only for $\mathrm{n}=4$ or $n=6$. Figure 12 shows that, when $n=4, T_{u} T_{u}=\left(\overline{X_{1}} \overline{X_{3}} \overline{X_{5}}\right) \quad\left(Y_{4} Y_{4}\right)$.

Figure 10

Figure 11

Figure 12

Figure 13 shows that, when $n=5, T_{u} T_{u}=\left(\overline{X_{1}} \overline{X_{3}} \overline{X_{5}} \overline{X_{7}} \overline{X_{9}} Y_{6} X_{4} X_{6}\right) \quad D_{8}$.

Figure 13
(3) $[1 ; 2 ; 4 ; 6 ;::: ; 2 i ;::: ; 2 n-2]$ (n is even, and $4 \mathrm{n} \quad \mathrm{g}+2$) are elements of G_{g} : By (b) of Lemma 3.5,

$$
\left.[1 ; 2 ; 4 ; 6 ; 8 ;::: ; 2 n-2]=\underset{k=n-2 i=2 k+1}{Y^{1}} \overline{C_{i}}\right) \quad[1 ; 2 ; 3 ; 4 ;:::: n]:
$$

In the same way as (2),

$$
\begin{aligned}
& {[1 ; 2 ; 4 ; 6 ; 8 ;::: ; 2 n-2]=Y_{k=2}^{n} f\left(Y^{Y^{1}} \quad{ }^{n+1-1} \overline{C_{i}} \quad B_{n} \quad Y_{i=n}^{k} C_{i}\right) \quad\left(C_{k-1} C_{k-1}\right) g} \\
& \left(\begin{array}{llll}
Y^{1} & n \nmid l-1 \\
& \overline{C_{i}} & \left.B_{n}\right) \quad\left(C_{n} C_{n}\right)
\end{array}\right. \\
& I=n-2 i=21+1 \\
& Y_{k=2}^{f\left(\quad Y^{1} \quad{ }^{n+1-1} \overline{C_{i}} \quad Y^{k} \quad \overline{C_{i}}\right) \quad\left(\overline{C_{k-1}} \overline{C_{k-1}}\right) g} \\
& Y^{1} n^{\prime \prime}-1 \\
& 1=n+2 i=21+1
\end{aligned}
$$

 $\left(\sum_{l=n+2}^{\substack{n+1-1 \\ i=2 \mid+1 \\ C_{i}}}\right)\left(\overline{C_{n}} \overline{C_{n}}\right)$ are elements of G_{g}. By the same method as in (2), but using

$$
Y_{I=n-2 i=2 \mid+1}^{Y^{1}{ }^{n Y \mid-1} \overline{C_{i}} Y_{j=k-2}^{C_{j}} C_{j=k-2}^{Y^{2}}\left(\overline{C_{2 j-1}} C_{2 j-2} C_{2 j-1}\right) \quad C_{1} Y_{I=n-2 i=2 l+1}^{n Y \mid-1} \overline{C_{i}} ; ~}
$$

Algebraic \& Geometric Topology, Volume 2 (2002)
in place of,
we conclude that, for our purpose, it su $Q_{n+1-1}^{\left.\text {ces to show that } Q_{2} Q_{1} \quad \begin{array}{l}Q_{n+1}=1 \\ i=2 l+1 \\ C_{i}\end{array}\right]}$

Figure 14
and $w=C_{1}(v)$. First we investigate the actions of elements of G_{g} on v. In the following argument, we will refer the pictures in Figure 15 and Figure 18 by the number with (). By the action of $\mathrm{T}_{2} \overline{\mathrm{DB}_{2}}, \mathrm{v}$ is changed to (0). Now, we show (1) is G_{g}-equivalent to (6). (1) is altered to (2) by the action of Y_{6}. We make a sequence of $\overline{X_{4 i+1}} \bar{X}_{4 i-1}$'s act on this circle. In the middle of this process, each $\overline{X_{4 i+1}} \overline{X_{4 i-1}}$ acts locally as indicated in Figure 16. Hence, (2) is G_{g}-equivalent to (3). By the action of $\overline{X_{4 \mathrm{~m}-1}},(3)$ is deformed to (4). In the middle of a sequential action of $\overline{X_{4 i+3}} \overline{X_{4 i+1}}$'s, each $\overline{X_{4 i+3}} \overline{X_{4 i+1}}$ acts locally as shown in Figure 17. Hence, (4) and (5) are G_{g}-equivalent. As a result of the action of $\overline{X_{4 m-3}}$, (5) is altered to (6). The above argument shows that (1) is G_{g}-equivalent to (6). For (0), we apply the above process from (1) to (6) repeatedly, then we get (7). The element $\overline{X_{5}} \overline{X_{7}} \overline{Y_{6}}$ alters (7) into (8). If $\frac{n}{2}$ is even, $\mathrm{DB}_{4}^{\frac{n}{4}-1}$ deforms (8) into (9). Since (9) is changed to (10) by the action of $\overline{X_{3}}$, there exists an element h of G_{g} such that $h \quad\left(T_{v} T_{v}\right)=X_{1} X_{1}$. If $\frac{n}{2}$ is odd, $\mathrm{DB}_{4}^{\frac{\mathrm{n}-2}{4}}$ deforms (8) into (11). Since (11) is changed to (12) by the action
(0)

(1)

(2)

(3)

k-1 twists
(4)

(5)

k-1 twists
(6)

Figure 15

Algebraic \& Geometric Topology, Volume 2 (2002)

Figure 16

Figure 17

Figure 18
of $X_{1} \bar{Y}_{4}$, there exists an element h of G_{g} such that $h\left(T_{v} T_{v}\right)=D_{3}$. Next, we investigate the actions of G_{g} on w . The action of $\bar{T}_{1} \mathrm{~T}_{2}$ deforms w into (1) of Figure 19. After the repeated application of the actions from (1) to (6) of Figure 15, this circle is altered to (2) of Figure 19. By the same argument for v, when $\frac{n}{2}$ is even, there is a h of G_{g} such that $h\left(T_{w} T_{w}\right)=D_{3}$, on the other hand, when $\frac{n}{2}$ is odd, there is a h of G_{g} such that $h\left(T_{w} T_{w}\right)=X_{1} X_{1}$. Therefore $[1 ; 2 ; 4 ; 6 ; 8 ;::: ; 2 n-2]$ is an element of G_{g}.

We prove that any odd subchain map of $\left(c_{1} ; c_{2} ; c_{3} ;::: ; c_{2 g+1}\right)$ or ($c ; c_{5} ; c_{6} ;::: ;$ $\mathrm{C}_{2 \mathrm{~g}}$) is a product of elements listed on Lemma 3.6 and elements of G_{g}. The following lemma shows that any odd subchain map of ($c ; c_{5} ; c_{6} ;:: ; c_{2 g}$) is a product of an odd subchain map of $\left(\mathrm{c}_{1} ; \mathrm{c}_{2} ; \mathrm{C}_{3} ;::: ; \mathrm{C}_{2 g+1}\right)$ and elements of G_{g}.

Figure 19

Lemma 3.7 $D_{3} \overline{T_{1}}(c)=C_{3}+c_{4}$.

Proof Figure 20 proves this lemma.

Figure 20
From here to the end of this subsection, odd subchain maps mean only those of ($c_{1} ; c_{2} ; c_{3} ;::: ; c_{2 g+1}$). The following lemma shows that any odd subchain map, whose length is at least 5 and which begins from $1 ; 2 ; 3 ; 4$, is a product of shorter odd subchain maps and elements of G_{g}.

Lemma 3.8

$$
\begin{gathered}
{[1 ; 2 ; 3 ; 4][1 ; 2 ; 3 ; 5]^{-1}[1 ; 2 ; 3 ; 4][1 ; 2 ; 4 ; 6 ; 7 ;::: ; 2 n]} \\
\left(\mathrm{C}_{4} \mathrm{~B}_{4} \overline{\mathrm{C}}_{4}\right) \quad[3 ; 4 ; 5 ;::: 2 \mathrm{nn}]=[4 ; 6 ; 7 ;::: 2 \mathrm{n}][1 ; 2 ; 3 ; 4 ;::: 2 n]
\end{gathered}
$$

Proof By (a) of Lemma 3.5, $\overline{\mathrm{C}_{4}} \quad[3 ; 4 ; 5 ;::: ; 2 \mathrm{n}]=[3 ; 4 ; 5 ;::: ; 2 \mathrm{n}]$, and by (d) of Lemma 3.5,

$$
\begin{aligned}
{[1 ; 2 ; 3 ; 4][1 ; 2 ; 5 ; 6 ;::: ; 2 n] } & \left(B_{4} \overline{\mathrm{C}_{4}}\right) \quad[3 ; 4 ; 5 ;::: ; 2 n]= \\
= & {[5 ; 6 ;::: 2 n][1 ; 2 ; 3 ; 4 ;:: ; 2 n]: }
\end{aligned}
$$

By applying C_{4} to the above equation, we get the equation which we ned.

For any odd subchain map $\left[i_{1} ; \mathrm{i}_{2} ;::: ; \mathrm{i}_{\mathrm{r}}\right]$, we de ne a sequence [[$1 ; 2 ;:::$; $2 \mathrm{~g}+2$]] as follows: $\mathrm{k}=1$ if k is a member of $\mathrm{f}_{1} ; \mathrm{i}_{2} ;::$:; $\mathrm{i}_{\mathrm{r}} \mathrm{g}$, and $\mathrm{k}=0$ if k is not a member of $\mathrm{fi}_{1} ; \mathrm{i}_{2} ;::: ; \mathrm{i}_{\mathrm{r}} \mathrm{g}$. For this sequence [[$\left.1 ; 2 ;::: ; 2 \mathrm{z}+2\right]$], we construct the sequence $[[1 ; 2 ;::: ; 2 \mathrm{z}+2]]$ by thefollowing rule: $(2 \mathrm{i}-1 ; 2 \mathrm{i})=(0 ; 0)$ if $(2 \mathrm{i}-1 ; 2 \mathrm{i})=(0 ; 0),(2 \mathrm{i}-1 ; 2 \mathrm{i})=(1 ; 0)$ if $(2 \mathrm{i}-1 ; 2 \mathrm{i})=(0 ; 1),(2 \mathrm{i}-1 ; 2 \mathrm{i})=$ $(0 ; 1)$ if $(2 \mathrm{i}-1 ; 2 \mathrm{i})=(1 ; 0),(2 \mathrm{i}-1 ; 2 \mathrm{i})=(1 ; 1)$ if $(2 \mathrm{i}-1 ; 2 \mathrm{i})=(1 ; 1)$. The odd subchain map $\left[j_{1} ; j_{2} ;::: ; j_{r}\right]$, which corresponds to the sequence $[[1 ; 2 ;:::$; $2 g+2]]$, is called the reversion of $\left[i_{1} ; i_{2} ;::: ; i_{r}\right]$.

Lemma 3.9 (1) For any odd subchain map c, there is an element of G_{g} which brings c to its reversion.
(2) When k i-3, $\left(\overline{C_{i-1}} \mathrm{C}_{\mathrm{i}-2} \mathrm{C}_{\mathrm{i}-1}\right) \quad[::: ; \mathrm{k} ; \mathrm{i} ; \mathrm{j} ;:::]=[::: ; \mathrm{k} ; \mathrm{i}-2 ; \mathrm{j} ;:::]$.
(3) When k i-2, $\left(\mathrm{C}_{\mathrm{i}} \mathrm{C}_{\mathrm{i}-1} \overline{\mathrm{C}_{\mathrm{i}}}\right) \quad[::: ; \mathrm{k} ; \mathrm{i} ; \mathrm{i}+1 ;:::]=[::: ; \mathrm{k} ; \mathrm{i}-1 ; \mathrm{i} ;:::]$.

Proof Lemma 3.5 shows (2) and (3). Since, $\bar{T}_{1} T_{2}=\overline{C_{1}} \overline{C_{3}} C_{5} \quad C_{2 g+1}$ and $D_{2 i-1}=C_{2 i-1} C_{2 i-1}(1 \quad i \quad g+1)$ are dements of $G_{g}, C_{1}^{1} C_{3}{ }^{1} C_{2 q+1}^{1}$ is an elements of G_{g} for any choice of 1 's. Let $[[1 ; 2 ;::: ; 2 \mathrm{q}+2]]$ be the $0-1$ sequence corresponding to $\left[i_{1} ; i_{2} ;::: ; i_{r}\right]$. We de ne $\gamma_{i}(1 \quad i \quad g+1)$ as follows: $\gamma_{i}=+1$ if $(2 i-1 ; 2 \mathrm{i})=(0 ; 0) ;(0 ; 1)$, or $(1 ; 1)$, and $\gamma_{i}=-1$ if $(2 \mathrm{i}-1 ; 2 \mathrm{i})=(1 ; 0)$. Then $\left(\mathrm{C}_{1}^{\gamma_{1}} \mathrm{C}_{3}^{\gamma_{2}} \quad \mathrm{C}_{2 \mathrm{~g}+1}^{\gamma_{g+1}}\right) \quad\left[\mathrm{i}_{1} ;::: ; \mathrm{i}_{\mathrm{r}}\right]$ is the reversion of [$\left.i_{1} ;::: ; i_{r}\right]$.

By (2) of the above lemma, any odd subchain map is deformed to an odd subchain map $\left[i_{1} ; i_{2} ;::: ; i_{r}\right]$ such that $i_{1+1}-i_{1} \quad 2$ under the action of G_{g}. If there are at least two disjoint pairs of indices ($i_{1} ; i_{1+1}$) in an odd subchain map [$\left.i_{1} ; i_{2} ;::: ; i_{r}\right]$ such that $i_{1+1}=i_{1}+1$, then, by (3) of the above lemma, this odd subchain map is altered to the odd subchain map which begins from 1;2;3;4 under the action of G_{g}. Therefore, by Lemma 3.8, this odd subchain map is a product of shorter odd subchain maps and elements of G_{g}. Hence, it su ces to show that $[1 ; 3 ; 5 ; 7 ; 9 ;:::],[2 ; 4 ; 6 ; 8 ; 10 ;:::],[1 ; 2 ; 3 ; 5 ; 7 ;:::],[1 ; 2 ; 4 ; 6 ; 8 ;:::]$, and $[1 ; 2 ; 3 ; 4]$ are elements of G_{g}. By (1) of Lemma 3.9, the second ones are changed to the rst ones, and the third ones are changed to the fourth ones by the action of G_{g}. On the other hand, we have already shown that [1; $3 ; 5 ; 7 ; 9 ;:::$], [1; $2 ; 4 ; 6 ; 8 ;:::$], and $\left[1 ; 2 ; 3 ; 4\right.$] are elements of G_{g} in Lemma 3.6. Therefore, Lemma 3.3 is proved.

3.3 The level 2 prime congruence subgroup of Sp ($2 \mathrm{~g} ; \mathbb{Z}$)

In this subsection, we assume g 3. Let 2 be the natural homomorphism from M_{g} to $\operatorname{Sp}\left(2 g ; \mathbb{Z}_{2}\right)$ de ned by the action of M_{g} on the \mathbb{Z}_{2}-coe cient rst homology group $H_{1}\left(\mathrm{~g} ; \mathbb{Z}_{2}\right)$. In this section, we show the following lemma.

Lemma 3.10 ker $\quad 2$ is a subgroup of G_{g}.
We denotethekernel of thenatural homomorphism from $\mathrm{Sp}(2 \mathrm{~g} ; \mathbb{Z})$ to $\mathrm{Sp}\left(2 \mathrm{~g} ; \mathbb{Z}_{2}\right)$ by $\mathrm{Sp}^{(2)}(2 \mathrm{~g})$. We set a basis of $\mathrm{H}_{1}(\mathrm{~g} ; \mathbb{Z})$ as in Figure 4 , and de ne the intersection form $(;)$ on $H_{1}(\mathrm{~g} ; \mathbb{Z})$ to satisfy $\left(\mathrm{x}_{\mathrm{i}} ; \mathrm{y}_{\mathrm{j}}\right)=\mathrm{i} ; \mathrm{j},\left(\mathrm{x}_{\mathrm{i}} ; \mathrm{x}_{\mathrm{j}}\right)=\left(\mathrm{y}_{\mathrm{i}} ; \mathrm{y}_{\mathrm{j}}\right)=0$ (1 $\quad \mathrm{i} ; \mathrm{j} ; \mathrm{g}$). An element a of $\mathrm{H}_{1}(\mathrm{~g} ; \mathbb{Z}$) is called primitive if there is no ele ment $n(G 0 ; 1)$ of \mathbb{Z}, and no element b of $H_{1}(g ; \mathbb{Z})$ such that $a=n b$. For a primitive element a of $H_{1}(g ; \mathbb{Z})$, we de ne an isomorphism $T_{a}: H_{1}(g ; \mathbb{Z})$! $H_{1}(g ; \mathbb{Z})$ by $T_{a}(v)=v+(a ; v) a$. This isomorphism is the same as the action of Dehn twist about a simple closed curve representing a on $\mathrm{H}_{1}(\mathrm{~g} ; \mathbb{Z})$. We call $\mathrm{T}_{\mathrm{a}}^{2}$ the square transvection about a . J ohnson [8] showed the following result.

Lemma 3.11 $\mathrm{Sp}^{(2)}(2 \mathrm{~g})$ is generated by square transvections.
$\mathrm{Sp}^{(2)}(2 \mathrm{~g})$ is nitely generated. In fact, we show:
Lemma 3.12 $\mathrm{Sp}_{\mathrm{p}}^{(2)}(2 \mathrm{~g})$ is generated by the square transvections about the primitive elements ${\underset{i}{i=1}}\left(i x_{i}+i y_{i}\right)$, where $i=0 ; 1$ and $i=0 ; 1$.

We de ne, for any primitive element a and b of $H_{1}(g ; \mathbb{Z})$, two operation \boxplus and \boxminus by

$$
a \boxplus b=a+2(a ; b) b ; \quad a \boxminus b=a-2(a ; b) b:
$$

We remark that $T_{a \boxplus b}^{2}=T_{b}^{-2} T_{a}^{2} T_{b}^{2}, T_{a \boxminus b}^{2} \overline{\mathrm{~F}}_{\mathrm{b}}^{2} T_{a}^{2} T_{b}^{-2}$, and $(a \boxplus b) \boxminus b=$ $\mathrm{a}=(\mathrm{a} \boxminus \mathrm{b}) \boxplus \mathrm{b}$. We denote the element $\mathrm{g}_{\mathrm{i}=1}\left(\mathrm{a}_{\mathrm{i}}^{1} \mathrm{x}_{\mathrm{i}}+\mathrm{a}_{\mathrm{i}}^{2} \mathrm{y}_{\mathrm{i}}\right)$ of $\mathrm{H}_{1}(\mathrm{~g} ; \mathbb{Z})$ by $\left[\left(a_{1}^{1} ; a_{1}^{2}\right) ;\left(a_{2}^{1} ; a_{2}^{2}\right) ; \quad ;\left(a_{g}^{1} ; a_{g}^{2}\right)\right]$, and call each $\left(a_{i}^{1} ; a_{i}^{2}\right)$ as a block. For a positive integer $k, a(\boxplus b)^{k}$ is the result of the k-fold application of $\boxplus b$ on a, and $\mathrm{a}(\boxplus \mathrm{b})^{-\mathrm{k}}$ is the result of the k -fold application of $\boxminus \mathrm{b}$ on a .

Lemma 3.13 For any primitive element a of $\mathrm{H}_{1}(\mathrm{~g} ; \mathbb{Z})$, by applying $\boxplus[(0 ; 0)$; $::: ;(0 ; 0) ;(1 ; 0) ;(0 ; 0) ;::: ;(0 ; 0)]$ or $\boxplus[(0 ; 0) ;::: ;(0 ; 0) ;(0 ; 1) ;(0 ; 0) ;:: ;(0 ; 0)]$ several times, each block of a is altered to $(0 ; 0),(p ; 0),(0 ; p)$, or $(p ; p)$.

Proof Let ($\mathrm{m} ; \mathrm{n}$) be the i -th block of a. First we consider the case when $j m j>j n j \in 0$. There is an integer k such that $j m-2 k n j \quad j n j$. Let e be the element of $H_{1}(g ; \mathbb{Z})$, the i-th block of which is $(1 ; 0)$, and every other block of which is $(0 ; 0)$. Since, $[\quad ;(m ; n) ; \quad] \boxplus e=[\quad ;(m-2 n ; n) ;]$ and [$\quad ;(m ; n) ; \quad] \boxminus e=[\quad ;(m+2 n ; n)$; $]$; we get $[\quad ;(m ; n) ; \quad](\boxplus e)^{k}=$ [; $(m-2 k n ; n)$;]. This means that, by repeated application of $\boxplus e$, the ith block ($\mathrm{m} ; \mathrm{n}$) is altered such that jmj jnj . Next, we consider the case when
$0 G j m j<j n j$. Le f_{i} be the element of $H_{1}(\mathrm{~g} ; \mathbb{Z})$, the i -th block of which is $(0 ; 1)$, and other blocks of which are $(0 ; 0)$. Since, $[\quad ;(m ; n) ; \quad] \boxplus f_{i}=$ [$\quad ;(m ; n+2 m) ; \quad$; and $[\quad ;(m ; n) ; \quad] \boxminus f_{i}=[\quad ;(m ; n-2 m) ; \quad]$ by the same argument as the previous case, by repeated application of $\boxplus f_{i}$, the i-th block is altered such that jmj jnj. The above arguments show that, after several application of $\boxplus e$ or $\boxplus f_{i}$, the i-th block ($m ; n$) of a is altered to be $j m j=j n j$, or $m=0$, or $n=0$. If $n=-m$, the i-th block changed to ($m ; m$) by the application of $\boxplus f_{i}$. For each i-th block, we do the same operation as above Then, this lemma follows.

For a primitive element of $\mathrm{H}_{1}(\mathrm{~g} ; \mathbb{Z})$, each of whoseblocks is $(p ; 0)$, or $(0 ; p)$, or ($p ; p$), (where p can bedi erent from block to block) we apply several operations $\boxplus[::: ;(i ; i) ;:::]$, where $i=0 ; 1$ and $i=0 ; 1$. Then we obtain the following equations, where means a sequence of ($0 ; 0$), and means the part which is not changed.
$[\quad ;(p ; 0) ;(q ; 0) ; \quad] \boxminus[\quad ;(1 ; 0) ;(0 ; 1) ; \quad] \boxplus[\quad ;(0 ; 0) ;(0 ; 1) ; \quad]$ $=[\quad ;(p-2 q ; 0) ;(q ; 0) ; \quad] ;$
[$\quad ;(p ; 0) ;(q ; 0) ; \quad] \boxplus[\quad ;(1 ; 0) ;(0 ; 1) ; \quad] \boxminus[\quad ;(0 ; 0) ;(0 ; 1) ; \quad]$ $=[\quad ;(p+2 q ; 0) ;(q ; 0) ; \quad] ;$
[$\quad ;(p ; 0) ;(q ; 0) ; \quad] \boxminus[\quad ;(0 ; 1) ;(1 ; 0) ; \quad] \boxplus[\quad ;(0 ; 1) ;(0 ; 0) ; \quad]$ $=[\quad ;(p ; 0) ;(q-2 p ; 0) ; \quad] ;$
[$\quad ;(p ; 0) ;(q ; 0) ; \quad] \boxplus[\quad ;(0 ; 1) ;(1 ; 0) ; \quad] \boxplus[\quad ;(0 ; 1) ;(0 ; 0) ;]$ $=[\quad ;(\mathrm{p} ; 0) ;(\mathrm{q}+2 \mathrm{p} ; 0) ; \quad] ;$
[$\quad ;(0 ; p) ;(0 ; q) ; \quad] \boxplus[\quad ;(0 ; 1) ;(1 ; 0) ; \quad] \boxminus[\quad ;(0 ; 0) ;(1 ; 0) ; \quad]$ $=[\quad ;(0 ; p-2 q) ;(0 ; q) ; \quad] ;$
[$\quad ;(0 ; p) ;(0 ; q) ; \quad] \boxminus[\quad ;(0 ; 1) ;(1 ; 0) ; \quad] \boxplus[\quad ;(0 ; 0) ;(1 ; 0) ; \quad]$ $=[\quad ;(0 ; p+2 q) ;(0 ; q) ; \quad] ;$
$[\quad ;(0 ; p) ;(0 ; q) ; \quad] \boxplus[\quad ;(1 ; 0) ;(0 ; 1) ; \quad] \boxminus[\quad ;(1 ; 0) ;(0 ; 0) ; \quad]$ $=[\quad ;(0 ; p) ;(0 ; q-2 p) ; \quad] ;$
[$\quad ;(0 ; p) ;(0 ; q) ; \quad] \boxminus[\quad ;(1 ; 0) ;(0 ; 1) ; \quad] \boxplus[\quad ;(1 ; 0) ;(0 ; 0) ; \quad]$ $=[\quad ;(0 ; p) ;(0 ; q+2 p) ; \quad] ;$
[;(p;0);(0;q);]円[;(1;0);(1;0);]曰[;(0;0);(1;0);]

```
            \(=[\quad ;(p-2 q ; 0) ;(0 ; q) ; \quad]\)
[ ;(p;0);(0;q); ]曰[ ;(1;0);(1;0); ] \(\quad[\quad ;(0 ; 0) ;(1 ; 0) ; \quad]\)
        \(=[\quad ;(p+2 q ; 0) ;(0 ; q) ; \quad] ;\)
    [ ;(p;0);(0;q); ] [ ; \(0 ; 1) ;(0 ; 1) ; \quad] \boxplus[\quad ;(0 ; 1) ;(0 ; 0) ; \quad]\)
        \(=[\quad ;(p ; 0) ;(0 ; q-2 p) ; \quad] ;\)
    [ \(\quad ;(p ; 0) ;(0 ; q) ; \quad] \boxplus[\quad ;(0 ; 1) ;(0 ; 1) ; \quad] \boxplus[\quad ;(0 ; 1) ;(0 ; 0) ; \quad]\)
        \(=[\quad ;(p ; 0) ;(0 ; q+2 p) ; \quad] ;\)
    [ ; (0; p); (q; 0); ] \(\quad\) [ \(\quad(0 ; 1) ;(0 ; 1) ; \quad] \boxplus[\quad ;(0 ; 0) ;(0 ; 1) ; \quad]\)
        \(=[\quad ;(0 ; p-2 q) ;(q ; 0) ; \quad] ;\)
    [ ; (0;p); (q; 0); ] \(\quad\) [ \(\quad(0 ; 1) ;(0 ; 1) ; \quad] \boxminus[\quad ;(0 ; 0) ;(0 ; 1) ; \quad]\)
        \(=[\quad ;(0 ; p+2 q) ;(q ; 0) ; \quad] ;\)
    [ ; (0; p); \((\mathrm{q} ; 0)\); \(] \boxplus[\quad ;(1 ; 0) ;(1 ; 0) ; \quad] \boxminus[\quad ;(1 ; 0) ;(0 ; 0) ; \quad]\)
        \(=[\quad ;(0 ; p) ;(q-2 p ; 0) ; \quad] ;\)
    [ ;(0;p);(q; 0); ]日[ ;(1;0);(1;0); ]円[ ;(1;0);(0;0); ]
        \(=[\quad ;(0 ; p) ;(q+2 p ; 0) ; \quad] ;\)
    [ \(\quad ;(0 ; p) ;(q ; q) ; \quad] \boxminus[\quad ;(0 ; 1) ;(0 ; 1) ; \quad] \boxplus[\quad ;(0 ; 0) ;(0 ; 1) ; \quad]\)
        \(=[\quad ;(0 ; p-2 q) ;(q ; q) ; \quad] ;\)
    [ \(\quad ;(0 ; p) ;(q ; q) ; \quad] \boxplus[\quad ;(0 ; 1) ;(0 ; 1) ; \quad] \boxminus[\quad ;(0 ; 0) ;(0 ; 1) ; \quad]\)
        \(=[\quad ;(0 ; p+2 q) ;(q ; q) ; \quad]\)
    [ ; (0;p);(q;q); ]⿴[ ;(1;0);(1;1); ]曰[ ;(1;0);(0;0); ]
        \(=[\quad ;(0 ; p) ;(q-2 p ; q-2 p) ; \quad] ;\)
    [ ; (0;p);(q;q); ]曰[ ;(1;0);(1;1); ]円[ \(\quad ;(1 ; 0) ;(0 ; 0) ; \quad]\)
        \(=[\quad ;(0 ; p) ;(q+2 p ; q+2 p) ; \quad]\)
    [ ;(p;p);(0;q); ]⿴囗 ;(1;1);(1;0); ]曰[ ;(0;0);(1;0); ]
        \(=[\quad ;(p-2 q ; p-2 q) ;(0 ; q) ; \quad] ;\)
    [ ;(p;p);(0;q); ] [ ;(1;1);(1;0); ] \(\quad\) [ \(\quad(0 ; 0) ;(1 ; 0) ;]\)
        \(=[\quad ;(p+2 q ; p+2 q) ;(0 ; q) ; \quad] ;\)
[ ;(p;p);(0;q); ]日[ ;(0;1);(0;1); ]円[ ;(0;1);(0;0); ]
    \(=[\quad ;(p ; p) ;(0 ; q-2 p) ; \quad] ;\)
```

［	$\begin{aligned} & ;(\mathrm{p} ; \mathrm{p}) ;(0 ; \mathrm{q}) ; \quad] \boxplus[\quad ;(0 ; 1) ;(0 ; 1) ; \\ & =[\quad ;(\mathrm{p} ; \mathrm{p}) ;(0 ; q+2 \mathrm{p}) ; \quad] ; \end{aligned}$	］\quad［	； $0 ; 1) ;(0 ; 0)$ ；
［	$\begin{aligned} & ;(\mathrm{p} ; 0) ;(\mathrm{q} ; \mathrm{q}) ; \quad] \boxminus[\quad ;(1 ; 0) ;(0 ; 1) ; \\ & =[\quad[(\mathrm{p}-2 \mathrm{q} ; 0) ;(\mathrm{q} ; \mathrm{q}) ; \quad] \end{aligned}$	］⿴囗十	； $0 ; 0) ;(0 ; 1)$ ；
［	$\begin{aligned} & ;(\mathrm{p} ; 0) ;(\mathrm{q} ; \mathrm{q}) ; \quad] \boxplus[\quad ;(1 ; 0) ;(0 ; 1) ; \\ & =[\quad ;(\mathrm{p}+2 \mathrm{q} ; 0) ;(\mathrm{q} ; \mathrm{q}) ; \quad] ; \end{aligned}$	］${ }^{\text {［ }}$	； $0 ; 0) ;(0 ; 1)$ ；
［	$\begin{aligned} & ;(\mathrm{p} ; 0) ;(\mathrm{q} ; \mathrm{q}) ; \quad] \boxminus[\quad ;(0 ; 1) ;(1 ; 1) ; \\ & =[\quad ;(\mathrm{p} ; 0) ;(\mathrm{q}-2 \mathrm{p} ; \mathrm{q}-2 \mathrm{p}) ; \quad] \end{aligned}$	］⿴囗十	； $0 ; 1)$ ； $0 ; 0$ ；
［	$\begin{aligned} & ;(\mathrm{p} ; 0) ;(\mathrm{q} ; \mathrm{q}) ; \quad] \boxplus[\quad ;(0 ; 1) ;(1 ; 1) ; \\ & =\left[\quad\left[\begin{array}{l} \mathrm{p} ; 0) ;(\mathrm{q}+2 \mathrm{p} ; \mathrm{q}+2 \mathrm{p}) ; \end{array}\right]\right. \end{aligned}$	］${ }^{\text {［ }}$	； $0 ; 1) ;(0 ; 0)$ ；
［		］⿴囗十	； $0 ; 0) ;(0 ; 1)$ ；
［	$\begin{aligned} & ;(p ; p) ;(q ; 0) ; \quad] \boxplus[\quad ;(1 ; 1) ;(0 ; 1) ; \\ & =[\quad ;(p+2 q ; p+2 q) ;(q ; 0) ; \quad] \end{aligned}$	］${ }^{\text {［ }}$	； $0 ; 0) ;(0 ; 1)$ ；
［	$\begin{aligned} & ;(\mathrm{p} ; \mathrm{p}) ;(\mathrm{q} ; 0) ; \quad] \boxminus[\quad ;(0 ; 1) ;(1 ; 0) ; \\ & =[\quad ;(\mathrm{p} ; \mathrm{p}) ;(\mathrm{q}-2 \mathrm{p} ; 0) ; \quad] ; \end{aligned}$	］⿴囗十	； $0 ; 1) ;(0 ; 0)$ ；
［	$\begin{aligned} & ;(p ; p) ;(q ; 0) ; \quad] \boxplus[\quad ;(0 ; 1) ;(1 ; 0) ; \\ & =[\quad ;(p ; p) ;(q+2 p ; 0) ; \quad] \end{aligned}$	］${ }^{\text {［ }}$	； $0 ; 1)$ ； $0 ; 0$ ；
［	$\begin{aligned} & ;(p ; p) ;(q ; q) ; \quad] \boxminus[\quad ;(1 ; 1) ;(0 ; 1) ; \\ & =[\quad ;(p-2 q ; p-2 q) ;(q ; q) ; \quad] \end{aligned}$	］⿴囗十	； $0 ; 0) ;(0 ; 1)$ ；
［	$\begin{aligned} & ;(\mathrm{p} ; \mathrm{p}) ;(\mathrm{q} ; \mathrm{q}) ; \quad \mathrm{l} \boxplus[\quad ;(1 ; 1) ;(0 ; 1) ; \\ & \quad=[\quad ;(\mathrm{p}+2 \mathrm{q} ; \mathrm{p}+2) ;(\mathrm{q} ; \mathrm{q}) ; \quad] \end{aligned}$	］${ }^{\text {［ }}$	； $0 ; 0$ ）$(0 ; 1)$ ；
［	$\begin{aligned} & ;(\mathrm{p} ; \mathrm{p}) ;(\mathrm{q} ; \mathrm{q}) ; \quad] \text {] [} \quad ;(0 ; 1) ;(1 ; 1) ; \\ & =\left[\begin{array}{c} {[(p ; p) ;(q-2 p ; q-2 p) ;} \end{array}\right] \end{aligned}$	］⿴囗十	； $0 ; 1) ;(0 ; 0)$ ；
［	$\begin{aligned} & ;(\mathrm{p} ; \mathrm{p}) ;(\mathrm{q} ; \mathrm{q}) ; \quad] \boxplus[\quad ;(0 ; 1) ;(1 ; 1) ; \\ & =\left[\begin{array}{c} {[\mathrm{p}} \end{array} \quad ;(\mathrm{p}) ;(\mathrm{q}+2 \mathrm{p} ; \mathrm{q}+2 \mathrm{p}) ; \quad\right]: \end{aligned}$	］\quad［	； $0 ; 1) ;(0 ; 0)$ ；

Therefore，by the same argument as the proof of Lemma 3．13，we obtain：
Lemma 3．14 For any primitive dement a of $\mathrm{H}_{1}(\mathrm{~g} ; \mathbb{Z})$ ，by applying $\boxplus[(1 ; 1) ; \quad ;(\mathrm{g} ; \mathrm{g})]$（where $\mathrm{i}=0 ; 1$ ，and $\mathrm{i}=0 ; 1$ ）several times，a is

```
deformed to \(\boxplus[(1 ; 1) ; \quad ;(\mathrm{g} ; \mathrm{g})]\) (where \(\mathrm{i}=0 ; 1\), and \(\mathrm{i}=0 ; 1\) ) or [
;(-1;0); ].
```

Since $T_{-a}^{2}(v)=v+2(-a ; v)(-v)=v+2(a ; v) v=T_{a}^{2}(v)$, we do not need to consider the elements [;(-1;0);]. Hence, Lemma 3.12 follows.

(-)

(0)

(1)

(2)

(3)

(+)

Figure 21
For each element $[(1 ; 1) ; \quad ;(\mathrm{g} ; \mathrm{g})]$ (where $\mathrm{i}=0 ; 1, \mathrm{i}=0 ; 1)$ of $\mathrm{H}_{1}(\mathrm{~g} ; \mathbb{Z})$, we construct an oriented simple close curve on g which represent this homology class. For each i-th block, if ($i ; i)=(0 ; 0)$, we prepare (0) of Figure 21, if $(i ; i)=(0 ; 1)$, we prepare (1) of Figure 21, if $(i ; i)=(1 ; 1)$, we prepare (2) of Figure 21, if $(i ; i)=(1 ; 0)$, we prepare (3) of Figure 21. After that, we glue them along the boundaries and cap the left boundary component by (-) of Figure 21 and the right boundary component by (+) of Figure 21. We denote this oriented simple closed curve on g by $\mathrm{f}(\mathrm{I} ; 1)$; $;(\mathrm{g} ; \mathrm{g}) \mathrm{g}$. Here, we re mark that the action of $\mathrm{T}_{\mathrm{f}\left({ }_{1} ; 1\right) ; ~ ;(g ; g) \mathrm{g}}$ on $\mathrm{H}_{1}(\mathrm{~g} ; \mathbb{Z})$ equals $\mathrm{T}_{[(1 ; 1)} ; ~ ;(\mathrm{g} ; \mathrm{g}) \mathrm{]}$, and, for any of $\left.\left.\left.\mathrm{M}_{\mathrm{g}}, \quad \mathrm{T}_{\mathrm{f}(1 ; 1)}\right) ;(\mathrm{g} ; \mathrm{g}) \mathrm{g} \quad{ }^{-1}=\mathrm{T}_{(\mathrm{f}(1 ; 1)}\right) ;(\mathrm{g} ; \mathrm{g}) \mathrm{g}\right)$.

Lemma 3.15 For any $f(1 ; 1) ; \quad ;(g ; g) g$, there is an element of G_{g} such that

$$
\begin{aligned}
& \text { (f(1; 1); ;(g; g)g) =f(0;1);(0;0);(0;0); ;(0;0)g } \\
& \text { or }=f(1 ; 1) ;(0 ; 0) ;(0 ; 0) ; \quad ;(0 ; 0) g \\
& \text { or }=\mathrm{f}(0 ; 0) ;(1 ; 1) ;(0 ; 0) ; \quad ;(0 ; 0) \mathrm{g} \text { : }
\end{aligned}
$$

Proof If the i-th block is (3), by the action of $\overline{Y_{2 i}}$, this block is changed to (1). Therefore, it su ces to show this lemma in the case when each block is not
(3). First we investigate actions of elements of G_{g} on adjacent blocks, say the i-th block and the $\mathrm{i}+1$-st block. Each picture of Figure 22 shows the action

(d)

Figure 22
of G_{g} on this adjacent blocks.
(a) shows $\mathrm{f} \quad ;(0 ; 0) ;(0 ; 1) ; \quad \mathrm{g}_{\mathrm{G}_{\mathrm{g}}} \mathrm{f} \quad ;(0 ; 1) ;(0 ; 0) ; \mathrm{g}$;
(b) shows $\mathrm{f} \quad ;(0 ; 0) ;(1 ; 1) ; \quad \mathrm{g}_{\mathrm{G}_{\mathrm{g}}}{ }^{\mathrm{f}} \quad ;(1 ; 1) ;(0 ; 1) ; \quad \mathrm{g}$;
(c) shows $\mathrm{f} \quad ;(1 ; 1) ;(1 ; 1) ; \quad \mathrm{g}_{\mathrm{Gg}_{\mathrm{g}}} \mathrm{f} \quad ;(0 ; 1) ;(0 ; 0) ; \mathrm{g}$;
(d) shows $f \quad ;(0 ; 1) ;(0 ; 1) ; \quad g_{G_{g}} f \quad ;(0 ; 1) ;(0 ; 0) ; \quad \mathrm{g}$;
(e) shows $\mathrm{f} \quad ;(0 ; 1) ;(1 ; 1) ; \quad \mathrm{g}_{\mathrm{G}_{\mathrm{g}}}{ }^{\mathrm{f}} \quad ;(1 ; 1) ;(0 ; 0) ; \mathrm{g}$:

For an oriented simple closed curve $x=f(1 ; 1) ; \quad ;(\mathrm{g} ; \mathrm{g}) \mathrm{g}$, each of whose block is $(0 ; 0)$ or $(0 ; 1)$ or $(1 ; 1)$, let the right most non- $(0 ; 0)$ block be the j-th block. By the induction on j , we show that x is G_{g}-equivalent to $\mathrm{f}(0 ; 1) ;(0 ; 0)$; $(0 ; 0) ; \quad ;(0 ; 0) g$ or $f(1 ; 1) ;(0 ; 0) ;(0 ; 0) ; \quad ;(0 ; 0) g$ or $f(0 ; 0) ;(1 ; 1) ;(0 ; 0) ;$

Algebraic \& Geometric Topology, Volume 2 (2002)
$(0 ; 0) \mathrm{g}$. If $\mathrm{j}=1$, it is trivial.
When the j -th block is $(0 ; 1)$. If each block between the rst block and the (j -1)-st block is ($0 ; 0$), then, by repeated application of (a), x is G_{g}-equivalent to $\mathrm{f}(0 ; 1) ;(0 ; 0) ; \quad ;(0 ; 0) \mathrm{g}$. If there is a block between the rst block and the ($\mathrm{j}-$ 1)-st block which is not $(0 ; 0)$, by the induction hypothesis, the sequence from the rst block to the $(\mathrm{j}-1)$-st block is G_{g}-equivalent to $(0 ; 1) ;(0 ; 0) ;(0 ; 0)$; $(0 ; 0)$ or $(1 ; 1) ;(0 ; 0) ;(0 ; 0) ; \quad ;(0 ; 0)$ or $(0 ; 0) ;(1 ; 1) ;(0 ; 0) ; \quad ;(0 ; 0)$. In the rst case,

$$
\begin{array}{lll}
\mathrm{X}_{\mathrm{G}_{\mathrm{g}}} \mathrm{f}(0 ; 1) ;(0 ; 0) ;(0 ; 0) ; & ;(0 ; 0) ;(0 ; 1) ; & ;(0 ; 0) g(\text { by the hypothesis }) \\
\mathrm{G}_{\mathrm{g}} \mathrm{f}(0 ; 1) ;(0 ; 1) ;(0 ; 0) ; & ;(0 ; 0) ;(0 ; 0) ; & ;(0 ; 0) \mathrm{g}(\text { by }(\mathrm{a})) \\
\mathrm{G}_{\mathrm{g}} \mathrm{f}(0 ; 1) ;(0 ; 0) ;(0 ; 0) ; & ;(0 ; 0) ;(0 ; 0) ; & ;(0 ; 0) \mathrm{g}(\mathrm{by}(\mathrm{~d})):
\end{array}
$$

In the second case,

$$
\begin{array}{lll}
\mathrm{X}_{\mathrm{G}_{\mathrm{g}}} \mathrm{f}(1 ; 1) ;(0 ; 0) ;(0 ; 0) ; & ;(0 ; 0) ;(0 ; 1) ; & ;(0 ; 0) \mathrm{g}(\text { by the hypothesis }) \\
\mathrm{G}_{\mathrm{g}} \mathrm{f}(1 ; 1) ;(0 ; 1) ;(0 ; 0) ; & ;(0 ; 0) ;(0 ; 0) ; & ;(0 ; 0) \mathrm{g}(\mathrm{by}(\mathrm{a})) \\
\mathrm{G}_{\mathrm{g}} \mathrm{f}(0 ; 0) ;(1 ; 1) ;(0 ; 0) ; & ;(0 ; 0) ;(0 ; 0) ; & ;(0 ; 0) \mathrm{g}(\mathrm{by}(\mathrm{~b})):
\end{array}
$$

In the third case,

```
\(\mathrm{X}_{\mathrm{G}_{\mathrm{g}}} \mathrm{f}(0 ; 0) ;(1 ; 1) ;(0 ; 0) ; \quad ;(0 ; 0) ;(0 ; 1) ; \quad ;(0 ; 0) \mathrm{g}\) ( by the hypothesis \()\)
    \({ }_{\mathrm{G}} \mathrm{f}(0 ; 0) ;(1 ; 1) ;(0 ; 1) ; \quad ;(0 ; 0) ;(0 ; 0) ; \quad ;(0 ; 0) g(\) by \((\mathrm{a}))\)
    \({ }_{\mathrm{G}_{\mathrm{g}}} \mathrm{f}(1 ; 1) ;(0 ; 1) ;(0 ; 1) ; \quad ;(0 ; 0) ;(0 ; 0) ; \quad ;(0 ; 0) \mathrm{g}(\mathrm{by}(\mathrm{b}))\)
    \({ }_{\mathrm{G}}{ }_{\mathrm{f}} \mathrm{f}(1 ; 1) ;(0 ; 1) ;(0 ; 0) ; \quad ;(0 ; 0) ;(0 ; 0) ; \quad ;(0 ; 0) g(\) by \((\mathrm{d}))\)
    \(\mathrm{G}_{\mathrm{g}} \mathrm{f}(0 ; 0) ;(1 ; 1) ;(0 ; 0) ; \quad ;(0 ; 0) ;(0 ; 0) ; \quad ;(0 ; 0) \mathrm{g}(\mathrm{by}(\mathrm{b})):\)
```

When the j -th block is $(1 ; 1)$. If every block between the rst block and ($\mathrm{j}-1$)st block is $(0 ; 0)$, then,

$$
\begin{array}{lll}
\mathrm{X}_{\mathrm{G}_{\mathrm{g}}} \mathrm{f}(1 ; 1) ;(0 ; 1) ;(0 ; 1) & ;(0 ; 1) ; & ;(0 ; 0) \mathrm{g}(\mathrm{by}(\mathrm{~b})) \\
\mathrm{G}_{\mathrm{g}} \mathrm{f}(1 ; 1) ;(0 ; 1) ;(0 ; 0) ; & ;(0 ; 0) ; & ;(0 ; 0) \mathrm{g}(\mathrm{by}(\mathrm{~d})) \\
\mathrm{G}_{\mathrm{g}} \mathrm{f}(0 ; 0) ;(1 ; 1) ;(0 ; 0) ; & ;(0 ; 0) ; & ;(0 ; 0) \mathrm{g}(\mathrm{by}(\mathrm{~b}))
\end{array}
$$

If there is a block between the rst block and the ($\mathrm{j}-1$)-st block which is not $(0 ; 0)$, by the induction hypothesis, the sequence from the rst block to the $(\mathrm{j}-1)$-st block is G_{g}-equivalent to $(0 ; 1) ;(0 ; 0) ;(0 ; 0) ; \quad ;(0 ; 0)$ or $(1 ; 1) ;(0 ; 0) ;(0 ; 0) ; \quad ;(0 ; 0)$ or $(0 ; 0) ;(1 ; 1) ;(0 ; 0) ; \quad ;(0 ; 0)$. In the rst case,
$\mathrm{X}_{\mathrm{G}_{\mathrm{g}}} \mathrm{f}(0 ; 1) ;(0 ; 0) ;(0 ; 0) ;(0 ; 0) ; \quad ;(0 ; 0) ;(1 ; 1) ; \quad ;(0 ; 0) \mathrm{g}($ by the hypothesis $)$
${ }_{\mathrm{G}_{\mathrm{g}}} \mathrm{f}(0 ; 1) ;(1 ; 1) ;(0 ; 1) ;(0 ; 1) ; \quad ;(0 ; 1) ;(0 ; 1) ; \quad ;(0 ; 0) \mathrm{g}(\mathrm{by}(\mathrm{b}))$
${ }_{\mathrm{G}_{\mathrm{g}}} \mathrm{f}(0 ; 1) ;(1 ; 1) ;(0 ; 1) ;(0 ; 0) ; \quad ;(0 ; 0) ;(0 ; 0) ; \quad ;(0 ; 0) \mathrm{g}(\mathrm{by}(\mathrm{d}))$
$\mathrm{G}_{\mathrm{g}} \mathrm{f}(1 ; 1) ;(0 ; 0) ;(0 ; 1) ;(0 ; 0) ; \quad ;(0 ; 0) ;(0 ; 0) ; \quad ;(0 ; 0) \mathrm{g}(\mathrm{by}(\mathrm{e}))$
${ }_{\mathrm{G}}{ }_{\mathrm{f}} \mathrm{f}(1 ; 1) ;(0 ; 1) ;(0 ; 0) ;(0 ; 0) ; \quad ;(0 ; 0) ;(0 ; 0) ; \quad ;(0 ; 0) \mathrm{g}(\mathrm{by}(\mathrm{a}))$
$\mathrm{G}_{\mathrm{g}} \mathrm{f}(0 ; 0) ;(1 ; 1) ;(0 ; 0) ;(0 ; 0) ; \quad ;(0 ; 0) ;(0 ; 0) ; \quad ;(0 ; 0) \mathrm{g}(\mathrm{by}(\mathrm{b})):$
In the second case,
$\begin{array}{lll}\mathrm{X}_{\mathrm{G}_{\mathrm{g}}} \mathrm{f}(1 ; 1) ;(0 ; 0) ;(0 ; 0) ;(0 ; 0) ; & ;(0 ; 0) ;(1 ; 1) ; & ;(0 ; 0) \mathrm{g}(\text { by the hypothesis }) \\ \mathrm{G}_{\mathrm{g}} \mathrm{f}(1 ; 1) ;(1 ; 1) ;(0 ; 1) ;(0 ; 1) ; & ;(0 ; 1) ;(0 ; 1) ; & ;(0 ; 0) \mathrm{g}(\mathrm{by}(\mathrm{b})) \\ \mathrm{G}_{\mathrm{g}} \mathrm{f}(1 ; 1) ;(1 ; 1) ;(0 ; 1) ;(0 ; 0) ; & ;(0 ; 0) ;(0 ; 0) ; & ;(0 ; 0) \mathrm{g}(\text { by }(\mathrm{d})) \\ \mathrm{G}_{\mathrm{g}} \mathrm{f}(0 ; 1) ;(0 ; 0) ;(0 ; 1) ;(0 ; 0) ; & ;(0 ; 0) ;(0 ; 0) ; & ;(0 ; 0) \mathrm{g}(\text { by (c)) } \\ \mathrm{G}_{\mathrm{g}} \mathrm{f}(0 ; 1) ;(0 ; 1) ;(0 ; 0) ;(0 ; 0) ; & ;(0 ; 0) ;(0 ; 0) ; & ;(0 ; 0) \mathrm{g}(\mathrm{by}(\mathrm{a})) \\ \mathrm{G}_{\mathrm{g}} \mathrm{f}(0 ; 1) ;(0 ; 0) ;(0 ; 0) ;(0 ; 0) ; & ;(0 ; 0) ;(0 ; 0) ; & ;(0 ; 0) \mathrm{g}(\text { by (d)): }\end{array}$
In the third case,
$\mathrm{X}_{\mathrm{G}_{\mathrm{g}}} \mathrm{f}(0 ; 0) ;(1 ; 1) ;(0 ; 0) ;(0 ; 0) ; \quad ;(0 ; 0) ;(1 ; 1) ; \quad ;(0 ; 0) \mathrm{g}($ by the hypothesis $)$
${ }_{\mathrm{G}} \mathrm{f}(0 ; 0) ;(1 ; 1) ;(1 ; 1) ;(0 ; 1) ; \quad ;(0 ; 1) ;(0 ; 1) ; \quad ;(0 ; 0) \mathrm{g}(\mathrm{by}(\mathrm{b}))$
${ }_{\mathrm{G}} \mathrm{f}(0 ; 0) ;(0 ; 1) ;(0 ; 0) ;(0 ; 1) ; \quad ;(0 ; 1) ;(0 ; 1) ; \quad ;(0 ; 0) \mathrm{g}(\mathrm{by}(\mathrm{c}))$
$\mathrm{G}_{\mathrm{g}} \mathrm{f}(0 ; 0) ;(0 ; 1) ;(0 ; 0) ;(0 ; 1) ; \quad ;(0 ; 0) ;(0 ; 0) ; \quad ;(0 ; 0) \mathrm{g}(\mathrm{by}(\mathrm{d}))$
${ }_{\mathrm{G}}{ }_{\mathrm{f}} \mathrm{f}(0 ; 1) ;(0 ; 1) ;(0 ; 0) ;(0 ; 0) ; \quad ;(0 ; 0) ;(0 ; 0) ; \quad ;(0 ; 0) \mathrm{g}(\mathrm{by}(\mathrm{a}))$
${ }_{\mathrm{G}}{ }_{\mathrm{g}} \mathrm{f}(0 ; 1) ;(0 ; 0) ;(0 ; 0) ;(0 ; 0) ; \quad ;(0 ; 0) ;(0 ; 0) ; \quad ;(0 ; 0) \mathrm{g}(\mathrm{by}(\mathrm{d})):$

By the fact that $\mathrm{T}_{\mathrm{f}}^{2}(0 ; 1) ;(0 ; 0) ; \quad ;(0 ; 0) \mathrm{g}=\mathrm{D}_{2}, \mathrm{~T}_{\mathrm{f}(1 ; 1) ;(0 ; 0) ; ~ ;(0 ; 0) \mathrm{g}}^{2}=\left(\mathrm{X}_{1}\right)^{2}$, $\mathrm{T}_{\mathrm{f}(0 ; 0) ;(1 ; 1) ;}^{2} ;(0 ; 0) \mathrm{g}=\left(\mathrm{Y}_{2}\right)^{2}$, and Lemma 3.3, Lemma 3.10 is proved.

3.4 The modulo 2 orthogonal group

In this subsection, we assume g 3. As in the previous subsection, let 2: M_{g} ! $\mathrm{Sp}\left(2 \mathrm{~g} ; \mathbb{Z}_{2}\right)$ bethe natural homomorphism. Let $\mathrm{q}: \mathrm{H}_{1}\left(\mathrm{~g} ; \mathbb{Z}_{2}\right)!\mathbb{Z}_{2}$ be the quadratic form associated with the intersection form $(;)_{2}$ of $H_{1}\left(\mathrm{~g} ; \mathbb{Z}_{2}\right)$ which satis es $q\left(x_{i}\right)=q\left(y_{i}\right)=0$ for the basis $x_{i} ; y_{i}$ of $H_{1}\left(g ; \mathbb{Z}_{2}\right)$ indicated on Figure 4. We de ne $\left.O\left(2 g ; \mathbb{Z}_{2}\right)=\mathrm{f} \quad 2 \operatorname{Aut}\left(\mathrm{H}_{1}\left(\mathrm{~g} ; \mathbb{Z}_{2}\right)\right) \mathrm{jq}(\mathrm{x})\right)=$ $\mathrm{q}(\mathrm{x})$ for any $\times 2 \mathrm{H}_{1}\left(\mathrm{~g} ; \mathbb{Z}_{2}\right) \mathrm{g}$, then $\mathrm{SP}_{\mathrm{g}}={ }_{2}^{-1}\left(\mathrm{O}\left(2 \mathrm{~g} ; \mathbb{Z}_{2}\right)\right)$. Because of Lemma 3.10, if we show $\quad 2\left(G_{g}\right)=O\left(2 g ; \mathbb{Z}_{2}\right)$, then $G_{g}=S P_{g}$ follows. For any $z 2$ $H_{1}\left(g ; \mathbb{Z}_{2}\right)$ such that $q(z)=1$, we de ne $\mathbb{T}_{z}(x)=x+(z ; x)_{2} z$. Then \mathbb{T}_{z} is an element of $\mathrm{O}\left(2 \mathrm{~g} ; \mathbb{Z}_{2}\right)$, and we call this a \mathbb{Z}_{2}-transvection about z. Dieudonne [2] showed the following theorem.

Theorem 3.16 [2, Proposition 14 on p.42] When $g \quad 3, O\left(2 g ; \mathbb{Z}_{2}\right)$ is generated by \mathbb{Z}_{2}-transvections.

Let g be the set of z of $H_{1}\left(g ; \mathbb{Z}_{2}\right)$ such that $q(z)=1$. For any elements z_{1} and z_{2} of g, we de ne $z_{1} \square z_{2}=z_{1}+\left(z_{2} ; z_{1}\right)_{2} z_{2}$. Here, we remark that $\mathbb{T}_{\mathrm{z}_{1}}^{2}=\mathrm{id}, \mathbb{T}_{\mathrm{z}_{2}} \mathbb{T}_{\mathrm{z}_{1}} \mathbb{T}_{\mathrm{z}_{2}}^{-1}=\mathbb{T}_{\mathrm{z}_{1} \square \mathrm{z}_{2}}$ and $\mathrm{z}_{1} \square \mathrm{z}_{2} \square \mathrm{z}_{2}=\mathrm{z}_{1}$. We denote an element ${ }_{1} \mathrm{X}_{1}+{ }_{1} \mathrm{Y}_{1}+\quad+\mathrm{g}_{\mathrm{g}}+{ }_{\mathrm{g}} \mathrm{Y}_{\mathrm{g}}$ of $\mathrm{H}_{1}\left(\mathrm{~g} ; \mathbb{Z}_{2}\right)$ by $[(1 ; 1) ; \quad ;(\mathrm{g} ; \mathrm{g})]$, and call each (i ; i) the i -th block. g is a set nitely generated by the operation \square. In fact, we have:

Lemma 3.17 Under the operation \square, g is generated by $x_{i}+y_{i}\left(\begin{array}{lll}1 & \mathrm{i} & \mathrm{g}\end{array}\right)$, $x_{i}+y_{i}+x_{i+1}\left(\begin{array}{lll}1 & i & g-1\end{array}\right)$, and $x_{i}+x_{i+1}+y_{i+1}\left(\begin{array}{lll}1 & i & g-1\end{array}\right)$.

Proof For an element [($1 ; 1)$; $(\mathrm{g} ; \mathrm{g})$] of $\mathrm{H}_{1}\left(\mathrm{~g} ; \mathbb{Z}_{2}\right)$, let the j -th block be the right most block which is $(1 ; 1)$. When $\mathrm{j} \quad 3$, there exist 4 cases of the combination of the $(\mathrm{j}-1)$-st block and the j -th block: [$\quad ;(1 ; 1) ;(1 ; 1)$;], [; $0 ; 0$); $1 ; 1$) \quad], [$\quad ;(0 ; 1) ;(1 ; 1) ; \quad],[\quad ;(1 ; 0) ;(1 ; 1) ; \quad$]. In each case, we can reduce j at least 1 . In fact,

When $\mathrm{j}=2$, since $\mathrm{q}([(\mathrm{l} ; 1) ; \quad ;(\mathrm{g} ; \mathrm{g})])=1$, there are 3 cases of combination of the rst block and the second block: $[(0 ; 0) ;(1 ; 1) ; \quad],[(1 ; 0) ;(1 ; 1) ; \quad]$, or $[(0 ; 1) ;(1 ; 1) ; \quad$. In each case j can be reduced to 1 . In fact,

$$
\begin{array}{lll}
{[(0 ; 0) ;(1 ; 1) ;} &] \square\left(x_{1}+y_{1}+x_{2}\right)=[(1 ; 1) ;(0 ; 1) ; \quad] ; \\
{[(1 ; 0) ;(1 ; 1) ;} &] \square\left(x_{1}+y_{1}\right) \square\left(x_{1}+x_{2}+y_{2}\right)=[(1 ; 1) ;(0 ; 0) ; &] ; \\
{[(0 ; 1) ;(1 ; 1) ;} &] \square\left(x_{1}+x_{2}+y_{2}\right)=[(1 ; 1) ;(0 ; 0) ; \quad]: &
\end{array}
$$

When $j=1$, if every i-th ($i \quad 2$) block is $(0 ; 0)$, then it is $x_{1}+y_{1}$. If there exist at least one of the i-th (i 2) blocks which are $(1 ; 0)$ or $(0 ; 1)$, then,

$$
\left.\begin{array}{llll}
{[} & ;(0 ; 0) ;(1 ; 0) ; &] \square\left(x_{i-1}+x_{i}+y_{i}\right)=\left[\begin{array}{lll}
i & ;(1 ; 0) ;(0 ; 1) ; &] \\
{[} & ;(1 ; 0) ;(0 ; 0) ; &] \square\left(x_{i-1}+y_{i-1}+x_{i}\right)=[
\end{array} \quad ;(0 ; 1) ;(1 ; 0) ;\right.
\end{array}\right] ;
$$

Therefore, we can alter this to an element, each i-th (in 2) block of which is $(1 ; 0)$ or $(0 ; 1)$. If the i-th block of this is $(0 ; 1)$, then

$$
\left[\quad ;(0 ; 1) ; \quad \square\left(x_{i}+y_{i}\right)=[\quad ;(1 ; 0) ; \quad]:\right.
$$

Therefore, it su ces to consider the case when the rst block is $(1 ; 1)$ and other blocks are ($1 ; 0$). In this case,

$$
[\quad ;(1 ; 0) ;(1 ; 0)] \square\left(x_{g-1}+y_{g-1}+x_{g}\right) \square\left(x_{g-1}+y_{g-1}\right)=[\quad ;(1 ; 0) ;(0 ; 0)]:
$$

By applying the same operation repeatedly, we get $[(1 ; 1) ;(1 ; 0) ; \quad$ as a result.

This lemma and Theorem 3.16 show:
C orollary 3.18 $O\left(2 g ; \mathbb{Z}_{2}\right)$ is generated by $\mathbb{T}_{x_{i}+y_{i}}\left(\begin{array}{lll}1 & \mathrm{i} & \mathrm{g}\end{array}\right), \mathbb{T}_{\mathrm{x}_{\mathrm{i}}+\mathrm{y}_{\mathrm{i}}+\mathrm{x}_{\mathrm{i}+1}}$ (1 i $g-1$), and $\mathbb{T}_{x_{i}+x_{i+1}+y_{i+1}}(1 \quad \mathrm{i} \quad g-1)$.

Since G_{g} is a subgroup of $S P_{g}, \quad 2\left(G_{g}\right) \quad O\left(2 g ; \mathbb{Z}_{2}\right)$. On the other hand, the fact that $\quad 2\left(X_{2 i}\right)=\mathbb{T}_{x_{i}+y_{i}+x_{i+1}}(1 \quad i \quad g-1), \quad{ }_{2}\left(X_{2 i+1}\right)=\mathbb{T}_{x_{i}+x_{i+1}+y_{i+1}}$ (1 i $\quad g-1), \quad 2\left(X_{1}\right)=\mathbb{T}_{x_{1}+y_{1}}, \quad 2\left(Y_{2 j}\right)=\mathbb{T}_{x_{j}+y_{j}}\left(\begin{array}{ll}2 & j \\ g-1\end{array}\right)$, ${ }_{2}\left(X_{2 g}\right)=\mathbb{T}_{x_{g}+y_{g}}$, and Corollary 3.18, show $\quad 2\left(G_{g}\right) \quad O\left(2 g ; \mathbb{Z}_{2}\right)$. Therefore we proved that, if $g \quad 3$, then $S P_{g}=G_{g}$.

Algebraic \& Geometric Topology, Volume 2 (2002)

3.5 Genus 2 case: Reidemeister-Schreier method

Birman and Hilden showed the following Theorem.
Theorem 3.19 [1] M_{2} is generated by $C_{1} ; C_{2} ; C_{3} ; C_{4} ; C_{5}$ and its de ning relations are:
(1) $C_{i} C_{j}=C_{j} C_{i}$, if ji-jj $2, i ; j=1 ; 2 ; 3 ; 4 ; 5$,
(2) $\mathrm{C}_{\mathrm{i}} \mathrm{C}_{\mathrm{i}+1} \mathrm{C}_{\mathrm{i}}=\mathrm{C}_{\mathrm{i}+1} \mathrm{C}_{\mathrm{i}} \mathrm{C}_{\mathrm{i}+1}, \mathrm{i}=1 ; 2 ; 3 ; 4$,
(3) $\left(\mathrm{C}_{1} \mathrm{C}_{2} \mathrm{C}_{3} \mathrm{C}_{4} \mathrm{C}_{5}\right)^{6}=1$,
(4) $\left(\mathrm{C}_{1} \mathrm{C}_{2} \mathrm{C}_{3} \mathrm{C}_{4} \mathrm{C}_{5} \mathrm{C}_{5} \mathrm{C}_{4} \mathrm{C}_{3} \mathrm{C}_{2} \mathrm{C}_{1}\right)^{2}=1$,
(5) $\mathrm{C}_{1} \mathrm{C}_{2} \mathrm{C}_{3} \mathrm{C}_{4} \mathrm{C}_{5} \mathrm{C}_{5} \mathrm{C}_{4} \mathrm{C}_{3} \mathrm{C}_{2} \mathrm{C}_{1} \rightleftarrows \mathrm{C}_{\mathrm{i}}, \mathrm{i}=1 ; 2 ; 3 ; 4 ; 5$,
where \rightleftarrows means "commute with".
We call (1) (2) of the aboverelations braid relations. We will use the well-known method, called the Reidemeister \{Schreier method [9, x2.3], to show SP $2 \mathrm{G}_{2}$. We review (a part of) this method.

Let G be a group generated by nite elements $g_{1} ;::: ; g_{m}$ and H be a nite index subgroup of G. For two elements a, b of G, we write $a b \bmod H$ if there is an element h of H such that $a=h b$. A nite subset S of G is called a coset representative system for $G \bmod H$, if, for each elements g of G , there is only one element $\overline{\mathrm{g}} 2 \mathrm{~S}$ such that $\mathrm{g} \overline{\mathrm{g}} \bmod \mathrm{H}$. The set $\mathrm{fsg} \overline{\mathrm{Sg}}^{-1} \mathrm{j} \mathrm{i}=1 ;::: ; \mathrm{m}$; s 2 Sg generates H .

For the sake of giving a coset representative system for M_{2} modulo SP_{2}, we will draw a graph Γ which represents the action of M_{2} on the quadratic forms of $\mathrm{H}_{1}\left(2 ; \mathbb{Z}_{2}\right)$ with Arf invariants 0 . Let $[1 ; 2 ; 3 ; 4]$ denotethequadratic form q^{0} of $H_{1}\left(2 ; \mathbb{Z}_{2}\right)$ such that $q^{q}\left(x_{1}\right)={ }_{1}, q^{9}\left(y_{1}\right)={ }_{2}, q^{q}\left(x_{2}\right)={ }_{3}, q^{q}\left(y_{2}\right)=4$. Each vertex of Γ corresponds to a quadratic form. For each generator C_{i} of M_{2}, we denote its action on $H_{1}\left(2 ; \mathbb{Z}_{2}\right)$ by $\left(C_{i}\right)$. For the quadratic form q^{0} indicated by the symbol [1; 2; 3; 4], let $\left.\left.1=q^{q}\left(C_{i}\right) x_{1}\right), \quad 2=q^{9}\left(C_{i}\right) y_{1}\right)$, $\left.{ }_{3}=q^{9}\left(\mathrm{C}_{\mathrm{i}}\right) \mathrm{x}_{2}\right)$, and $\left.{ }_{4}=q^{9}\left(\mathrm{C}_{\mathrm{i}}\right) \mathrm{y}_{2}\right)$. Then, we connect two vertices, corresponding to [$1 ; 2 ; 3 ; 4$], [1;2;3;4] respectively, by the edge with the letter C_{i}. We remark that this action is a right action. For simplicity, we omit the edge whose ends are the same vertex. As a result, we get a graph Γ as in Figure 23. (Remark: The same graph was in [4, Proof of Lemma 3.1].) In Figure 23, the bold edges form a maximal tree T of Γ. The words $\mathrm{S}=\mathrm{f} 1 ; \mathrm{C}_{1} ; \mathrm{C}_{2} ; \mathrm{C}_{3} ; \mathrm{C}_{4} ; \mathrm{C}_{5} ; \mathrm{C}_{1} \mathrm{C}_{4} ; \mathrm{C}_{2} \mathrm{C}_{4} ; \mathrm{C}_{2} \mathrm{C}_{5} ; \mathrm{C}_{2} \mathrm{C}_{4} \mathrm{C}_{3} g$, which

Figure 23
correspond to the edge paths beginning from $[0 ; 0 ; 0 ; 0]$ on T, de ne a coset representative system for M_{2} modulo $S P_{2}$. For each element g of M_{2}, we can give a $\overline{\mathrm{g}} 2 \mathrm{~S}$ with using this graph. For example, say $\mathrm{g}=\mathrm{C}_{2} \mathrm{C}_{4} \mathrm{C}_{5} \mathrm{C}_{2}$, we follow an edge path assigned to this word which begins from $[0 ; 0 ; 0 ; 0$], (note that we read words from left to right) then we arrive at the vertex [$0 ; 0 ; 1 ; 0$. The edge path on T which begins from $[0 ; 0 ; 0 ; 0$] and ends at $[0 ; 0 ; 1 ; 0]$ is C_{4}. Hence, $\overline{\overline{\mathrm{C}_{2} \mathrm{C}_{4} \mathrm{C}_{5} \mathrm{C}_{2}}}=\mathrm{C}_{4}$. We list in Table 1 the set of generators $\mathrm{fsC}_{\mathrm{i}}{\overline{\mathrm{SC}_{\mathrm{i}}}}^{-1} \mathrm{j} \mathrm{i}=1 ;::: ; 5 ; \mathrm{s} 2 \mathrm{Sg}$ of SP_{g}. In Table 1, vertical direction is a coset representative system S , horizontal direction is a set of generators $\mathrm{fC}_{1} ; \mathrm{C}_{2} ; \mathrm{C}_{3} ; \mathrm{C}_{4} ; \mathrm{C}_{5} \mathrm{~g}$. We can check this table by Figure 23 and braid relations. For example,

$$
\begin{aligned}
& \mathrm{C}_{2} \mathrm{C}_{4} \mathrm{C}_{3} \mathrm{C}_{1}{\overline{\mathrm{C}_{2} \mathrm{C}_{4} \mathrm{C}_{3} \mathrm{C}_{1}}}^{-1}=\mathrm{C}_{2} \mathrm{C}_{4} \mathrm{C}_{3} \mathrm{C}_{1}\left(\mathrm{C}_{2} \mathrm{C}_{4} \mathrm{C}_{3}\right)^{-1} \\
& =\mathrm{C}_{2} \mathrm{C}_{4} \mathrm{C}_{3} \mathrm{C}_{1} \mathrm{C}_{3}^{-1} \mathrm{C}_{4}^{-1} \mathrm{C}_{2}^{-1}=\mathrm{C}_{2} \mathrm{C}_{1} \mathrm{C}_{2}^{-1}=\mathrm{X}_{1}:
\end{aligned}
$$

This table shows that $\mathrm{SP}_{2} \quad \mathrm{G}_{2}$.

Table 1: Generators of SP_{2}

	C_{1}	C_{2}	C_{3}	C_{4}	C_{5}
1	1	1	1	1	1
C_{1}	D_{1}	X_{1}	TD_{5}^{-1}	1	TD_{3}^{-1}
C_{2}	X_{1}	D_{2}	X_{2}	1	1
C_{3}	TD_{5}^{-1}	X_{2}	D_{3}	X_{3}	TD_{1}^{-1}
C_{4}	1	1	X_{3}	D_{4}	X_{4}
C_{5}	TD_{3}^{-1}	1	TD_{1}^{-1}	X_{4}	D_{5}
$\mathrm{C}_{1} \mathrm{C}_{4}$	D_{1}	X_{1}	X_{3}	D_{4}	X_{4}
$\mathrm{C}_{2} \mathrm{C}_{4}$	X_{1}	D_{2}	1	D_{4}	X_{4}
$\mathrm{C}_{2} \mathrm{C}_{5}$	X_{1}	D_{2}	X_{2}	X_{4}	D_{5}
$\mathrm{C}_{2} \mathrm{C}_{4} \mathrm{C}_{3}$	X_{1}	X_{3}	$\left(\mathrm{X}_{2}\right)^{-1} \mathrm{D}_{4} \mathrm{X}_{2}$	X_{2}	X_{4}

References

[1] J S Birman, H Hilden, On the mapping class group of closed surface as covering spaces, from: \Advances in the theory of Riemann surfaces" Ann. of Math. Studies 66(1971) 81\{115
[2] J Dieudonne, La gemmetrie des groupes classiques, (3-rd edn.), Ergebnisseder Math. u.i. Grundz. 5, Springer, 1971
[3] J L H arer, Stability of the homology of the moduli spaces of Riemann surfaces with spin structure, Math. Ann. 287(1990) 323\{334
[4] J L Harer, The rational Picard group of the moduli space of Riemann surfaces with spin structure, Contemp. Math. 150(1993) 107\{136
[5] S Hirose, On di eomorphisms over T²-knot, Proc. of A.M.S. 119(1993) 1009\{ 1018
[6] Z Iwase, Dehn surgery along a torus T^{2}-knot. II, J apan. J. Math. 16(1990) 171\{196
[7] D J ohnson, The structure of the Torelli Group I: A nite set of generators for I , Annals of Math. 118(1983) 423\{442
[8] D J ohnson, The structure of the Torelli Group III: The abelianization of I, Topology 24(1985) 127\{144
[9] W M agnus, A K arras, D Solitar, Combinatorial Group Theory, Dover 1975
[10] J M M ontesinos, On twins in the four-sphere I, Quart. J. Math. Oxford (2) 34(1983) 171\{199

Department of Mathematics, Faculty of Science and Engineering
Saga University, Saga, 840-8502 J apan.
Email: hi rose@ाs. saga-u. ac. j p
Received: 6 March 2002

