Smith equivalence and nite Oliver groups with Laitinen number 0 or 1

Krzyszt of Pawal owski
Ronal d Sol omon

Abstract

In 1960, Paul A. Smith asked the following question. If a nite group G acts smoothly on a sphere with exactly two xed points, is it true that the tangent G -modules at the two points are always isomorphic? We focus on the case G is an Oliver group and we present a classi cation of nite Oliver groups G with Laitinen number $\mathrm{a}_{\mathrm{G}}=0$ or 1 . Then we show that the Smith Isomorphism Question has a negative answer and $\mathrm{a}_{\mathrm{G}} \quad 2$ for any nite Oliver group G of odd order, and for any nite Oliver group G with a cyclic quotient of order pq for two distinct odd primes p and q . We also show that with just one unknown case, this question has a negative answer for any nite nonsolvable gap group G with a_{G} 2. Moreover, we deduce that for a nite nonabelian simple group G , the answer to the Smith Isomorphism Question is a rmative if and only if $\mathrm{a}_{\mathrm{G}}=0$ or 1 .

AMS Classi cation 57S17, 57S25, 20D05; 55M35, 57R65.
Keywords Finite group, Oliver group, Laitinen number, smooth action, sphere, tangent module, Smith equivalence, Laitinen-Smith equivalence

0.1 The Smith Isomorphism Question

Let G bea nite group. By a real G-module we mean a nite dimensional real vector space V with a linear action of G. Let M be a smooth G-manifold with nonempty $x e d$ point set M^{G}. For any point $\times 2 M^{G}$, the tangent space $T_{x}(M)$ becomes a real G-module by taking the derivatives (at the point x) of the transformations $\mathrm{g}: \mathrm{M}!\mathrm{M}, \mathrm{z} \mathrm{\nabla} \mathrm{gz}$ for all g 2 G . We refer to this G -module $\mathrm{T}_{\mathrm{x}}(\mathrm{M})$ as to the tangent G -module at x .

In 1960, Paul A. Smith [56, page 406] asked the following question.
Smith Isomorphism Question Is it true that for any smooth action of G on a sphere with exactly two xed points, the tangent G-modules at the two points are isomorphic?

Following [49]\{[52], two real G-modules U and V are called Smith equivalent if there exists a smooth action of G on a sphere S such that $S^{G}=f x ; y g$ for two points x and y at which $T_{x}(S)=U$ and $T_{y}(S)=V$ as real G-modules.

In the real representation ring $\mathrm{RO}(\mathrm{G})$ of G , we consider the subset $\mathrm{Sm}(\mathrm{G})$ consisting of the di erences $\mathrm{U}-\mathrm{V}$ of real G -modules U and V which are Smith equivalent. Choose a real G-module W such that dim $W^{G}=1$. Se $S=S(W)$, the G-invariant unit sphere in W. Then $S^{G}=f x ; y g$ for the obvious points x and y in S, and clearly as real G-modules, $T_{x}(S)=T_{y}(S)=W-W^{G}$, the G-orthogonal complement of W^{G} in W . As a result,

$$
W-W=\left(W-W^{G}\right)-\left(W-W^{G}\right) 2 S m(G):
$$

Therefore $\operatorname{Sm}(\mathrm{G})$ contains the trivial subgroup 0 of $\mathrm{RO}(\mathrm{G})$, and the Smith Isomorphism Question can be restated as follows. Is it true that $\mathrm{Sm}(\mathrm{G})=0$? As we shall see below, it may happen that $\operatorname{Sm}(\mathrm{G}) \in 0$, but in general, it is an open question whether $\operatorname{Sm}(G)$ is a subgroup of RO(G).

In the following answers to the Smith Isomorphism Question, \mathbb{Z}_{n} is the cyclic group $\mathbb{Z}=n \mathbb{Z}$ of order n, and S_{3} is the symmetric group on three letters.
By [1] and [35], $\operatorname{Sm}\left(\mathbb{Z}_{p}\right)=0$ for any prime p. According to [54], $\operatorname{Sm}\left(\mathbb{Z}_{p^{k}}\right)=0$ for any odd prime p and any integer k 1. By character theory, $\operatorname{Sm}\left(\mathrm{S}_{3}\right)=0$ and $\operatorname{Sm}\left(\mathbb{Z}_{n}\right)=0$ for $n=2,4$, or 6 . On the other hand, by $[6]\left\{[8], \operatorname{Sm}\left(\mathbb{Z}_{n}\right) \in 0\right.$ for $\mathrm{n}=4 \mathrm{q}$ with $\mathrm{q} \quad 2$. So, $\mathrm{G}=\mathbb{Z}_{8}$ is the smallest group with $\operatorname{Sm}(\mathrm{G}) \in 0$.

We refer the reader to [1], [6]\{[8], [9], [10], [17], [18], [19], [20], [28], [33], [34], [35], [46], [48], [49]\{[52], [53], [54], [55], [57] for more related information.

If a nite group G acts smoothly on a homotopy sphere with ${ }^{G}=f x ; y g$, it follows from Smith theory that for every p-subgroup P of G with $p j G j$, the xed point set P is either a connected manifold of dimension 1 , or ${ }^{P}=f x ; y g$.

Henceforth, we say that a smooth action of G on a homotopy sphere satis es the 8-condition if for every cyclic 2-subgroup P of G with jPj 8, the xed point set ${ }^{P}$ is connected (we recall that in [33], such an action of G on is called 2-proper). In particular, the action of G on satis es the 8 -condition if G has no element of order 8 .

Now, two real G-modules U and V arecalled Laitinen \{Smith equivalent if there exists a smooth action of G on a sphere S satisfying the 8 -condition and such that $S^{G}=f x ; y g$ for two points x and y at which $T_{x}(S)=U$ and $T_{y}(S)=V$ as real G-modules.

Beside $\operatorname{Sm}(\mathrm{G})$, we consider the subset $\mathrm{LSm}(\mathrm{G})$ of $\mathrm{RO}(\mathrm{G})$ consisting of 0 and the di erences $\mathrm{U}-\mathrm{V}$ of real G -modules U and V which are Laitinen\{Smith equivalent. Again, in general, if $\operatorname{LSm}(\mathrm{G}) \in 0$, it is an open question whether LSm(G) is a subgroup of RO(G). Clearly, LSm(G) $\operatorname{Sm}(\mathrm{G})$.
If G is a cyclic 2 -group with $\mathrm{jGj} \quad 8$, then there are no two real G -modules which areLaitinen\{Smith equivalent. Therefore $\operatorname{LSm}(\mathrm{G})=0$ while $\mathrm{Sm}(\mathrm{G}) \in 0$ by $[6]\{[8]$. In particular, $\operatorname{LSm}(G) \in S m(G)$. However, if G has no element of order 8, then $\operatorname{LSm}(G)=\operatorname{Sm}(G)$ (cf. the 8-condition Lemma in Section 0.3).

Let IO(G) be the intersection of the kernels $\operatorname{Ker}(\mathrm{RO}(\mathrm{G})!\mathrm{RO}(\mathrm{P}))$ of the restriction maps $R O(G)!~ R O(P)$ taken for all subgroups P of G of prime power order. Set

$$
I O(G ; G)=I O(G) \backslash \operatorname{Ker}(R O(G)!\mathbb{Z})
$$

where the map $R O(G)!\mathbb{Z}$ is de ned by $U-V \nabla \operatorname{dim}^{G}-\operatorname{dim} V^{G}$. In [33], the abelian group $\mathrm{IO}(\mathrm{G} ; \mathrm{G})$ is denoted by $\left.\mathrm{IO}^{9} \mathrm{G}\right)$.

According to [33, Lemma 1.4], the di erence $\mathrm{U}-\mathrm{V}$ of two Laitinen\{Smith equivalent real G -modules U and V belongs to $\mathrm{IO}(\mathrm{G} ; \mathrm{G})$. Thus, the following lemma holds.

Basic Lemma Let G bea nite group. Then $\operatorname{LSm}(G) \quad \mathrm{IO}(\mathrm{G} ; \mathrm{G})$.
Let G bea nitegroup. Given two elements $\mathrm{g} ; \mathrm{h} 2 \mathrm{G}, \mathrm{g}$ is called real conjugate to h if g or g^{-1} is conjugate to h , written $\mathrm{g}{ }^{1} \mathrm{~h}$. Clearly, ${ }^{1}$ is an equivalence relation in G . For any g 2 G , the resulting equivalence class (g$)^{1}$ is called the real conjugacy class of g . Note that $(\mathrm{g})^{1}=(\mathrm{g})\left[\left(\mathrm{g}^{-1}\right)\right.$, the union of the conjugacy classes (g) and (g^{-1}) of g and g^{-1}, respectively.
We denote by a_{G} the number of real conjugacy classes $(\mathrm{g})^{1}$ of elements g 2 G not of prime power order. In 1996, Erkki Laitinen has suggested to study the number a_{G} whiletrying to answer the Smith Isomorphism Question for speci c nite groups G . Henceforth, we refer to a_{G} as to the Laitinen number of G .

The ranks of the free abelian groups $I O(G)$ and $I O(G ; G)$ are computed in [33, Lemma 2.1] in terms of the Laitinen number a_{G}, as follows.

First Rank Lemma Let G bea nite group. Then the following holds.
(1) $\mathrm{rkIO}(\mathrm{G})=\mathrm{a}_{\mathrm{G}}$. In particular, $\mathrm{IO}(\mathrm{G})=0$ if and only if $\mathrm{a}_{\mathrm{G}}=0$.
(2) $\mathrm{rkIO}(\mathrm{G} ; \mathrm{G})=\mathrm{a}_{\mathrm{G}}-1$ when $\mathrm{a}_{\mathrm{G}} \quad 1$, and $\mathrm{rkIO}(\mathrm{G} ; \mathrm{G})=0$ when $\mathrm{a}_{\mathrm{G}}=0$. In particular, $\mathrm{I} \mathrm{O}(\mathrm{G} ; \mathrm{G})=0$ if and only if $\mathrm{a}_{\mathrm{G}}=0$ or 1 .

In 1996, Erkki Laitinen posed the following conjecture (cf. [33, Appendix]).

Laitinen Conjecture Let G bea nite Oliver group such that a_{G}
2. Then LSm(G) G 0 .

If $\mathrm{a}_{\mathrm{G}}=0$ or $1, \mathrm{LSm}(\mathrm{G})=0$ by the Basic Lemma and the First Rank Lemma. So, in the Laitinen Conjecture, the condition that $\mathrm{a}_{\mathrm{G}} \quad 2$ is necessary.

Onemay well conjecturethat $\mathrm{Sm}(\mathrm{G}) \backslash I O(G ; G) \in 0$ for any niteOliver group G with a_{G} 2. It is very likely that $\mathrm{LSm}(\mathrm{G})=\mathrm{Sm}(\mathrm{G}) \backslash \mathrm{IO}(\mathrm{G} ; \mathrm{G})$. Clearly, the inclusion $\operatorname{LSm}(\mathrm{G}) \quad \operatorname{Sm}(\mathrm{G}) \backslash \mathrm{IO}(\mathrm{G} ; \mathrm{G})$ holds by the Basic Lemma.

Before we recall the notion of Oliver group, we wish to adopt the following de nition. For a given nite group G, a series of subgroups of G of the form $\mathrm{P} \unlhd \mathrm{H} \unlhd \mathrm{G}$ is called an isthmus series if $\mathrm{jPj}=\mathrm{p}^{m}$ and $\mathrm{jG}=\mathrm{Hj}=q^{n}$ for some primes p and q (possibly $p=q$) and some integers $m ; n \quad 0$, and the quotient group $\mathrm{H}=\mathrm{P}$ is cyclic (possibly $\mathrm{H}=\mathrm{P}$).

For a nite group G, the following three claims are equivalent.
(1) G has a smooth action on a sphere with exactly one xed point.
(2) G has a smooth action on a disk without xed points.
(3) G has no isthmus series of subgroups.

By the Slice Theorem, (1) implies (2). By the work of Oliver [43], (2) and (3) are equivalent, and according to Laitinen and Morimoto [32], (3) implies (1).

Following Laitinen and Morimoto [32], a nitegroup G is called an Oliver group if G has no isthmus series of subgroups. Recall that each nite nonsolvable group G is an Oliver group, and a nite abelian (more generally, nilpotent) group G is an Oliver group if and only if G has thre or more noncyclic Sylow subgroups (cf. [43], [44], and [31]).

We prove that the Laitinen Conjecture holds for large classes of nite Oliver groups G such that $a_{G} \quad 2$, and as a consequence, we obtain that $\operatorname{Sm}(\mathrm{G}) \in 0$. Moreover, we check that $\operatorname{Sm}(\mathrm{G})=0$ for speci c classes of nite groups G such that $a_{G} \quad 1$, and therefore we can answer the Smith Isomorphism Question to the e ect that $\operatorname{Sm}(G)=0$ if and only if $\mathrm{a}_{\mathrm{G}} \quad 1$.

We wish to recall that for a nite group G, it may happen that $\operatorname{Sm}(G) \in 0$ and $\mathrm{a}_{\mathrm{G}} \quad 1$ (the smallest group with these properties is $\mathrm{G}=\mathbb{Z}_{8}$).

0.2 Classi cation and Realization Theorems

Our main algebraic theorem gives a classi cation of nite Oliver groups G with Laitinen number $a_{G} \quad 1$, and it reads as follows.

Classi cation Theorem Let G bea nite Oliver group. Then the Laitinen number $\mathrm{a}_{\mathrm{G}}=0$ or 1 if and only if one of the following conclusions holds:
(1) $G=P S L(2 ; q)$ for some $q 2 f 5 ; 7 ; 8 ; 9 ; 11 ; 13 ; 17 \mathrm{~g}$; or
(2) $G=P S L(3 ; 3), \operatorname{PSL}(3 ; 4), S z(8), S z(32), A_{7}, M_{11}$ or M_{22}; or
(3) $\mathrm{G}=\mathrm{PGL}(2 ; 5), \mathrm{PGL}(2 ; 7), \mathrm{P} \quad \mathrm{L}(2 ; 8)$, or M_{10}; or
(4) $\mathrm{G}=\mathrm{PSL}(3 ; 4) \rtimes \mathrm{C}_{2}=\mathrm{PSL}(3 ; 4) \rtimes$ hui ; or
(5) $\quad \mathrm{F}(\mathrm{G})=\mathrm{C}_{2}^{2} \quad \mathrm{C}_{3}$ and $\mathrm{G}=\operatorname{Stab}_{\mathrm{A}_{7}}(\mathrm{f} 1 ; 2 ; 3 \mathrm{~g})$ or $\mathrm{C}_{2}^{2} \rtimes \mathrm{D}_{9}$; or
(6) $F(G)$ is an abelian p-group for some odd prime $p, G=F(G) \rtimes H$ for $\mathrm{H}<\mathrm{G}$ with $\mathrm{H}=\mathrm{SL}(2 ; 3)$ or $\widehat{\mathrm{S}_{4}}$, and $\mathrm{F}(\mathrm{G})$ is inverted by the unique involution of H ; or
(7) $\mathrm{F}(\mathrm{G})=\mathrm{C}_{3}^{3}$ and $\mathrm{G}=\mathrm{F}(\mathrm{G}) \rtimes \mathrm{A}_{4}$; or
(8) $\mathrm{F}(\mathrm{G})=\mathrm{C}_{2}^{4}, \mathrm{~F}^{2}(\mathrm{G})=\mathrm{A}_{4} \quad \mathrm{~A}_{4}$, and $\mathrm{G}=\mathrm{F}^{2}(\mathrm{G}) \rtimes \mathrm{C}_{4}$; or
(9) $\mathrm{F}(\mathrm{G})=\mathrm{C}_{2}^{8}$ and $\mathrm{G}=\mathrm{F}(\mathrm{G}) \rtimes \mathrm{H}$ for $\mathrm{H}<\mathrm{G}$ with $\mathrm{H}=\mathrm{PSU}(3 ; 2)$ or $\mathrm{C}_{3}^{2} \rtimes \mathrm{C}_{8}$; or
(10) $\mathrm{F}(\mathrm{G})=\mathrm{C}_{2}^{3}$ and $\mathrm{G}=\mathrm{F}(\mathrm{G})=\mathrm{GL}(3 ; 2)$; or
(11) $F(G)=C_{2}^{4}$ and $G=F(G)=A_{6}$; or
(12) $\mathrm{F}(\mathrm{G})=\mathrm{C}_{2}^{8}$ and $\mathrm{G} F(\mathrm{G})=\mathrm{M}_{10}$; or
(13) $F(G)$ is a non-identity elementary abelian 2-group, $G \neq F(G)=S L(2 ; 4)$, $L(2 ; 4), S L(2 ; 8), S z(8)$ or $S z(32)$, and $C_{F(G)}(x)=1$ for every $\times 2 G$ of odd order.

Here, we consider cyclic groups C_{q} of order q, dihedral groups D_{q} of order $2 q$, elementary abelian p-groups $C_{p}^{k}=C_{p} \quad C_{p}$, alternating groups A_{n}, symmetric groups S_{n}, general linear groups $\mathrm{GL}(\mathrm{n} ; \mathrm{q})$, special linear groups $\mathrm{SL}(\mathrm{n} ; \mathrm{q})$, projective general linear groups $\mathrm{PGL}(\mathrm{n} ; \mathrm{q})$, projective special linear groups $\operatorname{PSL}(n ; q)$, projective special unitary groups $\operatorname{PSU}(n ; q)$, the Mathiau groups $\mathrm{M}_{10}, \mathrm{M}_{11}$, and M_{22}, and the Suzuki groups $\mathrm{Sz}(8)$ and $\mathrm{Sz}(32)$. Recall that the group $\operatorname{PSL}(3 ; 4)$ admits an automorphism u of order 2 , referred to as a graph- eld automorphism, acting as the composition of the transpose-inverse automorphism and the squaring map (a Galois automorphism) of the eld \mathbb{F}_{4} of four elements. The xed points of u form the group $\operatorname{PSU}(3 ; 2)$.

Moreover, for two nitegroups N and $\mathrm{H}, \mathrm{N} \rtimes \mathrm{H}$ denotes a semi-direct product of N and H (i.e, the splitting extension G associated with an exact sequence $1!\mathrm{N}!\mathrm{G}$! H! 1). Also, we use the notations

$$
L(n ; q)=S L(n ; q) \rtimes \operatorname{Aut}\left(\mathbb{F}_{q}\right) \text { and } P \quad L(n ; q)=P S L(n ; q) \rtimes \operatorname{Aut}\left(\mathbb{F}_{q}\right)
$$

where $\operatorname{Aut}\left(\mathbb{F}_{\mathrm{q}}\right)$ is the group of all automorphisms of the eld \mathbb{F}_{q} of q elements.
For n 4 and $\mathrm{n} \in 6$, there exist two groups G which are not isomorphic, do not contain a subgroup isomorphic to A_{n}, and occur in a short exact sequence $1!\mathrm{C}_{2}$! $\mathrm{G}!\mathrm{S}_{\mathrm{n}}$! 1. For $\mathrm{n}=4$, one of thegroups is isomorphic to $\mathrm{GL}(2 ; 3)$ and the other, denoted here by $\widehat{S_{4}}$, has exactly one element of order 2 .
Finally, for a nite group G, we denote by $F(G)$ the Fitting subgroup of G (i.e., the largest nilpotent normal subgroup of G) and by $F^{2}(G)$ the preimage of $F(G \neq(G))$ under the quotient map $G!G \neq(G)$.
We remark that the Classi cation Theorem stated above extends a previous result of Bannuscher and Tiedt [4] obtained for nite nonsolvable groups G such that every element of G has prime power order (i.e, such that $\mathrm{a}_{\mathrm{G}}=0$). Our proof is largely independent of their result, but we do invoke it to establish that $F(G)$ is elementary abelian in case (13). Moreover, their result and our cases (1) $\left\{(13)\right.$ allow us to list all nite Oliver groups G with $\mathrm{a}_{\mathrm{G}}=1$, and thus with $I O(G ; G)=0$ and $I O(G) \in 0$ (cf. the First Rank Lemma).
Le G bea nite group. By [45], there exists a smooth action of G on a disk with exactly two xed points if and only if G is an Oliver group. For a nite Oliver group G, two real G-modules U and V are called Oliver equivalent if there exists a smooth action of G on a disk D such that $D^{G}=f x ; y g$ for two points x and y at which $T_{x}(D)=U$ and $T_{y}(D)=V$ as real G-modules.
If $U-V 2 R O(G)$ is the di erence of two Oliver equivalent real G-modules U and V, then $U-V 2 I O(G ; G)$ by Smith theory and the Slice Theorem. On the other hand, if $U-V 2 I O(G ; G)$, then U and V are isomorphic as P-modules for each subgroup P of G of prime power order, and by subtracting the trivial summands, we may assume that $\operatorname{dim}^{G}=\operatorname{dim}^{G}=0$. Hence, by [45, Theorem 0.4], there exists a smooth action of G on a disk D such that $D^{G}=f x ; y g$ for two points x and y at which $T_{x}(D)=U \quad W$ and $T_{y}(D)=V \quad W$ for some real G-module W with $\operatorname{dim}^{(W} W^{G}=0$. As in $R O(G)$,

$$
U-V=\left(\begin{array}{ll}
U & W
\end{array}\right)-\left(\begin{array}{ll}
V & W
\end{array}\right) ;
$$

the element $\mathrm{U}-\mathrm{V}$ is the di erence of two Oliver equivalent real G -modules. Consequently, IO(G;G) coincides with the subset of RO(G) consisting of the di erences of real G-modules which are Oliver equivalent. So, the Classi cation Theorem and the First Rank Lemma yield the following corollary.

Classi cation Corollary A nite Oliver group G has the property that two Oliver equivalent real G-modules are always isomorphic (i.e, IO(G;G)=0) if and only if G is listed in cases (1) $\{(13)$ of the Classi cation Theorem (i.e., the Laitinen number $\mathrm{a}_{\mathrm{G}}=0$ or 1).

For a nitegroup G, we denoteby $P(G)$ thefamily of subgroups of G consisting of the trivial subgroup of G and all p-subgroups of G for all primes $p j G j$.
A subgroup H of a nite group $G(H \quad G)$ is called a large subgroup of G if $O^{p}(G) \quad H$ for some prime p, where $O^{p}(G)$ is the smallest normal subgroup of G such that $j G=O^{p}(G) j=p^{k}$ for some integer $k \quad 0$.

For a nite group G, we denote by $L(G)$ the family of large subgroups of G, and a real G-module V is called L-free if $\operatorname{dim}^{H}=0$ for each $H 2 L(G)$, which amounts to saying that $\operatorname{dimV}^{\mathrm{O}^{\mathrm{P}}(\mathrm{G})}=0$ for each prime pjGj .

Here, as in [42], a nite group G is called a gap group if $P(G) \backslash L(G)=\varnothing$ and there exists a real L-free G-module V satisfying the gap condition that

$$
\operatorname{dim}^{P}>2 \operatorname{dim} V^{H}
$$

for each pair $(P ; H)$ of subgroups $P<H \quad G$ with $P 2 P(G)$.
According to [42], if G is a nite group such that $P(G) \backslash L(G)=\varnothing$, then G is a gap group under either of the following conditions:
(1) $O^{p}(G) \in G$ and $O^{q}(G) \in G$ for two distinct odd primes p and q.
(2) $\mathrm{O}^{2}(\mathrm{G})=\mathrm{G}$ (which is true when G is of odd order or G is perfect).
(3) G has a quotient which is a gap group.

Note that the condition (1) is equivalent to the condition that G has a cyclic quotient of order pq for two distinct odd primes p and q . Recall that a nite group G is nilpotent if and only if G is the product of its Sylow subgroups. Moreover, a nite nilpotent group G is an Oliver group if and only if G has thre or more noncyclic Sylow subgroups. Therefore the condition (1) holds for any nite nilpotent Oliver group G.

If G is a nite Oliver group, then $P(G) \backslash L(G)=\varnothing$ by [32], but it may happen that there is no real L -free G -module satisfying the gap condition. In fact, by [16] or [42], the symmetric group S_{n} is a gap group if and only if $n \quad 6$. Hence, S_{5} is an Oliver group which is not a gap group, but S_{5} contains A_{5} which is both an Oliver and gap group. We refer the reader to [42], [58] and [59] for more information about gap groups.

Let LO(G) be the subgroup of RO(G) consisting of the di erences $\mathrm{U}-\mathrm{V}$ of real L -fre G -modules U and V which are isomorphic when restricted to any P $2 \mathrm{P}(\mathrm{G})$. Recall that IO(G) is the intersection of the kernels of the restriction maps RO(G)! RO(P) taken for all P $2 \mathrm{P}(\mathrm{G})$, and $\mathrm{IO}(\mathrm{G} ; \mathrm{G})$ is the intersection of $I O(G)$ and $\operatorname{Ker}(\operatorname{RO}(G)!\mathbb{Z})$ where $R O(G)!\mathbb{Z}$ is the G- xed point set dimension map. In particular, LO(G) IO(G;G).

Now, we are ready to state our main topological theorem.
Realization Theorem Let G bea nite Oliver gap group. Then any element of $\mathrm{LO}(\mathrm{G})$ is the di erence of two Laitinen\{Smith equivalent real G-modules; i.e, $\operatorname{LO}(G) \quad \operatorname{LSm}(G)$.

The Realization Theorem and the Basic Lemma show that

$$
\mathrm{LO}(\mathrm{G}) \quad \mathrm{LSm}(\mathrm{G}) \quad \mathrm{IO}(\mathrm{G} ; \mathrm{G})
$$

for any nite Oliver gap group G. In general, LO(G) GIO(G;G). However, if G is perfect, $O^{p}(G)=G$ for any prime p, and hence $L(G)=f G g$, and thus $\mathrm{LO}(\mathrm{G})=\mathrm{IO}(\mathrm{G} ; \mathrm{G})$. So, the Realization Theorem and the Basic Lemma yied the following corollary (cf. [33, Corollary 1.8] where a similar result is obtained for the reali cations of complex G-modules for any nite perfect group G).

Realization Corollary Let G bea nite perfect group. Then any element of LO(G) is the di erence of two Laitinen\{Smith equivalent real G-modules and $\mathrm{LO}(\mathrm{G})=\mathrm{IO}(\mathrm{G} ; \mathrm{G})$, and thus $\mathrm{LO}(\mathrm{G})=\mathrm{LSm}(\mathrm{G})=\mathrm{IO}(\mathrm{G} ; \mathrm{G})$.

0.3 Answers to the Smith Isomorphism Question

By checking whether $\operatorname{Sm}(G)=0$, we answer the Smith Isomorphism Question for large classes of nite Oliver groups G . In order to prove that $\mathrm{Sm}(\mathrm{G})=0$ if the Laitinen number $\mathrm{a}_{\mathrm{G}} 1$, we usetheClassi cation Theorem. If the Laitinen number $\mathrm{a}_{\mathrm{G}} \quad 2$, we show that $\mathrm{LO}(\mathrm{G}) \in 0$ and by the Realization Theorem, we obtain that $\operatorname{LSm}(\mathrm{G}) \in 0$, and thus $\mathrm{Sm}(\mathrm{G}) \in 0$.

Theorem A1 Let G bea nite Oliver group of odd order. Then $\mathrm{a}_{\mathrm{G}} \quad 2$ and LO(G) G 0 .

Theorem A2 Let G be a nite group with a cyclic quotient of order pq for two distinct odd primes p and q. Then $\mathrm{a}_{\mathrm{G}} \quad 2$ and $\mathrm{LO}(\mathrm{G}) \in 0$.

Theorem A3 Let G bea nite nonsolvable group. Then
(1) $\mathrm{LO}(\mathrm{G})=0$ if $\mathrm{a}_{\mathrm{G}} \quad 1$,
(2) $L O(G) \in 0$ if $a_{G} \quad 2$, except when $G=A u t\left(A_{6}\right)$ or $P \quad L(2 ; 27)$, and
(3) $\mathrm{LO}(\mathrm{G})=0$ and $\mathrm{a}_{\mathrm{G}}=2$ when $\mathrm{G}=\operatorname{Aut}\left(\mathrm{A}_{6}\right)$ or $\mathrm{P} \quad \mathrm{L}(2 ; 27)$.

Theorem B1 Let G bea nite Oliver group of odd order. Then $\mathrm{a}_{\mathrm{G}} \quad 2$ and $0 \in \operatorname{LO}(\mathrm{G}) \quad \mathrm{LSm}(\mathrm{G})=\mathrm{Sm}(\mathrm{G}) \quad \mathrm{IO}(\mathrm{G} ; \mathrm{G}):$

Theorem B2 Let G be a nite Oliver group with a cyclic quotient of order pq for two distinct odd primes p and q . Then $\mathrm{a}_{\mathrm{G}} \quad 2$ and

$$
0 \in \operatorname{LO}(\mathrm{G}) \quad \operatorname{LSm}(\mathrm{G}) \quad \mathrm{IO}(\mathrm{G} ; \mathrm{G}):
$$

Theorem B3 Let G be a nite nonsolvable gap group not isomorphic to P $L(2 ; 27)$. Then $L O(G) G 0$ if and only if $a_{G} \quad 2$,
LO(G) LSm(G) IO(G;G);
and $L S m(G) \in 0$ if and only if $a_{G} \quad 2$.
By [33, Theorem A], if G is a nite perfect group, LSm(G) $G 0$ if and only if $a_{G} \quad$ 2. Theorem B3 extends this result in two ways. Firstly, it proves the conclusion for a large class of nite nonsolvable groups G, including all nite perfect groups. Secondly, if G is perfect, it shows that $L S m(G)=I O(G ; G)$ (cf. the Realization Corollary).
If G is as in Theorems B1 or B2, the Laitinen Conjecture hol ds by the theorems. By Theorem B3, the Laitinen Conjecture holds for any nite nonsolvable gap group G with $\mathrm{a}_{\mathrm{G}} \quad 2$, except when $\mathrm{G}=\mathrm{P} \quad \mathrm{L}(2 ; 27)$. In the exceptional case, $\mathrm{LO}(\mathrm{G})=0$ and $\mathrm{a}_{\mathrm{G}}=2$ by Theorem A3, and thus rkIO(G;G) $=1$ by the First Rank Lemma, so that IO(G;G) $G 0$. However, we do not know whether I O(G;G) LSm(G), and we are not able to con rm that LSm(G) $G 0$. The same is true when $G=\operatorname{Aut}\left(A_{6}\right)$. Recall that $P \quad L(2 ; 27)$ is a gap group while $\operatorname{Aut}\left(A_{6}\right)$ is not a gap group (see [42, Proposition 4.1]).

Theorem C1 Let G bea nite nonabedian simple group.
(1) If $\mathrm{a}_{\mathrm{G}} 1$, then $\operatorname{Sm}(\mathrm{G})=0$ and G is isomorphic to one of the groups: $\mathrm{a}_{\mathrm{G}}=0: \operatorname{PSL}(2 ; q)$ for $\mathrm{q}=5 ; 7 ; 8 ; 9 ; 17, \operatorname{PSL}(3 ; 4), \mathrm{Sz}(8), \mathrm{Sz}(32)$, or $a_{G}=1: \operatorname{PSL}(2 ; 11), \operatorname{PSL}(2 ; 13), \operatorname{PSL}(3 ; 3), A_{7}, M_{11}, M_{22}$.
(2) If $\mathrm{a}_{\mathrm{G}} 2$, then $\mathrm{LSm}(\mathrm{G})=I O(G ; G) \in 0$, and thus $S m(G) \in 0$.

Theorem C2 Let G $=S L(n ; q)$ or $S p(n ; q)$ for $n \quad 2$ where n is even in the latter case and q is any prime power in both cases.
(1) If $\mathrm{a}_{\mathrm{G}} \quad 1$, then $\mathrm{Sm}(\mathrm{G})=0$ and G is isomorphic to one of the groups: $\mathrm{a}_{\mathrm{G}}=0: \operatorname{SL}(2 ; 2), \operatorname{SL}(2 ; 4), \operatorname{SL}(2 ; 8), S L(3 ; 2)$, or $\mathrm{a}_{\mathrm{G}}=1: \operatorname{SL}(2 ; 3), \operatorname{SL}(3 ; 3)$.
(2) If $\mathrm{a}_{\mathrm{G}} 2$, then except for $\mathrm{G}=\mathrm{Sp}(4 ; 2), \operatorname{LSm}(\mathrm{G})=\mathrm{IO}(\mathrm{G} ; \mathrm{G}) \in 0$, and thus $\operatorname{Sm}(\mathrm{G}) \in 0$. Moreover, $\operatorname{Sm}(\mathrm{G}) \in 0$ for $G=\operatorname{Sp}(4 ; 2)$.

Theorem C3 Let $G=A_{n}$ or S_{n} for $n 2$.
(1) If $\mathrm{a}_{\mathrm{G}} 1$, then $\mathrm{Sm}(\mathrm{G})=0$ and G is one of the groups:
$a_{G}=0: A_{2}, A_{3}, A_{4}, A_{5}, A_{6}, S_{2}, S_{3}, S_{4}$, or $a_{G}=1: A_{7}, S_{5}$.
(2) If $a_{G} 2$, then $\operatorname{LSm}(G) L O(G) \in 0$, and thus $S m(G) \in 0$. Moreover, $\operatorname{LSm}(G)=\operatorname{LO}(G)$ for $G=A_{n}$.

We recall that A_{n} is a simple group if and only if $n \quad 5$. So, except for A_{2}, A_{3} and A_{4}, every A_{n} occurs in Theorem C1. Moreover, except for PSL $(2 ; 2)$ and $\operatorname{PSL}(2 ; 3)$, every $\operatorname{PSL}(n ; q)$ is a simple group, and the following holds: $\mathrm{A}_{5}=\operatorname{PSL}(2 ; 4)=\operatorname{PSL}(2 ; 5), A_{6}=\operatorname{PSL}(2 ; 9)$, and $\operatorname{PSL}(2 ; 7)=\operatorname{PSL}(3 ; 2)$.

The symplectic group $\mathrm{Sp}(\mathrm{n} ; \mathrm{q})$ and the projective symplectic group $\mathrm{PSp}(\mathrm{n} ; \mathrm{q})$ are de ned for any even integer $\mathrm{n} \quad 2$ and any prime power q. Except for $P S p(2 ; 2), P S p(2 ; 3)$, and $P S p(4 ; 2)$, every $P S p(n ; q)$ is a nonabelian simple group, and thus occurs in Theorem C1. Moreover, in the exceptional cases, the following holds: $\operatorname{PSp}(2 ; 2)=\operatorname{PSL}(2 ; 2)=S_{3}, \operatorname{PSp}(2 ; 3)=\operatorname{PSL}(2 ; 3)=A_{4}$, and $P S p(4 ; 2)=S p(4 ; 2)=S_{6}$. So, the cases are covered by Theorem C3.

Comment D1 The conjecture posed in [19, p. 44] asserts that if $\operatorname{Sm}(\mathrm{G})=0$ for a nite group G, then $\operatorname{Sm}(\mathrm{H})=0$ for any subgroup H of G. We are able to give counterexamples to this conjecture. In fact, according to Theorem C1 and Example E1 below, there exist (precisely four) nite simple groups G with an element of order 8 , such that $\operatorname{Sm}(\mathrm{G})=0$. But G has a subgroup $\mathrm{H}=\mathbb{Z}_{8}$, and we know that $\operatorname{Sm}(\mathrm{H}) \in 0$ by $[6]\{[8]$.

Comment D2 Contrary to the speculation in [55, Comment (2), p. 547] that $\mathrm{Sm}(\mathrm{G}) \in 0$ for any nite Oliver group G , Theorem C 1 shows that there exist (precisely fourteen) nite nonabelian simple groups G such that $\operatorname{Sm}(G)=0$. We recall that any nite nonabelian simple group G is an Oliver group.

By using Theorems B1\{B3, we can answer the Smith Isomorphism Question as follows: $\operatorname{Sm}(\mathrm{G}) \in 0$ in either of the following cases.
(1) G is a nite Oliver group of odd order (and thus $\mathrm{a}_{\mathrm{G}} \quad 2$).
(2) G is a nite Oliver group with a cyclic quotient of order pq for two distinct odd primes p and q (and thus a_{G}
2).
(3) G is a nite nonsolvable gap group with $a_{G} \quad 2$, and $G \in P \quad L(2 ; 27)$.

In turn, Theorems C1\{C3 allow us to answer the Smith Isomorphism Question as follows: $\operatorname{Sm}(\mathrm{G})=0$ if and only if $\mathrm{a}_{\mathrm{G}} \quad 1$, in either of the following cases.
(1) G is a nite nonabelian simple group.
(2) $\mathrm{G}=\mathrm{PSL}(\mathrm{n} ; \mathrm{q})$ or $\mathrm{SL}(\mathrm{n} ; \mathrm{q})$ for any $\mathrm{n} \quad 2$ and any prime power q .
(3) $G=P S p(n ; q)$ or $S p(n ; q)$ for any even $n \quad 2$ and any prime power q.
(4) $G=A_{n}$ or S_{n} for any $n \quad 2$.

It follows from [33, Theorem B] that for $G=A_{n}, \operatorname{PSL}(2 ; p)$ or $\operatorname{SL}(2 ; p)$ for any prime $p, \operatorname{Sm}(G)=0$ if and only if $a_{G} \quad 1$. However, while [33] considers the reali cations of complex G-modules, we deal with real G-modules when proving that $\operatorname{Sm}(\mathrm{G}) \in 0$ for $\mathrm{a}_{\mathrm{G}} 2$ (cf. [33, Corollary 1.8]).
By using the Realization Theorem, the Basic Lemma, the First Rank Lemma, and Theorems $\mathrm{A} 1\{\mathrm{~A} 3$, we are able to prove Theorems $\mathrm{B} 1\{\mathrm{~B} 3$.

Proofs of Theorems B1\{B3 Let G be as in Theorems B1\{B3. Then, by the Realization Theorem and the Basic Lemma,
LO(G) LSm(G) IO(G;G):

If G is as in Theorem B 1 (resp., B 2), $\mathrm{a}_{\mathrm{G}} \quad 2$ and $\mathrm{LO}(\mathrm{G}) \in 0$ by Theorem A 1 (resp., A2). Supposethat G is as in Theorem B3. According to our assumption, $G \in P \quad L(2 ; 27)$ and $G \in \operatorname{Aut}\left(A_{6}\right)$ as G is a gap group while $\operatorname{Aut}\left(A_{6}\right)$ is not (cf. [42, Proposition 4.1]). If $\mathrm{a}_{\mathrm{G}} \quad 1, \mathrm{IO}(\mathrm{G} ; \mathrm{G})=0$ by the First Rank Lemma, and thus $\mathrm{LO}(\mathrm{G})=\mathrm{LSm}(\mathrm{G})=0$. If $\mathrm{a}_{\mathrm{G}} \quad 2, \mathrm{LO}(\mathrm{G}) \in 0$ by Theorem A 3 , and thus $L S m(G) G 0$.

Now, we adopt the following de nition for any nite group G. We say that G satis es the 8 -condition if for every cyclic 2 -subgroup P of G with jPj 8 , $\operatorname{dim} V^{P}>0$ for any irreducible G-module V. In particular, if G is without elements of order 8, G satis es the 8-condition. Recall that in [33], G satisfying the 8 -condition is called 2-proper (cf. [33, Example 2.5]).
If a nitegroup G satis es the 8 -condition and G acts smoothly on a homotopy sphere with ${ }^{G} G \varnothing$, then the action of G on satis es the 8 -condition (cf. Section 0.1), and thus the following lemma holds (cf. [33, Lemma 2.6]).

8-condition Lemma For each nite group G satisfying the 8-condition, any two Smith equivalent real G-modules are also Laitinen\{Smith equivalent; i.e, $\operatorname{Sm}(\mathrm{G}) \quad \operatorname{LSm}(\mathrm{G})$, and thus $\mathrm{Sm}(\mathrm{G})=\mathrm{LSm}(\mathrm{G})$.

Example E1 In thefollowing list (C1), each group G satis es the 8-condition and $\mathrm{a}_{\mathrm{G}}=0$ or 1 , where G is one of the groups:
$\mathrm{a}_{\mathrm{G}}=0: \operatorname{PSL}(2 ; q)$ for $q=2 ; 3 ; 5 ; 7 ; 8 ; 9 ; 17, \mathrm{PSL}(3 ; 4), \mathrm{Sz}(8)$ or $\mathrm{Sz}(32)$,
$\mathrm{a}_{\mathrm{G}}=1: \operatorname{PSL}(2 ; 11), \operatorname{PSL}(2 ; 13), \operatorname{PSL}(3 ; 3), A_{7}, M_{11}$ or M_{22}.
If $\mathrm{G}=\mathrm{PSL}(2 ; 2)=\mathrm{S}_{3}$ or $\mathrm{G}=\operatorname{PSL}(2 ; 3)=\mathrm{A}_{4}$, then $\mathrm{a}_{\mathrm{G}}=0$ and G has no element of order 8 (cf. [33, Proposition 2.4]). In list (C1), except for PSL (2; 2) and $\operatorname{PSL}(2 ; 3)$, every G is a nonabelian simple group, and some inspection in [11] or [23] con rms that $\mathrm{a}_{\mathrm{G}}=0$ for $\mathrm{G}=\mathrm{PSL}(2 ; q)$ with $\mathrm{q}=5 ; 7 ; 8 ; 9 ; 17$, and $\mathrm{a}_{\mathrm{G}}=0$ for $\mathrm{G}=\mathrm{PSL}(3 ; 4), \mathrm{Sz}(8)$ or $\mathrm{Sz}(32)$. Also, $\mathrm{a}_{\mathrm{G}}=1$ corresponding to an element of order 6 when $G=\operatorname{PSL}(2 ; 11), \operatorname{PSL}(2 ; 13), \operatorname{PSL}(3 ; 3), \mathrm{A}_{7}, \mathrm{M}_{11}$ or M_{22}. Further inspection in [11] or [23] shows that in list (C1), G has an element of order 8 if and only if $G=\operatorname{PSL}(2 ; 17), \operatorname{PSL}(3 ; 3), M_{11}$ or M_{22}, and the groups all satisfy the 8 -condition. All nite groups G without elements of order 8 also satisfy the 8 -condition. Therefore, each group G in list (C1) satis es the 8 -condition.

Example E2 In the following list (C2), each group G satis es the 8-condition and $\mathrm{a}_{\mathrm{G}}=0$ or 1 , where G is one of the groups:
$\mathrm{a}_{\mathrm{G}}=0: S L(2 ; 2), \operatorname{SL}(2 ; 4), S L(2 ; 8), S L(3 ; 2), S p(2 ; 2), S p(2 ; 4)$ or $\operatorname{Sp}(2 ; 8)$, $\mathrm{a}_{\mathrm{G}}=1: \operatorname{SL}(2 ; 3), \operatorname{SL}(3 ; 3)$ or $\operatorname{Sp}(2 ; 3)$.

As $S p(2 ; q)=S L(2 ; q)$ for any prime power q, it su cies to check the result for the special linear groups. First, recall that $\operatorname{SL}(2 ; q)=P S L(2 ; q)$ when q is a power of 2. Clearly, $\mathrm{a}_{\mathrm{G}}=0$ when $\mathrm{G}=\mathrm{SL}(2 ; 2)=\operatorname{PSL}(2 ; 2)=\mathrm{S}_{3}$, and by Example E1, $\mathrm{a}_{\mathrm{G}}=0$ when $\mathrm{G}=\mathrm{SL}(2 ; 4)=\operatorname{PSL}(2 ; 4)=\operatorname{PSL}(2 ; 5)=\mathrm{A}_{5}$, or $G=\operatorname{SL}(2 ; 8)=\operatorname{PSL}(2 ; 8)$, or $G=\operatorname{SL}(3 ; 2)=\operatorname{PSL}(3 ; 2)=\operatorname{PSL}(2 ; 7)$. Moreover, for $\mathrm{G}=\mathrm{SL}(3 ; 3)=\operatorname{PSL}(3 ; 3), \mathrm{a}_{\mathrm{G}}=1$ corresponding to an element of order 6 . The same holds for $\mathrm{G}=\mathrm{SL}(2 ; 3)$ because G has elements of orders $1,2,3,4$, and 6 , and the elements of order 6 are all real conjugate in G (cf. [33, Proposition 2.3]). By the discussion above and Example E1, we se that in list (C2), G has an element of order 8 if and only if $G=\operatorname{SL}(3 ; 3)$, and $\operatorname{SL}(3 ; 3)=\operatorname{PSL}(3 ; 3)$ satis es the 8 -condition. So, each group G in list (C2) satis es the 8 -condition.

Example E3 In the following list (C3), each group G is without elements of order 8 and $a_{G}=0$ or 1 , or $a_{G} \quad 2$, where G is one of the groups:
$a_{G}=0: A_{2}, A_{3}, A_{4}, A_{5}, A_{6}, S_{2}, S_{3}$ or S_{4},
$a_{G}=1: A_{7}$ or S_{5},
a_{G} 2: $\mathrm{A}_{8}, \mathrm{~A}_{9}, \mathrm{~S}_{6}$ or S_{7}.
First, we consider the case $G=A_{n}$. For $n \quad 6, a_{G}=0$ because each element of G has prime power order. For $\mathrm{n}=7, \mathrm{a}_{\mathrm{G}}=1$ corresponding to the element (12)(34)(567) of order 6 . For $n \quad 8, a_{G} \quad 2$ becausetheelements (12)(34)(567) and (123456)(78) have order 6 and are not real conjugate in G.
Now, we consider the case $G=S_{n}$. For $n \quad 4, a_{G}=0$ because each element of G has prime power order. For $\mathrm{n}=5, \mathrm{a}_{\mathrm{G}}=1$ corresponding to the element (12)(345) of order 6 . For $n \quad 6, a_{G} \quad 2$ because the elements (12)(345) and (123456) have order 6 and are not real conjugate in G.

As a result, if $G=A_{n}$ (resp., S_{n}), $a_{G} 1$ if and only if $n \quad 7$ (resp., $n \quad 5$). Moreover, if $\mathrm{G}=\mathrm{A}_{\mathrm{n}}$ or S_{n} for $\mathrm{n} \quad 7, \mathrm{G}$ has no element of order 8 because any permutation of order 8 must involve an 8 -cycle in its cycle decomposition. Also, if $\mathrm{G}=\mathrm{A}_{8}$ or $\mathrm{A}_{9}, \mathrm{G}$ has no element of order 8 because an 8 -cycle is not an even permutation. Therefore, each group G in list (C3) is without elements of order 8 , and thus G satis es the 8 -condition.

By using the Classi cation Theorem, Examples E1\{E3, the8-condition Lemma, the Basic Lemma, the First Rank Lemma, and Theorems B1\{B3, we are able to prove Theorems C1\{C3.

Proofs of Theorems C1\{C3 Let G be as in Theorems C1\{C3. Then, by the Classi cation Theorem and Examples E1\{E3, $\mathrm{a}_{\mathrm{G}}=0$ or 1 if and only if G is as in claims (1) of Theorems C1\{C3.

If $\mathrm{a}_{\mathrm{G}} \quad 1, \mathrm{G}$ satis es the 8 -condition by Examples $\mathrm{E} 1\{\mathrm{E} 3$, and thus

$$
\operatorname{Sm}(G)=\operatorname{LSm}(G)=I O(G ; G)=0
$$

by the 8-condition Lemma, the Basic Lemma and the First Rank Lemma.
If $\mathrm{a}_{\mathrm{G}} \quad 2, \mathrm{G}$ is as in Theorems B1\{B3, and therefore

$$
0 \text { OLO(G) LSm(G) IO(G;G): }
$$

Moreover, except for $G=S_{n}$ or $S p(4 ; 2)=S_{6}, G$ is a perfect group, and thus $\mathrm{LO}(\mathrm{G})=\operatorname{LSm}(\mathrm{G})=\mathrm{IO}(\mathrm{G} ; \mathrm{G})$ (cf. the Realization Corollary obtained from the Realization Theorem and the Basic Lemma).

0.4 Second Rank Lemma

Let G bea nite group. In Sections 0.1 and 0.2, we de ned the following series of fre abelian subgroups of $\mathrm{RO}(\mathrm{G})$: $\mathrm{LO}(\mathrm{G}) \quad \mathrm{IO}(\mathrm{G} ; \mathrm{G}) \quad \mathrm{IO}(\mathrm{G})$. Recall that $\mathrm{IO}(\mathrm{G})$ consists of the di erences $\mathrm{U}-\mathrm{V}$ of real G -modules U and V which are isomorphic when restricted to any $P 2 P(G), I O(G ; G)$ is obtained from $I O(G)$ by imposing the additional condition that $\operatorname{dim}^{G}=\operatorname{dim} V^{G}$, and LO(G) consists of the di erences $\mathrm{U}-\mathrm{V} 2 \mathrm{IO}(\mathrm{G})$ such that U and V are both L-free. Now, for any normal subgroup H of G , we put
where $\mathrm{Fix}^{\mathrm{H}}(\mathrm{U}-\mathrm{V})=\mathrm{U}^{\mathrm{H}}-\mathrm{V}^{\mathrm{H}}$ and the H - xed point sets U^{H} and V^{H} are considered as the canonical $\mathrm{G} \neq \mathrm{H}$-modules. As $\mathrm{RO}(\mathrm{G}=\mathrm{G})=\mathbb{Z}$ and

$$
\operatorname{Ker}\left(\mathrm{RO}(\mathrm{G})-\stackrel{\mathrm{Fix}}{ }^{\mathrm{G}} \mathrm{RO}(\mathrm{G}=\mathrm{G})\right)=\operatorname{Ker}\left(\mathrm{RO}(\mathrm{G}) \stackrel{\mathrm{Dim}}{ }{ }^{\mathrm{G}} \mathbb{Z}\right) ;
$$

the two de nitions of $I O(G ; G)$ coincide. In general, $I O(G ; H) \quad I O(G ; G)$. In fact, if $\mathrm{U}-\mathrm{V} 2 \mathrm{IO}(\mathrm{G} ; \mathrm{H})$, then $\mathrm{U}-\mathrm{V} 2 \mathrm{IO}(\mathrm{G})$ and in addition $\mathrm{U}^{\mathrm{H}}=\mathrm{V}^{\mathrm{H}}$ as $G \neq H$-modules, so that $\operatorname{dim} U^{G}=\operatorname{dim}\left(U^{H}\right)^{G}=1=\operatorname{dim}\left(V^{H}\right)^{G=1}=\operatorname{dim} V^{G}$, proving that $U-V 2 I O(G ; G)$. Therefore $I O(G ; H) \quad I O(G ; G)$.
Henceforth, we denote by $b_{G=1}$ the number of real conjugacy classes (gH$)^{1}$ in $\mathrm{G} \neq \mathrm{H}$ of cosets gH containing elements of G not of prime power order.
In general, $a_{G} \quad b_{G=H} \quad a_{G=H}$. Clearly, $a_{G}=b_{G=G}=0$ when each element of G has prime power order, and $\mathrm{a}_{\mathrm{G}}=\mathrm{b}_{\mathrm{G}=\mathrm{G}}=1$ when G has elements not of prime power order and any two such elements are real conjugate in G. Otherwise, $a_{G}>b_{G=G}=1$. Therefore, $a_{G}=b_{G=G}$ if and only if $a_{G}=0$ or 1 .
We compute the rank rkIO(G; H$)$. For $\mathrm{H}=\mathrm{G}$, the computation goes back to [33, Lemma 2.1] (cf. the First Rank Lemma in Section 0.1 of this paper).

Second Rank Lemma Let G be a nite group and let $\mathrm{H} \unlhd \mathrm{G}$. Then

$$
\operatorname{rkIO}(G ; H)=a_{G}-b_{G=H} \text { and thus rkIO(G;G)=} a_{G}-b_{G=G}:
$$

In particular, $\mathrm{I} O(\mathrm{G} ; \mathrm{H})=0$ if $\mathrm{a}_{\mathrm{G}} \quad 1$, and $\mathrm{I} \mathrm{O}(\mathrm{G} ; \mathrm{G})=0$ if and only if $\mathrm{a}_{\mathrm{G}} \quad 1$.
Proof In [33, Lemma 2.1], the rank of $\mathrm{IO}(\mathrm{G})$ is computed as follows. The rank of the fre abelian group $\mathrm{IO}(\mathrm{G})$ is equal to the dimension of the real vector space $\mathbb{R} \otimes_{\mathbb{Z}} I O(G)$ which consists of the real valued functions on G that are constant on the real conjugacy classes (g) ${ }^{1}$ and that vanish when g is of prime power order. Therefore rkl $\mathrm{O}(\mathrm{G})=\mathrm{a}_{\mathrm{G}}$.

Now, for a normal subgroup H of G, we compute the rank of the kernel

$$
\mathrm{IO}(\mathrm{G} ; \mathrm{H})=\operatorname{Ker}\left(\mathrm{IO}(\mathrm{G}) \mathrm{Fix}^{H} \mathrm{RO}(\mathrm{G}=\mathrm{H})\right):
$$

First, for any representation : G ! $\mathrm{GL}(\mathrm{V})$, consider the representation Fix ${ }^{H}: G=H$! $G L\left(V^{H}\right)$ given by $\left(\mathrm{Fix}^{H}\right)(\mathrm{gH})=(\mathrm{g})_{\mathrm{J}_{\mathrm{H}}}$ for each g 2 G . Let : V! V be the projection of V onto V^{H}, that is,

$$
=\frac{1}{j H j}_{\mathrm{h} 2 \mathrm{H}}^{\mathrm{X}} \text { (h):V!V: }
$$

Then the trace of $\left(\mathrm{Fix}^{\mathrm{H}}\right)(\mathrm{gH}): \mathrm{V}^{\mathrm{H}}!\mathrm{V}^{\mathrm{H}}$ is the same as the trace of the endomorphism

$$
\text { (g) } \quad=\frac{1}{j H j}_{\mathrm{h} 2 \mathrm{H}}^{\mathrm{X}} \text { (gh): V! V: }
$$

So, if is the character of , then the character $\mathrm{Fix}^{\mathrm{H}}$ of $\mathrm{Fix}^{\mathrm{H}}$ is given by

$$
\left(\mathrm{Fix}^{\mathrm{H}}\right)(\mathrm{gH})=\frac{1}{\mathrm{jHj}}_{\mathrm{h} 2 \mathrm{H}}^{\mathrm{X}}(\mathrm{gh}):
$$

This formula extends (by linearity) to $\mathbb{R} \otimes_{\mathbb{Z}} R O(G)$. Now, consider the basis of $\mathbb{R} \otimes_{\mathbb{Z}} \mathrm{IO}(\mathrm{G})$ consisting of the functions $\mathrm{f}_{(\mathrm{g})}{ }^{1}$ which have the value 1 on $(\mathrm{g})^{1}$ and 0 otherwise, de ned for all classes (g) ${ }^{1}$ represented by elements g 2 G not of prime power order. Then, by the formula above applied to $=f_{(g)^{1}}$,

$$
\left(\mathrm{Fix}^{H} \mathrm{f}_{(\mathrm{g})^{1}}\right)(\mathrm{gH})=\frac{\mathrm{j}(\mathrm{~g})^{1} \backslash \mathrm{gHj}}{j H j}
$$

and $\mathrm{Fix}^{\mathrm{H}} \mathrm{f}_{(\mathrm{g})^{1}}$ vanishes outside of $(\mathrm{gH})^{1}$. Therefore, the map

$$
\mathrm{Fix}^{H}: I O(G)!R O(G \neq H)
$$

has image of rank $b_{G=1}$, and its kernel $I O(G ; H)$ is of rank $a_{G}-b_{G+H}$.
We wish to note that if G is a nitegroup and H / G (i.e. $H \unlhd G$ and $H \in G$), then one of the following conclusions holds:
(1) $\mathrm{a}_{\mathrm{G}}=\mathrm{b}_{\mathrm{G}=\mathrm{H}}=0$ if each g 2 G has prime power order, and otherwise
(2) $a_{G}=b_{G+1}=1$ (holds, eg., for $G=S_{5}$ and $H=G^{\text {sol }}=A_{5}$), or
(3) $a_{G}=b_{G=H}>1$ (holds, e.g., for $G=\operatorname{Aut}\left(A_{6}\right)$ and $H=G^{\text {sol }}$), or
(4) $a_{G}>b_{G+1}=1$ (holds, e.g., for $G=S_{6}$ and $H=G^{\text {sol }}=A_{6}$), or
(5) $a_{G}>b_{G+1}>1$ (holds, e.g., for $G=A_{5} \quad \mathbb{Z}_{3}$ and $H=G^{\text {sol }}=A_{5}$).

Le G bea nitegroup with two subgroups $\mathrm{H} \unlhd \mathrm{G}$ and $\mathrm{K} \unlhd \mathrm{G}$. We claim that if H is a subgroup of $K, H \quad K$, then $I O(G ; H)$ is a subgroup of $I O(G ; K)$. In fact, take an element

$$
U-V 2 I O(G ; H)=\operatorname{Ker}\left(I O(G) \stackrel{F i x}{H}^{H} R O(G=H)\right)
$$

and consider the G-orthogonal complements $\mathrm{U}-\mathrm{U}^{\mathrm{H}}$ and $\mathrm{V}-\mathrm{V}^{\mathrm{H}}$ of the real G -modules U and V . Then $\mathrm{U}-\mathrm{V}=\left(\mathrm{U}-\mathrm{U}^{\mathrm{H}}\right)-\left(\mathrm{V}-\mathrm{V}^{\mathrm{H}}\right)$ because $\mathrm{U}^{\mathrm{H}}=\mathrm{V}^{\mathrm{H}}$ as $\mathrm{G}=\mathrm{H}$-modules, and $\left(\mathrm{U}-\mathrm{U}^{\mathrm{H}}\right)^{\mathrm{K}}=\left(\mathrm{V}-\mathrm{V}^{\mathrm{H}}\right)^{\mathrm{K}}=\mathrm{fOg}$ because $\mathrm{H} \quad \mathrm{K}$. Therefore, it follows that

$$
U-V=\left(U-U^{H}\right)-\left(V-V^{H}\right) 2 I O(G ; K)=\operatorname{Ker}\left(I O(G){ }^{F i x^{K}} R O(G=K)\right) ;
$$

proving the claim that $\mathrm{IO}(\mathrm{G} ; \mathrm{H}) \quad \mathrm{IO}(\mathrm{G} ; \mathrm{K})$.
For any nite group G, we consider the group $\mathrm{IO}(\mathrm{G} ; \mathrm{H})$, where H is:
$\mathrm{G}^{\text {sol }}$: the smallest normal subgroup of G such that $\mathrm{G} \neq 1$ is solvable,
$\mathrm{G}^{\text {nil }}$: the smallest normal subgroup of G such that $\mathrm{G} \neq \mathrm{H}$ is nilpotent,
$\mathrm{O}^{\mathrm{p}}(\mathrm{G})$: the smallest normal subgroup of G such that $\mathrm{G} \neq \mathrm{H}$ is a p-group.
Clearly, G is perfect if and only if $G^{\text {sol }}=G$, and G is solvable if and only if $\mathrm{G}^{\text {sol }}$ is trivial. And similarly, G is nilpotent if and only if $\mathrm{G}^{\text {nil }}$ is trivial. Moreover, $G^{\text {sol }} \quad G^{\text {nil }}={ }_{p} \mathrm{O}^{p}(G)$ taken for all primes p jGj .

Subgroup Lemma Let G bea nite group and let p bea prime. Then

$$
I O\left(G ; G^{\text {sol }}\right) \quad I O\left(G ; G^{\text {nil }}\right) \quad L O(G) \quad I O\left(G ; O^{p}(G)\right) \quad I O(G ; G):
$$

Proof By the claim above, $I O\left(G ; G^{\text {sol }}\right) \quad I O\left(G ; G^{\text {nil }}\right)$ because $G^{\text {sol }} \quad G^{\text {nil }}$. Now, set $H=G^{\text {nii }}$. For a real G-module V, consider V^{H} as a real G-module with the canonical action of G . Then the G -orthogonal complement $\mathrm{V}-\mathrm{V}^{\mathrm{H}}$ of V^{H} in V is L -free because $\mathrm{H} \quad \mathrm{O}^{\mathrm{P}}(\mathrm{G})$ for each prime p. Take an element $\mathrm{U}-\mathrm{V} 2 \mathrm{I} \mathrm{O}(\mathrm{G} ; \mathrm{H})$. Then $\mathrm{U}^{\mathrm{H}}=\mathrm{V}^{\mathrm{H}}$ as G -modules, so that

$$
U-V=\left(U-U^{H}\right)-\left(V-V^{H}\right) 2 L O(G) ;
$$

proving that $I O\left(G ; G^{\text {nil }}\right) \quad L O(G)$. Any element of $L O(G)$ is the di erence of two real L-fre G-modules U and V such that $U-V 2 I O(G)$. As U and V are L -free, $\operatorname{dimU}^{\mathrm{O}^{\mathrm{P}}(\mathrm{G})}=\operatorname{dimV}^{\mathrm{O}^{\mathrm{P}}(\mathrm{G})}=0$, and thus $\mathrm{U}-\mathrm{V} 2 \mathrm{I} \mathrm{O}\left(\mathrm{G} ; \mathrm{O}^{\mathrm{P}}(\mathrm{G})\right.$), proving that $\mathrm{LO}(\mathrm{G}) \quad \mathrm{IO}\left(\mathrm{G} ; \mathrm{O}^{\mathrm{P}}(\mathrm{G})\right)$. Clearly, $\mathrm{IO}\left(\mathrm{G} ; \mathrm{O}^{\mathrm{P}}(\mathrm{G})\right) \quad \mathrm{IO}(\mathrm{G} ; \mathrm{G})$ by the claim above

By the Subgroup Lemma and the Second Rank Lemma,

$$
a_{G}-b_{G=G^{\text {nil }}} \quad \text { rkLO(G) } \quad \text { minf } a_{G}-b_{G=O^{p}(G)}: p j G j g
$$

for any nite group G. In particular, $a_{G}-b_{G=G}$ sol $\quad r k L O(G) \quad a_{G}-b_{G=G}$.
Example E4 Let $G=A_{n}$ for n 2. By the First Rank Lemma, we know that $\mathrm{rkIO}(\mathrm{G} ; \mathrm{G})=0$ when $\mathrm{a}_{\mathrm{G}} \quad 1$, and $\mathrm{rkIO}(\mathrm{G} ; \mathrm{G})=\mathrm{a}_{\mathrm{G}}-1$ when $\mathrm{a}_{\mathrm{G}} \quad 1$. Moreover, by Theorem C3,

$$
\operatorname{Sm}(\mathrm{G}) \quad \mathrm{LSm}(\mathrm{G})=\mathrm{LO}(\mathrm{G})=\mathrm{I} O(\mathrm{G} ; \mathrm{G}):
$$

Now, assume that $G=A_{8}$ or A_{9}. Then G has no element of order 8 , and thus $\operatorname{Sm}(\mathrm{G})=\operatorname{LSm}(\mathrm{G})$. By straightforward computation, we check that $\mathrm{a}_{\mathrm{G}}=3$ (resp., 6) for $G=A_{8}$ (resp., A_{9}). As a result, we obtain that
(1) $\operatorname{Sm}\left(\mathrm{A}_{8}\right)=\operatorname{LSm}\left(\mathrm{A}_{8}\right)=\operatorname{LO}\left(\mathrm{A}_{8}\right)=I O\left(\mathrm{~A}_{8} ; \mathrm{A}_{8}\right)=\mathbb{Z}^{2}$ and
(2) $\operatorname{Sm}\left(A_{9}\right)=\operatorname{LSm}\left(A_{g}\right)=\operatorname{LO}\left(A_{9}\right)=I O\left(A_{9} ; A_{g}\right)=\mathbb{Z}^{5}$.

Generalizing the case where $G=A_{8}$ or A_{9}, note that the 8-condition Lemma and the Realization Corollary yied the following corollary.

8-condition Corollary Let G bea nite group satisfying the 8-condition. If G is perfect, then $\mathrm{Sm}(\mathrm{G})=\mathrm{LSm}(\mathrm{G})=\mathrm{LO}(\mathrm{G})=\mathrm{I} \mathrm{O}(\mathrm{G} ; \mathrm{G})$.

Example E5 Let $G=S_{n}$ and $H=A_{n}$ for $n \quad$ 2. Then $G^{\text {sol }}=H=O^{2}(G)$ and $\mathrm{O}^{\mathrm{P}}(\mathrm{G})=\mathrm{G}$ for each odd prime p . Therefore, $\mathrm{LO}(\mathrm{G})=\mathrm{IO}(\mathrm{G} ; \mathrm{H})$ by the Subgroup Lemma, and rkLO(G) $=a_{G}-b_{G+1}$ by the Second Rank Lemma. It follows from Example E3 that $b_{G=H}=0$ for $n=2,3$ or $4, b_{G H H}=1$ for $\mathrm{n}=5$ or 6 , and $\mathrm{b}_{\mathrm{G}=1}=2$ for n 7. Also, $\mathrm{a}_{\mathrm{G}}=0$ for $\mathrm{n}=2,3$ or 4 , and $a_{G}=1$ for $n=5$. Thus, rkLO(G) $=a_{G}-b_{G=1}=0$ for $n=2,3,4$ or 5 . For $\mathrm{n} \quad 6, \mathrm{a}_{\mathrm{G}} \quad 2$ and by Theorem C3 and the Basic Lemma, we see that $0 \in L O(G) \quad L S m(G) \quad I O(G ; G)$.

Now, let $G=S_{6}$ (resp., S_{7}) and let H / G be as above. By straightforward computation, we dheck that $\mathrm{a}_{\mathrm{G}}=2$ (resp., 5). As we noted above, $\mathrm{b}_{\mathrm{G}=\mathrm{H}}=1$ (resp., 2), and thus rkLO(G) $=a_{G}-b_{G+1}=1$ (resp., 3). Moreover, by the First Rank Lemma, rkIO(G;G) $=\mathrm{a}_{\mathrm{G}}-1=1$ (resp., 4). As G has no element of order $8, \mathrm{Sm}(\mathrm{G})=\mathrm{LSm}(\mathrm{G})$. As a result, we obtain that
(1) $\operatorname{Sm}\left(\mathrm{S}_{6}\right)=\mathrm{LSm}\left(\mathrm{S}_{6}\right)=\mathrm{LO}\left(\mathrm{S}_{6}\right)=\mathrm{IO}\left(\mathrm{S}_{6} ; \mathrm{S}_{6}\right)=\mathbb{Z}$ and
(2) $\mathrm{Sm}\left(\mathrm{S}_{7}\right)=\operatorname{LSm}\left(\mathrm{S}_{7}\right) \quad \mathrm{LO}\left(\mathrm{S}_{7}\right)=\mathbb{Z}^{3}$ and $\mathrm{IO}\left(\mathrm{S}_{7} ; \mathrm{S}_{7}\right)=\mathbb{Z}^{4}$.

0 Outline of material

Le G bea nite group. For the convenience of the reader, we give a glossary of subsets and subgroups (de ned above) of the real representation ring RO(G). First, recall that the following two subsets of RO(G) consist of the di erences $\mathrm{U}-\mathrm{V}$ of real G -modules U and V such that:
$\mathrm{Sm}(\mathrm{G})$: U and V are Smith equivalent;
$\mathrm{LSm}(\mathrm{G})$: U and V are Laitinen\{Smith equivalent:
The following four subgroups of RO(G) consist of the di erences $U-V$ of real G-modules U and V such that $\mathrm{U}=\mathrm{V}$ as P -modules for each $\mathrm{P} 2 \mathrm{P}(\mathrm{G})$, and:
$\mathrm{IO}(\mathrm{G}):$ there is no additional restriction on U and V ;
$\mathrm{LO}(\mathrm{G}):$ the G -modules U and V are both L -free;
$\mathrm{IO}(\mathrm{G} ; \mathrm{G}): \operatorname{dim} U^{G}=\operatorname{dim} V^{G}$;
$\mathrm{IO}(\mathrm{G} ; \mathrm{H}): \mathrm{U}^{\mathrm{H}}=\mathrm{V}^{\mathrm{H}}$ as $\mathrm{G}=\mathrm{H}$-modules;
where $\mathrm{IO}(\mathrm{G} ; \mathrm{H})$ is de ned for any normal subgroup H of G .
In Section 0.1, for a nite group G, we recalled the question of Paul A. Smith about the tangent G-modules for smooth actions of G on spheres with exactly two xed points. Then we stated the Basic Lemma and the First Rank Lemma. Moreover, we restated the Laitinen Conjecture from [33].

In Section 0.2 , we stated theClassi cation and Realization Theorems (our main algebraic and topological theorems) and by using the theorems, we obtained the Classi cation and Realization Corollaries.

In Section 0.3, we stated Theorems A1\{A3, B1\{B3, and C1\{C3. We answered the Smith Isomorphism Question and con rmed that the Laitinen Conjecture holds for many groups G. Then we have proved that Theorems B1\{B3 follow from the Realization Theorem, the Basic Lemma, the First Rank Lemma, and Theorems A1\{A3. M oreover, we stated the 8 -condition Lemma and we gave Examples E1\{E3. Finally, we have proved that Theorems C1\{C3 follow from theClassi cation Theorem, ExamplesE1\{E3, the8-condition Lemma, the Basic Lemma, the First Rank Lemma, and Theorems B1\{B3.
In Section 0.4, we stated and proved theSecond Rank Lemma and the Subgroup Lemma. We also gave Examples E4 and E5 with G $=A_{n}$ and S_{n}, respectively. Moreover, we obtained the 8 -condition Corollary for any nite perfect group G satisfying the 8 -condition.

As we pointed out above, the Basic Lemma, the First Rand Lemma, and the 8 -condition Lemma all thre go back to [33]. Therefore, it remains to prove the Classi cation Theorem, the Realization Theorem, and Theorems A1\{A3.
In Section 1, we prove Theorems A1 and A2. To prove Theorem A1, we obtain our rst major result about the Laitinen number a_{G}. The result asserts that if G is a nite Oliver group of odd order and without cyclic quotient of order $p q$ for two distinct odd primes p and q, then $a_{G}>b_{G=G \text { nil }}$ (Proposition 1.6), and thus LO(G) $G 0$ by the Second Rank Lemma and the Subgroup Lemma. If G is a nite group with a cyclic quotient of order pq for two distinct odd primes p and q , then $\mathrm{a}_{\mathrm{G}} 4$ and LO(G) 60 by an explicit construction of two real L -free G -modules U and V , which we give at the end of Section 1. This completes the proof of Theorem A1, and proves Theorem A2.
In Section 2, we prove the Classi cation Theorem by using the fundamental results of [21]\{[23], including those restated in Theorems 2.2\{2.4 of this paper, as well as by using Burnside's $p^{a} q^{b}$ Theorem, the Feit \{T hompson Theorem, the Brauer \{Suzuki Theorem, and the Classi cation of the nite simple groups.
In Section 3, we prove Theorem A3. To present the proof, we analyze rst the cases where $\mathrm{a}_{\mathrm{G}}=\mathrm{b}_{\mathrm{G}=\mathrm{G} \text { sol }}$. As a result, we obtain our next major result about the Laitinen number a_{G}. The result asserts that if G is a nite nonsolvable group with $a_{G}=b_{G=G \text { sol }}$, then either $a_{G} \quad 1$ or $a_{G}=2$ and $G=\operatorname{Aut}\left(A_{6}\right)$ or P L(2; 27) (Proposition 3.1). By using the Second Rank Lemma, this allows us to nd the cases where I O(G; $\left.\mathrm{G}^{\text {sol }}\right)$ $G 0$ (Corollary 3.13), and then by using the Subgroup Lemma, we are able to complete the proof of Theorem A3.
In Section 4, we prove the Realization Theorem. To present the proof, we recall
rst in Theorems 4.1 and 4.2 some equivariant thickening and surgery results which follow from [40] and [41], respectively. Then, in Theorems 4.3 and 4.4, we construct smooth actions of G on spheres with prescribed real G-modules at the xed points. The required proof follows easily from Theorem 4.4.
We use information from [5], [15], [30] on transformation group theory and from [12], [13], [21]\{[25], [27], [29] on group theory and representation theory.

Acknowledgements The rst author was supported in part by KBN Grant No. 2P03A 031 15, and the second author was supported in part by NSF Grant No. 0070801. The authors would like to thank Yu-Fen Wu for calling the results of Bannuscher and Tiedt [4] to their attention, and the rst author would like to thank the Department of Mathematics at The Ohio State University for its hospitality and support during his visit to the department. Also, both authors would like to express their thanks to the referee for his critical comments which allowed the authors to improve the presentation of the material.

1 Proofs of Theorems A1 and A2

Let G be a nite group. We denote by $\operatorname{NPP}(G)$ the set of dements g of G which are not of prime power order, and we refer to the elements of NPP(G) as NPP elements of G. Also, we denote by $\overline{\mathrm{NPP}}(\mathrm{G})$ the set of real conjugacy classes which are subsets of $\operatorname{NPP}(\mathrm{G})$. Therefore, the Laitinen number a_{G} is the number of elements in $\overline{\mathrm{NPP}}(\mathrm{G})$.
Le $\mathrm{H} \unlhd \mathrm{G}$. Then, by the Second Rank Lemma, $\mathrm{IO}(\mathrm{G} ; \mathrm{H}) \in 0$ if and only if $a_{G}>b_{G \neq H}$. Clearly, $a_{G}>b_{G=1}$ if and only if NPP(G) contains two elements x and y not real conjugate in G, but such that the cosets xH and yH are real conjugate in $\mathrm{G}=\mathrm{H}$.

Lemma 1.1 Let $\mathrm{H} \unlhd \mathrm{G}$. Then the following three conclusions hold.
(1) Some coset gH meets two members of $\overline{\mathrm{NPP}}(\mathrm{G})$ if and only if $\mathrm{a}_{\mathrm{G}}>\mathrm{b}_{\mathrm{G}=1}$.
(2) If H contains two distinct members of $\overline{N P P}(G)$, then $a_{G}>b_{G=H}$.
(3) If $\mathrm{a}_{\mathrm{G}}=\mathrm{b}_{\mathrm{G} \neq 1}$, then $\mathrm{a}_{\mathrm{G}=\mathrm{K}}=\mathrm{b}_{\mathrm{G}=\mathrm{K})=(\mathrm{H}=\mathrm{K})}$ for any $\mathrm{K} \unlhd \mathrm{G}$ with $\mathrm{K} \quad \mathrm{H}$.

Proof The rst conclusion is immediate from the remarks above, while the second one is a special case of the rst. To prove the third conclusion, suppose that $\mathrm{a}_{\mathrm{G}=\mathrm{K}}>\mathrm{b}_{\mathrm{G}=\mathrm{K})=(\mathrm{H}=\mathrm{K})}$. Then some coset $\mathrm{g}(\mathrm{H}=\mathrm{K})$ meets two members of $\overline{\mathrm{NPP}}(\mathrm{G}=\mathrm{K})$. Assume that x and y are two elements of G such that x and g are not of prime power order in $\mathrm{G}=\mathrm{K}$ and are not in the same real conjugacy class of $G=K$. Then nether x nor y is of prime power order and $x H=y H$. If $z x z^{-1} 2$ fy; $y^{-1} g$ for an element $z 2 G$, then $z x z^{-1} 2 f y ; \nabla^{-1} g$ contrary to assumption. Therefore, x and y are not in the same real conjugacy class of G, and thus $\mathrm{a}_{\mathrm{G}}>\mathrm{b}_{\mathrm{G}=1}$ by the rst conclusion, proving the third one

Lemma 1.2 Let G be a nite group and assume that $\mathrm{K} \unlhd \mathrm{L} \quad \mathrm{H} \quad \mathrm{G}$ is a sequence of subgroups of G such that $L=K$ contains NPP elements of two di erent orders. Then H contains NPP elements of two di erent orders, and $\mathrm{a}_{\mathrm{G}}>\mathrm{b}_{\mathrm{G}=1} \quad \mathrm{a}_{\mathrm{G}=1}$ when $\mathrm{H} \unlhd \mathrm{G}$.

Proof Suppose $x K$ and $y K$ are NPP dements of $L=K$ of di erent orders. If the elements x and y have di erent orders, we are done. If not, we may assume that the order of x is larger than the order of $x K$, in which case the cyclic group generated by x contains two NPP elements of di erent orders. So in any case, H contains two NPP elements of di erent orders. Moreover, if $\mathrm{H} \unlhd \mathrm{G}$, then $a_{G}>b_{G=1}$ by Lemma 1.1. Clearly $b_{G=1} \quad a_{G=1}$.

Lemma 1.3 Let G be a nite group containing a nonsolvable subgroup B and a cyclic subgroup C $G 1$ such that BC is a subgroup of G isomorphic to $\mathrm{B} \quad \mathrm{C}$. Then G has NPP elements of di erent orders, and thus $\mathrm{a}_{\mathrm{G}} 2$. Moreover, if $B \quad G^{\text {sol }}$, then $a_{G}>b_{G=G}$ sol .

Proof For a prime divisor por the order of C, choose an element g 2 C of order p. Since B is nonsolvable, it follows from Burnside's $p^{a} q^{b}$ Theorem that the order of B has (at least) three distinct prime divisors q, r, and s, say with $p \in r$ and $p \in s$. Choose two elements x and y in B of orders r and s, respectively. By the assumption, $B C$ is a subgroup of G (which amounts to saying that $B C=C B$) isomorphic to $B \quad C$. Thus, the elements $g x$ and $g y$ have orders pr and ps, respectively, proving that $\mathrm{a}_{\mathrm{G}} 2$. If $\mathrm{B} \mathrm{G}^{\text {sol }}$, then the coset $\mathrm{gG}^{\text {sol }}$ contains the elements gx and gy which are not real conjugate in G, and thus $a_{G}>b_{G=G}$ sol by Lemma 1.1.

Lemma 1.4 Let G be a nite group of odd order and let $\mathrm{H} \unlhd \mathrm{G}$. Suppose that p is a prime and P is an abelian p-subgroup of H with $P \unlhd G$. Suppose also that q is a prime $q \in p$, and $\times 2 H$ of order q with $V=C_{p}(x) \in 1$. Then $a_{G}>b_{G=H}$.

Proof Suppose $\mathrm{a}_{\mathrm{G}}=\mathrm{b}_{\mathrm{G}=+1}$. By Lemma 1.1, H contains at most one member of $\overline{N P P}(G)$. On the other hand, every element of $V x \backslash f x g$ has order pq and so all of these elements lie in the same member of $\overline{\text { NPP (G). Take } y ; y^{0} 2 \mathrm{~V} \backslash \mathrm{f} 1 \mathrm{~g}}$ and set $h=y x$. Now, take g 2 G with $\mathrm{h}^{9}=\mathrm{ghg}^{-1} 2 \mathrm{fy}^{0} \mathrm{x} ;\left(\mathrm{y}^{0} \mathrm{x}\right)^{-1} \mathrm{~g}$. Then $y^{g} x^{g} 2$ fy y^{0}; $\left(y^{0} x\right)^{-1} x^{-1} g$ and so $x^{9} 2 f x ; x^{-1} g$. As $j G j$ is odd, $x^{-1} z x^{G}$. Hence $x^{g}=x$, and thus $g 2 C_{G}(x)$. As $C_{G}(x)$ normalizes $V=C_{P}(x), C_{G}(x)$ transitively permutestheset $V x \backslash f x g$. But $j V x \backslash f x g j=j V j-1$ is even, whereas $j \mathrm{j}_{\mathrm{G}}(x) \mathrm{j}$ is odd, contradicting Lagrange's Theorem. Thus $\mathrm{a}_{\mathrm{G}}>\mathrm{b}_{\mathrm{G} \neq 1}$.

Lemma 1.5 Let G be a nite group of odd order, and let $\mathrm{H} \unlhd \mathrm{G}$. Suppose that $a_{G}=b_{G H 1}$. Then $F(H)$ is a p-group for some prime p, and the Sylow q-subgroups of H are cydic for all primes $q \mathcal{F}$.

Proof The result is trivial if $\mathrm{jHj}=1$. Otherwise let p be a prime divisor of jF (H) j and let P bea nontrivial abelian normal subgroup of H . By Lemma 1.4, $C_{p}(x)=1$ for all elements x of H of prime order q with $q \in p$. Therefore $F(H)$ is a p-group. Moreover, if H contains a noncyclic abelian q-subgroup A for some prime $q \in p$, then it follows from Theorem 2.3 below that $C_{p}(x) \in 1$ for some element $\times 2$ A of order q, a contradiction. Hence, as $j G j$ is odd, all Sylow q-subgroups of H are cyclic for $q \in p$, as claimed.

Now, we obtain our rst major result about the Laitinen number a_{g}. First, we wish to recall that a nite group G is an Oliver group if and only if G does not have subgroups $\mathrm{P} \unlhd \mathrm{H} \unlhd \mathrm{G}$ such that $\mathrm{H}=\mathrm{P}$ is cyclic, P is a p -group and $\mathrm{G}=\mathrm{H}$ is a q -group for some primes p and q , not necessarily distinct.

Proposition 1.6 Let G bea nite Oliver group of odd order. Suppose that each cyclic quotient of G has prime power order. Then $\mathrm{a}_{\mathrm{G}}>\mathrm{b}_{\mathrm{G}=\mathrm{G}^{\text {nil }}} 1$.

Proof Set $H=G^{\text {nil }}$. As $\mathrm{a}_{\mathrm{G}}=0$ if and only if $\mathrm{b}_{\mathrm{G}=1}=0$, we are done once we prove that $a_{G}>b_{G=1}$. So, assume on the contrary that $a_{G}=b_{G=H}$. Then Lemma 1.5 asserts that $F(H)=P$ is a p-group for some odd prime p. By assumption, for any prime $q \in p, G$ has no cyclic quotient of order pq. Hence $\mathrm{G} \neq \mathrm{H}$ is an r -group for some prime r , and thus $\mathrm{H} \boldsymbol{G}(\mathrm{H})$ because G is an Oliver group. By Lemma 1.1 (3) applied for $K=P, a_{G=P}=b_{G=P) \equiv(H=P)}$. Thus, by Lemma 1.5 applied to $G=P, F(H=P)$ is a q-group for some prime q. As $P=F(H)$, we have that $q \in p$. Let F_{2} be the preimage in H of $F(H \neq P)$ and write $\mathrm{F}_{2}=\mathrm{PQ}$ with Q a q-group. Again, by Lemma 1.5, Q is cyclic. Moreover, by Lemma 1.4, $\mathrm{C}_{\mathrm{P}}(\mathrm{Q})=1$ and so $\mathrm{N}=\mathrm{N}_{\mathrm{G}}(\mathrm{Q})$ is a complement to P in G by the Frattini argument. As Q is cyclic, $\mathrm{Aut}(\mathrm{Q})$ is abdian and so $N=C_{G}(Q)$ is abelian. Hence $P C_{G}(Q)$ is a normal subgroup of G with abelian quotient, whence $H \quad P C_{G}(Q)$, since H is the smallest normal subgroup of G with nilpotent quotient. But $\mathrm{QP} \neq P$ is the Fitting subgroup of $\mathrm{H}=\mathrm{P}$, whence $\mathrm{C}_{\mathrm{H}}(\mathrm{Q}) \quad \mathrm{C}_{\mathrm{H}}(\mathrm{QP}=\mathrm{P})=\mathrm{QP}$. Thus $\mathrm{H}=\mathrm{QP}$. But then G is not an Oliver group, contrary to assumption.

Proofs of Theorems A1 and A2 For G as in Theorems A1 and A2, we shall prove that $a_{G} \quad 2$ and $L O(G) \in 0$.

First, assumethat G is a niteOliver group of odd order. If each cyclic quotient of G has prime power order, then $\mathrm{a}_{\mathrm{G}}>\mathrm{b}_{\mathrm{G}=\mathrm{Gnil}} 1$ by Proposition 1.6, and thus I O(G; $\left.\mathrm{G}^{\text {nil }}\right) \in 0$ by the Second Rank Lemma in Section 0.4. In particular, $a_{G} \quad 2$ and $L O(G) \in 0$ by the Subgroup Lemma in Section 0.4.

Now, assume that G is a nite (not necessarily Oliver) group with a cydic quotient of order pq for two distinct odd primes p and q. We will prove that $\mathrm{a}_{\mathrm{G}} \quad 4$ and $\mathrm{LO}(\mathrm{G}) \in 0$. As a result, we will complete the proof of Theorem A1 and show that Theorem A2 holds.

Take $H \unlhd G$ with $G \neq H=\mathbb{Z}_{p q}$ and note that $\mathbb{Z}_{p q}$ contains $(p q)=(p-1)(q-1)$ elements of order $p q$, and hence $\frac{1}{2}(p-1)(q-1)$ real conjugacy classes of elements of order pq. We may assume that $\mathrm{p} \quad 3$ and $\mathrm{q} \quad 5$, and as $\mathrm{a}_{\mathrm{G}} \quad \mathrm{b}_{\mathrm{G}=1} \quad \mathrm{a}_{\mathrm{G}=\mathrm{H}}$,
we see that $\mathrm{a}_{\mathrm{G}} \quad$ 4. We will prove that $\mathrm{LO}(\mathrm{G}) \in 0$ by constructing a nonzero element of LO(G). Set $n=$ pq. Let n be the primitive n-th root of unity. Assume that $\mathrm{H}=1$ so that $\mathrm{G}=\mathbb{Z}_{\mathrm{n}}=\mathrm{hgj} \mathrm{g}^{\mathrm{n}}=1 \mathrm{i}$. Take $\mathrm{U}=\mathrm{U}_{1} \quad \mathrm{U}_{2}$ and $V=V_{1} \quad V_{2}$, where U_{i} and $V_{i}(i=1 ; 2)$ are the irreducible 1-dimensional complex G-modules with characters

$$
\begin{aligned}
& u(\mathrm{~g})=\mathrm{u}_{1}(\mathrm{~g})+\mathrm{u}_{2}(\mathrm{~g})={ }_{\mathrm{n}}+{ }_{\mathrm{n}}^{2} \\
& \mathrm{v}(\mathrm{~g})=\mathrm{v}_{1}(\mathrm{~g})+\mathrm{v}_{2}(\mathrm{~g})={ }_{\mathrm{n}}^{\mathrm{a}}+{ }_{\mathrm{b}}^{\mathrm{b}} ;
\end{aligned}
$$

and the integers a and b are chosen so that the following holds:

$$
\begin{array}{llllll}
a & 1 & (\bmod p) ; & a & 2 & (\bmod q) \\
b & 2 & (\bmod p) ; & b & 1 & (\bmod q)
\end{array}
$$

(for example, if $\mathrm{p}=3$ and $\mathrm{q}=5, \mathrm{a}=7$ and $\mathrm{b}=11$). Then U and V are complex L-free G-modules isomorphic when restricted to $P=\mathbb{Z}_{p}$ or \mathbb{Z}_{q}. The reali cations $r(\mathrm{U})$ and $\mathrm{r}(\mathrm{V})$ are not isomorphic as real G-modules (remember p and q are odd) but $r(U)$ and $r(V)$ are isomorphic when restricted to $P=\mathbb{Z}_{p}$ or \mathbb{Z}_{q}. So, as a result, we obtain that $0 \in r(U)-r(V) 2 L O(G)$. If H $G 1$, the epimorphism $\mathrm{G}!\mathrm{G} \neq \mathrm{H}=\mathbb{Z}_{\mathrm{n}}$ (mapping large subgroups of G onto large subgroups of $\mathrm{G}=\mathrm{H}$) allows us to consider the complex \mathbb{Z}_{n}-modules U and V constructed above as complex L-free G-modules. As before, we obtain that $0 G r(U)-r(V) 2 L O(G)$, completing the proofs.

2 Proof of the Classi cation Theorem

In this section, we wish to classify nite Oliver groups G with Laitinen number $\mathrm{a}_{\mathrm{G}}=0$ or 1 , in such a way that we obatin a proof of the Classi cation Theorem stated in Section 0.2.

Theorem 2.1 Let G bea nite Oliver group. Then $\mathrm{a}_{\mathrm{G}}=0$ or 1 if and only if one of the conclusions (1) $\{(13)$ in the Classi cation Theorem holds.

In the proof, our analysis will make repeated use of a few basic concepts and theorems. Recall that for a nite group H , the Fitting subgroup $\mathrm{F}(\mathrm{H})$ of H is the largest normal nilpotent subgroup of $\mathrm{H}, \mathrm{E}(\mathrm{H})$ denotes the largest normal semisimple subgroup of H, and $F(H)=E(H) F(H)$ is the generalized Fitting subgroup of H , as de ned by Helmut Bender. In the proof of Theorem 2.1, we shall use the fundamental results of [22, Theorems 3.5, 3.6] describing the structure and embedding of $F(H)$ for a nite group H.

Theorem 2.2 (Fitting\{Bender Theorem) For a nite group H, the following holds: $[\mathrm{E}(\mathrm{H}) ; \mathrm{F}(\mathrm{H})]=1$ and $\mathrm{C}_{\mathrm{H}}(\mathrm{F}(\mathrm{H}))=\mathrm{Z}(\mathrm{F}(\mathrm{H}))$. If H is solvable, then F (H) $=\mathrm{F}(\mathrm{H})$.

Theorem 2.3 If $E=C_{p} \quad C_{p}$ acts on an abelian q-group V, where p and q are distinct primes, then $V=h C_{V}(e): e 2 E \# i$.

Theorem 2.4 For two nitegroups H and K , let $\mathrm{F}=\mathrm{K} \rtimes \mathrm{H}$ bea Frobenius group with kerne K and complement H . If F acts faithfully on a vector space V over a ed of characteristic p, where $(p ; j K j)=1$, then $C_{V}(H) \in 0$.

We shall also use Burnside's $p^{a} q^{b}$ Theorem which asserts that a nite nonsolvable group has order which is always divisible by at least three distinct primes, the Feit \{Thompson Theorem which asserts that nite groups of odd order are solvable; the Brauer\{Suzuki Theorem which asserts that if G is a nite group with no nontrivial normal subgroup of odd order and with a Sylow 2-subgroup of 2-rank 1, then G has a unique involution z lying in $Z(G)$. Finally, we shall use the Classi cation of the nite simple groups (cf. [21]\{[25]).
The proof of Theorem 2.1 will be accomplished in a sequence of lemmas, the rst two of which will address the following general situation: nite groups H without NPP elements; that is, each element of H is of prime power order. Such nite groups H are called CP groups, and CP groups have been studied by several authors including Higman [26], Suzuki [60], Bannuscher\{Tiedt [4], and Delgado\{Wu [14].
We remark that nite simple CP groups were rst classi ed by Michio Suzuki in a deep paper [60], whose main theorem is one of the fundamental results in the proof of the classi cation of nite simple groups.
The following lemma goes back to Higman [26].
Lemma 2.5 Let H bea nite solvable CP group. Then one of the following conclusions holds:
(1) H is a p-group for some prime p ; or
(2) $\mathrm{H}=\mathrm{K} \rtimes \mathrm{C}$ is a Frobenius group with kerne K and complement C , where K is a p-group and C is a q-group of q-rank 1 for two distinct primes p and q; or
(3) $\mathrm{H}=\mathrm{K} \rtimes \mathrm{C} \rtimes \mathrm{A}$ is a 3-step group, in the sense that $\mathrm{K} \rtimes \mathrm{C}$ is a Frobenius group as in the conclusion (2) with C cyclic, and $C \rtimes A$ is a Frobenius group with kerne C and complement A, a cyclic p-group.

Corollary 2.6 If G is a nite Oliver CP group, then F (G) is nonsolvable.
Proof As none of the groups in the conclusions of Lemma 2.5 is an Oliver group, the result follows by Lemma 2.5.

Now, we analyze the situation where a nite nonabelian simple group L is without NPP elements or all NPP elements of L have the same order.

Lemma 2.7 Let L be a nite nonabelian simple group. Assume that L is without NPP elements or all NPP elements of L have the same order. Then L is isomorphic to one of the following groups:
(1) $\operatorname{PSL}(2 ; q)$ with $q \quad 3(\bmod 8)$; or
(2) $\mathrm{PSL}(2 ; q)$ with $\mathrm{q}=9$ or q a Fermat or Mersenne prime; or
(3) $\mathrm{PSL}\left(2 ; 2^{\mathrm{n}}\right)$ or $\mathrm{Sz}\left(2^{\mathrm{n}}\right), \mathrm{n} \quad 3$; or
(4) $\operatorname{PSL}(3 ; 3), \operatorname{PSL}(3 ; 4), A_{7}, M_{11}$ or M_{22}.

Proof We survey the nite simple groups freely making use of the information in [23] and [11]. If $L=A_{n}$ for some $n \quad 8$, then L contains elements of orders 6 and 15, contrary to assumption. By inspection of [23, Tables 5.3], we see that if L is a sporadic simple group, then $L=M_{11}$ or M_{22}.

Hence, we may assume that L is a nite simple group of Lie type de ned over a eld of characteristic p. Assume that L is not isomorphic to $P S L(2 ; q)$ or $\mathrm{Sz}\left(2^{\mathrm{n}}\right)$. Then by consideration of subsystem subgroups ([23, Section 2.6]), we see that one of the following statements is true about L :
(1) L has a subgroup K with $K=Z(K)=P S L(4 ; p), P S U(4 ; p), P S p(6 ; p)$, $\mathrm{G}_{2}(\mathrm{p})$ or ${ }^{2} \mathrm{~F}_{4}(2)^{\mathrm{O}}$; or
(2) $L=P S L(3 ; q), \operatorname{PSU}(3 ; q)$ or $\operatorname{PSp}(4 ; q)$.

Suppose rst that p is odd. Then $\operatorname{PSp}(4 ; p), \operatorname{PSL}(4 ; p), \operatorname{PSU}(4 ; p)$ and $\mathrm{G}_{2}(\mathrm{p})$ all contain subgroups isomorphic to a commuting product of $\operatorname{SL}(2 ; p)$ and a cydic group of order 4 (see [23, Table 4.5.1]). Hence, each contains elements of order 6 and 12. Thus, we are reduced to the cases $L=P S L(3 ; q)$ or $L=P S U(3 ; q)$. In both cases, L contains a subgroup isomorphic to $\operatorname{SL}(2 ; q)$. If $q>3$, then $S L(2 ; q)$ contains an element of odd prime order $r>3$ and hence elements of orders 6 and $2 r$, contrary to assumption. Thus, we may assume that $\mathrm{L}=\mathrm{PSL}(3 ; 3)$ or $\operatorname{PSU}(3 ; 3)$. We readily check that $\operatorname{PSU}(3 ; 3)$ contains elements of order 12 (cf. [11]), completing the case when p is odd.

Now suppose that $p=2$. Now $\operatorname{SL}\left(3 ; 2^{n}\right)$ contains a subgroup isomorphic to $\mathrm{GL}\left(2 ; 2^{\mathrm{n}}\right)$, whence $\operatorname{PSL}\left(3 ; 2^{\mathrm{n}}\right)$ contains $\mathrm{H}=\mathrm{J} \quad \mathrm{C}$, where $\mathrm{J}=\mathrm{SL}\left(2 ; 2^{\mathrm{n}}\right)$ and C is cyclic of order $2^{n}-1$ or $\frac{2^{n}-1}{3}$. If $n>2$, this contradicts Lemma 1.3. Similarly, $\operatorname{SU}\left(3 ; 2^{n}\right)$ contains a subgroup isomorphic to $\mathrm{GU}\left(2 ; 2^{\mathrm{n}}\right)$, whence $\operatorname{PSU}\left(3 ; 2^{\mathrm{n}}\right)$ contains $\mathrm{H}_{1}=\mathrm{J}_{1} \quad \mathrm{C}_{1}$ with $\mathrm{J}_{1}=\mathrm{SL}\left(2 ; 2^{\mathrm{n}}\right)$ and C_{1} cydic of order $2^{n}+1$ or $\frac{2^{n}+1}{3}$. If $n>1$, this again contradicts Lemma 1.3. Finally, $P S p\left(4 ; 2^{n}\right)=S p\left(4 ; 2^{n}\right)$ contains a subgroup isomorphic to $G L\left(2 ; 2^{n}\right)$, again giving a contradiction when $\mathrm{n}>1$.
We know that $\operatorname{PSL}(4 ; 2)=A_{8}, \operatorname{PSU}(4 ; 2)=P \operatorname{Sp}(4 ; 3)$ and $G_{2}(2)^{0}=U_{3}(3)$. By inspection in [11], $\operatorname{Sp}(6 ; 2)$ and ${ }^{2} F_{4}(2){ }^{0}$ have elements of orders 6 and 10 . We conclude that the only examples with $p=2$ are $\operatorname{PSL}(3 ; 2)=\operatorname{PSL}(2 ; 7)$, $\operatorname{PSL}(3 ; 4)$ and $\operatorname{Sp}(4 ; 2)^{0}=A_{6}$.
Finally, suppose that $L=P S L(2 ; q)$ and $q \quad "(\bmod 8), "=1$. Then L has a cydic subgroup of order $\frac{q^{-}}{2}$. If r is an odd prime divisor of $q-"$, then L has elements of order $2 r$ and $4 r$, contrary to assumption. Hence, q is a Fermat or Mersenne prime, or $q=9$, completing the proof.

Lemma 2.8 Supposethat $F(G)=L$ is a nite nonabelian simple group and $a_{G}=b_{G=L}$. Then G is isomorphic to one of the following groups:
(1) PSL(2; q), q 2 f5; 7; $8 ; 9 ; 11 ; 13 ; 17 \mathrm{~g}$; or
(2) $\mathrm{Sz}(8), \mathrm{Sz}(32), \mathrm{A}_{7}, \mathrm{PSL}(3 ; 3), \mathrm{PSL}(3 ; 4), \mathrm{M}_{11}$ or M_{22}; or
(3) $\operatorname{PGL}(2 ; 5), \mathrm{PGL}(2 ; 7), \mathrm{P} L(2 ; 8), \mathrm{M}_{10}, \operatorname{Aut}\left(\mathrm{~A}_{6}\right), \mathrm{P} L(2 ; 27)$ or the extension $\operatorname{PSL}(3 ; 4)=\operatorname{PSL}(3 ; 4) \rtimes$ hui of $\operatorname{PSL}(3 ; 4)$ by an involutory graph- eld automorphism u of order 2.
If G is a $C P$ group, then G is isomorphic to one of the following groups: $\operatorname{PSL}(2 ; q), q 2$ f5; 7; 8; 9; 17g; or $\operatorname{Sz}(8), \operatorname{Sz}(32), \operatorname{PSL}(3 ; 4)$ or M_{10}. Moreover, if $G=\operatorname{Aut}\left(A_{6}\right)$ or $P \quad L(2 ; 27)$, then $\mathrm{a}_{\mathrm{G}}=2$. In all other cases, $\mathrm{a}_{\mathrm{G}} 1$.

Proof Certainly L is one of the groups listed in Lemma 2.7. First, suppose that $G \in L$. Note that the hypotheses imply that for any $\times 2$ G, all NPP elements of the coset Lx have the same order. By easy inspection (or making use of [11]), we see that if

$$
\text { L } 2 \text { fPSL(3; 3);PSL(3;4);A; M } \mathrm{M}_{11} ; \mathrm{M}_{22} \mathrm{~g} ;
$$

then $L=P S L(3 ; 4)$ and G is as described.
Suppose next that $L=\operatorname{Sz}\left(2^{n}\right)$ and let $\times 2 G \backslash L$ be of prime order p. Then x induces a eld automorphism on L and p divides n, whence p is odd. But
$C_{L}(x)$ has a subgroup $H=S z(2)$, which has a cyclic subgroup of order 4. Hence G has elements of orders $2 p$ and $4 p$, contrary to assumption.
Suppose that $L=P S L\left(2 ; p^{n}\right)$. If $\times 2 G \backslash L$ has prime order r and induces a eld automorphism on L, then $C_{L}(x)$ contains a subgroup $H=P S L(2 ; p)$. If $p>3$, then $L x$ contains elements of orders $2 r, 3 r$ and $p r$, at least two of which are not prime powers, a contradiction. Hence p $2 \mathrm{f} 2 ; 3 \mathrm{~g}$ and Lx contains elements of orders $2 r$ and $3 r$, whence $r 2 f 2 ; 3 g$ and $C_{L}(x)$ is a f2; $3 g$-group. Hence $C_{L}(x)=P S L(2 ; 2), \operatorname{PSL}(2 ; 3)$ or $\operatorname{PGL}(2 ; 3)$. Thus $p^{n} 2 f 4 ; 8 ; 9 ; 27 \mathrm{~g}$. Now by inspection, we get the cases listed in Lemma 2.8.
Suppose now that $L=P S L(2 ; q)$ for $q>9$, and G has no element inducing a non-trivial eld automorphism on L. As $L \in G$, it follows that q is odd. Then by Lemma 2.7, q is an odd power of a prime and so $G=P G L(2 ; q)$. Let $\mathrm{q} \quad "(\bmod 4), "=1$. Then $\mathrm{G} \backslash \mathrm{L}$ has an element x of order $\mathrm{q}+$ ", and two elements y, y^{0} in rxi are G-conjugate if and only if $y^{0}=y^{-1}$. However $L x$ contains ' $\left(q+\right.$ ") elements of order $q+{ }^{\prime \prime}$, whence ${ }^{\prime}\left(q+{ }^{\prime}\right)=2$ and $q+"=6$, contrary to the assumption that $q>9$.

As PSL(2;4)=PSL(2;5), we conclude the following: if $L=P S L(2 ; q)$, then q 2 f5; $7 ; 8 ; 9 ; 27 \mathrm{~g}$, as claimed. The precise possibilities for G as stated in the proposition may then be inferred easily from [11].
Now suppose that $G=L=P S L(2 ; q)$. First we make a numerical remark. Suppose $2^{n}+1=3^{m}$ for some natural numbers m and n. If m is odd, then $3^{m}-12(\bmod 8)$ and so $m=1$. If $m=2 r$, then $2^{n}=\left(3^{r}-1\right)\left(3^{r}+1\right)$ and so $\mathrm{m}=2$.
Now suppose that $G=P S L(2 ; q)$ with $q=2^{n}>8$. Then G has cyclic subgroups D_{1} and D_{2} of orders $2^{n}-1$ and $2^{n}+1$ respectively. If n is odd, then 3 divides $2^{n}+1$, but $2^{n}+1$ is not a power of 3 by the rst paragraph. Hence $\operatorname{NPP}(G) \backslash D_{2}$ contains ' $\left(2^{n}+1\right)$ elements of order $2^{n}+1$, lying in $\frac{\prime}{} \frac{\left(2^{n}+1\right)}{2}$ real classes. Thus, ' $\left(2^{n}+1\right) \quad 2$ because $a_{G} \quad 1$, whence $2^{n}+1=3$, a contradiction. Thus $n=2 s$ is even and 3 divides $2^{n}-1=\left(2^{r}-1\right)\left(2^{r}+1\right)$. As $n>2, D_{1}$ is not a 3 -group and, as above, $\frac{\prime\left(2^{n}+1\right)}{2} \quad 1$. Then $2^{n}-1=3$, again a contradiction.
Finally suppose that $\mathrm{G}=\mathrm{PSL}(2 ; q)$ with q odd and $q>17$. Then G has cyclic subgroups T_{1} and T_{-1} of orders $\frac{q-1}{2}$ and $\frac{q+1}{2}$ respectively. If $q 3(\bmod 8)$ and $q \quad "(\bmod 4)$, then $T_{n} \backslash \operatorname{NPP}^{2}(G)$ has ${ }^{\prime}\left(\frac{q--1}{2}\right)$ dements of order $\frac{q^{-}-1}{2}$ lying in $\frac{\left(\frac{q-}{2}\right)}{2}$ real classes. Hence ' $\left(\frac{q-"}{2}\right)=2$, whence $\frac{q-"}{4}=3$, a contradiction.
Hence by Lemma 2.7, q is a Fermat or Mersenne prime Again assume that $\mathrm{q} \quad "(\bmod 4)$. As q $\in 3,3$ divides $q+"$. Suppose that $q+"=23^{m}$ for
somem 2. As $q-"=2^{k}$, we have $2^{k}+2^{\prime \prime}=23^{m}$. Hence $2^{k-1}=3^{m}-$ ". If $"=-1$, then $3^{m}+1 \quad 2$ or $4(\bmod 8)$, whence $q \quad 9$, contrary to assumption. If " $=1$, then by the rst paragraph, m 2 and q 17 , again a contradiction. It follows that $\frac{q^{+}+}{2}$ is not a prime power. But then T_{-}" $\backslash \operatorname{NPP}(G)$ has ' $\left(\frac{q+"}{2}\right)$ elements of order $\frac{q+" 1}{2}$ lying in $\frac{\left(\frac{q+"}{2}\right)}{2}$ real classes. As usual this implies that ' $\left(\frac{q+*}{2}\right)=2$, again a contradiction.

Finally suppose that $\mathrm{G}=\mathrm{L}=\mathrm{Sz}\left(2^{\mathrm{n}}\right)$ with $\mathrm{n} \quad 7$ and set $\mathrm{q}=2^{\mathrm{n}}$. Then G has cydic subgroups $\mathrm{T}_{"}$ with $\mathrm{j} \mathrm{T}_{\mathrm{n} j}=\mathrm{q}+{ }^{"} \mathrm{P} \mathrm{Z}_{\mathrm{q}}+1$, for " $=1$. As $\mathrm{q}=2^{n}, \mathrm{n}$ odd, we have that 5 divides $q^{2}+1=j T_{1} j T_{-1} j$. Thus 5 divides $j T_{n j} j$ for some ". We shall argue that $j T " j$ is not a power of 5 when $n \quad 7$. For suppose that it is. Let $n=2 m+1$. Then

$$
q+{ }^{p} \overline{2 q}+1=2^{2 m+1}+{ }^{2 m+1}+1=5^{k}
$$

for some $k \quad 1$. Consideration of the 2 -part of $5^{k}-1$ shows that the smallest positive k for which $5^{k}-1$ is divisible by $2^{m+1}, m \quad 1$, is $k=2^{m-1}$. But $2^{2 m+1}+2^{m+1}+1<2^{2 m+2}$, while $5^{2^{m-1}}>4^{2^{m-1}}=2^{2^{m}}$. Thus for equality to hold, we must have $2^{m}<2 m+2$, which holds only for $m \quad 2$, i.e for $n 5$.

Thus for $\mathrm{G}=\mathrm{Sz}\left(2^{\mathrm{n}}\right), \mathrm{n} \quad 7$, the cyclic subgroup $\mathrm{T}^{\prime \prime}$ is generated by elements in $\operatorname{NPP}(\mathrm{G})$. Let $\mathrm{h}=\mathrm{j} \mathrm{T}_{\mathrm{n}} \mathrm{j}$. As $\mathrm{N}_{\mathrm{G}}\left(\mathrm{T}_{\mathrm{n}}\right)=\mathrm{T}_{n}$ has order 4 and $\mathrm{a}_{\mathrm{G}}=1$, we must have ${ }^{\prime}(h)=4$, whence $h=5$, a nal contradiction.

Henceforth, we assume that G is a nite Oliver group. Moreover, we assume that G satis es the following two properties:
(1) all elements of $\operatorname{NPP}(G)$ have the same order; and
(2) if $K \unlhd G$ and $K \backslash N P P(G) G \varnothing$, then $\operatorname{NPP}(G) K$.

We shall call G an EP group if the properties (1) and (2) abovehold. Of course, both of these properties hold when $a_{G} \quad 1$. By Lemma 1.2, the class of EP groups is closed under taking subgroups and homomorphic images.

Lemma 2.9 Suppose that G is an EP group and $F(G)$ is not a p-group. Then G is solvable and the following conclusions hold:
(1) $F(G)=P \quad Q$ with P an elementary abelian p-group of order p^{a} and Q an elementary abelian q-group of order q^{b}; and either
(2) $G \neq(G)$ is an r-group of r-rank $1, r$ prime; with $r ~ Z f p ; q$; or
(3) $G \neq(G)$ is a nonabelian metacyclic Frobenius group of order $p^{c} q^{d}$.

Proof Clearly NPP(G) $Z(F(G))$, whence $F(G)=P \quad Q$ with P and Q elementary abelian, as in (1). If $G=F(G)$, then G is not an Oliver group, contrary to assumption. Therefore $G \in F(G)$. Set $\bar{G}=G \neq(G)$. If \bar{G} has r-rank greater than 1 for some prime r, then from Theorem 2.3 it follows that $G \backslash F(G)$ contains elements of order rs for s $2 \mathrm{fp} ; \mathrm{qg} \backslash \mathrm{frg}$, a contradiction to NPP(G) $\quad \mathrm{F}(\mathrm{G})$. So \bar{G} has r-rank 1 for every prime divisor r of $j \bar{G} j$.

Now, suppose that $F(\bar{G})=1$. Then by theFeit $\{T$ hompson Theorem, \bar{G} has no nontrivial normal subgroup of odd order. Moreover \bar{G} has 2-rank 1, whence by the Brauer\{Suzuki Theorem, $1 \in Z(\bar{G}) \quad F(\bar{G})$, a contradiction. Thus $F(\bar{G}) \in 1$ and, as $\operatorname{NPP}(\bar{G})=\varnothing, F(\bar{G})=\bar{R}$ is an r-group of r-rank 1 for some prime r. Moreover, note that $\mathrm{C}_{\bar{G}}(Z(\bar{R}))$ is a normal r-subgroup of \bar{G}, whence $C_{\bar{G}}(Z(\bar{R}))=\bar{R}$. Moreover, note that $\bar{G} \bar{R}$ is isomorphic to a cyclic r^{0}-subgroup of $\operatorname{Aut}(Z(\bar{R}))$. If $\bar{G}=\bar{R}$, then $r Z f p ; q g$ because G is an Oliver group, and (2) holds. Otherwise $\bar{G}=\overline{\mathrm{R}} \rtimes \overline{\mathrm{C}}$ with both $\overline{\mathrm{R}}$ and $\overline{\mathrm{C}}$ cyclic. As in Lemma 2.5, C is an s-group for some prime s $G r$. Choose s $2 \mathrm{fp} ; \mathrm{qg} \backslash \mathrm{frg}$. As $\bar{R} \rtimes \bar{C}$ is a Frobenius group, $C_{p}(\bar{C}) \in 1$ and so $s=p$. If also $r \in q$, then the same argument would yield $s=q$, a contradiction. Hence $r=q$ and $s=p$ with $\mathrm{p}<\mathrm{q}$, whence (3) holds.

Lemma 2.10 Suppose that G is a nite Oliver group with $\mathrm{a}_{\mathrm{G}} \quad 1$ and with $F(G)$ not a p-group. Then $F(G)=C_{2}^{2} \quad C_{3}$ and one of the following holds:
(1) $G=\operatorname{Stab}_{A_{7}}(f 1 ; 2 ; 3 \mathrm{~g})$; or
(2) $\mathrm{G}=\mathrm{C}_{2}^{2} \rtimes \mathrm{D}_{9}$.

Proof We continue the notation of Lemma 2.9, and we note that the following holds: $\operatorname{jNPP}(G) j=\left(p^{a}-1\right)\left(q^{b}-1\right)$. Moreover, $\operatorname{NPP}(G)$ is a union of one or two G-classes of equal cardinality.
If $j \bar{G} j=r^{c}$ for some prime r, and $R 2 \operatorname{Syl}_{r}(G)$, then $C_{R}(P)=1=C_{R}(Q)$, whence $r^{c} \quad \operatorname{minf} p^{a}-1 ; q^{b}-1 g$. On the other hand, $\left(p^{a}-1\right)\left(q^{b}-1\right) \quad 2 r^{c}$, which is a contradiction.
Hence $j \bar{G} j=p^{c} q^{d}$ with $p<q$. Let $F(\bar{G})=\bar{R}$ with $j \bar{R} j=q^{d}$, and let R be the full preimage of \bar{R} in G. Then, as $F(G)$ is abelian, $1 G C_{Q}(R) / G$. As all elements of $F(G)$ of order pq lie in the same real G-conjugacy dass, this forces $C_{Q}(R)=Q$. Moreover \bar{R} acts semi-regularly on $P^{\#}$, whence q^{d} divides $p^{a}-1$. Let $\bar{S} 2$ Syl $_{p}(\bar{G})$. Then \bar{S} acts semi-regularly on $Q^{\#}$, whence p^{c} divides $q^{b}-1$. Finally $\left(p^{a}-1\right)\left(q^{b}-1\right)=p^{c} q^{d}$ or $2 p^{c} q^{d}$. If both p and q are odd, then 4 divides the left-hand side of the equation but not the right. Hence $p=2$. Then both $q^{b}-1$ and $q^{d}+1$ are powers of 2 , whence $q=q^{d}=3$ and $p^{a}=4$. As \bar{G} acts
faithfully on P, it follows that $\bar{G}=S_{3}$. In particular $p^{c}=2$, whence $q^{b}=3$. Thus $F(G)=C_{2}^{2} \quad C_{3}$. Moreover, if $R_{0} 2$ Syl $_{3}(G)$, then $G=P \rtimes N_{G}\left(R_{0}\right)$ and R_{0} is inverted by an involution in $N_{G}\left(R_{0}\right)$. Thus either (1) or (2) holds.

We kep our assumption that G is a nite Oliver group G. Recall that G is an EP group if all elements of $\operatorname{NPP}(\mathrm{G})$ have the same order, and the following holds: if $K \unlhd G$ and $K \backslash \operatorname{NPP}(G) G \varnothing$, then $\operatorname{NPP}(G) K$.

Lemma 2.11 If G is an EP group, then one of the conclusions holds:
(1) F (G) is a p-group for some prime p ; or
(2) F (G) is one of the nonabelian simple groups listed in Lemma 2.7; or
(3) G is solvable and satis es the conclusions of Lemma 2.9.

Moreover if $\mathrm{a}_{\mathrm{G}} \quad 1$, then either $\mathrm{F}(\mathrm{G})$ is a p -group or one of the conclusions of Lemma 2.8 or 2.10 holds.

Proof Suppose that L is a normal quasisimple subgroup of $F(G)$. Then, by Burnside's $p^{a} q^{b}$ Theorem, there exist distinct primes p, q and r dividing $j L j$. Thus if $C_{F(G)}(L) \in 1$, then $\operatorname{NPP}(G)$ contains elements of two distinct orders, a contradiction. Hence $C_{F(G)}(L)=1$, whence $L=F(G)$ is a nonabelian simple group and one of the conclusions of Lemma 2.7 (resp. 2.8) holds. On the other hand, if $F(G)=F(G)$, then either $F(G)$ is a p-group or one of the conclusions of Lemma 2.9 (resp. 2.10) holds, as claimed.

Henceforth, we shall assume that $F(G)=P$ is a p-group. Clearly G G P and we set $\bar{G}=G=P$. Also we let L be the full preimage in G of $F(\bar{G})$.

Lemma 2.12 Suppose that G is an EP group. Then either L is a q-group for some prime $q \in p$ or \bar{L} is a nonabelian simple group.

Proof Suppose that the conclusion of Lemma 2.12 does not hold. Then, by arguing as in Lemmas 1.1 and 1.2, we see that \bar{G} is an EP group, provided \bar{G} is an Oliver group. If L is nonsolvable, then \bar{G} is an Oliver group, whence Lemma 2.11 applied to \bar{G} yields that \bar{L} is a nonabelian simple group.
Suppose that L is solvable but \bar{L} is not a q-group for any prime q. Since all elements of $\operatorname{NPP}(\mathrm{G})$ have the same order, $\overline{\mathrm{L}}=\overline{\mathrm{Q}} \quad \overline{\mathrm{R}}$ where Q is an elementary abelian q-group and R is an elementary abelian r-group for some primes q, with r di erent from p . Moreover, G contains no elements of order pq or pr ,
whence $\mathrm{jQj}=\mathrm{q}$ and $\mathrm{jRj}=r$. Since $\bar{L}=F(\bar{G})$ and \bar{L} is cyclic of order q, we conclude that $\mathrm{G} \neq \mathrm{L}$ is abelian. As $\operatorname{NPP}(\mathrm{G}) \quad \mathrm{L}$, in fact $\mathrm{G} \neq \mathrm{i}$ is abelian of prime power order. But then as P is a p-group and $L=P$ is cyclic, G is not an Oliver group, contrary to assumption.

Henceforth, we assume that G is a nite Oliver group with Laitinen number $a_{G} \quad 1$. In the next thre lemmas, we treat the case where \bar{L} is a q-group.

Lemma 2.13 If \bar{L} is a q-group of q-rank 1 , then $q=2$ and $G=P \rtimes K$, where $K=S L(2 ; 3)$ or $\widehat{S_{4}}$ and P is an abelian p-group of odd order inverted by the unique involution of K.

Proof Suppose that \bar{L} is a cyclic q-group. As $\bar{L}=F(\bar{G}), \overline{\mathrm{G}} \overline{\mathrm{L}}$ is a cyclic q^{0}-group and \bar{G} is a metacydic Frobenius group with kerne \bar{L}. If $\times 2 \bar{G} \backslash \overline{\mathrm{~L}}$, $C_{p}(\mathrm{X}) \in 1$ whence G has elements of order $p r$, where r is the order of x and
 In either case, as \bar{L} is cyclic, G is not an Oliver group, a contradiction.

Hence $\overline{\mathrm{L}}=\mathrm{Q}_{8}$ and $[\overline{\mathrm{G}} ; \overline{\mathrm{G}}]=\operatorname{SL}(2 ; 3)$. As $\operatorname{NPP}(\overline{\mathrm{G}}) \in \varnothing, \mathrm{P}$ is inverted by z for any involution z of L. As $P=C_{G}(P)$, it follows that $G=P \rtimes K$ and K contains a unique involution, whence the lemma holds.

Lemma 2.14 Supposethat \bar{L} is a q-group of q-rank greater than 1. Then \bar{G} is a solvable group without NPP elements. Moreover, P is a nite elementary abelian p -group and $\mathrm{H}=\mathrm{P} \rtimes \mathrm{Q} \rtimes \mathrm{C}$, where $\mathrm{L}=\mathrm{P} \rtimes \mathrm{Q}, \mathrm{Q} 2 \mathrm{Syl}_{\mathrm{q}}(\mathrm{G})$ and $N_{G}(Q)=Q \rtimes C$ is a Frobenius group with kernel Q and complement C such that C is a p -group.

Proof Let $Z=f z 2 Z(P): z^{p}=1 g$. Then Z is a nontrivial dementary abelian normal p-subgroup of G. Let E be an elementary q-subgroup of L of q-rank greater than 1. Then, according to Theorem 2.3, NPP(L) contains an element x of order pq with $x^{q} 2 Z$. Hence NPP $(G Z)=\varnothing$ and so, applying Theorem 2.3 again in $G=Z$, we conclude that $P=Z$. If $L=G$, then G is not an Oliver group, contrary to assumption. Thus L 6 G.

Let $L=P \rtimes Q, Q 2$ Syl $_{q}(L)$. Suppose that $C_{p}(Q)=A G 1$. Then every element $\times 2 \operatorname{NPP}(G)$ satis es $x^{q} 2 A$. But then $C_{p}(e)=A$ for all e $2 E$ \#, whence $P=A$ by Theorem 2.3. But then $Q \quad C_{G}(P)=P$, a contradiction. Therefore $\mathrm{C}_{\mathrm{P}}(\mathrm{Q})=1$ and by making use of a Frattini argument, we see that $N_{G}(Q)$ is a complement to P in G.

Let $\mathrm{N}=\mathrm{N}_{\mathrm{G}}(\mathrm{Q})$. Then N is without NPP elements. Supposethat r is a prime divisor of $j N j$ with $r Z f p ; q g$ and let R bea nontrivial r-subgroup of N. As $\operatorname{NPP}(N)=\varnothing$, it follows that $\mathrm{Q} \rtimes \mathrm{R}$ is a Frobenius group with kernel Q acting faithfully on P. Hence $C_{p}(R) \in 1$, a contradiction. Hence N is a $f p ; q g$-group. In particular, N is solvable by Burnside's theorem and so Lemma 2.5 applies to N , yieding that ether $\mathrm{N}=\mathrm{Q} \rtimes \mathrm{C}$ is a Frobenius group with kerne Q and complement C a p-group, as claimed, or $\mathrm{N}=\mathrm{Q} \rtimes \mathrm{C} \rtimes \mathrm{A}$ with C a cyclic p -group and A a cyclic q-group disjoint from Q (as $C A=N_{N}(C)$ is a complement to Q in N). Suppose the latter and let y 2 A of order q and $z 2 \mathrm{Q} \backslash \mathrm{Z}(\mathrm{QA})$ of order q . Then $\mathrm{U}=\mathrm{hy}$; zi $=\mathrm{C}_{\mathrm{q}} \quad \mathrm{C}_{\mathrm{q}}$ and so $\mathrm{P}=\mathrm{hC}_{\mathrm{p}}(\mathrm{u}): \mathrm{u} 2 \mathrm{U}^{\#} \mathrm{i}$ by Theorem 2.3. However $\operatorname{NPP}(G) \quad L$ and $U \backslash L=t z i$, whence $C_{P}(u)=1$ for all u $2 \mathrm{U} \backslash \mathrm{hzi}$. Thus $P=\mathrm{C}_{\mathrm{P}}(\mathrm{z})$, a contradiction.

Finally, we complete the analysis of the case when \bar{L} is a q-group.
Lemma 2.15 Suppose that $\mathrm{G}=\mathrm{P} \rtimes \mathrm{Q} \rtimes \mathrm{C}$ as in Lemma 2.14. Then one of the following conclusions hold:
(1) $\mathrm{P}=\mathrm{C}_{3}^{3}$ and $\mathrm{QC}=\mathrm{A}_{4}$; or
(2) $\mathrm{P}=\mathrm{C}_{2}^{4}, \mathrm{PQ}=\mathrm{A}_{4} \quad \mathrm{~A}_{4}$ and $\mathrm{C}=\mathrm{C}_{4}$; or
(3) $\mathrm{P}=\mathrm{C}_{2}^{8}$ and $\mathrm{QC}=\left(\begin{array}{ll}\mathrm{C}_{3} & \mathrm{C}_{3}\end{array}\right) \rtimes \mathrm{C}_{8}$; or
(4) $\mathrm{P}=\mathrm{C}_{2}^{8}$ and $\mathrm{QC}=\left(\mathrm{C}_{3}\right.$
$\left.\mathrm{C}_{3}\right) \rtimes \mathrm{Q}_{8}$.
Proof Let x 2 Q of order q with $\mathrm{C}_{\mathrm{P}}(\mathrm{x})=\mathrm{V}$ of maximum order. Theelements of $V^{\#} x$ are in NPP(G). As $(v x)^{-1} 2 V x^{-1}$, either $C_{G}(x)$ is transitive on $V^{\#} x$ or $q=2$ and $C_{G}(x)$ has two equal-sized orbits on $V^{\#} x$. In any case, as $Q C$ is a Frobenius group, $\mathrm{C}_{\mathrm{G}}(\mathrm{x})=\mathrm{VC}_{\mathrm{Q}}(\mathrm{x})$ and V hxi acts trivially on $\mathrm{V}^{\#} \mathrm{x}$. Hence $j V{ }^{\#} j=j V{ }^{\#} x j=q^{b}$ for some $b \quad 0$. Let $j V j=p^{a}$. Then either $p=2$ and $b=1$ or $q=2$ and $p^{a} 2 f p ; 9 \mathrm{~g}$. In all cases we set $Z=f z 2 Z(Q): z^{q}=1 g$. Thus Z is a normal elementary abelian q-subgroup of $Q C$ and $P Z / G$.

Suppose rst that $q=2$. As ZC is a Frobenius group, Z contains a Klein 4-subgroup U and so NPP(G) PZ / G. Thus in particular x 2 Z. Suppose further that $j V j=p$. Then $\mathrm{jPj} \quad \mathrm{p}^{3}$. Moreover, as P is a faithful QC-module, it follows that $\mathrm{jCj} \operatorname{dimV} 3$, whence $p=3=\operatorname{dimV}$ and $P=C_{3}^{3}$. Now, QC is isomorphic to a Frobenius f2; 3g-subgroup of $\operatorname{SL}(3 ; 3)$, and thus $\mathrm{QC}=\mathrm{A}_{4}$. Therefore (1) holds.

Next suppose that $\mathrm{q}=2$ and $\mathrm{jVj}=9$. Notethat $\mathrm{C}_{\mathrm{Q}}(\mathrm{v}) \quad \mathrm{Z}$ for all $\vee 2 \mathrm{P}^{\text {\# }}$. In particular $\mathrm{C}_{\mathrm{Q}}(\mathrm{V})=\mathrm{A}$ is an elementary abelian q -group with $\mathrm{C}_{\mathrm{P}}(\mathrm{a})=\mathrm{V}$ for
all a $2 A^{\#}$, by maximal choice of V . If $\mathrm{A} \in \mathrm{fxi}$, then by Theorem 2.3, $\mathrm{P}=\mathrm{V}$, a contradiction. Hence $\mathrm{C}_{\mathrm{Q}}(\mathrm{V})=\mathrm{hxi}$ and $\mathrm{Q}=\mathrm{xx}$ is isomorphic to a subgroup of $\mathrm{GL}(\mathrm{V})=\mathrm{GL}(2 ; 3)$. In particular jQj 32. As C is xed point free on Q , $\mathrm{jQj}=2^{\mathrm{m}}, \mathrm{m}$ even. As $\mathrm{jQ}=\mathrm{Zj} \quad 4,[\mathrm{Q} ; \mathrm{Q}]$ is cyclic, whence $[\mathrm{Q} ; \mathrm{Q}]=1$ and $\mathrm{Q}=\mathrm{C}_{2}^{2}, \mathrm{C}_{2}^{3}$ or $\mathrm{C}_{4} \quad \mathrm{C}_{4}$. On the other hand, $\mathrm{Q}=\mathrm{xi}$ is isomorphic to an abelian subgroup of $\mathrm{GL}(2 ; 3)$ of order 8 , whence $\mathrm{Q}=\mathrm{xi}=\mathrm{C}_{8}$, a contradiction.

Finally suppose that $\mathrm{p}=2$ and $\mathrm{jVj}=2^{\mathrm{a}}=\mathrm{q}+1$. As QC is a Frobenius group with C a 2 -group, Q is abelian. Note that C permutes the set

$$
Z=f z 2 Z^{\#}: C_{p}(z) \in 1 g
$$

in one or two equal-sized orbits. As z 2 Z if and only if $\mathrm{kzi}^{\#} \mathrm{Z}$, it follows that $\mathrm{jZj}=\mathrm{k}(\mathrm{q}-1), \mathrm{k} \quad$ 1. But also, as jCj is a power of $2, \mathrm{jZj}=\mathrm{Z}^{\mathrm{c}}$ for some c 1. Hence $\mathrm{q}=2^{\mathrm{d}}+1=2^{a}-1$, whence $q=3$ and $j V j=4$. Now P is a completely reducible Z-module and as before $C_{P}(Z)=1$, whence $P=P_{1} \quad P_{r}$ with P_{i} an irreducible Z-module and $j P_{i} j=4$ for all i. Then $C_{z}\left(\begin{array}{ll}P_{1} & P_{2}\end{array}\right)=1$, whence Q acts faithfully on $P_{1} \quad P_{2}=C_{2}^{4}$. Hence $\mathrm{Q}=\mathrm{Z}=\mathrm{C}_{3} \quad \mathrm{C}_{3}$. As QC is a Frobenius group, either $\mathrm{C}=\mathrm{Q}_{8}$ or C is cyclic with jCj 8. In any case the involution of C inverts Q . By Theorem 2.3, at least two cyclic subgroups of Q have non-trivial xed points on P and as $\mathrm{a}_{\mathrm{G}}=1, \mathrm{C}$ permutes these subgroups transitively. Hence jCj 4. If $\mathrm{jCj}=4$, then only two cyclic subgroups of Q have non-trivial xed points on P and so $j P j=16$ and $L=A_{4} \quad A_{4}$. Therefore (2) holds.

If $\mathrm{jCj}=8$, then $\operatorname{dimV} \quad 8$. On the other hand, $\operatorname{dimV} 8$ as Q has only four cyclic subgroups of order 3. Therefore, equality holds and G is as described either in (3) or (4), completing the proof.

We have now completed the analysis of the case where \bar{L} is a q-group. Thus, for the remainder of the analysis in the proof of Theorem 2.1, we may assume that $\overline{\mathrm{L}}$ is a nonabelian simple group.

Lemma 2.16 If the p -group P is of odd order, then P is elementary abelian and one of the following conclusions holds:
(1) $\mathrm{p}=3$ and $\overline{\mathrm{G}}=\mathrm{PSL}(2 ; q), q 2 \mathrm{f} ; 7 ; 9 ; 17 \mathrm{~g}$, or $\overline{\mathrm{G}}=\mathrm{M}_{10}$; or
(2) $\mathrm{p}=7$ and $\overline{\mathrm{G}}=\mathrm{SL}(2 ; 8)$ or $\mathrm{Sz}(8)$; or
(3) $\mathrm{p}=31$ and $\bar{G}=\mathrm{Sz}(32)$.

Proof Let $Z=f z 2 Z(P): z^{p}=1 g$. Then by Theorem 2.3, G contains an element x of order $2 p$ with $x^{2} 2 Z$ and so every element of NPP(G) has
this property. In particular $\mathrm{P}=\mathrm{Z}$ is elementary abelian, as usual. Moreover $\operatorname{NPP}(\bar{G})=\varnothing$ and so $\bar{G}=P S L(2 ; q), q 2 f 5 ; 7 ; 8 ; 9 ; 17 \mathrm{~g}, M_{10}, S z(8), \mathrm{Sz}(32)$ or $\operatorname{PSL}(3 ; 4)$. If \bar{G} contains a subgroup isomorphic to $C_{3} \quad C_{3}$ or to A_{4}, then G contains elements of order $3 p$ and so $p=3$.

Thus if $p>3$, then $G=S L(2 ; 8), S z(8)$ or $S z(32)$. Moreover, consideration of the Borel subgroups of \bar{G} in these cases shows that $p=7,7$ or 31 , respectively, as claimed.

Suppose nally that $p=3$. If $\bar{G}=S L(2 ; 8), S z(8), S z(32)$ or $\operatorname{PSL}(3 ; 4)$, then L contains a Frobenius group with kerne a 2 -group and complement of order $7,7,31$ or 5 , respectively. But then G would contain elements of order 21 , 21,93 or 15 , respectively, a contradiction.

Lemma 2.17 $\mathrm{F}(\mathrm{G})$ is a 2-group.
Proof Suppose rst that $p>3$. Let $\mathrm{U} 2 \mathrm{Syl}_{2}(\mathrm{G})$. Then by consideration of theFrobenius group $\bar{B}=N_{\bar{G}}(\bar{U})$, wehave $\operatorname{dim}(P) \quad p$. Henceif $V=C_{p}(z)$ for $z 2 \mathrm{Z}(\mathrm{U})^{\#}$, then $\operatorname{dim}(\mathrm{V}) \quad \frac{1}{3} p>2$. On the other hand $\mathrm{C}_{\mathrm{G}}(\mathrm{z})=\mathrm{V}$ ki permutes $V^{\#}$ in at most two equal orbits. Hence $p^{3}-1 \quad j U j$, which is false in all cases.

Thus we may assume that $p=3$ and $G=\operatorname{PSL}(2 ; 5), \operatorname{PSL}(2 ; 7), \operatorname{PSL}(2 ; 9)$, $\operatorname{PSL}(2 ; 17)$ or M_{10} and with $\operatorname{dim}(P) 4,6,4,16,8$, respectively. Again let $U 2$ Syl $_{2}(G), z 2 Z(U)^{\#}$ and $V=C_{P}(z)$. Then $C_{G}(z)=V U$. Thus, as above, if $\operatorname{dim}(V)=d$, then $3^{d}-1$ is a power of 2 , whence $d \quad 2$ and so $\operatorname{dim}(P) \quad 3 d \quad 6$. Hence $\operatorname{dim}(V)=2, \operatorname{dim}(P) \quad 6$ and $j U j \quad$ 8. Thus $\overline{\mathrm{G}}=\mathrm{PSL}(2 ; 7)$ or $\mathrm{PSL}(2 ; 9)$. However, in both cases, $\mathrm{U} \neq \mathrm{zi}=\mathrm{C}_{2} \quad \mathrm{C}_{2}$, which cannot act semiregularly on $\mathrm{V}^{\#}$ by Theorem 2.3, a contradiction.

Lemma 2.18 One of the following conclusions holds:
(1) $\bar{G}=P S L(2 ; q), q 2 f 5 ; 7 ; 8 ; 9 ; 17 \mathrm{~g}$; or
(2) $\bar{G}=S z(8), S z(32), \operatorname{PSL}(3 ; 4), \operatorname{PGL}(2 ; 5)$ or M_{10}.

Proof If $\operatorname{NPP}(\overline{\mathrm{G}})=\varnothing, \overline{\mathrm{G}}$ is listed above So, assume that $\operatorname{NPP}(\overline{\mathrm{G}}) \in \varnothing$. Then G has no element x of odd order, such that $C_{P}(x) \in 1$. In particular, it follows from Theorem 2.3 that G has a cyclic Sylow 3-subgroup, whence $\overline{\mathrm{G}}=\mathrm{PGL}(2 ; 5), \mathrm{PGL}(2 ; 7), \operatorname{PSL}(2 ; 11)$ or $\operatorname{PSL}(2 ; 13)$. Note that in the last thre cases, \bar{G} contains a Frobenius subgroup of order 21,55 or 39 , respectively, whence G contains dements x of order $3,5,3$, respectively, with $C_{p}(x) \in 1$, which is a contradiction. Hence $\bar{G}=P G L(2 ; 5)$.

Lemma 2.19 If $\overline{\mathrm{G}}$ is one of the groups $\operatorname{PSL}(2 ; 7), \operatorname{PSL}(2 ; 9), \operatorname{PSL}(2 ; 17)$, $\operatorname{PSL}(3 ; 4)$, or M_{10}, then one of the following conclusions holds:
(1) $\mathrm{P}=\mathrm{C}_{2}^{3}$ and $\overline{\mathrm{G}}=\mathrm{GL}(3 ; 2)$; or
(2) $\mathrm{P}=\mathrm{C}_{2}^{4}$ and $\overline{\mathrm{G}}=\mathrm{A}_{6}=\mathrm{Sp}(4 ; 2)^{0}$; or
(3) $P=C_{2}^{8}$ and $\bar{G}=M_{10}$.

Proof Suppose that $\overline{\mathrm{G}}=\mathrm{PSL}(2 ; 9), \mathrm{M}_{10}$ or $\operatorname{PSL}(3 ; 4)$. Let T $2 \mathrm{Syl}_{3}(\mathrm{G})$. Then $T=C_{3} \quad C_{3}$ and $N_{\bar{G}}(\bar{T})=\bar{T} \rtimes \bar{Q}$ with $\overline{\mathrm{Q}}=\mathrm{C}_{4}, \mathrm{Q}_{8}, \mathrm{Q}_{8}$, respectively, and with $\bar{T} \rtimes \overline{\mathrm{Q}}$ a Frobenius group. Hence $\operatorname{dim}(\mathrm{P})$ 4, 8, 8, respectively. On the other hand, if $\times 2 \mathrm{~T}^{\#}$ and $\mathrm{V}=\mathrm{C}_{\mathrm{P}}(\mathrm{x})$, then $\mathrm{C}_{\mathrm{G}}(\mathrm{x})=\mathrm{VT}$ acts transitively on $\mathrm{V}^{\#}$, whence $\operatorname{dim}(\mathrm{V})$ 2. As $\overline{\mathrm{Q}}$ transitively permutes the set T of nonidentity cyclic subgroups hyi of T with $C_{P}(y) \in 1$, we have that $j T j=2,4,4$, respectively. Hence $\operatorname{dim}(P)$ 4, 8, 8, respectively, whence equality holds in all cases. But then if $\bar{G}=P S L(3 ; 4)$ and $g 2 G$ of order 7 , then $C_{G}(y) \in 1$, whence G contains elements of order 6 and 14, a contradiction.
Next suppose that $\bar{G}=P S L(2 ; 7)$. Let $x 2 G$ be an element of order 3. Then hxi is a Frobenius complement in a subgroup F of order 21 , whence $C_{p}(x) \in 1$. Thus G contains elements of order 6 and therefore G contains no elements of order 14. So P is a sum of faithful F-module, hence a sum of free hxi -modules. On the other hand, as $C_{G}(x)=C_{P}(x) h x i$, we must have $j C_{P}(x) j=2$. Hence P is a single free hxi-module, i.e $j P j=8$. Finally suppose that $\bar{G}=P S L(2 ; 17)$. By inspection of the 2-modular character table for $\overline{\mathrm{G}}$, we see that if $\times 2 \mathrm{G}$ of order 3, then $\operatorname{dim}\left(C_{P}(x)\right)$ 3. But $C_{G}(x)=C_{P}(x) X$ with $j X j=9$, whence $\mathrm{C}_{\mathrm{G}}(\mathrm{x})$ is not transitive on $\mathrm{C}_{\mathrm{P}}(\mathrm{x})^{\#}$, a contradiction.

Completion 2.20 Now, we complete the proof of Theorem 2.1 as follows. The possibilities for \bar{G} listed in Lemma 2.18 and not discussed in Lemma 2.19 are precisely those groups which are listed in the nal conclusion (13) of the Classi cation Theorem. For each of these cases, if $x 2 G$ is of odd order, then $\mathbb{e}=C_{G}(x) \neq C_{V}(x) ;$ xi must transitively permute $C_{P}(x)^{\#}$. However $j e_{j} 2$, except in the cases when $\bar{G}=\operatorname{SL}(2 ; 8)$ or $\operatorname{Sz}(32)$ and both x and e have order $\mathrm{p}=3$ or 5 , respectively. Consideration of the 2 -modular representations of these two groups shows that if W is an nontrivial irreducible 2-modular representation of \bar{G} with $\mathrm{C}_{\mathrm{w}}(\mathrm{x}) \mathcal{G} 0$, then $\mathrm{j} \mathrm{C}_{\mathrm{w}}(\mathrm{x}) \mathrm{j}>\mathrm{p}+1$, and so © cannot act transitively on $C_{P}(x)^{\#}$. Thus in all of these cases, we must have $C_{V}(x)=0$ for all $\times 2 \mathrm{G}$ of odd order. Let $\mathrm{H}=\mathrm{G}^{2}$. Thus $\mathrm{H}=\mathrm{G}$ in all cases, except when $\bar{G}=L(2 ; 4)=S_{5}$. Then by the above remarks, H is a CP group and so by the theorem of Bannuscher\{Tiedt [4], the structure of H is as speci ed in the Classi cation Theorem, completing the proof of Theorem 2.1.

3 Proof of Theorem A3

Themain goal of this section isto prove thefollowing proposition which contains our next major result about the Laitinen number a_{G} (cf. Proposition 1.6).

Proposition 3.1 Let G be a nite nonsolvable group. If $\mathrm{a}_{\mathrm{G}}=\mathrm{b}_{\mathrm{G}=\mathrm{G} \text { sol }}$, then either $\mathrm{a}_{\mathrm{G}} \quad 1$ or $\mathrm{a}_{\mathrm{G}}=2$ and $\mathrm{G}=\operatorname{Aut}\left(\mathrm{A}_{6}\right)$ or $\mathrm{P} \mathrm{L}(2 ; 27)$.

By inspection in [11], we see that for $G=\operatorname{Aut}\left(\mathrm{A}_{6}\right), \mathrm{a}_{\mathrm{G}}=2$ corresponding to elements of order 6 and 10 , and for $G=P \quad L(2 ; 27)$, $a_{G}=2$ corresponding to elements of order 6 and 14.
Below, we assume that G is a nite nonsolvable group and we set $H=G^{\text {sol }}$. As we know, we always have $a_{G} \quad b_{G=1}$. We shall analyze the situation where $\mathrm{a}_{\mathrm{G}}=\mathrm{b}_{\mathrm{G}=\mathrm{H}}$. Clearly, in this situation each coset gH meets at most one real conjugacy dass (x) ${ }^{1}$ with $\times 2$ NPP(G).
The proof of Proposition 3.1 will proceed via a sequence of lemmas. As the arguments are very similar to those in Section 2, we shall be a bit sketchy. First, we remark that if $\mathrm{H}=\mathrm{G}$ (which amounts to saying that G is perfect), then $\mathrm{b}_{\mathrm{G}=1} \quad 1$ and there is nothing to prove because $\mathrm{a}_{\mathrm{G}}=0$ (resp., 1) if and only if $b_{G+1}=0$ (resp., 1). So, we may assumethat $\mathrm{H}<\mathrm{G}$. Let S denote the solvable radical of G (i.e., S is the largest normal solvable subgroup of G).

Lemma 3.2 $\mathrm{S} \quad \mathrm{H}$ and $\mathrm{G}=\mathrm{S}=\mathrm{PGL}(2 ; 5), \mathrm{PGL}(2 ; 7), \mathrm{P} \quad \mathrm{L}(2 ; 8), \mathrm{M}_{10}$, $\operatorname{Aut}\left(\mathrm{A}_{6}\right), \mathrm{P} \quad \mathrm{L}(2 ; 27)$ or $\mathrm{PSL}(3 ; 4)$.

Proof Let S_{0} be the solvable radical of H. Set $\bar{G}=G=S_{0}$ and note that as G is nonsolvable, \bar{G} has a subnormal nonabelian simple subgroup $\bar{L} \bar{H}$. By Lemmas 2.5(3) and 2.7, we see that $C_{\bar{G}}(\bar{L})=1$. Hence $\bar{L}=F(\bar{G}) \in \bar{G}$. Then the possibilities for \bar{G} follow from Lemma 2.8. As $\bar{S}=1$, we se that $S_{0}=S$ and the proof is complete

Lemma 3.3 Either $S=1$ or S is a p-group for some prime p.
Proof Suppose that $S \in 1$. Now, by Lemma 2.9, $F(G)$ is a p-group for some prime p. Let $\bar{G}=G \neq F(G)$ and $\bar{L}=F(\bar{G})$. Suppose that \bar{L} is a nonabelian simplegroup. As G has only one nonabelian composition factor by Lemma 3.2, H L, where L is the preimage of \bar{L} in G. Then $S=F(G)$ and therefore S is a p-group, as claimed.

Now, by Lemma 2.12, we may assumethat \bar{L} is a q-group for some prime q $\xi \mathrm{p}$. As $\mathrm{C}_{\overline{\mathrm{G}}}(\overline{\mathrm{L}}) \quad \overline{\mathrm{L}}$, it follows that Aut $(\overline{\mathrm{L}})$ is nonsolvable, whence $\overline{\mathrm{L}}$ has q-rank at least 2. Thus L contains elements of order pq and so every NPP element of H lies in L. Since either p or q is odd, it follows that $H \neq L$ has 2-rank 1. But then by the Brauer \{Suzuki Theorem, $\mathrm{H} \neq$ contains NPP elements, whence so does $\mathrm{H} \backslash \mathrm{L}$, a contradiction.

Now, we wish to prove that $\mathrm{S}=1$. In order to prove it, we assume the contrary and argue to a contradiction. Henceforth, we set $\bar{G}=G=S$ and $\bar{H}=H=S$ (remember S H by Lemma 3.2).

Lemma 3.4 S is either a 2-group or an elementary abelian p-group for some odd prime p , and in the latter case, every NPP element of H has order 2 p .

Proof As $\overline{\mathrm{H}}$ contains a Klein 4-group, we may apply the usual argument to obtain the result.

Lemma 3.5 $\overline{\mathrm{H}}$ is not isomorphic to $\operatorname{PSL}(2 ; 27)$.
Proof Supposethat the contrary claim holds: $\overline{\mathrm{H}}$ is isomorphic to $\mathrm{PSL}(2 ; 27)$. Then H contains an element x of order 14 with $x^{14} z S$. Hence H has no NPP element y with $y^{r} 2 \mathrm{~S}$ for r 2 f2; 3 g . However, as H has 2-rank 2 and 3-rank 3, this contradicts Theorem 2.3 for r Gp.

Lemma 3.6 S is a 2-group and \bar{G} is not isomorphic to M_{10}.
Proof Suppose rst that S is a 2-group and $\bar{G}=M_{10}$. Then every element of $\mathrm{G} \backslash \mathrm{H}$ is a 2-element, whence $\mathrm{b}_{\mathrm{G}=\mathrm{H}} \quad 1$, contrary to hypothesis.
Thus it remains to prove that S is a 2-group. Suppose S is not a 2-group. Then S is an elementary abelian p-group for some odd prime p. Suppose that there is an involution $x 2 \mathrm{G} \backslash \mathrm{H}$. Then by inspection x centralizes a coset Hy of odd order, whence Hx contains NPP dements outside Sx. But then Sx contains no NPP dements, i.e. x inverts S and $H=[H ; x]$ centralizes S, a contradiction. Thus there is no involution in $\mathrm{G} \backslash \mathrm{H}$, and therefore we have the following two possibilities: $\bar{G}=P \quad L(2 ; 8)$ or M_{10}.
Suppose now that $\bar{G}=P \quad L(2 ; 8)$. As \bar{H} contains a Frobenius subgroup of order 56, S must bea 7 -group and H must contain elements of order 14. Thus a 3-element of H acts without xed points on S . But then by Theorem 2.3,
some element $\times 2 \mathrm{G} \backslash \mathrm{H}$ of order 3 must have xed points on S and so Hx contains elements of orders 6 and 21, a contradiction.
Finally suppose that $\bar{G}=M_{10}$. Then \bar{H} contains an A_{4}-subgroup and threfore S is a 3 -group and the NPP elements of H have order 6 . Let t be an involution of H . As H contains only one real G-dass of NPP elements, $\mathrm{C}_{\mathrm{G}}(\mathrm{t})$ permutes transitively the nonidentity elements of $\mathrm{C}_{\mathrm{S}}(\mathrm{t})$. Now $\mathrm{jC}_{\mathrm{G}}(\mathrm{t})=\mathrm{C}_{\mathrm{S}}(\mathrm{t}) \mathrm{j}=16$ and $\mathrm{C}_{\mathrm{s}}(\mathrm{t})$ acts trivially on itself by conjugation. Hence $\mathrm{jC}_{\mathrm{s}}(\mathrm{t}) \mathrm{j}$ 9. Moreover, as H contains elements of order $6, \mathrm{H}$ contains no elements of order 15 . Hence, an element of H of order 5 acts xed point fredy on S , whence $\operatorname{dim}(\mathrm{S})$ is a multiple of 4. By Theorem 2.3, on the other hand, $\operatorname{dim}(\mathrm{S}) 3 \operatorname{dim}\left(\mathrm{C}_{\mathrm{s}}(\mathrm{t})\right)$, whence $\mathrm{jC}_{s}(\mathrm{t}) \mathrm{j}=9$. Let T be a Sylow 2 -subgroup of G with $\mathrm{t} 2 \mathrm{Z}(\mathrm{T})$. As t acts trivially on $\mathrm{C}_{\mathrm{s}}(\mathrm{t}), \mathrm{T} \neq \mathrm{ti}$ must act regularly on the eight elements of $\mathrm{C}_{\mathrm{s}}(\mathrm{t}) \backslash \mathrm{flg}$. But $\mathrm{T}=\mathrm{tti}$ is a dihedral group of order 8 and hence has no such regular action, a nal contradiction.

In Lemmas $3.7\left\{3.11\right.$ below, x will bean element of H of order 3 with $U=C_{S}(x)$ and with $\mathrm{jUj}=2^{a}>1$, if possible. Set $\mathbb{C}=\mathrm{C}_{\mathrm{G}}(\mathrm{x}) \neq \mathrm{U}$; xi .

Lemma 3.7 U is elementary abelian and e transitively permutes the set $U x \backslash f \times g$ of cardinality $2^{a}-1$. Moreover no dief H-factor in S is a trivial $\overline{\mathrm{H}}$-module.

Proof Note that $\mathrm{jH}=\mathrm{Sj}$ is divisible by at least two odd primes and H has NPP elements of order $2 p$ for at most one odd prime p. Therefore, no chief H -factor in S is a trivial $\overline{\mathrm{H}}$-module.

If $\mathrm{U}=1$, the lemma holds trivially. Suppose $\mathrm{U} \in 1$. As all NPP elements of H have order 6 , all elements of U have order 2 and so U is elementary abelian. Moreover all elements of $U x \backslash f \times g$ are G-conjugate, hence $C_{G}(x)$-conjugate and since HJ ; xi is contained in the kernel of the conjugation action on $U x$, the result follows.

Lemma 3.8 $\overline{\mathrm{G}}$ is not isomorphic to $\mathrm{PGL}(2 ; 5)$.
Proof Suppose $\bar{G}=P G L(2 ; 5) . A s b_{G=1}=2, \mathrm{H}$ must contain NPP elements. By using Lemma 3.7, we obtain that every chief H -factor of S is isomorphic to a 4-dimensional irreducible $\mathrm{H}=\mathrm{S}$-module. Thus if y 2 H of order 5, we have $C_{S}(y)=1$. Hence H must have elements of order 6 and so with x and U as above, $U \in 1$. Indeed some chief H -factor of S , say V , is a permutation module for $\overline{\mathrm{H}}$ with $\mathrm{j} \mathrm{C}_{\mathrm{V}}(\mathrm{x}) \mathrm{j}=4$. Thus jUj 4. But $\mathrm{j} \mathrm{e}_{\mathrm{j}}=2$ and so © does not act transitively on $U \mathrm{x} \backslash \mathrm{fxg}$, contrary to Lemma 3.7.

Lemma 3.9 $\overline{\mathrm{H}}$ is not isomorphic to $\mathrm{PSL}(2 ; 7)$.
Proof Suppose that $\overline{\mathrm{H}}=\mathrm{PSL}(2 ; 7)$. As e is a 2-group acting transitively on the involutions of U, jUj 2. According to [23, 2.8.10], the nontrivial irreducible $\mathrm{GL}(3 ; 2)$-modules are the standard 3 -dimensional module V , its dual V and the Steinberg module, which is the nontrivial constituent of $\mathrm{V} \otimes \mathrm{V}$. As a 3-element of GL(3;2) has 1-dimensional xed point space on V and V and 2-dimensional xed point space on the Steinberg module it follows that S has a unique irreducible composition factor and this has dimension 3, i.e. $\mathrm{S}=\mathrm{V}$ or V as $\overline{\mathrm{H}}$-module But then, as $\mathrm{C}_{\mathrm{G}}(\mathrm{S})=\mathrm{S}$ and $\mathrm{Aut}(\mathrm{S})=\mathrm{H}=\mathrm{S}$, we obtain that $\mathrm{G}=\mathrm{H}$, a contradiction.

Lemma 3.10 \bar{H} is not isomorphic to $\operatorname{PSL}(2 ; 8)$.
Proof Suppose $\bar{H}=P S L(2 ; 8)$. Let y $2 G \backslash H$ be an element of order 3 . Then yS lies in a complement of a Frobenius subgroup of $\mathrm{G} \Rightarrow$ s of order 21. Hence there exists ty 2 Hy of order 6 with (ty) ${ }^{3} 2 \mathrm{~S}$. However there also exists sy 2 Hy of order 6 with (sy) ${ }^{3} 2 \mathrm{H} \backslash \mathrm{S}$, a contradiction.

Lemma 3.11 $\overline{\mathrm{H}}$ is not isomorphic to $\mathrm{PSL}(2 ; 9)$ or $\operatorname{PSL}(3 ; 4)$.
Proof Suppose $\bar{H}=\operatorname{PSL}(2 ; 9)$ or $\operatorname{PSL}(3 ; 4)$. Then either $\bar{G}=\operatorname{Aut}\left(\mathrm{A}_{6}\right)$ or $\bar{H}=\operatorname{PSL}(3 ; 4)$ with $j G: H j=2$. In either case, $j \mathbb{C}_{j}=6$. Again as \mathbb{C}^{e} acts transitively on the involutions of U, we conclude that jUj 4. Let E be a Sylow 3-subgroup of H . Then $\mathrm{E}=\mathbb{Z}_{3} \quad \mathbb{Z}_{3}$ and $\mathrm{N}_{\mathrm{G}}(\mathrm{E})$ transitively permutes the elements of E of order 3 . Hence $j C_{T}(y) j 4$ for all y $2 E \backslash f 1 g$ and so, by Theorem 2.3, jSj $\quad 2^{8}$.
Suppose that $\bar{H}=P S L(3 ; 4)$. Then $G \backslash H$ contains an element γ such that ∇ has order 2 and centralizes $N_{H}(\bar{E})$ and $N_{\bar{G}}(\bar{E})=\overline{E Q}$ hiv for somequaternion group Q of order 8 transitively permuting the nonidentity elements of E . Now $\overline{\mathrm{EQ}}$ acts faithfully on $\mathrm{C}_{s}(\mathrm{y})$ by Thompson's A B Lemma (see [22, 11.7]). However, by Cli ord Theory, a faithful EQ module must have dimension at least 8 . As dimS 8 , this would force $C_{s}(\gamma)=S$, which is absurd. Hence \bar{G} is isomorphic to $\operatorname{Aut}\left(\mathrm{A}_{6}\right)$. Again $\mathrm{N}_{\overline{\mathrm{G}}}(\overline{\mathrm{E}})$ contains a subgroup $\overline{\mathrm{EQ}}$ with $\overline{\mathrm{Q}}=\mathrm{Q}_{8}$, as above. Therefore $\operatorname{dim}(S)=8$ and $C_{S}(E)=1$, and S is a faithful irreducible $N_{G}(E)$-module. In particular, E acts nontrivially on $U=C_{T}(x)=\mathbb{Z}_{2} \quad \mathbb{Z}_{2}$ and so UE is isomorphic to $A_{4} \mathbb{Z}_{3}$. As \bar{G} contains a subgroup isomorphic to S_{6}, by inspection we see that $N_{G}(E)$ contains an involution t centralizing x such that $E \not t i$ is isomorphic to $S_{3} \mathbb{Z}_{3}$. Then UE tti $=S_{4} \quad \mathbb{Z}_{3}$ with $\times 2 Z$ (UE tti). But then the coset Ht contains elements of order 6 and 12, whence $a_{G}>b_{G=1}$, contrary to assumption.

Completion 3.12 In the case where $\mathrm{H}=\mathrm{G}^{\text {sol }}<\mathrm{G}$, we have studied $\mathrm{G}=\mathrm{S}$, where S is the solvable radical of G . Having exhausted all possible structures for $G=S$, we conclude that $S=1$ and Proposition 3.1 may be readily veri ed. In fact, as $S=1$, the possibilities for G are enumerated in Lemma 3.2. In the case where $\mathrm{H}=\mathrm{PSL}(2 ; 5), \operatorname{PSL}(2 ; 7), \operatorname{PSL}(2 ; 8), \operatorname{PSL}(2 ; 9)$ or $\operatorname{PSL}(3 ; 4)$, every element of H has prime power order. Hence, $b_{G=H} \quad 1$ for every G in Lemma 3.2, unless $\mathrm{G}=\operatorname{Aut}\left(\mathrm{A}_{6}\right)$ or $\mathrm{P} \mathrm{L}(2 ; 27)$. As the two exceptional groups arecovered by the comments following thestatement of Proposition 3.1, wehave completed the proof of Proposition 3.1.

Now, by using the Laitinen number a_{G}, we are able to determine completely the cases where $\mathrm{IO}\left(\mathrm{G} ; \mathrm{G}^{\text {sol }}\right) \in 0$ for nite nonsolvable groups G.

Corollary 3.13 Let G bea nite nonsolvable group. Then
(1) $\mathrm{IO}\left(\mathrm{G} ; \mathrm{G}^{\text {sol }}\right)=0$ for a_{G}

1,
(2) $I \mathrm{O}\left(\mathrm{G} ; \mathrm{G}^{\text {sol }}\right) \in 0$ for $\mathrm{a}_{\mathrm{G}} \quad 2$, except when $\mathrm{G}=\operatorname{Aut}\left(\mathrm{A}_{6}\right)$ or $\mathrm{P} \mathrm{L}(2 ; 27)$,
(3) $\mathrm{I} \mathrm{O}\left(\mathrm{G} ; \mathrm{G}^{\mathrm{sol}}\right)=0$ and $\mathrm{a}_{\mathrm{G}}=2$ when $\mathrm{G}=\operatorname{Aut}\left(\mathrm{A}_{6}\right)$ or $\mathrm{P} \mathrm{L}(2 ; 27)$.

Proof Set $\mathrm{H}=\mathrm{G}^{\text {sol }}$. By the Second Rank Lemma in Section 0.4, weknow that rkIO $(G ; H)=a_{G}-b_{G=1}$. If $a_{G} \quad 1$, then $\mathrm{a}_{\mathrm{G}}=\mathrm{b}_{\mathrm{G}=\mathrm{H}}$, and thus IO(G;H)=0. In turn, if $a_{G} \quad 2$, then except when $G=\operatorname{Aut}\left(A_{6}\right)$ or $P \quad L(2 ; 27), a_{G}>b_{G H}$ by Proposition 3.1, and thus I $\mathrm{O}(\mathrm{G} ; \mathrm{H}) \in 0$. In the exceptional cases, we know that $\mathrm{a}_{\mathrm{G}}=\mathrm{b}_{\mathrm{G}=1}=2$, and thus $\mathrm{IO}(\mathrm{G} ; \mathrm{H})=0$.

Proof of Theorem A3 Let G bea nite nonsolvable group. We shall prove that $\mathrm{LO}(\mathrm{G})=0$ for $\mathrm{a}_{\mathrm{G}} \quad 1$, and $\mathrm{LO}(\mathrm{G}) \in 0$ for $\mathrm{a}_{\mathrm{G}} \quad$ 2, except when $\mathrm{G}=\operatorname{Aut}\left(\mathrm{A}_{6}\right)$ or $\mathrm{P} \quad \mathrm{L}(2 ; 27)$, and in the exceptional cases, we shall prove that $L O(G)=0$ (we already know that $\mathrm{a}_{\mathrm{G}}=2$).
By the Subgroup Lemma in Section 0.4, the following holds:

$$
\mathrm{IO}\left(\mathrm{G} ; \mathrm{G}^{\mathrm{sol}}\right) \quad \mathrm{LO}(\mathrm{G}) \quad \mathrm{IO}\left(\mathrm{G} ; \mathrm{O}^{\mathrm{P}}(\mathrm{G})\right) \quad \mathrm{IO}(\mathrm{G} ; \mathrm{G})
$$

for any prime p. If $a_{G} 1$, then $I O(G ; G)=0$ by the First Rank Lemma in Section 0.1 , and thus $\operatorname{LO}(G)=0$. If $\mathrm{a}_{\mathrm{G}} \quad 2$, then except when $G=\operatorname{Aut}\left(\mathrm{A}_{6}\right)$ or P L(2; 27), Corollary 3.13 asserts that $I O\left(G ; G^{50 l}\right) \in 0$, and thus $L O(G) \in 0$. For $G=\operatorname{Aut}\left(A_{6}\right), O^{2}(G)=A_{6}=G^{\text {sol }}$ (and $O^{P}(G)=G$ for any prime $p \in 2$). Hence $\mathrm{IO}\left(\mathrm{G} ; \mathrm{O}^{2}(\mathrm{G})\right)=0$ by Corollary 3.13 , and thus $\mathrm{LO}(\mathrm{G})=0$.
For $G=P \quad L(2 ; 27), O^{3}(G)=P S L(2 ; 27)=G^{\text {sol }}$ (and $O^{P}(G)=G$ for any prime p $\in 3$). Hence $I \mathrm{O}\left(\mathrm{G} ; \mathrm{O}^{3}(\mathrm{G})\right)=0$ by Corollary 3.13 , and thus again $L O(G)=0$, completing the proof.

4 Proof of the Realization Theorem

In this section, we shall prove the Realization Theorem stated in Section 0.2; i.e, we shall prove that $\operatorname{LO}(\mathrm{G}) \quad \mathrm{LSm}(\mathrm{G})$ for any nite Oliver gap group G. The proof follows from a number of results which we collect below. The key results are obtained in Theorems 4.3 and 4.4.
Let G bea nite group. Following [32], consider the real G-module

$$
V(G)=(\mathbb{R}[G]-\mathbb{R})-\underbrace{M}_{\text {pjjGj }}\left(\mathbb{R}[G]^{O^{p}(G)}-\mathbb{R}\right)
$$

where $\mathbb{R}[\mathrm{G}]$ denotes the real regular G -module, $\mathbb{R}[\mathrm{G}]^{\mathrm{O}^{\mathrm{P}}(\mathrm{G})}$ has the canonical action of G, and G acts trivially the subtracted summands \mathbb{R}. The family of the isotropy subgroups in $V(G) \backslash f 0 g$ consists of subgroups H of G such that H is not large in G ; i.e, $\mathrm{H} Z \mathrm{Z}$ (G) (cf. [32]). In particular, $\mathrm{V}(\mathrm{G})$ is L -free

By arguing as in [40, the proof of Theorem 0.3] in the case G is an Oliver group, we obtain the following theorem which allows us to construct Oliver equivalent real L-free G-modules (cf. [45, Theorem 0.4]).

Theorem 4.1 (cf. [40]) Let G bea nite Oliver group. Let $\mathrm{V}_{1} ;::: ; \mathrm{V}_{\mathrm{k}}$ be real L-free G-modules all of dimension d 0 , such that $V_{i}-V_{j} 2 I O(G)$ for all 1 i;j k. Set $\mathrm{n}=\mathrm{d}+$ ' $\operatorname{dimV}(\mathrm{G})$ for an integer '. If ' is su ciently large, there exists a smooth action of G on the n-disk D with $D^{G}=f x_{1} ;::: ; x_{k} g$ and $\mathrm{T}_{\mathrm{x}_{\mathrm{i}}}(\mathrm{D})=\mathrm{V}_{\mathrm{i}} \quad \mathrm{V}(\mathrm{G})$ for all 1 i k .

By using equivariant surgery developed in [2], [3], [31], [32], [36]\{[38], so called \deleting\{inserting" theorems are obtained in [31, Theorem 2.2] for any nite nonsolvable group G, and in [38, Theorems 0.1 and 4.1] for any nite Oliver group G . Under suitable conditions, these theorems allow us to modify a given smooth action of G on a sphere S (resp., disk D) with xed point set F, in such a way that the resulting smooth action of G on S (resp., D) has a xed point set obtained from F by deleting or inserting a number of connected components of F. We restate only the \deleting part" of [38, Theorem 0.1] in a modi ed form presented in [41, Theorem 18], where the G-orientation condition of [38] is replaced by the weaker P -orientation condition of [41].

Let G bea nitegroup. Then a real G -module V is called G -oriented if V^{H} is oriented for each $\mathrm{H} \quad \mathrm{G}$, and the transformation $\mathrm{g}: \mathrm{V}^{\mathrm{H}}!\mathrm{VH}^{\mathrm{H}}$ is orientation preserving for each $\mathrm{g} 2 \mathrm{~N}_{\mathrm{G}}(\mathrm{H})$. More generally, a real $\mathrm{G}-\mathrm{module} \mathrm{V}$ is called P -oriented if V^{P} is oriented for each $\mathrm{P} 2 \mathrm{P}(\mathrm{G})$, and also the transformation $\mathrm{g}: \mathrm{V}^{\mathrm{P}}!\mathrm{V}^{\mathrm{P}}$ is orientation preserving for each $\mathrm{g} 2 \mathrm{~N}_{\mathrm{G}}(\mathrm{P})$.

For example, the reali cation $r(\mathrm{U})$ of a complex G -module U is G -oriented. If V is a real G -module, then the G -module $2 \mathrm{~V}=\mathrm{V} \quad \mathrm{V}$ is the reali cation of the complexi cation of V , and thus 2 V is G -oriented.

For a smooth manifold F with the trivial action of G , a real G -vector bundle over F is called L-fre if each ber of is L-free (as a real G-module).

Let M be a smooth G-manifold. We denote by $\mathrm{F}_{\text {iso }}(\mathrm{G} ; \mathrm{M}$) the family of the isotropy subgroups G_{x} of G occurring at points $\times 2 \mathrm{M}$. For $\mathrm{H} \quad \mathrm{G}$, the set M^{H} (resp., $M^{=H}$) consists of points $\times 2 M$ with $G_{x} H$ (resp., $G_{x}=H$). In general, M^{H} (resp., $\mathrm{M}^{=\mathrm{H}}$) may have connected components of di erent dimensions. Henceforth, by $\operatorname{dim} M^{H}$ (resp., $\operatorname{dimM}{ }^{=H}$) we mean the maximum of the dimensions of the connected components of M^{H} (resp., $\mathrm{M}=\mathrm{H}$).

We denote by $P C(G)$ the family of subgroups H of G such that $H=P$ is cyclic for some $P \unlhd H$ with $P 2 P(G)$. Clearly, $P(G) \quad P C(G)$. Moreover, if G is a nite Oliver group, then $P C(G) \backslash L(G)=\varnothing$, and thus $P(G) \backslash L(G)=\varnothing$ (cf. [32]). The family PC(G) was considered for the rst time by Oliver [43], and it was denoted by $\mathrm{G}^{1}(\mathrm{G})$.
Now, we state an equivariant surgery result which allows us to construct smooth actions of G on spheres with prescribed xed point sets. The result is a special case of [41, Theorem 18] (cf. [41, Theorem 36]).

Theorem 4.2 (cf. [41, Theorem 18]) Let G be a nite Oliver group acting smoothly on a homotopy sphere. Let F bea union of connected components of the xed point set G. Suppose that the following ve conditions hold.
(1) $\operatorname{dim}^{\mathrm{P}}>2 \mathrm{dim}^{\mathrm{H}}$ for all subgroups $\mathrm{P}<\mathrm{H} \quad G$ with $\mathrm{P} 2 \mathrm{P}(\mathrm{G})$.
(2) $\operatorname{dim}^{\mathrm{P}} 5$ and $\operatorname{dim}=\mathrm{H} \quad 2$ for any $\mathrm{P} 2 \mathrm{P}(\mathrm{G})$ and $\mathrm{H} 2 \mathrm{PC}(\mathrm{G})$.
(3) P is simply connected for any $P 2 P(G)$.
(4) The tangent G-module $T_{x}()$ is P-oriented for some $\times 2 \mathrm{~F}$.
(5) The equivariant normal bundle F is L-fre.

Then there exists a smooth action of G on the sphere S of the same dimension as , and such that $S^{G}=F$ and $F S=F \quad$. Moreover, $\operatorname{dim}^{P}=\operatorname{dim}{ }^{P}$ for each P 2 P(G).

Let G be a nite group. Then a pair $(P ; H)$ of subgroups P and H of G is called proper if $P 2 P(G)$ and $P<H \quad G$. Following [42], for a real G-module V and a proper pair $(\mathrm{P} ; \mathrm{H})$ of subgroups of G , we set

$$
d V(P ; H)=\operatorname{dim} V^{P}-2 \operatorname{dim} V^{H}:
$$

A real G-module V is called a gap G-module if $\mathrm{d}_{\mathrm{V}}(\mathrm{P} ; \mathrm{H})>0$ for each proper pair $(\mathrm{P} ; \mathrm{H})$ of subgroups of G . Therefore, by the de nition of gap group recalled in Section 0.2, a nite group G is a gap group if and only if $P(G) \backslash L(G)=\varnothing$ and G has a real L-free gap G-module.

Now, by using Theorems 4.1 and 4.2, we obtain a result for actions on spheres similar to that one obtained in Theorem 4.1 for actions on disks.

Theorem 4.3 Let G bea nite Oliver gap group. Let V bea real P -oriented L -free gap G -module containing $\mathrm{V}(\mathrm{G})$ as a direct summand. Let $\mathrm{V}_{1} ;:: ;$; V_{k} be real P -oriented L -free G -modules all of dimension $\mathrm{d} \quad 0$, and such that $V_{i}-V_{j} 2 I O(G)$ for all $1 \quad i ; j \quad k$. Set $n=d+{ }^{\prime} \operatorname{dim} V$ for some integer '. If ' is su ciently large, there exists a smooth action of G on the n-sphere S with $S^{G}=f x_{1} ;::: ; \mathrm{x}_{\mathrm{k}} \mathrm{g}$ and $\mathrm{T}_{\mathrm{x}_{\mathrm{i}}}(\mathrm{S})=\mathrm{V}_{\mathrm{i}} \quad$ ' V for all 1 i k .

Proof Let $\mathrm{S}(\mathrm{G})$ be the family of all subgroups of G . By [32], we know that $F_{\text {iso }}(G ; V(G) \backslash f 0 g)=S(G) \backslash L(G)$ and $P C(G) \backslash L(G)=\varnothing$. Therefore

$$
\text { PC(G) } \quad F_{\text {iso }}(G ; V(G) \backslash f 0 g):
$$

As V contains $\mathrm{V}(\mathrm{G})$ as a direct summand, $\operatorname{dimV}=\mathrm{H} \quad \operatorname{dimV}(\mathrm{G})=\mathrm{H} \quad 1$ for each H 2 PC(G). Now, for each $i=1 ;::: ; k$, consider the invariant unit sphere

$$
i=S\left(V_{i} \quad \mathrm{~V} \quad \mathbb{R}\right) ;
$$

where G acts trivially on \mathbb{R}. The xed point set ${ }_{i}^{G}$ consists of exactly two points, say a_{i} and b, at which $T_{a_{i}}(i)=T_{b}(i)=V_{i} \quad$ ' V. Set $F_{i}=f b g$. We note that $\mathrm{n}=\mathrm{d}+{ }^{\prime} \operatorname{dim} \mathrm{V}=\operatorname{dim} \mathrm{V}_{\mathrm{i}}+{ }^{\prime} \operatorname{dim} \mathrm{V}=\operatorname{dim} \quad \mathrm{i}$.

We claim that the conditions (1) $\{(5)$ in Theorem 4.2 all hold for the sphere i, provided ' is su ciently large. As dv $(\mathrm{P} ; \mathrm{H})>0$, we can choose ' so that

$$
\cdot d_{V}(P ; H)>-d_{V_{i}}(P ; H)
$$

for each proper pair $(\mathrm{P} ; \mathrm{H})$ of subgroups of G . Then

$$
d v_{i} \cdot v(P ; H)=d v_{i}(P ; H)+d_{v}(P ; H)>d v_{i}(P ; H)-d_{v_{i}}(P ; H)=0 ;
$$

and thus $\operatorname{dim}{ }_{i}^{P}>2 \mathrm{dim}{ }_{i}^{H}$, proving that the condition (1) holds. As dimV $=\mathrm{H} \quad 1$ for each $\mathrm{H} 2 \mathrm{PC}(\mathrm{G})$, we see that the following holds:

and similarly $\operatorname{dim}{ }_{i}=\mathrm{H} \quad$ ' $\operatorname{dimV}=\mathrm{H} \quad$ '. Hence, if ' 5, the condition (2) holds and the sphere $\quad P$ is simply connected for each P $2 P(G)$, proving that the condition (3) also holds. As V_{i} and V are P-oriented and $T_{b}\left(i_{i}\right)=V_{i}$ ' V,
the condition (4) holds. Similarly, as V_{i} and V are L-free and F_{i} i has just one ber V_{i} ' V , the condition (5) holds. As a result, the conditions (1) $\{(5)$ in Theorem 4.2 all hold, proving the daim.

Thus, we may apply Theorem 4.2 to obtain a smooth action of G on a copy S_{i} of the n-sphere such that $S_{i}^{G}=F_{i}=f b g$ and $T_{b}\left(S_{i}\right)=V_{i} \quad$ ' V, provided ' is su ciently large.

As $V_{i}-V_{j} 2 I O(G)$ for all $1 \quad i ; j \quad k$, Theorem 4.1 asserts that there exists a smooth action of G on the n-disk D_{0} such that $D_{0}^{G}=f x_{1} ;::: ; x_{k} g$ and $\mathrm{T}_{\mathrm{x}_{\mathrm{i}}}\left(\mathrm{D}_{0}\right)=\mathrm{V}_{\mathrm{i}}$ ' V for all 1 i k , provided' is su ciently large

The equivariant double $S_{0}=@ D_{0} \quad[0 ; 1]$) of D_{0} is a copy of the n-sphere equipped with a smooth action of G such that $S_{0}^{G}=f x_{1} ; y_{1} ;::: ; x_{k} ; y_{k} g$ and

$$
\mathrm{T}_{\mathrm{x}_{\mathrm{i}}}\left(\mathrm{~S}_{0}\right)=\mathrm{T}_{\mathrm{y}_{\mathrm{i}}}\left(\mathrm{~S}_{0}\right)=\mathrm{V}_{\mathrm{i}} \quad \prime \mathrm{~V}=\mathrm{T}_{\mathrm{b}}\left(\mathrm{~S}_{\mathrm{i}}\right)
$$

for all 1 i k. Now, consider the equivariant connected sum

$$
\mathrm{S}=\mathrm{S}_{0} \# \mathrm{~S}_{1} \#::: \# \mathrm{~S}_{\mathrm{k}}
$$

of the n -spheres $\mathrm{S}_{0} ; \mathrm{S}_{1} ;::: ; \mathrm{S}_{\mathrm{k}}$ formed by connecting su ciently small invariant disk neighborhoods of the points $y_{i} 2 S_{0}$ and $b 2 S_{i}$ for all $1 \quad \mathrm{i}$. Then S is the n-sphere with a smooth action of G such that $S^{G}=f x_{1} ;::: ; x_{k} g$ and $\mathrm{T}_{\mathrm{x}_{\mathrm{i}}}(\mathrm{S})=\mathrm{V}_{\mathrm{i}} \quad$ V for all 1 i k .

We wish to remark that by using the methods of [38], [39], [40], [45], and [47], we can prove more general results than that presented in Theorem 4.3. In fact, the results of [41, Theorems 27 and 28] show that each isolated xed point in Theorem 4.3 can be replaced by a smooth manifold which is simply connected or stably parallelizable. However, instead of using [41], we decided to give an independent proof of Theorem 4.3 dueto simpli cations which occur in the case where the xed point set is a discrete space.

Let G bea nite group. A proper pair ($\mathrm{P} ; \mathrm{H}$) of subgroups of G is called odd if $\mathrm{jH}: \mathrm{Pj}=\mathrm{jH} \mathrm{O}^{2}(\mathrm{G}): \mathrm{PO}^{2}(\mathrm{G}) \mathrm{j}=2$ and $\mathrm{PO}^{\mathrm{P}}(\mathrm{G})=\mathrm{G}$ for all odd primes p . Moreover, $(\mathrm{P} ; \mathrm{H}$) is called even if ($\mathrm{P} ; \mathrm{H}$) is not odd.

It follows from [32, Theorem 2.3] that for a proper pair ($\mathrm{P} ; \mathrm{H}$) of subgroups of a nite group G , the following holds:
(1) $d_{V(G)}(P ; H)=0$ when $(P ; H)$ is odd, and
(2) $d_{V(G)}(P ; H)>0$ when $(P ; H)$ is even.

Recall that by de nition a real G-module V is a gap G-module if $d_{V}(P ; H)>0$ for each proper pair $(P ; H)$ of subgroups of G. If $O^{p}(G) \in G$ and $O^{q}(G) \in G$ for two distinct odd primes p and q, or $\mathrm{O}^{2}(\mathrm{G})=\mathrm{G}$, then any proper pair $(\mathrm{P} ; \mathrm{H})$ of subgroups of G is even by [42], and thus $\mathrm{V}(\mathrm{G})$ is a gap G -module.

In order to ensure(stably) the P -orientability of any real G-modules $\mathrm{V}_{1} ;:: ; ; \mathrm{V}_{\mathrm{k}}$ satisfying the condition that $V_{i}-V_{j} 2 I O(G)$, we use thefollowing lemma whose proof is given at the end of this section (cf. [41, Lemma 15]).

Key Lemma Let G bea nite group. Let U and V betwo real G-modules such that $U-V 2 I O(G)$. Then the real G-module $U \quad V$ is P-oriented.

The Key Lemma allows us to obtain the following modi cation of Theorem 4.3, which we will use to prove the Realization Theorem stated in Section 0.2.

Theorem 4.4 Let G be a nite Oliver gap group and let $\mathrm{V}_{1} ;::: ; \mathrm{V}_{\mathrm{k}}$ be real L-free G-modules with di erences $V_{i}-V_{j} 2 I O(G)$ for all $1 \quad i ; j k$. Then there exists a smooth action of G on a sphere S such that $S^{G}=f x_{1} ;:: ; ; x_{k} g$ and $T_{x_{i}}(S)=V_{i} \quad W$ for all $1 \quad i \quad k$ and some real L-free G-module W. Moreover, S^{P} is connected for each P $2 \mathrm{P}(\mathrm{G})$.

Proof As G is a gap group, there exists a real L-free gap G-module U and so, in particular, $d_{u}(P ; H)>0$ for each proper pair $(P ; H)$ of subgroups of G. Set $\mathrm{V}=2 \mathrm{U} \quad 2 \mathrm{~V}(\mathrm{G})$. As $\mathrm{d}_{\mathrm{V}(\mathrm{G})}(\mathrm{P} ; \mathrm{H}) \quad 0$ by [32, Theorem 2.3]

$$
d_{V}(P ; H)=d_{2 U} \quad 2 V(G)(P ; H)=2 d_{U}(P ; H)+2 d_{(G)}(P ; H)>0 ;
$$

proving that V is a gap G -module Clearly, V is P -oriented, and V is L -fre as so are U and $\mathrm{V}(\mathrm{G})$. Moreover, V contains $\mathrm{V}(\mathrm{G})$ as a direct summand.

Let V_{0} be one of the G-modules $V_{1} ;::: ; \mathrm{V}_{\mathrm{k}}$. So, by assumption, the di erence $V_{i}-V_{0}$ is in IO(G) for each 1 i k, and thus $V_{i} \quad V_{0}$ is P-oriented by the Key Lemma. Clearly, each G-module $V_{i} V_{0}$ is L-free. Again by assumption, $\left(V_{i} \quad V_{0}\right)-\left(V_{j} \quad V_{0}\right) 2 I O(G)$ for all $1 \quad i ; j \quad k$.
Now, we may apply Theorem 4.3 to conclude that there exists a smooth action of G on a sphere S such that $S^{G}=f x_{1} ;::: ; x_{k} g$ and $T_{x_{i}}(S)=V_{i} \quad V_{0} \quad$ ' V for all 1 i k, where' is some su ciently large integer. Set $W=V_{0} \quad$ ' V. Then W is L-free. Moreover, $\operatorname{dimW}^{P}>0$ for each P 2 P(G), as W contains $\mathrm{V}(\mathrm{G})$ as a direct summand. By Smith theory, S^{P} has \mathbb{Z}_{p}-homology of a sphere for any p-subgroup P of G. By the Slice Theorem, $\operatorname{dimS}^{P} \quad \operatorname{dimW}^{P}>0$ and thus S^{P} is connected for each $P 2 P(G)$.

Proof of the Realization Theorem Let G be a nite Oliver gap group. We shall prove that LO(G) LSm(G). So, take an element U-V 2 LO(G), the di erence of two real L-free G-modules U and V with $U-V 2$ IO(G). Then Theorem 4.4 asserts that there exists a smooth action of G on a sphere S such that $S^{G}=f x ; y g$ for two points x and y at which $T_{x}(S)=U \quad W$ and $\mathrm{T}_{\mathrm{y}}(\mathrm{S})=\mathrm{V} \quad \mathrm{W}$ for some real L -free G-module W , and S^{P} is connected for each P $2 P(G)$. In particular, the action of G on S satis es the 8-condition. Consequently, the G-modules U W and V W areLaitinen\{Smith equivalent, and thus

$$
U-V=\left(\begin{array}{lll}
U & W
\end{array}\right)-\left(\begin{array}{ll}
V & W
\end{array}\right) 2 L S m(G) ;
$$

completing the proof.
In order to obtain Theorem 4.4 from Theorem 4.3 we have used the Key Lemma asserting that given two real G-modules U and V such that $\mathrm{U}-\mathrm{V} 2 \mathrm{IO}(\mathrm{G})$, the G -module U V is P -oriented, where G is an arbitrary nite group. By using some deep topological results about the existence of speci c group actions, a proof of the assertion is presented in [41, Lemma 15]. In the remaining part of this section, we prove the Key Lemma using only algebraic arguments.

Lemma 4.5 Let G be a nite group and let $T=h t i$ be the cydic subgroup of G generated by an element t 2 G of 2-power order. Let U and V be two real G-modules of the same dimension. If $\operatorname{dim} U^{\top} \operatorname{dimV}^{\top}(\bmod 2)$, then the determinants of the transformations $\mathrm{t}: \mathrm{U}!\mathrm{U}$ and $\mathrm{t}: \mathrm{V}$! V agree, $\operatorname{det}\left(\mathrm{tj}_{\mathrm{u}}\right)=\operatorname{det}\left(\mathrm{t}_{\mathrm{j}}\right)$.

Proof If W is a 2-dimensional irreduciblereal T-module then the eigenvalues for t on W form a complex conjugate pair and so $\operatorname{det}\left(\mathrm{t}_{\mathrm{w}}\right)=1$.
Let m_{U} and m_{V} be the dimensions of the (-1)-eigenspace for t on U and V, respectively. Clearly, the hypothesis that $\operatorname{dimU}^{\top} \operatorname{dimV}^{\top}(\bmod 2)$ implies that $m_{U} \quad m_{V}(\bmod 2)$. Therefore

$$
\operatorname{det}\left(\operatorname{tj}_{u}\right)=(-1)^{m_{U}}=(-1)^{m_{v}}=\operatorname{det}\left(\mathrm{tj}_{v}\right) ;
$$

as claimed.
The next lemma is used in an inductive step of the proof of the Key Lemma.
Lemma 4.6 Let G be a nite group such that $G=P T$ for some normal p-subgroup P (p odd) and some cyclic 2-subgroup $T=h t i$. Let U and V be two non-zero real G -modules with $\mathrm{U}^{\mathrm{G}}=\mathrm{V}^{\mathrm{G}}=\mathrm{f} 0 \mathrm{~g}$. If $\mathrm{U}=\mathrm{V}$ as P -modules, then the determinants of the transformations $t: U!U$ and $t: V!V$ agree, $\operatorname{det}\left(\mathrm{tj}_{\mathrm{u}}\right)=\operatorname{det}\left(\mathrm{tj}_{\mathrm{v}}\right)$.

Proof We proceed by induction on $\mathrm{jPj}+\operatorname{dimU}$. By assumption, $\mathrm{U}=\mathrm{V}$ as P-modules, and thus dimU $=\operatorname{dimV}$. Therefore, by Lemma 4.5, it will su ce to prove that the congruence

$$
\operatorname{dim} U^{\top} \quad \operatorname{dim} V^{\top} \quad(\bmod 2)
$$

occurring in Lemma 4.5 holds. Clearly, if $P=1$, then $\operatorname{dimU}^{\top}=\operatorname{dimV}^{\top}=0$ by hypothesis, and we are done

Suppose now that PG1. Let K be the kernel of the P-action on U (and V). If $K \in 1$, we are done by induction in $G=K$. Therefore we may assume that $K=1$. Let E be a minimal normal subgroup of G with $E \quad P$. Supposethat $\operatorname{dim} U^{\mathrm{E}}>0$. Then $\mathrm{U}^{\mathrm{E}}=\mathrm{V}^{\mathrm{E}}$ and $\mathrm{U}-\mathrm{U}^{\mathrm{E}}=\mathrm{V}-\mathrm{V}^{\mathrm{E}}$ as P -modules and all four of these are G-modules. Hence induction yieds that $\operatorname{det}\left(\mathrm{t}_{\mathrm{U}_{\mathrm{E}}}\right)=\operatorname{det}^{\left(\mathrm{t}_{\mathrm{V}_{\mathrm{E}}}\right)}$ and $\operatorname{det}\left(\mathrm{tj}_{\mathrm{U}_{-U^{E}}}\right)=\operatorname{det}\left(\mathrm{t}_{\mathrm{V}_{V-V E}}\right)$, and we are done
Therefore we may assume that $\operatorname{dimU}^{\mathrm{E}}=\operatorname{dimV}^{\mathrm{E}}=0$. Now, if $\mathrm{E} G \mathrm{P}$, we are done by induction in the group ET. As a result, we may assume that P is an elementary abelian p -group and that P is a minimal normal subgroup of G . Also, $\operatorname{dim} U^{P}=\operatorname{dimV}^{P}=0$. If $\mathrm{t}^{0} 2 \mathrm{~T}$, then the centralizer $\mathrm{C}_{\mathrm{P}}\left(\mathrm{t}^{9}\right)$ is normal in G, hence is 1 or P. As a result, either $G=P \quad T$ is cyclic or the center $Z=Z(G)$ is a proper subgroup of T and the quotient $G=Z$ is a Frobenius group with kernel $\mathrm{PZ}=\mathrm{Z}$ and complement $\mathrm{T}=\mathrm{Z}$.
By [27, Chapter VII, Theorem 1.18], if W is an irreducible $\mathbb{R}[G]-m o d u l e, ~ t h e n ~$ there are the following two possibilities for the $\mathbb{C}[G]$-module $W \otimes_{\mathbb{R}} \mathbb{C}$:
(1) $W \otimes_{\mathbb{R}} \mathbb{C}$ is irreducible, and we say that W is absolutely irreducible, or
(2) $W \otimes_{\mathbb{R}} \mathbb{C}=W_{1} \quad W_{2}$, where W_{1} and W_{2} are irreducible $\mathbb{C}[G]$-modules which are complex conjugate (i.e, Galois conjugate).
If G is cyclic, the condition on U and V that $U^{P}=V^{P}=f 0 g$ ensures that

$$
\mathrm{U} \otimes_{\mathbb{R}} \mathbb{C}=\mathrm{U}_{1} \quad \mathrm{U}_{2} \text { and } \mathrm{V} \otimes_{\mathbb{R}} \mathbb{C}=\mathrm{V}_{1} \quad \mathrm{~V}_{2}
$$

where U_{2} (resp., V_{2}) is the complex conjugate module of U_{1} (resp., V_{1}).
As $\operatorname{dim}\left(U_{1}\right)^{\top}=\operatorname{dim}\left(U_{2}\right)^{\top}$ and $\operatorname{dim}\left(V_{1}\right)^{\top}=\operatorname{dim}\left(V_{2}\right)^{\top}$, it follows that

$$
\operatorname{dim} U^{\top} \quad 0 \quad \operatorname{dim} V^{\top} \quad(\bmod 2) ;
$$

completing the case where G is cyclic. Therefore, we may assume that $\mathrm{G}=\mathrm{Z}$ is a Frobenius group with $\mathrm{jT}=\mathrm{Zj}=2^{\mathrm{d}}$ for some integer d 1 .
By Cli ord theory, we know that if W is an irreducible $\mathbb{C}[\mathrm{G}]$-module whose kerne does not contain P, then dimW is divisible by 2^{d}. Thus in fact if W is any $\mathbb{C}[G]$-module with $W^{P}=f 0 g$, then dimW is divisible by 2^{d}.

Suppose that M is an absolutely irreducible $\mathbb{R}[G]$-module Then the group Z maps into the group $\mathrm{fI} ;-\mathrm{I} \mathrm{g}$ of the real scalar transformations I and -I of M . In fact, Z maps into the multiplicative group of the ring $\operatorname{End}_{\mathbb{R}[G]}(M)=\mathbb{R}$ of the endomorphisms of M, regarded as the ring of scalar linear transformations acting on M. Since Z is a 2-group, Z maps into the group of real 2^{m} th roots of 1 , which is just $\mathrm{f} 1 ;-1 \mathrm{~g}$. So we may assume that $\mathrm{jZj} \quad 2$. If $\mathrm{jZj}=1$, then we can replace G with a larger group, so that in fact we may assume without loss that $\mathrm{jZj}=2$. We shall argue that Z acts trivially on M by computing the Frobenius\{Schur indicator () of the character a orded by the absolutely irreducible $\mathbb{R}[G]$-module M. By de nition,

$$
()=\frac{1}{j G j}_{g 2 G}^{X}\left(g^{2}\right):
$$

Note that $=\operatorname{Ind}_{P}^{G}()$ for some irreducible character of $P Z$ such that $\operatorname{Res}_{P}^{p Z}() \in 1_{p}$. Since PZ is a normal subgroup of G, thus $(g)=0$ for all $\mathrm{g} 2 \mathrm{G} \backslash \mathrm{PZ}$. Hence, in the displayed sum, all the terms are 0 except when $g^{2} 2 P Z$. Let $v 2 T$ with $v^{2}=z$. Then $g^{2} 2 P Z$ if and only if $g 2 P h v i$, which is a union of two cosets of $P Z$. Consider the squaring map on $P Z$. This is a two-to-one map of $P Z$ onto P (if $x 2 P$, then $x^{2}=(x z)^{2} 2 P$). Since Phwi = PZ[PZv, we have

$$
()=\frac{1}{j G j} @_{22}^{0} X(g)+X_{g 2 P Z v}^{X} \quad \begin{gathered}
1 \\
\left(g^{2}\right) A: ~
\end{gathered}
$$

 i.e, it is the multiplicity of 1_{p} as a constituent of $\operatorname{Resp}_{p}^{G}()$, which is exactly the dimension of M^{P}, which is 0 by assumption. So $2{ }^{2}$ g2P $(\mathrm{g})=0$ and

$$
()=\frac{1}{j G j}_{g 2 P Z v}^{X}\left(g^{2}\right):
$$

Let $x 2 P$. Then $v x v^{-1}=x^{-1}$. As $v^{2}=z, v x v x=v x v^{-1} v^{2} x=x^{-1} v^{2} x=z$. Also $v x z v x z=v x v x=z$. So $g^{2}=z$ for all $g 2 P Z v$. Thus

$$
(\quad)=\frac{j P Z j(z)}{j G j}=\frac{(z)}{(1)}:
$$

As is a orded by the absolutely irreducible $\mathbb{R}[G]$-module $M,()=1$ and so $(z)=(1)$, as claimed.
Suppose now that M is a sum of absolutely irreducible $\mathbb{R}[G]$-modules such that $M^{P}=f 0 g$. Then M may be regarded as a faithful $\mathbb{R}[G=Z]$-module and thus M is a free $\mathbb{R}[T=Z]$-module by the representation theory of Frobenius groups.

Now consider the decomposition $U=M_{U} \quad N_{U}$, where M_{U} is the sum of all the absolutely irreducible $\mathbb{R}[G]$-summands of U. Then, as $\mathbb{C}[G]$-modules,

$$
N_{U} \otimes_{\mathbb{R}} \mathbb{C}=X_{U} \quad Y_{U}
$$

where Y_{U} is the complex conjugate module of X_{U}, so that in particular, we have $\operatorname{dim}\left(X_{U}\right)^{\top}=\operatorname{dim}\left(Y_{U}\right)^{\top}$. By the previous paragraph, M_{U} may be regarded as the sum of m_{U} free $\mathbb{R}[T=Z]$-modules for $m_{U}=\operatorname{dim}\left(M_{U}\right)^{\top}$. As we know that $\operatorname{dim}\left(N_{U}\right)^{\top}=2 \operatorname{dim}\left(X_{U}\right)^{\top}$, it follows that

$$
\operatorname{dim} U^{\top}=\operatorname{dim}\left(M_{U}\right)^{\top}+2 \operatorname{dim}\left(X_{U}\right)^{\top} \quad m_{U} \quad(\bmod 2):
$$

Now we may do a similar analysis for $V=M_{V} \quad N_{V}$ and $N_{V} \otimes_{\mathbb{R}} \mathbb{C}=X_{V} \quad Y_{V}$ with obvious notations. Therefore, it su ces to show that $m_{U} m_{V}(\bmod 2)$ for $m_{V}=\operatorname{dim}\left(M_{V}\right)^{\top}$. Note that

$$
\operatorname{dim} U=2^{d} m_{U}+2 \operatorname{dim} X_{U}=2^{d} m_{V}+2 \operatorname{dim} X_{V}=\operatorname{dim} V:
$$

By an earlier remark, both $\operatorname{dim} X_{U}$ and $\operatorname{dim} X_{V}$ aredivisibleby 2^{d}. So, dividing by $2^{\text {d }}$, we see that $m_{U} \quad m_{V}(\bmod 2)$, completing the proof.

Proof of the Key Lemma Let G bea nitegroup. Let U and V betwo real G-modules such that U-V 2 IO(G). We shall prove that the G-module U V is P-oriented. It su ces to show that for each $P 2 P(G)$ and each $g 2 N_{G}(P)$, the determinants of the transformations $\mathrm{g}: \mathrm{U}^{\mathrm{P}}!\mathrm{U}^{\mathrm{P}}$ and $\mathrm{g}: \mathrm{V}^{\mathrm{P}}!\mathrm{V}^{\mathrm{P}}$ agree,

$$
\operatorname{det}\left(g j_{U^{p}}\right)=\operatorname{det}\left(g j_{V^{p}}\right) ;
$$

because then $\operatorname{det}\left(\mathrm{gj}_{(u \quad \mathrm{v})^{\mathrm{p}}}\right)=1$, as required.
Let t 2 G bean element of 2-power order. If $\mathrm{g}=\mathrm{tx}=\mathrm{xt}$ for an element $\times 2 \mathrm{G}$ of odd order, then $\operatorname{det}(x)=1$, and therefore $\operatorname{det}(g)=\operatorname{det}(\mathrm{t})$. Thus it su ces to prove the claim for $\mathrm{g}=\mathrm{t}$. By induction on the order of G , we may assume that $G=P T$ for some normal p-subgroup P of G and some cyclic 2-subgroup T of G . Let t be a generator of T .
If $p=2, G$ is a 2-group and then by using thehypothesis that $U-V 2$ I $O(G)$, we see that $\mathrm{U}=\mathrm{V}$ as G -modules. Therefore, the result is clear for $\mathrm{p}=2$.
Assume that p is odd. As $\mathrm{U}-\mathrm{V} 2 \mathrm{I}(\mathrm{O}), \mathrm{U}=\mathrm{V}$ both as P -modules and T-modules. Write $U=U^{P} \quad\left(U-U^{P}\right)$ and $V=V^{P} \quad\left(V-V^{P}\right)$, and note that $\operatorname{det}\left(\mathrm{t}_{U^{P}}\right)=\operatorname{det}\left(\mathrm{t}_{V^{P}}\right)$ if and only if $\operatorname{det}\left(\mathrm{t}_{\mathrm{U}}{ }_{-U^{P}}\right)=\operatorname{det}\left(\mathrm{t}_{V_{V}-V^{P}}\right)$. Since $\mathrm{U}-\mathrm{U}^{\mathrm{P}}=\mathrm{V}-\mathrm{V}^{\mathrm{P}}$ as P -modules, we may apply Lemma 4.6 to the G-modules $\mathrm{U}-\mathrm{U}^{\mathrm{P}}$ and $\mathrm{V}-\mathrm{V}^{\mathrm{P}}$ to condude that $\operatorname{det}\left(\mathrm{t}_{\mathrm{U}-\mathrm{U}^{P}}\right)=\operatorname{det}\left(\mathrm{t}_{\mathrm{V}-V^{P}}\right)$, and thus $\operatorname{det}\left(\mathrm{tj}_{U^{P}}\right)=\operatorname{det}\left(\mathrm{t}_{\mathrm{V}^{\mathrm{P}}}\right)$, completing the proof.

References

[1] Atiyah, M.F., Bott, R., A Lefschetz xed point formula for elliptic complexes: II. Applications, Ann. of Math. 88 (1968), $451\{491$.
[2] Bak, A., Morimoto, M., K -theoretic groups with positioning map and equivariant surgery, Proc. J apan Acad. 70 (1994), $6\{11$.
[3] Bak, A., Morimoto, M., Equivariant surgery with middle dimensional singular sets. I, Forum Math. 8 (1996), $267\{302$.
[4] Bannuscher, W., Tiedt, G., On a theorem of Deaconescu, Rostock. Math. K olloq. 47 (1994), 23\{26.
[5] Bredon, G.E., I ntroduction to compact transformation groups, Pure and Applied Math., Vol. 46, Academic Press, New York and London, 1972.
[6] Cappell, S.E., Shaneson, J.L., Fixed points of periodic maps, Proc. Nat. Acad. Sci. USA 77 (1980), 5052\{5054.
[7] Cappell, S.E., Shaneson, J.L., Fixed points of periodic di erentiable maps, Invent. Math. 68 (1982), 1 \{19.
[8] Cappell, S.E., Shaneson, J.L., Representations at xed points, Group Actions on Manifolds (ed. R. Schultz), Contemp. Math. 36 (1985), 151\{158.
[9] Cho, E.C., Smith equivalent representations of generalized quaternion groups, Group Actions on Manifolds (ed. R. Schultz), Contemp. Math. 36 (1985), 317\{ 322.
[10] Cho, E.C., Suh, D.Y., Induction in equivariant K -theory and s-Smith equivalence of representations, Group Actions on Manifolds (ed. R. Schultz), Contemp. Math. 36 (1985), 311\{315.
[11] Conway, J.H., Curtis, R.T., Norton, S.P., Parker, R.A., Wilson, R.A., Atlas of Finite Groups, Clarendon Press, Oxford, 1985.
[12] Curtis, C.W., Reiner, I., Methods of Representation Theory, Vol. I, Pure and Applied Math., Wiley-Interscience, J ohn Wiley \& Sons, Inc., New York, 1981.
[13] Curtis, C.W., Reiner, I., Methods of Representation Theory, Vol. II, Pure and Applied Math., Wiley-Interscience, J ohn Wiley \& Sons, Inc., New York, 1987.
[14] Delgado, A., Wu, Y.-F. On locally nite groups in which every element has prime power order, Preprint, 2000.
[15] tom Dieck, T., Transformation Groups, de Gruyter Studies in Mathematics 8, Walter de Gruyter, Berlin New York, 1987.
[16] Dovermann, K.H., Herzog, M., Gap conditions for representations of symmetric groups, J. Pure Appl. Algebra 119 (1987), 113\{137.
[17] Dovermann, K.H., Petrie, T., Smith equivalence of representations for odd order cyclic groups, Topology 24 (1985), 283\{305.
[18] Dovermann, K.H., Petrie, T., Schultz, R., Transformation groups and xed point data, Group Actions on Manifolds (ed. R. Schultz), Contemp. Math. 36 (1985), 159\{189.
[19] Dovermann, K.H., Suh, D.Y., Smith equivalence for nite abelian groups, Paci c J. Math. 152 (1992), $41\{78$.
[20] Dovermann, K.H., Washington, L.D., Relations between cyclotomic units and Smith equivalence of representations, Topology 28 (1989), $81\{89$.
[21] Gorenstein, D., Lyons, R., Solomon, R., The Classi cation of the Finite Simple Groups, Number 1, AMS Mathematical Surveys and Monographs 40, 1994.
[22] Gorenstein, D., Lyons, R., Solomon, R., The Classi cation of the Finite Simple Groups, Number 2, AMS Mathematical Surveys and Monographs 40, 1996.
[23] Gorenstein, D., Lyons, R., Solomon, R., The Classi cation of the Finite Simple Groups, Number 3, AMS Mathematical Surveys and Monographs 40, 1998.
[24] Gorenstein, D., Lyons, R., Solomon, R., The Classi cation of the Finite Simple Groups, Number 4, AMS Mathematical Surveys and Monographs 40, 1999.
[25] Gorenstein, D., Lyons, R., Solomon, R., The Classi cation of the Finite Simple Groups, Number 5, AMS Mathematical Surveys and Monographs 40, 2002.
[26] Higman, G., Finite groups in which every element has prime power order, J. London Math. Soc. 32 (1957), $335\{342$.
[27] Huppert, B., Blackburn N., Finite Groups II, Grundlehren der mathematischen Wissenschaften 242, Springer-Verlag, Berlin Heidelberg New York, 1982.
[28] Illman, S., Representations at xed points of actions of nite groups on spheres, Current Trends in Algebraic Topology (ed. M. K ane, S.O. K ochman, P.S. Selidk, V.P. Snaith), CMS Conference Proc. Vol. 2, Part 2 (1982), 135\{155.
[29] J ames, G., Liebeck, M., Representations and Characters of Groups, 2nd Edition, Cambridge University Press, Cambridge, 2001.
[30] K awakubo, K., The Theory of Transformation Groups, Oxford University Press, Oxford, 1991.
[31] Laitinen, E., Morimoto, M., Pawalowski, K., Deleting\{Inserting Theorem for smooth actions of nite nonsolvable groups on spheres, Comment. Math. Helv. 70 (1995), $10\{38$.
[32] Laitinen, E., Morimoto, M., Finite groups with smooth one xed point actions on spheres, Forum Math. 10 (1998), 479\{520.
[33] Laitinen, E., Pawalowski, K., Smith equivalence of representations for nite perfect groups, Proc. Amer. Math. Soc. 127 (1999), $297\{307$.
[34] Masuda, M., Petrie, T., Lectures on transformation groups and Smith equivalence, Group Actions on Manifolds (ed. R. Schultz), Contemp. Math. 36 (1985), 191\{242.
[35] Milnor, J.W., Whitehead torsion, Bull. Amer. Math. Soc. 72 (1966), 358\{426.
[36] Morimoto, M., Bak groups and equivariant surgery, K -Theory 2 (1989), $465\{$ 483.
[37] Morimoto, M., Bak groups and equivariant surgery II, K -Theory 3 (1990), 505 \{ 521.
[38] Morimoto, M., Equivariant surgery theory: Deleting\{Inserting Theorem of xed point manifolds on spheres and disks, K -Theory 15 (1998), $13\{32$.
[39] Morimoto, M., Pawalowski, K., Equivariant wedge sum construction of nite contractible G-CW complexes with G-vector bundles, Osaka J. Math. 36 (1999), 767\{781.
[40] Morimoto, M., Pawalowski, K., The Equivariant Bundle Subtraction Theorem and its applications, Fund. Math. 161 (1999), 279\{303.
[41] Morimoto, M., Pawalowski, K., Smooth actions of nite Oliver groups on spheres, Topology 42 (2003), 395-421.
[42] Morimoto, M., Sumi, T., Yanagihara, M., Finite groups possessing gap modules, Geometry and Topology: Aarhus (ed. K. Grove, I.H. Madsen, E.K. Pedersen), Contemp. Math. 258 (2000), 329\{342.
[43] Oliver, R., Fixed point sets of group actions on nite acyclic complexes, Comment. Math. Helv. 50 (1975), $155\{177$.
[44] Oliver, R., Smooth compact Lie group actions on disks, Math. Z. 149 (1976), 79\{96.
[45] Oliver, B., Fixed point sets and tangent bundles of actions on disks and Euclidean spaces, Topology 35 (1996), 583\{615.
[46] Pawalowski, K., Group actions with inequivalent representations at xed points, Math. Z. 187 (1984), $29\{47$.
[47] Pawalowski, K., Fixed point sets of smooth group actions on disks and Euclidean spaces, Topology 28 (1989), 273\{289. Corrections: ibid. 35 (1996), 749\{750.
[48] Pawalowski, K., Smith equivalence of group modules and the Laitinen conjecture, Geometry and Topology: Aarhus (ed. K. Grove, I.H. Madsen, E.K. Pedersen), Contemp. Math. 258 (2000), $343\{350$.
[49] Petrie, T., Pseudoequivalences of G-manifolds, Algebraic and Geometric Topology, Proc. Symp. in Pure Math. 32 (1978), 169\{210.
[50] Petrie, T., Thre theorems in transformation groups, Algebraic Topology, Aarhus 1978 (ed. J.L. Dupont and I.H. Madsen), Lecture Notes in Math. 763 (1979), 549\{572.
[51] Petrie, T., The equivariant J homomorphism and Smith equivalence of representations, Current Trends in Algebraic Topology (ed. M. Kane, S.O. K ochman, P.S. Selick, V.P. Snaith), CMS Conference Proc. Vol. 2, Part 2 (1982), 223\{233.

Algebraic \& Geometric Topology, Volume 2 (2002)
[52] Petrie, T., Smith equivalence of representations, Math. Proc. Cambridge Philos. Soc. 94 (1983), $61\{99$.
[53] Petrie, T., Randall, J., Spherical isotropy representations, Publ. Math. IHES 62 (1985), 5\{40.
[54] Sanchez, C.U., Actions of groups of odd order on compact orientable manifolds, Proc. Amer. Math. Soc. 54 (1976), $445\{448$.
[55] Schultz, R., Problems submitted to the A.M.S. Summer Research Conference on Group Actions. Collected and edited by R. Schultz, Group Actions on Manifolds (ed. R. Schultz), Contemp. Math. 36 (1985), 513\{568.
[56] Smith, P.A., New results and old problems in nite transformation groups, Bull. Amer. Math. Soc. 66 (1960), 401 \{415.
[57] Suh, D.Y., s-Smith equivalent representations of nite abelian groups, Group Actions on Manifolds (ed. R. Schultz), Contemp. Math. 36 (1985), $323\{329$.
[58] Sumi, T., Gap modules for direct product groups, J. Math. Soc. J apan 53 (2001), 975\{990.
[59] Sumi, T., Gap modules for semidirect product groups, Preprint, 2002.
[60] Suzuki, M., On a class of doubly transitive groups, Ann. of Math. 75 (1962), $105\{145$.

Faculty of Mathematics and Computer Science, Adam Midkiewicz University ul. Umultowska 87, 61-614 Poznan, Poland
Department of Mathematics, The Ohio State University
231 West 18th Avenue, Columbus, OH 43210\{1174, USA
Email: kpa@rai n. ano. edu. pl, sol onøn@rath. ohi o- st at e. edu
Received: 15 September 2001

