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Abstract The quandle homology theory is generalized to the case when
the coe�cient groups admit the structure of Alexander quandles, by includ-
ing an action of the in�nite cyclic group in the boundary operator. Theories
of Alexander extensions of quandles in relation to low dimensional cocycles
are developed in parallel to group extension theories for group cocycles. Ex-
plicit formulas for cocycles corresponding to extensions are given, and used
to prove non-triviality of cohomology groups for some quandles. The cor-
responding generalization of the quandle cocycle knot invariants is given,
by using the Alexander numbering of regions in the de�nition of state-
sums. The invariants are used to derive information on twisted cohomology
groups.
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1 Introduction

A quandle is a set with a self-distributive binary operation (de�ned below)
whose de�nition was partially motivated from knot theory. A (co)homology the-
ory was de�ned in [4] for quandles, which is a modi�cation of rack (co)homology
de�ned in [15]. State-sum invariants, called the quandle cocycle invariants, us-
ing quandle cocycles as weights are de�ned [4] and computed for important
families of classical knots and knotted surfaces [5]. Quandle homomorphisms
and virtual knots are applied to this homology theory [6]. The invariants were
applied to study knots, for example, in detecting non-invertible knotted sur-
faces [4]. On the other hand, knot diagrams colored by quandles can be used to
study quandle homology groups. This viewpoint was developed in [15, 16, 19]
for rack homology and homotopy, and generalized to quandle homology in [8].
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96 Carter, Elhamdadi and Saito

Thus, the algebraic theory of quandle homology has been applied to knot invari-
ants, and geometric methods using knot diagrams have been applied to quandle
homology theory.

Computations of (co)homology groups, however, had depended upon computer
assisted calculations, until in [9], relations of low dimensional cocycles to exten-
sions of quandles were given. These were used in [3] to give an algebraic method
of constructing cocycles explicitly and to obtain new cocycles via quandle ex-
tensions. The methods introduced in [3] are developed to parallel the theory of
group 2-cocycles in relation to group extensions [2].

In this paper, we develop the method of quandle extensions when the coe�cient
group admits the structure of a Z[T; T−1]-module. In this case, the coe�cients
also have a quandle structure and new cocycles arise via the theory of exten-
sions. This theory of twisted coe�cients is an analogue of group and Hoshschild
cohomology in which the coe�cient rings admit actions. State-sum invariants
can be obtained from the twisted cohomology theory using Alexander number-
ing on the regions of the knot diagram. These invariants then yield information
on the twisted quandle cohomology groups.

The paper is organized as follows. In Section 2, necessary materials are reviewed
briefly. The twisted quandle homology theory is de�ned in Section 3, and a few
examples are given. The obstruction and extension theories are developed for
low dimensional cocycles in Section 4, and families of Alexander quandles are
presented in Section 5 as examples. Explicit formulas for cocycles are also
provided. In Section 6, cohomology groups with cohomology coe�cients are
used for further constructions of cocycles. In Section 7, the twisted cocycles
are used to generalize cocycle knot invariants, using Alexander numbering of
regions, and applications are given.

Acknowledgements JSC was supported in part by NSF Grant DMS 9988107.
MS was supported in part by NSF Grant DMS 9988101. The authors would
like to thank the referee for carefully reading the manuscript and suggesting
improvements.

2 Quandles and their homology theory

In this section we review necessary material from the papers mentioned in the
introduction.

A quandle, X , is a set with a binary operation (a; b) 7! a � b such that
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Twisted quandle homology theory and cocycle knot invariants 97

(I) For any a 2 X , a � a = a.

(II) For any a; b 2 X , there is a unique c 2 X such that a = c � b.
(III) For any a; b; c 2 X , we have (a � b) � c = (a � c) � (b � c):
A rack is a set with a binary operation that satis�es (II) and (III). Racks and
quandles have been studied in, for example, [1, 13, 20, 21, 23]. The axioms for
a quandle correspond respectively to the Reidemeister moves of type I, II, and
III (see [13, 21], for example). A function f : X ! Y between quandles or
racks is a homomorphism if f(a � b) = f(a) � f(b) for any a; b 2 X .

The following are typical examples of quandles.

� A group X = G with n-fold conjugation as the quandle operation: a�b =
b−nabn .

� Any set X with the operation x � y = x for any x; y 2 X is a quandle
called the trivial quandle. The trivial quandle of n elements is denoted
by Tn .

� Let n be a positive integer. For elements i; j 2 f0; 1; : : : ; n − 1g, de�ne
i � j � 2j − i (mod n). Then � de�nes a quandle structure called the
dihedral quandle, Rn . This set can be identi�ed with the set of reflections
of a regular n-gon with conjugation as the quandle operation.

� Any �(= Z[T; T−1])-module M is a quandle with a � b = Ta + (1 −
T )b, a; b 2 M , called an Alexander quandle. Furthermore for a positive
integer n, a mod-n Alexander quandle Zn[T; T−1]=(h(T )) is a quandle
for a Laurent polynomial h(T ). The mod-n Alexander quandle is �nite
if the coe�cients of the highest and lowest degree terms of h are units of
Zn .

Let CR
n (X) be the free abelian group generated by n-tuples (x1; : : : ; xn) of

elements of a quandle X . De�ne a homomorphism @n : CR
n (X)! CR

n−1(X) by

@n(x1; x2; : : : ; xn)

=
nX
i=2

(−1)i [(x1; x2; : : : ; xi−1; xi+1; : : : ; xn)

− (x1 � xi; x2 � xi; : : : ; xi−1 � xi; xi+1; : : : ; xn)] (1)

for n � 2 and @n = 0 for n � 1. Then CR
� (X) = fCR

n (X); @ng is a chain
complex.

Let CD
n (X) be the subset of CR

n (X) generated by n-tuples (x1; : : : ; xn) with
xi = xi+1 for some i 2 f1; : : : ; n − 1g if n � 2; otherwise let CD

n (X) = 0.
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Figure 1: Type III move and the quandle identity

If X is a quandle, then @n(CD
n (X)) � CD

n−1(X) and CD
� (X) = fCD

n (X); @ng
is a sub-complex of CR

� (X). Put CQ
n (X) = CR

n (X)=CD
n (X) and CQ

� (X) =
fCQ

n (X); @0ng, where @0n is the induced homomorphism. Henceforth, all bound-
ary maps will be denoted by @n .

For an abelian group G, de�ne the chain and cochain complexes

CW
� (X;G) = CW

� (X) ⊗G; @ = @ ⊗ id; (2)
C�W(X;G) = Hom(CW

� (X); G); � = Hom(@; id) (3)

in the usual way, where W = D, R, Q.

The groups of cycles and boundaries are denoted respectively by ker(@) =
ZW
n (X;G) � CW

n (X;G) and Im(@) = BW
n (X;G) � CW

n (X;G) while the co-
cycles and coboundaries are denoted respectively by ker(�) = ZnW(X;G) �
CnW(X;G) and Im(@) = Bn

W(X;G) � CnW(X;G): In particular, a quandle 2-
cocycle is an element � 2 Z2

Q(X;G), and the equalities

�(x; z) + �(x � z; y � z) = �(x � y; z) + �(x; y)
and �(x; x) = 0

are satis�ed for all x; y; z 2 X .
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Twisted quandle homology theory and cocycle knot invariants 99

The nth quandle homology group and the nth quandle cohomology group [4]
of a quandle X with coe�cient group G are

HQ
n (X;G) = Hn(CQ

� (X;G)) = ZQ
n (X;G)=BQ

n (X;G);
Hn

Q(X;G) = Hn(C�Q(X;G)) = ZnQ(X;G)=Bn
Q(X;G): (4)

Let a classical knot diagram be given. The co-orientation is a family of normal
vectors to the knot diagram such that the pair (orientation, co-orientation)
matches the given (right-handed, or counterclockwise) orientation of the plane.
At a crossing, if the pair of the co-orientation of the over-arc and that of the
under-arc matches the (right-hand) orientation of the plane, then the crossing
is called positive; otherwise it is negative. Crossings in Fig. 1 are positive by
convention.

A coloring of an oriented classical knot diagram is a function C : R! X , where
X is a �xed quandle and R is the set of over-arcs in the diagram, satisfying the
condition depicted in the top of Fig. 1. In the �gure, a crossing with over-arc,
r , has color C(r) = y 2 X . The under-arcs are called r1 and r2 from top
to bottom; the normal (co-orientation) of the over-arc r points from r1 to r2 .
Then it is required that C(r1) = x and C(r2) = x � y . Observe that a coloring
is a quandle homomorphism (C(x � y) = C(x) � C(y)) from the fundamental
quandle of the knot (see [20]) to the quandle X .

Note that locally the colors do not depend on the orientation of the under-arc.
The quandle element C(r) assigned to an arc r by a coloring C is called a
color of the arc. This de�nition of colorings on knot diagrams has been known,
see [13, 17] for example. Henceforth, all the quandles that are used to color
diagrams will be �nite.

In Fig. 1 bottom, the relation between Redemeister type III move and a quandle
axiom (self-distributivity) is indicated. In particular, the colors of the bottom
right segments before and after the move correspond to the self-distributivity.

Let a quandle X , and a quandle 2-cocycle � 2 Z2
Q(X;A) be given. A (Boltz-

mann) weight, B(�; C) (that depends on �), at a crossing � is de�ned as follows.
Let C denote a coloring. Let r be the over-arc at � , and r1 , r2 be under-arcs
such that the normal to r points from r1 to r2 . Let x = C(r1) and y = C(r).
Then de�ne B(�; C) = �(x; y)�(�) , where �(�) = 1 or −1, if the sign of � is
positive or negative, respectively.

The partition function, or a state-sum, is the expressionX
C

Y
�

B(�; C):
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The product is taken over all crossings of the given diagram, and the sum
is taken over all possible colorings. The values of the partition function are
taken to be in the group ring Z[A] where A is the coe�cient group written
multiplicatively. The partition function depends on the choice of 2-cocycle �.
This is proved [4] to be a knot invariant, called the (quandle) cocycle invariant.
Figure 1 shows the invariance of the state-sum under the Reidemeister type III
move.

3 Twisted quandle homology

In this section we generalize the quandle homology theory to those with coe�-
cients in Alexander quandles.

Let � = Z[T; T−1], and let CTR
n (X) = CTR

n (X; �) be the free module over
� generated by n-tuples (x1; : : : ; xn) of elements of a quandle X . De�ne a
homomorphism @ = @Tn : CTR

n (X)! CTR
n−1(X) by

@Tn (x1; x2; : : : ; xn)

=
nX
i=1

(−1)i [T (x1; x2; : : : ; xi−1; xi+1; : : : ; xn)

− (x1 � xi; x2 � xi; : : : ; xi−1 � xi; xi+1; : : : ; xn)] (5)

for n � 2 and @Tn = 0 for n � 1. We regard that the i = 1 terms contribute
(1 − T )(x2; : : : ; xn). Then CTR

� (X) = fCTR
n (X); @Tn g is a chain complex. For

any �-module A, let CTR
� (X;A) = fCTR

n (X) ⊗� A; @
T
n g be the induced chain

complex, where the induced boundary operator is represented by the same
notation. Let CnTR(X;A) = Hom�(CTR

n (X); A) and de�ne the coboundary
operator � = �nTR : CnTR(X;A) ! Cn+1

TR (X;A) by (�f)(c) = (−1)nf(@c) for
any c 2 CTR

n (X) and f 2 CnTR(X;A). Then C�TR(X;A) = fCnTR(X;A); �nTRg
is a cochain complex. The n-th homology and cohomology groups of these
complexes are called twisted rack homology group and cohomology group, and
are denoted by HTR

n (X;A) and Hn
TR(X;A), respectively.

Let CTD
n (X;A) be the subset of CTR

n (X;A) generated by n-tuples (x1; : : : ; xn)
with xi = xi+1 for some i 2 f1; : : : ; n − 1g if n � 2; otherwise let
CTD
n (X;A) = 0. If X is a quandle, then @Tn (CTD

n (X;A)) � CTD
n−1(X;A) and

CTD
� (X;A) = fCTD

n (X;A); @Tn g is a sub-complex of CTR
� (X;A). Similar sub-

complexes C�TD(X;A) = fCnTD(X;A); �nT g are de�ned for cochain complexes.

The n-th homology and cohomology groups of these complexes are called
twisted degeneracy homology group and cohomology group, and are denoted
by HTD

n (X;A) and Hn
TD(X;A), respectively.
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Put CTQ
n (X;A)=CTR

n (X;A)=CTD
n (X;A) and CTQ

� (X;A)=fCTQ
n (X;A); @Tn g,

where all the induced boundary operators are denoted by @ = @Tn . A cochain
complex C�TQ(X;A) = fCnTQ(X;A); �nT g is similarly de�ned. Note again that
all boundary and coboundary operators will be denoted by @ = @Tn and � = �nT ,
respectively. The n-th homology and cohomology groups of these complexes
are called twisted homology group and cohomology group, and are denoted by

HTQ
n (X;A) = Hn(CTQ

� (X;A)); Hn
TQ(X;A) = Hn(C�TQ(X;A)): (6)

The groups of (co)cycles and (co)boundaries are denoted using similar nota-
tions.

For W = D;R; or Q (denoting the degenerate, rack or quandle case, respec-
tively), the groups of twisted cycles and boundaries are denoted (resp.) by
ker(@) = ZTW

n (X;A) � CTW
n (X;A) and Im(@) = BTW

n (X;A) � CTW
n (X;A).

The twisted cocycles and coboundaries are denoted respectively by ker(�) =
ZnTW(X;A) � CnTW(X;A) and Im(@) = Bn

TW(X;A) � CnTW(X;A): Thus the
(co)homology groups are given as quotients:

HTW
n (X;A) = ZTW

n (X;A)=BTW
n (X;A);

Hn
TW(X;A) = ZnTW(X;A)=Bn

TW(X;A):

See Section 7 for diagrammatic interpretations of the twisted cycle and cocycle
groups.

Example 3.1 The 1-cocycle condition is written for � 2 Z1
TQ(X;A) as

−T�(x2) + T�(x1) + �(x2)− �(x1 � x2) = 0; or

T�(x1) + (1− T )�(x2) = �(x1 � x2):

Note that this means that � : X ! A is a quandle homomorphism.

The 2-cocycle condition is written for � 2 Z2
TQ(X;A) as

T [−�(x2; x3) + �(x1; x3)− �(x1; x2)]
+ [�(x2; x3)− �(x1 � x2; x3) + �(x1 � x3; x2 � x3)] = 0 or

T�(x1; x2) + �(x1 � x2; x3)
= T�(x1; x3) + (1− T )�(x2; x3) + �(x1 � x3; x2 � x3):

Example 3.2 We compute HTQ
2 (R3;R3). Let R3 = f0; 1; 2g = fa; b; cg. In

this case, note that R3 = Z3[T; T−1]=(T + 1), so T acts as multiplication by
(−1), and the boundary homomorphism is computed by

@(a; b) = (−1)[−(b) + (a)] + [(b)− (a � b)] = −(a)− (b)− (c):
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Since the image is the same for all pair (a; b), we have ZTQ
2 (R3;R3) = (R3)5 ,

generated by (a; b) − (0; 1), (a; b) 6= (0; 1). On the other hand,

@(a; b; a) = (−1)[−(b; a) + (a; a) − (a; b)]
−[−(b; a) + (c; a) − (a; c)]

= (a; b) − (b; a) + (a; c)− (c; a);

and

@(a; b; c) = (−1)[−(b; c) + (a; c) − (a; b)]
−[−(b; c) + (c; c) − (b; a)]

= (a; b) + (b; a)− (a; c) − (b; c);

from which it can be seen that @(0; 1; 0), @(0; 1; 2), and @(0; 2; 1) span the
boundary group BTQ

2 (R3;R3) = (R3)3 . Hence HTQ
2 (R3;R3) = R3 �R3 . Note

that for untwisted case HQ
2 (R3;A) = 0 for any coe�cient A, see [4]. Also, it

can be seen that x = (1; 0)− (0; 2) and y = (0; 1)− (2; 1) represent generators
of HTQ

2 (R3;R3).

For A = Rn = Zn[T; T−1]=(T + 1) where n > 3, computations show that

@(a; b) = (−1)[−(b) + (a)] + [(b)− (a � b)] = 2(b)− (a)− (c):

Suppose that gcd (6; n) = 1. Then the boundary map has rank 2, and
ZTQ

2 (R3;Rn) = (Rn)4 is generated by e1 = (0; 1) + (0; 2) + (1; 0), e2 =
(0; 1) + (0; 2) + (2; 0), e3 = (0; 1) − (2; 1), and e4 = (1; 2) − (0; 2): We have

@(a; b; a) = 2(b; a) − (c; a) + (a; b) + (a; c)
@(a; b; c) = 2(b; c) − (a; c) + (a; b) + (b; a):

Substituting various values f0; 1; 2g for fa; b; cg in the above expressions, we
obtain:

@(0; 1; 0) = 2(1; 0) − (2; 0) + (0; 1) + (0; 2) = 2e1 − e2

@(0; 2; 0) = 2(2; 0) − (1; 0) + (0; 2) + (0; 1) = 2e2 − e1

@(0; 1; 2) = 2(1; 2) − (0; 2) + (0; 1) + (1; 0) = e1 + 2e4

@(0; 2; 1) = 2(2; 1) − (0; 1) + (0; 2) + (2; 0) = e2 − 2e3:

Since gcd (n; 6) = 1 and 2, 3 and 6 are invertible in Zn , we see that e1 , e2 ,
e3 , and e4 are in the image of the boundary map. Speci�cally,

e1 = @(2=3(0; 1; 0) + 1=3(0; 2; 0))
e2 = @(1=3(0; 1; 0) + 2=3(0; 2; 0))
e3 = @(1=6(0; 1; 0) + 1=3(0; 2; 0) − 1=2(0; 2; 1))
e4 = @(−1=3(0; 1; 0) + 1=2(0; 1; 2) − 1=6(0; 2; 0)):
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So HTQ
2 (R3;Rn) = 0 for any n > 3, with gcd (n; 6) = 1:

Example 3.3 Let X = Tm = f0; 1; : : : ;m − 1g be the trivial quandle of m
elements, so that a� b = a for any a; b 2 X . In this case the chain map reduces
to (T − 1)@0 , where

@0(x1; : : : ; xn) =
nX
i=1

(−1)i(x1; : : : ; bxi; : : : ; xn):

In particular, if T = 1 (in which case the homology is untwisted), all the chain
maps are zero. On the other hand, if (T − 1) is invertible in the coe�cient
group A, then the boundary maps coincides with the above @0 .

For example, we compute HTQ
2 (T2;A) as follows, where assume that (T − 1) is

not a zero divisor. One computes

@(x; y) = (T − 1)[(x) − (y)]

so the kernel ZTQ
1 (T2;A) is written as fa(x; y) + b(y; x)j(T − 1)(a − b) = 0g.

Since (T − 1) is not a zero divisor, this group is the free module generated by
(0; 1) + (1; 0). On the other hand,

@(0; 1; 0) = (T − 1)[−(1; 0) − (0; 1)] = @(1; 0; 1);

so we obtain HTQ
2 (T2;A) = A=(T − 1)A. In particular, if (T − 1) is invertible,

then HTQ
2 (T2;A) = 0.

Cohomology groups are computed similarly, using characteristic functions. For
example, if (T − 1) is not a zero divisor, we �nd H2

TQ(T2;A) = A=(T − 1)A.

The following also follows from the de�nitions.

Proposition 3.4 For any quandle X and an Alexander quandle A,

HTQ
1 (X;A) �= A[X]=(Tx + (1− T )y − x � y)

where A[X] is the free module generated by elements of X , and the quotient is
taken by the submodule generated by elements of the form Tx+(1−T )y−x�y
for all x; y 2 X .

Example 3.5 For X = R3 and A = Rn , A[X] = Rn(0) � Rn(1) � Rn(2),
the free module generated by elements of R3 , with basis elements denoted by
(0); (1) and (2). The action by T is multiplication by (−1), and the relations
(Tx+(1−T )y−x�y) reduce to two of them, 2(0)−(1)−(2) and 2(1)−(0)−(2).
These further reduce to 2(0)− (1)− (2) and 3[(0)− (1)]. Hence A[X] modulo
these subgroups is Rn if (n; 3) = 1, and Rn�R3 if (n; 3) 6= 1. Thus we obtain

HTQ
1 (R3;Rn) =

�
Rn if (n; 3) = 1;
Rn �R3 if (n; 3) 6= 1:

Algebraic & Geometric Topology, Volume 2 (2002)
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4 Extensions of quandles by Alexander quandles

In this section we give interpretations of quandle cocycles in low dimensions
as extensions of quandles. The theories are analogues of those of group and
other (such as Hochschild) cohomology theories, and are developed in parallel
to these theories (see [2] Chapter 4, for example).

Let X be a quandle and A be an Alexander quandle. Recall that �2Z1
TQ(X;A)

implies that � : X ! A is a quandle homomorphism. Let 0! N
i! G

p! A!
0 be an exact sequence of Z[T; T−1]-module homomorphisms among Alexander
quandles. Let s : A ! G be a set-theoretic section (i.e., ps =idA) with the
\normalization condition" s(0) = 0. Then s� : X ! G is a mapping, which
is not necessarily a quandle homomorphism. We measure the failure by 2-
cocycles. Since p[Ts�(x1) + (1− T )s�(x2)] = p[s�(x1 � x2)] for any x1; x2 2 A,
there is �(x1; x2) 2 N such that

Ts�(x1) + s�(x2) = i�(x1; x2) + [Ts�(x2) + s�(x1 � x2)]: (7)

This de�nes a function � 2 C2
TQ(X;N).

Lemma 4.1 � 2 Z2
TQ(X;N).

Proof One computes

T 2s�(x1) + Ts�(x2) + s�(x3)

= [T i�(x1; x2) + T 2s�(x2) + Ts�(x1 � x2)] + s�(x3)

= T i�(x1; x2) + T 2s�(x2) + [i�(x1 � x2; x3) + Ts�(x3) + s�((x1 � x2) � x3)]
= [T i�(x1; x2) + i�(x1 � x2; x3) + T i�(x2; x3)]

+[s�((x1 � x2) � x3) + T 2s�(x3) + Ts�(x2 � x3)]

and on the other hand,

T 2s�(x1) + Ts�(x2) + s�(x3)

= [i�(x2; x3) + Ts�(x3) + s�(x2 � x3) + T 2s�(x1)

= i�(x2; x3) + [T i�(x1; x3) + T 2s�(x3) + Ts�(x1 � x3)] + s�(x2 � x3)
= [i�(x2; x3) + T i�(x1; x3) + i�((x1 � x3); (x2 � x3))]

+[T 2s�(x3) + Ts�(x2 � x3) + s�((x1 � x3) � (x2 � x3))]:

The underlines in the equalities indicates where Relation (7) is going to be
applied in the next step of the calculation. The observant reader will notice
that the calculation follows from the type III Reidemeister move, compare with
Fig. 1.
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Let s0 : A ! G be another section, and �0 2 Z2
TQ(X;N) be a 2-cocycle

determined by

Ts0�(x1) + s0�(x2) = i�0(x1; x2) + [Ts0�(x2) + s0�(x1 � x2)]: (8)

Lemma 4.2 [�] = [�0] 2 H2
TQ(X;N).

Proof Since s0(a) − s(a) 2 i(N), there is a function � : A ! N such that
s0(a) = s(a) + i�(a) for any a 2 A. Then

T [s�(x1) + i��(x1)] + [s�(x2) + i��(x2)]
= i�0(x1; x2) + T [s�(x2) + i��(x2)] + [s�(x1 � x2) + i��(x1 � x2)]

and hence �0 = �− �(��).

Lemma 4.3 If [�] = 0 2 H2
TQ(X;N), then � : X ! A extends to a quandle

homomorphism to G, i.e., there is a quandle homomorphism �0 : X ! G such
that p�0 = � .

Proof By assumption there exists � 2 C1
TQ(X;N) such that � = �� . By

Equality (7), the map �0 = s� − i� gives rise to a desired quandle homomor-
phism.

We summarize the above lemmas as follows.

Theorem 4.4 The obstruction to extending � : X ! A to a quandle homo-
morphism X ! G lies in H2

TQ(X;N).

Such a 2-cocycles � constructed above is called an obstruction 2-cocycle.

Next we use 2-cocycles to construct extensions. Let X be a quandle and A be
an Alexander quandle. Let � 2 Z2

TQ(X;A). Let AE(X;A; �) be the quandle
de�ned on the set A � X by the operation (a1; x1) � (a2; x2) = (a1 � a2 +
�(x1; x2); x1 � x2).

Lemma 4.5 The above de�ned operation � on A�X indeed de�nes a quandle
AE(X;A; �) = (A � X; �), which is called an Alexander extension of X by
(A;�).
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Proof The idempotency is obvious. For any (a2; x2); (a; x) 2 A � X , let
x1 2 X be the unique element such that x1 �x2 = x and a1 2 A be the unique
element such that a1�a2 = a−�(x1; x2). Then it follows that (a1; x1)�(a2; x2) =
(a; x), and the uniqueness of (a1; x1) with this property is obvious. The self-
distributivity follows from the 2-cocycle condition by computation, as follows.

[(a1; x1) � (a2; x2)] � (a3; x3)
= (Ta1 + (1− T )a2 + �(x1; x2); x1 � x2) � (a3; x3)
= (T [Ta1 + (1− T )a2 + �(x1; x2)]

+(1− T )a3 + �(x1 � x2; x3); (x1 � x2) � x3)
= ((a1 � a2) � a3 + T�(x1; x2)

+�(x1 � x2; x3); (x1 � x2) � x3);

and

[(a1; x1) � (a3; x3)] � [(a2; x2) � (a3; x3)]
= (a1 � a3 + �(x1; x3); x1 � x3) � (a2 � a3 + �(x2; x3); x2 � x3)
= (T [a1 � a3 + �(x1; x3)] + (1− T )[a2 � a3 + �(x2; x3)]

+�(x1 � x3; x2 � x3); (x1 � x3) � (x2 � x3))
= ((a1 � a3) � (a2 � a3) + T�(x1; x3) + (1− T )�(x2; x3)

+�(x1 � x3; x2 � x3); (x1 � x3) � (x2 � x3)):

They are equal by the 2-cocycle condition.

Remark 4.6 In Theorem 4.4, we consider the situation where A = X , � =id,
and G = E = AE(X;B; �) for some cocycle � 2 Z2

TQ(X;B) where X , E , B
are Alexander quandles.

Assume that we have a short exact sequence

0! B
i! E

p! X ! 0

of Z[T; T−1]-modules, where i(b) = (b; 0) and p((b; x)) = x for b 2 B and
(b; x) 2 E = B�X . Then there is a section s : X ! E de�ned by s(x) = (0; x)
satisfying ps =id. Then we have

[Ts(x1) + (1− T )s(x2)]− s(x1 � x2)
= s(x1) � s(x2)− s(x1 � x2)
= (0; x1) � (0; x2)− (0; x1 � x2)
= (�(x1; x2); 0)
= i�(x1; x2):
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Therefore the cocycle used in the preceding Lemma, which we may call an
extension cocycle, is an obstruction cocycle.

De�nition 4.7 Two surjective homomorphisms of quandles �j : Ej ! X ,
j = 1; 2, are called equivalent if there is a quandle isomorphism f : E1 ! E2

such that �1 = �2f .

Note that there is a natural surjective homomorphism � : AE(X;A; �) = A�
X ! X , which is the projection to the second factor.

Lemma 4.8 If �1 and �2 are cohomologous, i.e., [�1] = [�2] 2 H2
TQ(X;A),

then �1 : AE(X;A; �1)! X and �2 : AE(X;A; �2)! X are equivalent.

Proof There is a 1-cochain � 2 C1
TQ(X;A) such that �1 = �2 + �� . We

show that f : AE(X;A; �1) = A � X ! A � X = AE(X;A; �2) de�ned by
f(a; x) = (a+ �(x); x) gives rise to an equivalence. First we compute

f((a1; x1) � (a2; x2)) = f((a1 � a2 + �1(x1; x2); x1 � x2))
= (a1 � a2 + �1(x1; x2) + �(x1 � x2); x1 � x2); and

f((a1; x1)) � f((a2; x2)) = (a1 + �(x1); x1) � (a2 + �(x2); x2)
= (T (a1 + �(x1)) + (1− T )(a2 + �(x2))

+�2(x1; x2); x1 � x2)
= (a1 � a2 + �2(x1; x2)

+(T�(x1) + (1− T )�(x2)); x1 � x2)

which are equal since �1 = �2 +�� . Hence f de�nes a quandle homomorphism.
The map f 0 : A �X ! A �X de�ned by f 0(a; x) = (a − �(x); x) de�nes the
inverse of f , hence f is an isomorphism. The map f satis�es �1 = �2f by
de�nition.

Lemma 4.9 If natural surjective homomorphisms (the projections to the sec-
ond factor A � X ! X ) AE(X;A; �1) ! X and AE(X;A; �2) ! X are
equivalent, then �1 and �2 are cohomologous: [�1] = [�2] 2 H2

TQ(X;A).

Proof Let f : AE(X;A; �1) = A�X ! A�X = AE(X;A; �2) be a quandle
isomorphism with �1 = �2f . Since �1(a; x) = x = �2(f(a; x)), there is an
element �(x) 2 A such that f(a; x) = (a + �(x); x), for any x 2 X . This
de�nes a function � : X ! A, � 2 C1

TQ(X;A). The condition that f is a
quandle homomorphism implies that �1 = �2 + �� by the same computation as
the preceding lemma. Hence the result follows.
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The lemmas imply the following theorem.

Theorem 4.10 There is a bijection between the equivalence classes of natural
surjective homomorphisms AE(X;A; �) ! X for a �xed X and A, and the set
H2

TQ(X;A).

Next we consider interpretations of 3-cycles in extensions of quandles. Let
0! N

i! G
p! A! 0 be a short exact sequence of Z[T; T−1]-modules. Let X

be a quandle. For � 2 Z2
TQ(X;A), let AE(X;A; �) be as above. Let s : A! G

be a set-theoretic (not necessarily group homomorphism) section, i.e., ps = idA ,
with the \normalization condition" of s(0) = 0.

Consider the binary operation (G�X)� (G�X)! G�X de�ned by

(g1; x1) � (g2; x2) = (g1 � g2 + s�(x1; x2); x1 � x2): (9)

We describe an obstruction to this being a quandle operation by 3-cocycles.

Since � satis�es the 2-cocycle condition,

p(Ts�(x1; x2) + s�(x1 � x2; x3))

= p(Ts�(x1; x3) + (1− T )s�(x2; x3) + s�(x1 � x3; x2 � x3))

in A. Hence there is a function � : X �X �X ! N such that

Ts�(x1; x2) + s�(x1 � x2; x3) + Ts�(x2; x3)
= i�(x1; x2; x3) + s�(x2; x3) + Ts�(x1; x3) + s�(x1 � x3; x2 � x3);

(10)

where we moved the term Ts�(x2; x3) so that we have only positive terms in
the de�nition of � .

Lemma 4.11 � 2 Z3
Q(X;N).

Proof First, if x1 = x2 , or x2 = x3 , then the above de�ning relation for �
implies that �(x1; x1; x3) = 1 = �(x1; x2; x2). For the 3-cocycle condition, one
computes

T 2s�(x1; x2) + Ts�(x1 � x2; x3) + T 2s�(x2; x3)

+s�((x1 � x2) � x3; x4) + Ts�(x2 � x3; x4) + T 2s�(x3; x4)
= iT �(x1; x2; x3)

+[Ts�(x2; x3) + T 2s�(x1; x3) + Ts�(x1 � x3; x2 � x3)]

+s�((x1 � x2) � x3; x4) + Ts�(x2 � x3; x4) + T 2s�(x3; x4)
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= [iT �(x1; x2; x3) + i�(x1 � x3; x2 � x3; x4)]
+[s�(x2 � x3; x4) + Ts�(x1 � x3; x4)
+s�((x1 � x3) � x4; (x2 � x3) � x4)]
+T 2s�(x1; x3) + Ts�(x2; x3) + T 2s�(x3; x4)

= [iT �(x1; x2; x3) + i�(x1 � x3; x2 � x3; x4) + iT �(x1; x3; x4)]
+[Ts�(x3; x4) + T 2s�(x1; x4) + Ts�(x1 � x4; x3 � x4)]
+s�((x1 � x3) � x4; (x2 � x3) � x4) + Ts�(x2; x3) + s�(x2 � x3; x4)

= [iT �(x1; x2; x3) + i�(x1 � x3; x2 � x3; x4)
+iT �(x1; x3; x4) + i�(x2; x3; x4)]
+[s�(x3; x4) + Ts�(x2; x4) + s�(x2 � x4; x3 � x4)]
+T 2s�(x1; x4) + Ts�(x1 � x4; x3 � x4)
+s�((x1 � x3) � x4; (x2 � x3) � x4)

and on the other hand,

T 2s�(x1; x2) + Ts�(x1 � x2; x3) + T 2s�(x2; x3)

+s�((x1 � x2) � x3; x4) + Ts�(x2 � x3; x4) + T 2s�(x3; x4)

= iT �(x2; x3; x4) + [Ts�(x3; x4) + T 2s�(x2; x4) + Ts�(x2 � x4; x3 � x4)]

+T 2s�(x1; x2) + Ts�(x1 � x2; x3) + s�((x1 � x2) � x3; x4)
= [iT �(x2; x3; x4) + i�(x1 � x2; x3; x4)]

+[s�(x3; x4) + Ts�(x1 � x2; x4) + s�((x1 � x2) � x4; x3 � x4)]

+T 2s�(x2; x4) + Ts�(x2 � x4; x3 � x4) + T 2s�(x1; x2)
= [iT �(x2; x3; x4) + i�(x1 � x2; x3; x4) + iT �(x1; x2; x4)]

+[Ts�(x2; x4) + T 2s�(x1; x4) + Ts�(x1 � x4; x2 � x4)]
+s�((x1 � x2) � x4; x3 � x4) + Ts�(x2 � x4; x3 � x4) + s�(x3; x4)

= [iT �(x2; x3; x4) + i�(x1 � x2; x3; x4)
+iT �(x1; x2; x4) + i�(x1 � x4; x2 � x4; x3 � x4)]
+[s�(x2 � x4; x3 � x4) + Ts�(x1 � x4; x3 � x4)
+s�((x1 � x3) � x4; (x2 � x3) � x4)]
+T 2s�(x1; x4) + Ts�(x2; x4) + s�(x3; x4)

so that we obtain the result. The underlines in the equalities indicate where
the relation (10) is going to be applied in the next step of the calculation.

The above computation was facilitated by knot diagrams colored by quandle
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elements, and their movies, by a direct correspondence. This diagrammatic
method of computations is discussed in Section 7.

Let s0 : A! G be another section, and �0 be a 3-cocycle de�ned similarly for
s0 by

Ts0�(x1; x2) + s0�(x1 � x2; x3) + Ts0�(x2; x3)
= i�0(x1; x2; x3) + Ts0�(x1; x3) + s0�(x2; x3) + s0�(x1 � x3; x2 � x3):

(11)

Lemma 4.12 The two 3-cocycles � and �0 are cohomologous, [�] = [�0] 2
H3

TQ(X;N).

Proof Since s0(a)− s(a) 2 i(N) for any a 2 A, there is a function � : A! N
such that s0(a) = s(a) + i�(a) for any a 2 A. From Equality (11) we obtain

T [s�(x1; x2) + i��(x1; x2)] + [s�(x1 � x2; x3) + i��(x1 � x2; x3)]
+T [s�(x2; x3) + i��(x2; x3)]

= i�0(x1; x2; x3) + T [s�(x1; x3) + i��(x1; x3)]
+[s�(x2; x3) + i��(x2; x3)]
+[s�(x1 � x3; x2 � x3) + i��(x1 � x3; x2 � x3)]:

Hence we have �0 = � + �(��).

Lemma 4.13 If � is a coboundary, i.e., [�] = 0 2 H3
TQ(X;N), then G � X

admits a quandle structure such that p � idX : G �X ! A �X is a quandle
homomorphism.

Proof By assumption there is � 2 C2
TQ(X;N) such that � = �� . De�ne a

binary operation on G�X by

(g1; x1) � (g2; x2) = (g1 � g2 + s�(x1; x2)− i�(x1; x2); x1 � x2):

Then by Equality (10), this de�nes a desired quandle operation.

We summarize the above lemmas as

Theorem 4.14 The obstruction to extending the quandle AE(X;A; �) = A�
X to G�X lies in H3

TQ(X;N).

Such a 3-cocycles � constructed above is called an obstruction 3-cocycle.
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5 Alexander quandles as Alexander extensions

Lemma 5.1 Let X , E be quandles, and A be an Alexander quandle. Suppose
there exists a bijection f : E ! A�X with the following property. There exists
a function � : X�X ! A such that for any ei 2 E (i = 1; 2), if f(ei) = (ai; xi),
then f(e1 � e2) = (a1 � a2 + �(x1; x2); x1 � x2). Then � 2 Z2

TQ(X;A).

Proof For any x 2 X and a 2 A, there is e 2 E such that f(e) = (a; x), and

(a; x) = f(e) = f(e � e) = (a � a+ �(x; x); x);

so that we have �(x; x) = 0 for any x 2 X .

By identifying A � X with E by f , the quandle operation � on A � X is
de�ned, for any (ai; xi) (i = 1; 2), by

(a1; x1) � (a2; x2) = (a1 � a2 + �(x1; x2); x1 � x2):

Since A�X is a quandle isomorphic to E under this �, we have

[(a1; x1) � (a2; x2)] � (a3; x3)
= (a1 � a2 + �(x1; x2); x1 � x2) � (a3; x3)
= ((a1 � a2) � a3 + T�(x1; x2) + �(x1 � x2; x3); (x1 � x2) � x3);

and

[(a1; x1) � (a3; x3)] � [(a2; x2) � (a3; x3)]
= (a1 � a3 + �(x1; x3); x1 � x3) � (a2 � a3 + �(x2; x3); x2 � x3)
= ((a1 � a3) � (a2 � a3) + T�(x1; x3)

+(1− T )�(x2; x3) + �(x1 � x3; x2 � x3); (x1 � x3) � (x2 � x3))

are equal for any (ai; xi) (i = 1; 2; 3). Hence � satis�es the 2-cocycle condition.

This lemma implies that under the same assumption we have E = AE(X;A; �),
where � 2 Z2

TQ(X;A). Next we identify such examples.

Let �p = Zp[T; T−1] for a positive integer p (or p = 0, in which case �p is
understood to be � = Z[T; T−1]). Note that since T is a unit in �p , �p=(h) for
a Laurent polynomial h 2 �p is isomorphic to �p=(T nh) for any integer n, so
that we may assume that h is a polynomial with a non-zero constant (without
negative exponents of T ).
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Lemma 5.2 Let h 2 �pm be a polynomial with the leading and constant
coe�cients invertible, or h = 0. Let �h 2 �pm−1 and ~h 2 �p be such that
�h � h mod (pm−1) and ~h � h mod (p), respectively (in other words, �h is
h with its coe�cients reduced modulo pm−1 , and ~h is h with its coe�cients
reduced modulo p). Then the quandle E = �pm=(h) satis�es the conditions in
Lemma 5.1 with X = �pm−1=(�h) and A = �p=(~h).

In particular, �pm=(h) is an Alexander extension of �pm−1=(�h) by �p=(~h):

�pm=(h) = AE(�pm−1=(�h); �p=(~h); �);

for some � 2 Z2
TQ(�pm−1=(�h); �p=(~h)).

Proof Let A 2 Zpm . Represent A in pm -ary notation as

A =
m−1X
i=0

Aip
i

where Ai 2 f0; : : : ; p− 1g: Since p is �xed throughout, we represent A by the
sequence

[Am−1; Am−2; Am−3; : : : ; A0]:

De�ne A = [Am−2; : : : ; A0]: Observe that A � A (mod pm−1), and A � A0

(mod p).

Let �̂ : Zpm ! Zpm−1 be the map de�ned by �̂(A) = A. We obtain a short
exact sequence:

0! Zp
{̂! Zpm

�̂! Zpm−1 ! 0

where {̂(A) = [A; 0; : : : ; 0]. There is a set-theoretic section Zpm
ŝ Zpm−1

de�ned by ŝ[Am−2; : : : ; A0] = [0; Am−2; : : : ; A0]: The map ŝ satis�es �̂ŝ = id
and ŝ(0) = 0.

For a polynomial L(T ) 2 �pm = Zpm[T; T−1], write

L(T ) =
kX

j=−n
[Aj;m−1; Aj;m−2; : : : ; Aj;0]T j:

De�ne

L(T ) =
kX

j=−n
[Aj;m−2; : : : ; Aj;0]T j 2 �pm−1 ;

and

~L(T ) =
kX

j=−n
Aj;m−1T

j 2 �p:
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There is a one-to-one correspondence f : �pm ! �p � �pm−1 given by f(L) =
(~L;L). We have a short exact sequence of rings:

0! Zp[T; T−1] i! Zpm[T; T−1] �! Zpm−1[T; T−1]! 0

with a set theoretic section Zpm[T; T−1] s Zpm−1 [T; T−1] where i, � and s are
the natural maps induced by î, �̂ and ŝ, respectively. Note that for L 2 �pm =
Zpm[T; T−1] we have L = �(L), and the section s : �pm−1 ! �pm is de�ned by
the formula

s

0@ kX
j=−n

[Aj;m−2; : : : ; Aj;0]T j

1A =
kX

j=−n
[0; Aj;m−2; : : : ; Aj;0]T j :

For L;M 2 �pm , let

s(L) � s(M) =
X
j

[Fj;m−1; : : : ; Fj;0]T j 2 �pm−1 :

If L =
P

j AjT
j , and M =

P
j BjT

j , then

L �M = B−nT
−n +

k+1X
j=−n+1

(Aj−1 −Bj−1 +Bj)T j =
kX

j=−n
CjT

j:

Furthermore,

L �M = [B−n;m−2; : : : ; B−n;0]T−n

+
k+1X

j=−n+1

([Aj−1;m−2; : : : ; Aj−1;0]

− [Bj−1;m−2; : : : ; Bj−1;0] + [Bj;m−2; : : : ; Bj;0])T j

and write the right-hand side by
Pk

j=−nDjT
j . Note that Dj ’s are well-de�ned

integers, not only elements of Zpm−2 . If Dj is positive, then Fj;m−1 = 0, and if
Dj is negative, then Fj;m−1 = p− 1. Hence

f(L �M) = (~L � ~M + �(L;M ); L �M);

where

�(L;M) =
kX

j=−n
Fj;m−1:

This concludes the case h = 0.
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Now let h(T ) 2 Zpm[T ] be a polynomial with the leading and constant coe�-
cients being invertible in Zp . Let (h) denote the ideal generated by h. Since
i(~h) � (h), we obtain a short exact sequence of quotients:

0! Zp[T; T−1]=(~h) {! Zpm[T; T−1]=(h) �! Zpm−1 [T; T−1]=(h)! 0

with a set-theoretic section Zpm[T; T−1]=(h) s Zpm−1 [T; T−1]=(h): Thus we
obtain a twisted cocycle

� : Zpm−1[T; T−1]=(h)� Zpm−1[T; T−1]=(h)! Zp[T; T−1]=(~h):

Since Rn = �n=(T + 1), we have the following.

Corollary 5.3 The dihedral quandle E = Rpm , where p;m are positive inte-
gers with m > 1, satis�es the conditions in Lemma 5.1 with X = Rpm−1 and
A = Rp .

In particular, Rpm is an Alexander extension of Rpm−1 by Rp :

Rpm = AE(Rpm−1 ; Rp; �);

for some � 2 Z2
TQ(Rpm−1 ;Rp).

Example 5.4 Let X = R3 and A = R3 , then the proof of Lemma 5.2 gives
an explicit 2-cocycle � as follows. For �(r1; r2) = �(1; 2), for example, one
computes

r1 � r2 = [0; 1] � [0; 2] = 2[0; 2] − [0; 1] = 3 = 3 � 1 + 0 = [1; 0];

Hence �(0; 2) = 1. In terms of the characteristic function, the cocycle � con-
tains the term �0;2 , where

�a;b(x; y) =
�

1 if (x; y) = (a; b);
0 if (x; y) 6= (a; b)

is the characteristic function. By computing the quotients for all pairs, one
obtains

� = �0;2 + �1;2 + 2�1;0 + 2�2;0:

Proposition 5.5 The quandle R1 is an Alexander extension of Rn by R1 ,
for any positive integer n.
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Proof Consider the short exact sequence of abelian groups:

0! Z �n! Z �! Zn ! 0

The groups Z and Zn are quandles under the operation: a � b = 2b − a. In
the latter case the quantity 2b − a is interpreted modulo n. In the former
case, it is an integer. The quandle Rn is the set Zn = f0; : : : ; n − 1g with
this operation. We can de�ne a set-theoretic section s : Rn ! Z by s(a) = a.
For a 2 Z, let a = ~an + a, where ~a 2 Z and 0 � a < n are the quotient and
remainder. De�ne f : Z ! E = Z � Zn by f(a) = (~a; a mod (n)). Write
s(a) � s(b) = 2b− a = qn+ r where q 2 Z and 0 � r < n. Then

f(a � b) = f(2b− a) = (2~b− ~a)n + (qn+ r) = (2~b− ~a+ q)n+ r;

so that we have

f(a � b) = (~a � ~b+ �(a; b); a � b mod (n)):

The cocycle � is given by

�(a; b) =

8<:
−1 if 2b < a;

0 if 2b < n+ a and a � 2b;
1 if n+ a � 2b:

Thus in terms of characteristic functions:

� =
X

n+a�2b

�a;b −
X
2b<a

�a;b

Example 5.6 For R3 , we obtain

� = �0;2 + �1;2 − �1;0 − �2;0:

Proposition 5.7 The cocycle � 2 Z2
Q(Rn;R1) given in Proposition 5.5 is not

a coboundary.

Proof By Lemma 4.8, if � were a coboundary, then R1 would be isomorphic
to R1 � Rn , which contains a �nite subquandle Rn . A �nite subquandle of
R1 has a largest element M . Let a be any other element; then 2M − a �M ,
so a = M . Hence the only �nite subquandles of R1 are the 1-element trivial
quandles.

Theorem 5.8 Let h 2 �n be a polynomial with the leading and constant
coe�cients invertible. Let �n=(h) be a dihedral quandle, where n is a positive
integer with the prime decomposition n = pe11 : : : pekk , for a positive integers
e1; : : : ; ek and k .
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Then as quandles �n=(h) is isomorphic to �pe11
=(h1) � : : : � �pekk =(hk), where

h � hj mod (pejj ), and each factor �
p
ej
j
=(hj) is inductively described as an

Alexander extension:

�
p
dj
j

=(hj) = AE(�
p
dj−1

j

=( �hj); �p=( ~hj); �);

for some � 2 Z2
TQ(�

p
dj−1

j

=( ~hj); �p=( ~hj)), where hj � �hj mod (pdj−1
j ) and

hj � �hj
0 mod (pj).

Proof As rings, �n=(h) and �pe11
=(h1)� : : :� �pekk =(hk) are isomorphic, and

since the quandle operations are de�ned using ring operations, they are isomor-
phic as quandles. Then the result follows from Lemma 5.2.

Corollary 5.9 Let Rn be a dihedral quandle, where n is a positive integer
with the prime decomposition n = pe11 : : : pekk , for a positive integers e1; : : : ; ek
and k .

Then the quandle Rn is isomorphic to Rpe11
� : : :�Rpekk , and each factor R

p
ej
j

is

inductively described as an Alexander extension: R
p
dj
j

= AE(R
p
dj−1

j

; Rp; �):

Lemma 5.10 Let h 2 �p be a polynomial such that the coe�cients of the
highest and lowest degree terms are units in Zp . For any positive integer m,
the Alexander quandle E = �p=(hm) satis�es the conditions of Lemma 5.1,
with X = �p=(hm−1) and A = �p=(h).

Consequently,

�p=(hm) = AE(�p=(hm−1); �p=(h); �)

for some � 2 Z2
TQ(�p=(hm−1); �p=(h)).

Proof Assume that h is a polynomial such that the lowest degree term is a
non-zero constant, and let d = deg(h) be the degree of h.

De�ne the map f : E ! A�X as follows. Identify �p=(hm) with Zp[T ]=(hm).
For a polynomial L 2 E , write

L =
m−1X
j=0

Ajh
j = Am−1h

m−1 + : : : +A1h+A0 = [Am−1; Am−2; : : : ; A0];
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where Aj 2 Zp[T ] has degree less than d. Let

f(L) = (Am−1 mod (h);
m−2X
j=0

Ajh
j mod (hm−1)):

Denote L =
Pm−2

j=0 Ajh
j , which is a well-de�ned polynomial, and denote ~L =

Am−1mod (h), so that f(L) = (~L;L).

Let s : �p=(hm−1)! �p=(hm) be the set-theoretic section de�ned by

s[Am−2; : : : ; A0] = [0; Am−2; : : : ; A0]:

Let s(L) � s(M) = [Fm−1; : : : ; F0].

Let L =
P

j Ajh
j ;M =

P
j Bjh

j 2 E , then

L �M = (TAm−1 + (1− T )Bm−1)hm−1 + s(L) � s(M)

= (~L � ~M)hm−1 +
m−1X
j=0

Fjh
j ;

and we have
f(L �M) = (~L � ~M + Fm−1; L �M):

Hence we have �(L;M ) = Fm−1 .

Theorem 5.11 Let �p=(he11 : : : hekk ) be an Alexander quandle, where fh1;
: : : ; hkg are polynomials such that the coe�cients of the highest and lowest
degree terms are units in Zp , and any pair of them is coprime, where k is a
positive integer. Then �p=(he11 : : : hekk ) is isomorphic as quandles to

�p=(he11 )� : : : � �p=(h
ek
k );

and each factor is inductively described as Alexander extensions:

�p=(h
dj
j ) = AE(�p=(h

dj−1
j ); �p=(hj); �j)

for some �j 2 Z2
TQ(�p=(h

dj−1
j ); �p=(hj)).

Proof If f; g 2 �p are coprime, then as �-modules, �p=(fg) is isomorphic to
�p=(f) � �p=(g), and the quandle structures on these �-modules are de�ned
by using the �-module structure so that they are isomorphic as quandles as
well. The result, then, follows from the preceding lemma.
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Example 5.12 For the extension �3=(T+1)2 =AE(X;A; �0) for X=�3=(T+
1) = R3 = A, computations that are similar to those in Example 5.4 gives the
following 2-cocycle �0 :

�0 = 2�0;1 + �0;2 + �1;0 + 2�1;2 + 2�2;0 + �2;1:

Proposition 5.13 Rank H2
TQ(Rn;Rn) � 2 if n is odd.

Proof Let �; �0 be cocycles de�ned by Alexander extensions �n2=(1 + T ) =
Rn2 = AE(Rn; Rn; �) and �n=(1 + T )2 = AE(Rn; Rn; �0), respectively. Let
x = (1; 0) − (−1; 0) and y = (0; 1) − (2; 1), respectively. Then x and y are
cycles, x; y 2 ZTQ

2 (Rn;Rn), and satisfy �(x) = −1, �(y) = 0, �0(x) = 2, and
�0(y) = −2.

Remark 5.14 We conjecture that H2
TQ(A;A) has rank at least two, for any

Alexander quandle of the form A = �n=(h), where n is a positive integer and
h is a polynomial with the leading and constant coe�cient invertible.

6 Cohomology with H1 coe�cients

In this section we construct cocycles using one dimensional lower cocycles with
H1 coe�cients. Let X be a �nite quandle, and A be a �nite Alexander quan-
dle. Consider � 2 CnTQ(X;H1

TQ(X;A)). For any n-tuple (x1; : : : ; xn) of ele-
ments of X , �(x1; : : : ; xn) 2 H1

TQ(X;A) = Z1
TQ(X;A). Hence �(x1; : : : ; xn)

is a quandle homomorphism X ! A, so that for any x 2 X , we obtain
�(x1; : : : ; xn)(x) 2 A.

Proposition 6.1 Let X be a �nite quandle, and A be a �nite Alexander
quandle. If � 2 ZnTQ(X;H1

TQ(X;A)) satis�es

T�(x1; : : : ; xn)(xn+1) = �(x1 � x; : : : ; xn � x)(xn+1 � x)

for any x; x1; : : : ; xn+1 2 X , then  2 Zn+1
TR (X;A) where  is de�ned by

 (x1; : : : ; xn+1) = �(x1; : : : ; xn)(xn+1).

Proof We compute

(� )(x1; : : : ; xn+1; xn+2)
=  (@(x1; : : : ; xn+1; xn+2))
= (��)(x1; : : : ; xn+1)(xn+2)

+(−1)nT�(x1; : : : ; xn)(xn+1)
−(−1)n�(x1 � xn+2; : : : ; xn � xn+2)(xn+1 � xn+2)
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and the result follows by setting xn+2 = x.

Example 6.2 Let X = A = R3 = f0; 1; 2g = fa; b; cg. Let � 2
C1

TQ(X;H1
TQ(X;A)). The condition in Proposition 6.1 is written as

−�(x1)(x2) = �(x1 � x)(x2 � x)

for any x; x1; x2 2 X = R3 . We seek a 2-cocycle �(x1; x2) = �(x1)(x2), � 2
Z2

TQ(X;A). For the quandle cocycle condition (�(x; x) = 0 for any x 2 R3 ),
we assume �(x)(x) = 0. If �(0)(1) = 0, then �(0) 2 H1(R3;R3) is the constant
homomorphism �(0)(x) = 0 for any x 2 R3 , and a trivial 2-cocycle � results.
Hence we may assume that �(0)(1) = 1 or 2. Consider the case �(0)(1) = 1.
By the above formula, we have

�(0)(2) = �(0 � 0)(1 � 0) = −�(0)(1) = −1
�(1)(2) = �(0 � 2)(2 � 2) = −�(0)(2) = 1
�(1)(0) = �(1 � 1)(2 � 1) = −�(1)(2) = −1
�(2)(0) = �(1 � 0)(0 � 0) = −�(1)(0) = 1
�(2)(1) = �(2 � 2)(0 � 2) = −�(2)(0) = −1

and we obtain

� = (�0;1 + �1;2 + �2;0) + 2(�0;2 + �2;1 + �1;0);

which is the negative of the cocycle in Example 5.12. In fact, the case �(0)(1) =
2 yields the same cocycle as Example 5.12.

If we did not have this example in hand, then we are not yet able to conclude
that the above obtained �(x; y) = �(x)(y) is a cocycle, since we have not
checked that � 2 Z1

TQ(R3;R3). However, from the above computations, it is
easily seen that for any x, �(−)(x) is a quandle isomorphism on R3 , as any
permutation of the three elements is a quandle isomorphism. Here, the second
factor of � is �xed and � is regarded as a function with respect to the �rst factor.
This fact of �(−)(x) being isomorphisms is equivalent to � 2 Z1

TQ(R3;R3).

Example 6.3 Again let X = A = R3 , and we construct a 3-cocycle
� 2 Z3

TQ(R3;R3) by setting �(x1; x2; x3) = �(x1; x2)(x3), where � 2 C2
TQ

(X;H1
TQ(X;A)). The condition in Proposition 6.1 is written in this case

as −�(x1; x2)(x3) = �(x1 � x; x2 � x)(x3 � x) for any x; x1; x2; x3 2 R3 . If
�(0; 1)(0) = 0, then from the quandle condition �(0; 1)(1) = 0, we have the
trivial homomorphism as �(0; 1), so that we assume �(0; 1)(0) = 1 (the case
�(0; 1)(0) = −1 = 2 yields the negative of this case). For �(0; 1) to be an
isomorphism of R3 , we have �(0; 1)(2) = −1. Computations similar to the
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preceding example yield a 2-cochain. The computations are done by noticing
the following sequence consisting of actions by quandle elements from the right:

(0; 1; 0) �0! (0; 2; 0) �1! (2; 0; 2) �2! (2; 1; 2) �0! (1; 2; 1) �1! (1; 0; 1)
(0; 1; 2) �0! (0; 2; 1) �1! (2; 0; 1) �2! (2; 1; 0) �0! (1; 2; 0) �1! (1; 0; 2):

This yields the cochain

� = (�0;1;0 + �2;0;2 + �1;2;1 + �0;2;1 + �2;1;0 + �1;0;2)
−(�0;2;0 + �2;1;2 + �1;0;1 + �0;1;2 + �2;0;1 + �1;2;0):

It is checked that each �(x; y) is in H1
TQ(X;A), being a permutation. Now

we check that �(x; y) 2 Z2
TQ(X;H1

TQ(X;A)). It is su�cient to prove that
�(x; y)(z) satis�es the 2-cocycle condition for any z 2 R3 . From � we have

�(−;−)(0) = �0;1 + �2;1 − �0;2 − �1;2

�(−;−)(1) = �1;2 + �0;2 − �1;0 − �2;0

�(−;−)(2) = �2;0 + �1;0 − �2;1 − �0;1:

Let � = �0;2 + �1;2 − �1;0 − �2;0 be the cocycle found in Example 3.2. Note
that ��0 = −

P
i6=j �i;j where the sum ranges over all pairs (i; j), i; j 2 R3 ,

such that i 6= j . Then it is computed that

�(−;−)(0) = �− ��0; �(−;−)(1) = �; �(−;−)(2) = �+ ��0;

and we obtained �(x; y) 2 Z2
TQ(X;H1

TQ(X;A)). Hence we constructed � 2
Z3

TQ(R3;R3) using Proposition 6.1, from Z2
TQ(R3;H1

TQ(R3;R3)).

Proposition 6.4 H3
TQ(R3;R3) 6= 0.

Proof Let � 2 Z3
TQ(R3;R3) be the cocycle obtained in Example 6.3. Let

c = (0; 1; 0) − (0; 2; 0) 2 ZTQ
2 (R3;R3). It is easily computed that c is indeed

a 3-cycle (see Example 3.2). Then it is evaluated that �(c) = 2 6= 0, hence
� 6= 0 2 H3

TQ(R3;R3).

7 Twisted cocycle knot invariants

We de�ne the twisted cocycle knot invariant in this section. First, we de�ne
the Alexander numbering for crossings.

Let K be an oriented knot diagram with normals. Consider the underlying
simple closed curve of K , which is a generically immersed curve dividing the
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Figure 2: The Alexander numbering of a crossing

plane into regions, and let R be one of the regions. Let � be an arc on the
plane from a point in the region at in�nity to a point R such that the interior
of � misses all the crossing points of K and intersects transversely in �nitely
many points with the arcs of K . A classically known concept called Alexander
numbering (see for example [11, 7]) of R, denoted by L(R), is de�ned as the
number, counted with signs, of the number of intersections between � and K .

More speci�cally, when � is traced from the region at in�nity to R, and intersect
at p with K , if the normal to K at p is the same direction as �, then p
contributes +1 to L(R). If the direction of � is the opposite to the normal,
then its contribution is −1. The sum over all intersections does not depend on
the choice of �.

In general, an Alexander numbering exists for an immersed curve in an ori-
entable surface if and only if the curve represents a trivial 1-dimensional class
in the homology of the surface.

De�nition 7.1 Let K be an oriented knot diagram with normals. Let � be
a crossing. There are four regions near � , and the unique region from which
normals of over- and under-arcs point is called the source region of � .

The Alexander numbering L(�) of a crossing � is de�ned to be L(R) where R
is the source region of � . Compare with [7].

In other words, L(�) is the number of intersections, counted with signs, between
an arc � from the region at in�nity to � approaching from the source region
of � . In Fig. 2, the source region R is the left-most region, and the Alexander
numbering of R is k , and so is the Alexander numbering of the crossing � .

Let a classical knot (or link) diagram K , a �nite quandle X , a �nite Alexander
quandle A be given. A coloring of K by X also is given and is denoted by C .
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A twisted (Boltzmann) weight, BT (�; C), at a crossing � is de�ned as follows.
Let C denote a coloring. Let r be the over-arc at � , and r1 , r2 be under-
arcs such that the normal to r points from r1 to r2 . Let x = C(r1) and
y = C(r). Pick a quandle 2-cocycle � 2 Z2

TQ(X;A). Then de�ne BT (�; C) =

[�(x; y)�(�)]T
−L(�)

, where �(�) = 1 or −1, if the sign of � is positive or negative,
respectively. Here, we use the multiplicative notation of elements of A, so that
�(x; y)−1 denotes the inverse of �(x; y). Recall that A admits an action by
Z = fT ng, and for a 2 A, the action of T on a is denoted by aT . To specify
the action by T−L(�) in the �gures, each region R with Alexander numbering
L(R) = k is labeled by the power T−k framed with a square, as depicted in
Fig. 2.

The state-sum, or a partition function, is the expression

�(K) =
X
C

Y
�

BT (�; C):

The product is taken over all crossings of the given diagram, and the sum is
taken over all possible colorings. The value of the weight BT (�; C) is in the
coe�cient group A written multiplicatively. Hence the value of the state-sum
is in the group ring Z[A].

T 
- ( )k + 1

T 
)k + 1

T 
- (

k 

- (

)

- T T 
k + 1

k - 

- ( )k + 1

T 
- ( )k + 1

T 
- ( )k + 2

T 
- ( )k + 2

T 
- ( )k + 2

T 

Figure 3: Type II move and Alexander numbering

Theorem 7.2 The state-sum is well-de�ned.

More speci�cally, let �(K1) and �(K2) be the state-sums obtained from two
diagrams of the same knot, then we have �(K1) = �(K2).

Proof The invariance is proved by checking Reidemeister moves as follows.
Since the 2-cocycle used satis�es �(x; x) = 1 for any x 2 X , and the action
of T on the identity results in identity, the type I Reidemeister move does not
alter the state-sum.
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Figure 4: Type III move and twisted 2-cocycles

For the type II move, we note that the crossings involved in a type II move
have opposite signs, and have the same Alexander numbering, see Fig. 3 for
typical situations (other cases can be checked similarly). In both cases in the
�gure, all the crossings have the same Alexander numbering L(�) = k , as seen
from the Alexander numberings of the adjacent regions speci�ed in the �gure
by square-framed labels. Hence the contribution to the state-sum of the pair
of crossings is of the form [�(x; y)�]T

n
[�(x; y)−�]T

n
, which is trivial. Hence the

state-sum is invariant under type II move.

Figure 4 depicts the situation for a type III move, for speci�c choices of crossing
information and orientations. In this case, the left most crossings have the
Alexander numbering −1 so that there is a T -factor in the Boltzmann weight,
and the right crossings, consequently, have numbering 0, and do not have the
T -factor. From the �gure it is seen that the contributions to the state-sum, in
this case, is exactly the 2-cocycle condition for the left and right hand side of the
�gure, and hence the state-sum remains unchanged. In the �gure, the T -action
on cocycles is denoted in additive notation T�(x; y) instead of multiplicative
notation �(x; y)T , to match the 2-cocycle condition formulated in additive
notation. The other cases follow from combinations with type II moves, see
[21, 26] and [4] for more details.

Example 7.3 Let X = T2 (the trivial two element quandle) and A =
Z[T; T−1]=(T 2− 1). � = T�0;1 +�1;0 is a cocycle in Z2

TQ(X;A). As an abelian
group, A is generated by 1 and T , each denoted multiplicatively by s and t,
respectively. Thus any element of A is written as smtn for integers m;n, and
the value of the invariant lies in Z[A] = fa+ bsmtnja; b;m; n 2 Zg.
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Figure 5: Hopf link

A coloring of a Hopf link L and computations of weights are depicted in Fig. 5.
This speci�c contribution to the state-sum is T + 1, or st. Note that both
crossings have the Alexander numbering −1, so the weight is multiplied by T .
By considering all possible colorings, we obtain �(L) = 2 + 2st.

For knots and links on compact surfaces de�ned up to Reidemeister moves, a
similar invariants can be de�ned. There are two modi�cations that have to be
made.

(1) The regions divided by a given diagram have consistent colorings by powers
of T .

(2) Since there is no region at in�nity, the choice of the \base" region must be
considered.

Let K be an oriented knot or link diagram on a compact oriented surface F . Let
X be a �nite quandle and A be the coe�cient group, which is a � = Z[T; T−1]-
module. Assume that T n = 1 for the action of T on A. Let � 2 Z2

TQ(X;A).

Let Ri , i = 0; 1; : : : ; n, be the regions divided by K , and call R0 the base
region. De�ne the mod p Alexander numbering as before, except taking the
values to be in Zp , where p is a positive integer.

If such a coloring of regions by Zp is not possible, de�ne �(K) = 0. Otherwise,
we proceed as follows. A coloring C of a knot diagram is de�ned similarly as
before.

A twisted (Boltzmann) weight, BT (�; C), at a crossing � is de�ned similarly by
BT (�; C) = [�(x; y)�(�)]T

−L(�)
. The state-sum, or a partition function, is de�ned

similarly by �(K) =
P
C
Q
� BT (�; C):
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To state the theorem, we need the following convention. A typical element of
Z[A] is of the form

Pn
i=1 xiai for a positive integer n, where xi 2 Z and ai 2 A.

We de�ne the action of Z = hT i on Z[A] by (
Pn

i=1 xiai)
T =

Pn
i=1 xi(ai)

T .
When a base region is replaced by another region, the state-sum changes by an
action of T k for some integer k . Thus a proof similar to the planar diagram
case implies the following generalization.

Theorem 7.4 The state-sum is well-de�ned up to the action of Z = hT i for
knots and links on surfaces.

More speci�cally, let �(K1) and �(K2) be the state-sums obtained from two

diagrams of the same knot, then for some integer k , we have �(K1) = �(K2)T
k
.

Remark 7.5 For planar link diagrams, one could \throw a string over the
point at in�nity," to shift the Alexander numberings by �1. The same change
can be realized by Reidemeister moves. This implies that the values of the
invariant for planar link diagrams are polynomials invariant under T -action.

T

b b

b b b

a cc

*

T φ (c , φ (a,b))b

K

K

1

2

T
-1 0

T T T

TTT

T T

0 -1

0

0

0 0

-1

-1

-1

Figure 6: A link on a torus

Example 7.6 A link L on a torus is depicted in Fig. 6. A coloring by X =
R3 = fa; b; cg is given. Note that the action of T on A = R3 satis�es T 2 = 1,
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so that a mod 2 Alexander numbering is de�ned with A = R3 . The base
region is marked by �. The base region has the Alexander numbering 0, and
is labeled with the T -term T 0 . The powers of T that the other regions receive
are depicted in the �gure. Note that T k+2 = T k , so that regions are labeled by
either T 0 or T−1 = T . The left/right sides and top/bottom sides of the middle
square have identical colorings and numberings, respectively. Thus these sides
can be identi�ed, as depicted, by bands, to obtain a punctured torus, and further
the boundary can be capped o� by a disk to obtain a torus. The contributions
�T j�(x; y) to the Boltzmann weight of each crossing is indicated. For this
speci�c coloring, the contribution is �(a; b) − �(c; b).

From Example 5.12 we have a 2-cocycle

�0 = 2�0;1 + �0;2 + �1;0 + 2�1;2 + 2�2;0 + �2;1 2 Z2
TQ(R3;R3):

With this cocycle, one computes that the invariant is �(L) = 3 + 3t+ 3t2 . The
action of T on this element is T � (3 + 3t+ 3t2) = 3 + 3t2 + 3t so that the action
does not change this element, and the class of the polynomial 3+3t+3t2 under
T -action consists of a single element.

It is seen that the invariant is trivial (= 9) if we use the cocycle � in Exam-
ple 5.4.

x2

1x
1x x2*

x3

1x x2* x3( ) *

1xT η( )

x2η( )T

x2η( )

1x x2*η( )

T
-1

x3η( )

x3η( )

T
-1

1x x2*

1x x2* x3( ) *

η( )

η( )

Figure 7: A coboundary de�nes the trivial invariant

Proposition 7.7 Let X be a �nite quandle, and let A be an Alexander quan-
dle. Suppose � 2 Z2

TQ(X;A) is a coboundary: � = �� , where � 2 Z1
TQ(X;A).

Then the state-sum �(K) is a positive integer.

Proof By assumption we have

�(x1; x2) = ��(x1; x2) = −T�(x2) + T�(x1) + �(x2)− �(x1 � x2):

For a given knot diagram K , remove a small neighborhood of each crossing, and
let γi , i = 1; : : : ;m, be the resulting arcs. The end points of arcs are located
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near crossings, and depicted by dots in Fig. 7. Assign each term of the above
right-hand side to the end points as depicted in the left crossing of Fig. 7. In the
right of the �gure, the situation at an adjacent crossing is also depicted. Note
that the argument in � coincides with the color (a quandle element) of the arc.
Then it is seen that the terms assigned to the two end points of each arc are
the same, with opposite signs (as is seen from Fig. 7). Hence the contribution
to the state-sum for any coloring is 1, and the state-sum is a positive integer
(which is the number of colorings). This argument is similar to the one given
in [4].

Proposition 7.8 Let � 2 Z2
TQ(X;N) be an obstruction 2-cocycle, where X

is a �nite quandle and N is an Alexander quandle. Then the state-sum invariant
�(K) de�ned from � is a positive integer for any link diagram K on the plane.

Proof We have an exact sequence 0 ! N
i! G

p! A ! 0 of Alexander
quandles, as in Theorem 4.14, and a section s : A! G with ps =id, s(0) = 0.
By Relation (7), for an obstruction cocycle �, we have

i�(x1; x2) = Ts�(x1) + (1− T )s�(x2)− s�(x1 � x2):

Using s�(x) instead of � in the proof of the preceding Proposition, we obtain
the result. Here, the fact that K is a planar diagram is used in the step claiming
that �T ks�(x) assigned to endpoints of each arc cancel, since the T -factor T k

matches on both endpoints of each arc. More explanations on this point are in
order. In the preceeding example of a link on a torus, the Alexander numbering
of regions satisfy T k = T k+2 since T 2 = 1 as an action on N = R3 , but the
action of T on the extension AE(R3; R3; �) does not satisfy this relationship.
Hence the terms T ks(x) and −T k−2s(x) assigned to endpoints of a single arc
do not cancel in the extension. In other words, in the preceding theorem, the
cancelation was made in the coe�cient ring, but in this proof, the cancelations
need to be done in the extension via sections and inclusions, and the Alexander
numbering of the regions need to be consistent. The proof applies to such cases
if the terms actually cancel, even if K is non-planar.

Example 7.9 The link L in Example 7.6 has a non-trivial state-sum invari-
ant with the cocycle in Example 5.12, which was obtained from a short exact
sequence of Alexander quandles. This is the case since, of course, L is on a
torus, and not on the plane.

Corollary 7.10 Let � 2 Z2
TQ(X;A) be an obstruction 2-cocycle, where X

and A are �nite Alexander quandles. If the state-sum invariant �(K) de�ned
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from � is non-trivial (i.e., not a positive integer) for a planar link diagram K ,
then the Alexander extension AE(X;A; �) is not an Alexander quandle such
that

0!A i! A�X = AE(X;A; �)
p! X ! 0

is a short exact sequence of �-modules where i and p are the natural maps as
in Remark 4.6.

Proof By Remark 4.6, if AE(X;A; �) is an Alexander quandle, then a short
exact sequence of Alexander quandles

0! A! A�X = AE(X;A; �) ! X ! 0

de�nes an obstruction cocycle �. This contradicts the preceding Theorem.

Example 7.11 The 2-cocycle � 2 Z2
TQ (T2; Z[T; T−1]=(T 2 − 1)) used in

Example 7.3 gave rise to a non-trivial value for a Hopf link. Hence AE(T2;
Z[T; T−1]=(T 2 − 1); �) is not an Alexander quandle of the form stated in the
preceeding Corollary.

For A = T2 , the cohomology theory is untwisted, and for X = Z2[T; T−1]=(T 2+
T +1), it is known [5] that � =

P
a6=b;a6=T 6=b �a;b is a cocycle. With this cocycle,

there are a number of classical knots in the table with non-trivial invariant.
Hence AE(Z2[T; T−1]=(T 2 + T + 1); T2; �) is not an Alexander quandle of the
form stated in the preceeding Corollary.

p
= r*p

p* q

p* q

p* r
q* r *

(

)(*)(
r*)(

r

q
p

q
p

q
q* r

θ p, q, r )

Figure 8: Colors at double curves and 3-cocycle at a triple point

The state-sum invariant is de�ned in an analogous way for oriented knotted
surfaces in 4-space using their projections and diagrams in 3-space. Speci�cally,
the above steps can be repeated as follows, for a �xed �nite quandle X and a
knotted surface diagram K .
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� The diagrams consist of double curves and isolated branch and triple
points [11]. Along the double curves, the coloring rule is de�ned using
normals in the same way as classical case, as depicted in the left of Fig. 8.

� The source region R and the Alexander numbering L(�) = L(R) are
de�ned for a triple point � using normals.

� A 3-cocycle � 2 Z3
TQ(X;A), with the Alexander quandle coe�cient A is

�xed, and assigned to a triple point as depicted in the right of Fig. 8. In
this �gure, the triple point has the Alexander numbering 0.

� The sign �(�) of a triple point � is de�ned [11].

� For a coloring C , the Boltzmann weight at a triple point � is de�ned by
BT (�; C) = [�(x; y; z)�(�)]T

−L(�)
.

� The state-sum is de�ned by
P
C
Q
� BT (�; C):

By checking the analogues of Reidemeister moves for knotted surface diagrams,
called Roseman moves, we obtain the following.

Theorem 7.12 The state-sum is well-de�ned for knotted surfaces, and is
called the twisted quandle cocycle invariant of knotted surfaces.

Example 7.13 Let X = T3 = f0; 1; 2g (the trivial three element quandle)
and A = Z[T; T−1]=(T 2−1). Recall that @ = (T −1)@0 as seen in Example 3.3,
and (T + 1)(T − 1) = 0 in A. It follows that � = (T + 1)�0;1;2 is a cocycle in
Z3

TQ(X;A) (in fact, this construction works in Example 7.3 as well). Denote
the multiplicative generators of A by s and t, for additive generators 1 and T ,
respectively.

In Fig. 9, an analogue of a Hopf link for surfaces in 4-space, L = K1[K2[K3 ,
is depicted. Each component is standardly embedded in 4-space, K1 [K2 is
the spun Hopf link with each component torus, and K3 is a sphere (in the
�gure, a large \window" is cut out from K3 to show an inside view). The top
horizontal sheet of K3 is the bottom sheet for the triple points �1 and �2 (that
are positive triple points), and the bottom horizontal sheet of K3 is the top
sheet for �3 and �4 (that are negative triple points). The orientation normals
all point inside, so that all the triple points are negative, using the right-hand
convention of the orientation of the 3-space. The source region is the region at
in�nity for all triple points, so that the T -factor coming from the Alexander
numbering is T 0 = 1 for all the triple points.
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K

K3

1 K2τ1

τ2

τ3

τ4

x
z y

Figure 9: An analogue of Hopf link

The colors of relevant sheets are denoted by x, y , z , for sheets in K3 , K2 ,
and K1 , respectively, as depicted. When trivial quandles are used, the colors
depend only on the components. Hence the state-sum term is written by

�(x; y; z)�(x; z; y)�(y; z; x)−1�(z; y; x)−1

where each term of � coming from triple points �i , i = 1; 2; 3; 4, respectively.

If the colors are given by (x; y; z) = (0; 1; 2), �(x; y; z) = T + 1 additively and
st multiplicatively, for example, and the above state-sum term is equal to st,
since all the other � terms are trivial. The coloring (x; y; z) = (0; 2; 1) also
contributes st. The colorings (x; y; z) = (2; 0; 1); (2; 1; 0) contributes (st)−1 .
All the other colorings contribute 1, and the invariant is �(L) = 23 + 2st +
2(st)−1 .

In fact, as in the classical case, the state-sum invariant is de�ned modulo the
action by T for knotted surface diagrams in compact orientable 3-manifolds,
up to Roseman moves. Such diagrams up to Roseman moves can be regarded
as ambient isotopy classes of embeddings of surfaces in the product space M �
[0; 1], where M is a compact orientable 3-manifold.
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Figure 10: A coboundary at a triple point

A similar argument to the proof of Proposition 7.7 gives the following analogue,
see Fig. 10. In this �gure, a negative triple point is depicted, so that the terms
are the negative of those that appear in �� . There is a diagram without branch
point for orientable knotted surfaces (see for example [10]), so that the terms
assigned to the end points of double arcs cancel as in classical case, and we
obtain the following.

Proposition 7.14 Let X be a �nite quandle, and let A be an Alexander quan-
dle. Suppose � 2 Z3

TQ(X;A) is a coboundary: � = ��, where � 2 Z2
TQ(X;A).

Then the state-sum �(K) for a knotted surface is a positive integer.

A similar argument to the proof of Proposition 7.14 and that of Theorem 7.8
can be applied to obtain the following.

Proposition 7.15 Let � 2 Z3
TQ(X;N) be an obstruction 3-cocycle, where X

is a �nite quandle and A is an Alexander quandle. Then the state-sum invariant
�(K) de�ned from � is a positive integer for any knotted surface diagram K
in Euclidean 3-space R3 .

Corollary 7.16 Let � 2 Z3
TQ(X;N) an obstruction 3-cocycle, where X and

A are �nite Alexander quandles. If the state-sum invariant �(K) de�ned from
� is non-trivial (i.e., not a positive integer) for a knotted surface diagram K in
R3 , then � is not an obstruction cocycle.

Example 7.17 By the preceding Corollary and Example 7.13, we �nd that
the cocycle in Example 7.13 is not an obstruction cocycle.
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Figure 11: A 3-cocycle assigned to a type III move
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Figure 12: The left-hand side of the 3-cocycle condition
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Figure 13: The right-hand side of the 3-cocycle condition

Remark 7.18 As another application of colored knot diagrams, we exhibit a
diagrammatic construction of the proof of Lemma 4.11. Diagrammatic methods
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in cohomology theory, such as Hochschild cohomology, are found, for example,
in [22].

In the state-sum invariant, a 3-cocycle is assigned to a triple point as a Boltz-
mann weight. When a height function in 3-space is chosen, a triple point is
described by the Reidemeister type III move. Cross sections of three sheets
at a triple point by planes normal to the chosen height function give rise to
a move among three strings, and the move is exactly the type III move. See
[11] for more details. In Fig. 11, the type III move as such a movie description
of a colored triple point is depicted. In this movie, we color the diagrams by
quandle elements, assign 2-cocycles to crossings, assign 3-cocycles to type III
move performed, and the convention of these assignments is depicted in Fig. 11.

In Figs. 12 and 13, diagrams involving four strings are depicted. These are cross
sections of three coordinate planes in 3-space plus another plane in general
position with the coordinate planes. See [11] for more details. The colorings by
quandle elements and 2-cocycles are also depicted. Note that the 2-cocycles
depicted in Fig. 12 are exactly the �rst expression of in the proof of Lemma 4.11,
and those in Fig. 13 are the last expression, respectively.

There are two distinct sequences of type III moves that change Fig. 12 to Fig. 13.
Each type III move gives rise to a 3-cocycle via the convention established
in Fig. 11. It is seen that the two sequences of 3-cocycles corresponding to
two sequences of type III moves are identical to the sequences of equalities
in the proof of Lemma 4.11. Once the direct correspondence is made, the
computations follows from these diagrams automatically.
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