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Plane curves and their fundamental groups:
Generalizations of Uludağ’s construction

David Garber

Abstract In this paper we investigate Uludağ’s method for constructing
new curves whose fundamental groups are central extensions of the funda-
mental group of the original curve by finite cyclic groups.

In the first part, we give some generalizations to his method in order to get
new families of curves with controlled fundamental groups. In the second
part, we discuss some properties of groups which are preserved by these
methods. Afterwards, we describe precisely the families of curves which can
be obtained by applying the generalized methods to several types of plane
curves. We also give an application of the general methods for constructing
new Zariski pairs.
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1 Introduction

The fundamental group of complements of plane curves is a very important
topological invariant with many different applications. This invariant was used
by Chisini [8], Kulikov [14] and Kulikov-Teicher [15] in order to distinguish
between connected components of the moduli space of surfaces of general type.
Moreover, the Zariski-Lefschetz hyperplane section theorem (see [16]) showed
that

π1(PN − S) ∼= π1(H −H ∩ S)

where S is an hypersurface and H is a generic 2-plane. Since H ∩S is a plane
curve, this invariant can be used also for computing the fundamental group of
complements of hypersurfaces in PN .

A different direction for the need of fundamental groups’ computations is for
getting more examples of Zariski pairs [36, 37]. A pair of plane curves is called
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a Zariski pair if they have the same combinatorics (i.e. the same singular points
and the same arrangement of irreducible components), but their complements
are not homeomorphic. Several families of Zariski pairs were presented by Artal-
Bartolo [3, 5], Degtyarev [9], Oka [20] and Shimada [26, 27, 28]. Tokunaga and
his coauthors thoroughly investigated Zariski pairs of curves of degree 6 (see
[6, 7, 29, 30] and [31]). Some candidates for weak Zariski pairs (where we
take into account only the types of the singular points) can also be found in
[13], where any pair of arrangements with the same signature but with different
lattices can serve as a candidate for a Zariski pair (it is only needed to be checked
that the pair of arrangements have non-isomorphic fundamental groups).

It is also interesting to explore new finite non-abelian groups which are serving
as fundamental groups of complements of plane curves.

Uludağ [32, 33] presents a way to obtain new curves whose fundamental groups
are central extensions of the fundamental group of a given curve. Using his
method, one can produce a family of examples of Zariski pairs from a given
Zariski pair (see also Section 6 here). His main result is:

Theorem 1.1 (Uludağ) Let C be a plane projective curve and G = π1(P2−
C). Then for any n ∈ N, there is a curve C̃ ⊂ P2 birational to C such that
G̃ = π1(P2 − C̃) is a central extension of G by Z/(n + 1)Z:

1→ Z/(n+ 1)Z→ G̃→ G→ 1

In particular, if C is irreducible so is C̃ as well.

A natural question is which curves and fundamental groups can be obtained by
this method. Also, one might ask if this method can be generalized, and what
will be the effect of the general method on the relation between the fundamental
groups of the original curve and the resulting curve.

In this paper we first generalize Uludağ’s method to get new families of curves
whose fundamental groups are controlled by the fundamental group of the orig-
inal curve in the same manner. Precisely, instead of using only two fibers for
performing the elementary transformations between Hirzebruch surfaces Fn ,
we allow any finite number of different fibers. Afterwards, we list properties
of groups which are preserved by the methods. Also, we describe the curves
obtained by the application of these methods to several types of plane curves.
Then we present some infinite families of new Zariski pairs which can be ob-
tained by the application of these methods.

Among the interesting results in this paper is the exploring of families of curves
with deep singularities which yet have cyclic groups as the fundamental group
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of the complement (see the beginning of Section 4). Also, using the general con-
struction, one can obtain more curves with finite and non-abelian fundamental
groups and more Zariski pairs (see Section 6).

The paper is organized as follows. In Section 2 we present Uludağ’s original con-
struction. In Section 3, we present some generalizations of Uludağ’s construc-
tion, and we prove that also in the general constructions, the obtained curve
has a fundamental group which is a central extension of the original curve’s
fundamental group by a finite cyclic group. Section 4 deals with properties of
groups which are preserved while applying the constructions. In Section 5, we
describe precisely the families of plane curves which can be obtained by the
general constructions and then we calculate the degrees of the new curves. At
the end of this section, we describe some specific families of curves obtained
by applying the constructions to several types of plane curves. In Section 6 we
present some new examples of Zariski pairs obtained by these constructions.

2 Uludağ’s method

The idea of the method is the following (it was partially introduced by Artal-
Bartolo [4] and Degtyarev [9], and the sequel was developed by Uludağ [32, 33]).
If a curve C2 is obtained from a curve C1 by means of a Cremona transformation
ψ : P2 → P2 , then ψ induces an isomorphism

P2 − (C2 ∪A) ∼= P2 − (C1 ∪B)

where A and B are certain curve arrangements. Hence there is an induced
isomorphism between their fundamental groups. The fundamental groups of the
curves themselves are easy to compute by adding the relations which correspond
to the arrangements.

Now, if we start with a curve C1 whose fundamental group is known, one can
find a curve C2 whose fundamental group has not yet been known as being a
fundamental group of a plane curve.

For these Cremona transformations one can use Hirzebruch surfaces Fn , n ∈
N ∪ {0}. In principle, the Hirzebruch surfaces are P1 -bundles over P1 . It is
known that two Hirzebruch surfaces can be distinguished by the self-intersection
of their exceptional section (for Fn the self-intersection of its exceptional section
is −n).

There are two types of elementary transformations, one transforms Fn to Fn+1

for all positive n, and the other transforms Fn to Fn−1 for all positive n (these
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transformations are also called Nagata elementary transformations, see [18]).
The first transformation blows up a point O on the exceptional section, and
then blows down the proper transform of the fiber passed through O . The
second transformation blows up a point O on one of the fibers Q, outside the
exceptional section, and then blows down the proper transform of the fiber
Q. The two transformations are schematically presented in Figures 1 and 2
respectively.

Exceptional
section

Exceptional

blow up O

-n-1

blow down 

Q

section
Exceptional

section-n

O

-n-1

0 0 0

00
Q

-1

E

-1

Figure 1: Elementary transformation from Fn to Fn+1

Uludağ used a special type of Cremona transformations which can be described
as follows. We start with a curve C in P2 , and an additional line Q which in-
tersects the curve transversally. We choose another line P which also intersects
the curve transversally, and meets Q outside the curve C . Then we blow up
the intersection point of the two lines. This yields the Hirzebruch surface F1 .
Then we apply n elementary transformations of the first type each time on the
same fiber (which is the proper transform of the line Q) to reach Fn+1 . Then
we apply n elementary transformations of the second type each time on the
same fiber (which is the proper transform of the line P ) to return back to F1 .
Then we blow down the exceptional section (whose self-intersection is now −1),
and we get again P2 . This process defines a family of Cremona transformations
from P2 to P2 .

Algebraic & Geometric Topology, Volume 3 (2003)



Plane curves and their fundamental groups 597

Exceptional
section

Exceptional

blow up O

blow down 

section
Exceptional

section-n

-n+1

0 0 -1

00
Q

Q

O

0

-n

-1

Figure 2: Elementary transformation from Fn to Fn−1

For each n, we get a different Cremona transformation. Uludağ has shown
in [32] that applying to a curve C a Cremona transformation whose process
reaches Fn+1 , yields a new curve C̃ such that its fundamental group π1(P2−C̃)
is a central extension of π1(P2 − C) by a cyclic group of order n+ 1.

3 Generalizations of Uludağ’s method

In this section we present some generalizations for Uludağ’s method. These
generalizations yield new ways to construct curves with deep singularities whose
fundamental groups can be controlled, though they produce no more new groups
as fundamental groups than the original method of Uludağ.

In the first step, we generalize Uludağ’s method in the following way: instead
of using the same fiber all the time to perform the elementary transformations
of the first type, we will use an arbitrary finite number of different fibers for
performing them (Subsection 3.3). In Subsection 3.4, we generalize our con-
struction more, and we allow an arbitrary finite number of fibers for performing
the elementary transformations of the second type too. In Subsection 3.5 we
discuss a particularly interesting special case, where we perform all the trans-
formations (of both types) on the same fiber.
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Before we pass to the generalizations of the methods and their proofs, we first
have to introduce meridians and prove a lemma which will be needed in the
sequel (Subsection 3.1). Also, we have to understand what happens to the
fundamental group when we glue a line back to P2 (Subsection 3.2).

3.1 Meridians and a generalization of Fujita’s lemma

As in Uludağ’s proof [32], in order to find the relations induced by the additional
lines, we have to calculate the meridians of these lines. We first recall the
definition of a meridian of a curve C at a point p (see [32, 33]): Let ∆ be a
smooth analytical branch meeting C transversally at p and let x0 ∈ P2−C be
a base point. Take a path ω joining x0 to a boundary point of ∆, and define
the meridian of C at p to be the loop µp = ω · δ ·ω−1 , where δ is the boundary
of ∆, oriented in the positive sense (see Figure 3).

C

δ

ω

p

x 0

∆

Figure 3: A meridian of a curve C at a point p

For computing the meridians in our case, one has to use some rules. The first
rule deals with the connection between the meridian of the curve C at a point
p ∈ C before the blow up and the meridian of the exceptional section created
by the blow up (see [32, p. 5]):

Claim 3.1 Let σp : X → P2 be a blow up of the point p ∈ C , and let E ⊂ X
be the exceptional section. Let C ′ = σ−1

p (C). Then, the loop σ−1
p (µp) is the

meridian of E at a smooth point q ∈ E − C ′ .

The second rule deals with the meridian at a nodal point:

Lemma 3.2 (Fujita [11, p. 540, Lemma 7.17]) Let B be a ball centered at
the origin O of C2 , and consider the curve C defined by x2 − y2 = 0. C has
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an ordinary double point at the origin and π1(B −C) = Z2 . Take meridians α
and β of C on the branches x = y and x = −y at smooth points respectively.
Then αβ is a meridian of C at the node O (see Figure 4).

β

α

αβ

x 0

x=-y

x=y

O

Figure 4: The situation of Fujita’s lemma

For our generalizations, we need the following more general version of this
lemma:

Lemma 3.3 Let B be a ball centered at the origin O of C2 , and consider
the curve C defined by

∏k
i=1(y −mix) = 0 where the mi are some complex

numbers, ordered by their distinct arguments, and k ≥ 3. The curve C has an
ordinary singular point of multiplicity k at the origin and π1(B−C) = Z⊕Fk−1 ,
where Fk−1 is the free group on k − 1 generators. Take meridians αi of C on
the branches y = mix at smooth points respectively. Then α1α2 · · ·αk is a
meridian of C at the intersection point O .

Proof The fact that π1(B − C) = Z ⊕ Fk−1 is from [12] or [23]: Using van
Kampen’s method [34], the presentation of the group π1(B − C) is:

〈α1, α2, · · · , αk | α1α2 · · ·αk = α2 · · ·αkα1 = · · · = αkα1 · · ·αk−1〉,
which can be written also as:

〈α,α2, · · · , αk | αα2 = α2α,αα3 = α3α, · · · , ααk = αkα〉
where α = α1α2 · · ·αk (see [12]). This presentation can be written also as:

〈α〉 ⊕ 〈α2, · · · , αk〉 ∼= Z⊕ Fk−1,

and hence the generator of the cyclic group (which is also the center of the
group) is α = α1α2 · · ·αk .
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In order to prove the lemma, we have to show that this generator is indeed the
meridian of the exceptional section E after we blow up the point O . When we
blow the point O up, we get Hirzebruch surface F1 → P1 . After deleting the
exceptional section and another disjoint section (which corresponds to the line
at infinity), we also throw away k fibers corresponding to the k lines which
passed through O before the blow up. The resulting affine surface can be
decomposed as a product: (C−{pt})×(P1−{k points}). Hence, its fundamental
group can be decomposed into a direct sum too:

π1(C − {pt})⊕ π1(P1 − {k points}) ∼= Z⊕ Fk−1.

Now, since the cyclic group Z is in the center of the group Z ⊕ Fk−1 , its
generator corresponds indeed to the meridian of the base E . Due to the fact
that the generator of the cyclic group in the center is α = α1α2 · · ·αk , therefore
since both the meridian and the generator α = α1α2 · · ·αk generate the infinite
cyclic group which is the center of the group, this generator is a meridian of the
exceptional section E , and a meridian of the curve C at the intersection point
O too.

3.2 The effect on the fundamental group while gluing back a
line

In this short subsection, we prove a simple but useful lemma about the effect
on the fundamental group when we glue a line back to P2 .

Zaidenberg [35] has proved the following lemma:

Lemma 3.4 (Zaidenberg [35, Lemma 2.3(a)]) Let D be a closed hypersurface
in a complex manifold M . Then the group Ker{i∗ : π1(M −D) → π1(M)} is
generated by the vanishing loops of D . In particular, if D is irreducible, then,
as a normal subgroup, this group is generated by any of these loops.

Let C be a plane curve. Substituting P2−C for M and a line L for D , we get
that Ker{i∗ : π1(P2 − (C ∪ L)) → π1(P2 − C)} is generated by the vanishing
loops (=meridians) of L. Since L is a line, we have:

Ker{i∗ : π1(P2 − (C ∪ L))→ π1(P2 − C)} = 〈〈µ〉〉
where µ is a meridian of L.

Therefore, it is easy to deduce the following lemma:

Lemma 3.5 Let C be a plane projective curve and let L be a line. Let µ be
a meridian of L. Then:

π1(P2 − (C ∪ L))/〈µ〉 ∼= π1(P2 −C)
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3.3 The first generalization

The first generalization of Uludağ’s construction is as follows: Let C be the
initial plane curve, and let n1, · · · , nk be k given natural numbers. In this con-
struction, we have k different lines Q1, · · · , Qk which all meet C transversally.
They intersect in a point O outside C , in such a way that if we put a disk D
centered at O , the intersection points of the lines and the boundary of D are
organized counterclockwise on the boundary of D . The additional line P passes
via O too and intersects C transversally. Now we blow up the point O , in order
to get Hirzebruch surface F1 . Then we apply ni elementary transformations
of the first type on the proper transform of Qi for all i = 1, . . . , k . After this
step, we have reached Hirzebruch surface F(

∑k
i=1 ni)+1 . Now, we apply

∑k
i=1 ni

elementary transformations of the second type on the proper transform of P .
Then, we reach back F1 . At last, we blow down the exceptional section, and
we get again P2 . This defines a family of Cremona transformations from P2 to
P2 .

For any k -tuple (n1, · · · , nk) ∈ Nk , we get a different Cremona transformation,
denoted by T(n1,···,nk) . We will show that the new curve C̃ = T(n1,···,nk)(C) has
a fundamental group π1(P2− C̃) which is a central extension of π1(P2−C) by
a finite cyclic group of order (

∑k
i=1 ni) + 1.

Remark 3.6 Before formulating the result, we note that the curve C̃ ob-
tained by the transformation T(n1,···,nk) can not be obtained by any successive
applications of Uludağ’s original method, since for instance two appropriate
applications will yield an extension of order n1 + n2 + 2 whereas the extension
of the Cremona transformation T(n1,n2) (for k = 2) is of order n1 +n2 +1. Also
the obtained singularities will be different (see Section 5).

Theorem 3.7 Let C be a plane projective curve and G = π1(P2 −C). Then
for any k -tuple (n1, · · · , nk) ∈ Nk , the curve C̃ = T(n1,···,nk)(C) is birational to

C , and its fundamental group G̃ = π1(P2 − C̃) is a central extension of G by
Z/((

∑k
i=1 ni) + 1)Z:

1→ Z/((
k∑
i=1

ni) + 1)Z→ G̃→ G→ 1

Moreover, if C has r irreducible components so is C̃ .

Proof We start with the observation that since the blow up and the blow down
transformations are birational transformations and the fact that the Cremona
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transformation is composed of blow up and blow down transformations, we
have that C̃ is birational to C , and the number of irreducible components is
preserved by the construction.

Let P̃ = T(n1,···,nk)(P ) and Q̃i = T(n1,···,nk)(Qi) for 1 ≤ i ≤ k (one should notice
here that P is not actually mapped to P̃ , since the transformation blows it
down. We choose the new fiber that replaces the original one). This Cremona
transformation defines an isomorphism:

P2 − (C ∪ P ∪ (
k⋃
i=1

Qi)) ∼= P2 − (C̃ ∪ P̃ ∪ (
k⋃
i=1

Q̃i)),

which induces an isomorphism of the corresponding fundamental groups:

π1(P2 − (C ∪ P ∪ (
k⋃
i=1

Qi))) ∼= π1(P2 − (C̃ ∪ P̃ ∪ (
k⋃
i=1

Q̃i))).

In order to compute π1(P2 − C̃), we have to add the relations correspond to
gluing back the lines P̃ and Q̃i, 1 ≤ i ≤ k .

Let β and αi be the meridians of the lines P and Qi at smooth points respec-
tively. Using Lemma 3.3, we get that the meridian of the curve C∪P∪(

⋃k
i=1Qi)

at the point O (which is the intersection of k + 1 lines: P,Q1, · · · , Qk ) is
βα1 · · ·αk , and hence the meridian of E , which is the blow up of this point, is
βα1 · · ·αk too.

We now compute the meridian of Q̃i (1 ≤ i ≤ k). In each elementary trans-
formation of the first type on Qi and its proper transforms, we blow up the
intersection point between the fiber and the exceptional section, and then we
blow down the fiber. Hence, by Fujita’s lemma (Lemma 3.2), each elementary
transformation multiplies the current meridian of the proper transform of Qi
by the meridian of the exceptional section. Therefore, we finally get that the
meridian of Q̃i is (βα1 · · ·αk)ni ·αi (see Figure 5 for the effect of one elementary
transformation of the first type where k = 2). The elementary transformations
on Qi and its proper transforms do not change the meridians of the other lines.

We have to compute the meridian of P̃ too. In each elementary transformation
of the second type on P and its proper transforms, we blow up a point on
the fiber, and then we blow down the fiber. Hence, this type of elementary
transformations preserves the current meridian and we get that the meridian
of P̃ remains β (see Figure 6 for the effect of one elementary transformation of
the second type where k = 2). The elementary transformations on P and its
proper transforms do not change the meridians of the other lines.

Algebraic & Geometric Topology, Volume 3 (2003)



Plane curves and their fundamental groups 603

α
blow down 

blow up 

β
β

β

α  α  β

α  α  β

(α  α  β)α

α  α  β

(α  α  β)α

α

α

α α

1

1

2
2

1 2

2

2

1 2 1

1 2

21

1

1

Figure 5: The effect of an elementary transformation of the first type on the meridians

Therefore, by Lemma 3.5, we conclude that:

π1(P2 − C̃) ∼=

π1(P2 − (C̃ ∪ P̃ ∪ (
k⋃
i=1

Q̃i)))/〈β, (βα1 · · ·αk)n1α1, · · · , (βα1 · · ·αk)nkαk〉,

which is equivalent to:

π1(P2−C̃) ∼= π1(P2−(C̃∪P̃ ∪(
k⋃
i=1

Q̃i)))/〈β, (α1 · · ·αk)n1α1, · · · , (α1 · · ·αk)nkαk〉

since the connecting relations between β, α1, · · · , αk are

βα1 · · ·αk = α1 · · ·αkβ = · · · = αkβα1 · · ·αk−1

(see the proof of Lemma 3.3), because all the k+ 1 lines intersect in one point
O .

Since

P2 − (C ∪ P ∪ (
k⋃
i=1

Qi)) ∼= P2 − (C̃ ∪ P̃ ∪ (
k⋃
i=1

Q̃i)),

we can also write:
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Figure 6: The effect of an elementary transformation of the second type on the merid-
ians

π1(P2−C̃) ∼= π1(P2−(C∪P ∪(
k⋃
i=1

Qi)))/〈β, (α1 · · ·αk)n1α1, · · · , (α1 · · ·αk)nkαk〉

When we pass to the quotient by 〈β〉 which corresponds to gluing the line P
back into P2 in the original configuration (by Lemma 3.5), we get that:

π1(P2 − C̃) ∼= π1(P2 − (C ∪ (
k⋃
i=1

Qi)))/〈(α1 · · ·αk)n1α1, · · · , (α1 · · ·αk)nkαk〉.

While moving to this quotient, we get the following k cyclic relations for the
subgroup in the denominator:

α1α2 · · ·αk = α2 · · ·αkα1 = · · · = αkα1α2 · · ·αk−1,

since β = 1 in the quotient. These relations can be presented also as the
following set of relations, where α = α1α2 · · ·αk :

{αα2 = α2α,αα3 = α3α, · · · , ααk = αkα}
By Lemma 3.5, when we take the quotient of π1(P2 − (C ∪ (

⋃k
i=1Qi))) by the

normal subgroup generated by the meridians of Q1, · · · , Qk , we get π1(P2−C).
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Due to the fact that all the lines are intersected at O , then the subgroup
generated by the meridians Q1, · · · , Qk is of the form (see the proof of Lemma
3.3):

Z⊕ Fk−1
∼= 〈α,α2, · · · , αk | ααi = αiα, 2 ≤ i ≤ k〉

where α = α1 · · ·αk .

We have

π1(P2 − (C ∪ (
⋃k
i=1Qi)))/〈αn1α1, · · · , αnkαk〉

〈α,α2, · · · , αk | ααi = αiα, 2 ≤ i ≤ k〉/〈αn1α1, · · · , αnkαk〉
∼=

∼= π1(P2 − (C ∪ (
k⋃
i=1

Qi)))/〈α,α2, · · · , αk〉

where α = α1 · · ·αk , and therefore:

π1(P2 − C̃)(
〈α,α2,···,αk | ααi=αiα,2≤i≤k〉

〈αn1α1,···,αnkαk〉

) ∼= π1(P2 − C)

which can be written as the following extension:

1→ 〈α,α2, · · · , αk | ααi = αiα, 2 ≤ i ≤ k〉
〈αn1α1, · · · , αnkαk〉

→ π1(P2 − C̃)→ π1(P2 − C)→ 1

Hence, it remains to show that this extension is central and that

〈α,α2, · · · , αk | ααi = αiα, 2 ≤ i ≤ k〉
〈αn1α1, · · · , αnkαk〉

∼= Z/((
k∑
i=1

ni) + 1)Z

The centrality of the extension is a little bit tricky. Although αi does not
commute with αj (2 ≤ i, j ≤ k , i 6= j ) in π1(P 2 − (C ∪ (

⋃k
i=1Qi))), the

generators of the quotient group G̃ = π1(P2−C̃) are the meridians of C and only
one more generator - α (the other generators - α2, · · · , αk - corresponding to the
lines Q2, · · · , Qk in the bigger group π1(P2 − (C ∪ (

⋃k
i=1Qi))) disappear in G̃

by the additional relations αn2α2, · · · , αnkαk ). This generator indeed commutes
with the meridians of C in π1(P2−C) (as it is equal to the multiplication of all
the αi ’s, which commute with the meridians of C in π1(P2−C) since we choose
the lines Q1, · · · , Qk to be all transversally intersected with C ), and hence we
get that the extension is central.

Now, we show that:

〈α,α2, · · · , αk | ααi = αiα, 2 ≤ i ≤ k〉
〈αn1α1, · · · , αnkαk〉

∼= Z/((
k∑
i=1

ni) + 1)Z
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Since

αn1α1 · · ·αnkαk = αn1+···+nk(α1 · · ·αk) = αn1+···+nkα = αn1+···+nk+1,

we can change the presentation of the subgroup in the denominator to the
following:

〈αn1+···+nk+1, αn2α2, · · · , αnkαk | ααi = αiα, 2 ≤ i ≤ k〉.

On the other hand, one can see that the following is a presentation of Z⊕Fk−1 ,
which is the numerator:

Z⊕ Fk−1
∼= 〈α,αn2α2, · · · , αnkαk | ααi = αiα, 2 ≤ i ≤ k〉,

since all the αi, 2 ≤ i ≤ k, can be achieved by the new set of generators. By
these two new presentations, one can easily see that the quotient of these two
groups is Z/((

∑k
i=1 ni) + 1)Z as needed, and hence Theorem 3.7 is proved.

3.4 A slightly more general construction

During the proof of the last theorem (before Figure 6), we have shown that el-
ementary transformations of the second type do not affect the meridians of the
fibers which we perform the transformations on. Therefore, we can generalize
our construction to the following one: instead of performing all the elementary
transformations of the second type on the same fiber P , we can apply them
on several fibers P1, · · · , Pt , with the condition that the total number of appli-
cations of elementary transformations of the second type will be equal to the
total number of applications of elementary transformations of the first type.

Using this observation, we can describe a slightly more general construction:
Let C be the initial plane curve, and let n1, · · · , nk and m1, · · · ,ml be two sets
of k and l given natural numbers, such that

∑
ni =

∑
mj . We start with

k + l different lines Q1, · · · , Qk and P1, · · · , Pl which all meet C transversally.
They all intersect in a point O outside C , in such a way that if we put a
disk D centered at O , the intersection points of the lines and the boundary
of D are organized counterclockwise on the boundary of D . Now we blow
up the point O , in order to get Hirzebruch surface F1 . Then we apply ni
elementary transformations of the first type on the proper transform of Qi for all
i = 1, . . . , k . After this step, we have reached Hirzebruch surface F(

∑k
i=1 ni)+1 .

Now, we apply mj elementary transformations of the second type on the proper
transform of Pj for all j = 1, . . . , l . Since

∑
ni =

∑
mj , we reach back F1 . At

last, we blow down the exceptional section (whose self-intersection is now −1),
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and we get again P2 . This defines a family of Cremona transformations from
P2 to P2 .

For any (k + l)-tuple (n1, · · · , nk,m1, · · · ,ml) ∈ Nk+l such that
∑
ni =

∑
mi ,

we get a Cremona transformation, denoted by T(n1,···,nk;m1,···,ml) . Then we can
state:

Proposition 3.8 Let C be a plane projective curve and G = π1(P2−C). Then
for any (k + l)-tuple (n1, · · · , nk,m1, · · · ,ml) ∈ Nk+l such that

∑
ni =

∑
mi ,

the curve C̃ = T(n1,···,nk;m1,···,ml)(C) is birational to C and its fundamental

group G̃ = π1(P2 − C̃) is a central extension of G by Z/((
∑k

i=1 ni) + 1)Z:

1→ Z/((
k∑
i=1

ni) + 1)Z→ G̃→ G→ 1

Moreover, if C has r irreducible components so is C̃ .

3.5 An interesting special case

Just before finishing the section of the constructions, we want to concentrate
on an interesting special construction. In this construction, we perform all the
elementary transformations from both types on the same fiber.

First, we define this construction precisely, and then we prove that the funda-
mental group of the resulting curve is again a central extension of the original
curve, as we had in the previous constructions. We have to prove it, since the
proof is slightly different from the proof of the previous case.

We start with a curve C and one additional line L in P2 which intersects C
transversally. Blow up a point O on L (which does not belong to C ) in order
to reach F1 . Then perform n elementary transformations of the first type on
the proper transform of L. Hence we reach Fn+1 . Now, perform n elementary
transformations of the second type again on the proper transform of L. Now,
blow down the exceptional section (which now has self-intersection −1) in order
to return to P2 . This construction defines a Cremona transformation from P2

to P2 , which we denote by Tn . Then we have the following result:

Proposition 3.9 Let C be a plane projective curve and G = π1(P2 − C).
Then for any natural number n ∈ N, the curve C̃ = Tn(C) is birational to
C and its fundamental group G̃ = π1(P2 − C̃) is a central extension of G by
Z/(n+ 1)Z:

1→ Z/(n+ 1)Z→ G̃→ G→ 1

Moreover, if C has r irreducible components so is C̃ .
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Proof As before, C̃ is birational to C , and number of irreducible components
is preserved by Tn .

Let L̃ = Tn(L). Tn induces an isomorphism of the corresponding fundamental
groups:

π1(P2 − (C ∪ L)) ∼= π1(P2 − (C̃ ∪ L̃))

Let α be the meridian of L at a smooth point. By Claim 3.1, we get that the
meridian of the exceptional section E , which is the blow up of the point O ∈ L,
is again α.

After we apply the sequence of n elementary transformations of the first type
using the fiber L and its proper transforms, we have by Fujita’s lemma (Lemma
3.2) that the meridian of the proper transform of L is αn+1 . As before, the
applications of elementary transformations of the second type and the final blow
down do not change this meridian.

Therefore, by Lemma 3.5, we conclude that:

π1(P2 − C̃) ∼= π1(P2 − (C̃ ∪ L̃))/〈αn+1〉

As before, it is equivalent to:

π1(P2 − C̃) ∼= π1(P2 − (C ∪ L))/〈αn+1〉.

By Lemma 3.5, π1(P2 − (C ∪ L))/〈α〉 = π1(P2 − C). Hence:

π1(P2 − C̃)/〈α〉 ∼= π1(P2 − C),

which can be written as the following extension:

1→ (〈α〉/〈αn+1〉)→ π1(P2 − C̃)→ π1(P2 − C)→ 1.

Obviously, 〈α〉/〈αn+1〉 ∼= Z/(n+1)Z, and since α commutes with the generators
of π1(P2 − C) (since the line L intersects C transversally), the extension is
central.

4 Properties of groups preserved by the construc-
tions

In this section, we indicate some properties of the fundamental group which are
preserved by the constructions of the previous section.

We start with an interesting property about the splitness of the central ex-
tension we have in the constructions. Using this property, we will show the
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following important property of the fundamental group of the resulting curve
(Proposition 4.3): if we start with an irreducible curve which has a cyclic group
as the fundamental group (such as smooth irreducible curves), then the result-
ing fundamental group will be cyclic too. The importance of this property is
that although the constructions add to the curve deep singularities (as is proved
in Proposition 5.2), the fundamental group of the curve is still cyclic. Hence,
these constructions may yield families of plane curves which have some deep
singularities but have cyclic fundamental groups.

Proposition 4.1 Let C be a plane curve with r irreducible components. Let
n ∈ N. Let C̃ be the curve whose fundamental group G̃ is obtained from
G = π1(P2 − C) by a central extension by Z/(n + 1)Z. If the abelian group
H1(P2 − C) has r direct summands and the orders of the summands are not
coprime to n+ 1, then the extension does not split, i.e. G̃ 6∼= G⊕ Z/(n+ 1)Z.

Remark 4.2 In case of coprimeness, we obviously have

Z/(mn)Z ∼= Z/mZ⊕ Z/nZ,
and this is the reason for ruling this case out in the proposition.

Proof of Proposition 4.1 On the contrary, assume that G̃ ∼= G⊕Z/(n+1)Z.
As H1(X) is the abelinization of π1(X), we have that

H1(P2 − C̃) ∼= Ab(G̃) ∼= Ab(G⊕ Z/(n+ 1)Z) ∼= H1(P2 − C)⊕ Z/(n+ 1)Z.

Since n + 1 is not coprime to the orders of the summands of H1(P2 − C̃),
H1(P2 − C̃) has r + 1 proper direct summands. This contradicts the fact that
C̃ has only r irreducible components, as the number of irreducible components
is preserved by the constructions.

Proposition 4.3 Let C be an irreducible plane curve with a cyclic fundamen-
tal group Z/rZ. Let n ∈ N. Let C̃ be the curve whose fundamental group G̃
is obtained from G = π1(P2 −C) by a central extension by Z/(n+ 1)Z. Then
G̃ = π1(P2 − C̃) is also cyclic of order r(n+ 1).

Proof As H1(X) is the abelinization of π1(X), we have that G = H1(P2−C).
Since G is cyclic, H1(P2−C) has one direct summand, which equals the number
of irreducible components in C (one too). By the previous proposition, the
extension does not split, and H1(P2 − C̃) is cyclic too.

Since the extension is central, we have that G̃ is abelian of order r(n + 1).
Hence, G̃ = H1(P2 − C̃). Therefore, G̃ is cyclic of order r(n+ 1).
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Remark 4.4 The condition that the curve is irreducible is essential, since if
we take a reducible curve with a cyclic fundamental group, it is not guaranteed
that the resulting curve will have a cyclic fundamental group. For example, if we
start with a curve C consists of two intersecting lines whose fundamental group
π1(P2−C) = Z is cyclic, and we apply on it Uludağ’s method for n = 1, we get
that the resulting curve C̃ has a fundamental group π1(P2 − C̃) = Z⊕ (Z/2Z)
(see after Proposition 5.11) which is not cyclic.

Let p be a prime number. Then:

Remark 4.5 Let C be a plane curve with a fundamental group G which is
a p-group. Let n ∈ N. Let C̃ be the curve whose fundamental group G̃ is
obtained from G = π1(P2−C) by a central extension by Z/(n+ 1)Z. Then: if
n+ 1 = pl for some l , then G̃ = π1(P2 − C̃) is also a p-group.

Proof From the extension, we get that G̃/(Z/(n+1)Z) ∼= G. Since n+1 = pl ,
Z/(n + 1)Z is a p-group, and since G is also a p-group, then G̃ is a p-group
too.

Remark 4.6 Let C be a plane curve with a finite fundamental group G. Let
n ∈ N. Let C̃ be the curve whose fundamental group G̃ is obtained from
G = π1(P2 − C) by a central extension by Z/(n + 1)Z. If (|G|, n + 1) = 1,
then the fundamental group G̃ of the resulting curve is a direct sum of G and
Z/(n+ 1)Z:

G̃ ∼= G⊕ Z/(n+ 1)Z

Proof Use Theorem 7.77 of [24] that “if Q is a finite group, K is a finite
abelian group, and (|K|, |Q|) = 1, then an extension G of Q by K is a semidi-
rect product of K and Q”, and since the extension is central, semidirect prod-
ucts become direct products.

In the following proposition, we list some more properties of the fundamental
group which are preserved by the constructions. Before stating it, we remind
some definitions. A group is called polycyclic if it has a subnormal series with
cyclic factors. A group is called supersolvable if it has a normal series with cyclic
factors. We say that a group G is nilpotent if its lower central series reaches 1
(see for example [24]).
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Proposition 4.7 Let C be a plane curve with a fundamental group G. Let
n ∈ N. Let C̃ be the curve whose fundamental group G̃ is obtained from
G = π1(P2 − C) by a central extension by Z/(n + 1)Z. Then if G has one of
the following properties, the fundamental group G̃ of the resulting curve has
that property too:

(1) Finite.

(2) Non-abelian.

(3) Solvable.

(4) Supersolvable.

(5) Polycyclic.

(6) Nilpotent.

Proof (1-2) Trivial.

(3) From the extension, we get that G̃/(Z/(n+1)Z) ∼= G. But it is known [24,
Theorem 5.17] that if Z/(n+ 1)Z and G are both solvable, then G̃ is solvable
too.

(4) From the extension, we have that G̃/(Z/(n+ 1)Z) ∼= G. It is easy to show
(very similar to the solvable case, see [24, Theorem 5.17]) that if Z/(n + 1)Z
and G are both supersolvable, then G̃ is supersolvable too.

(5) Same proof as (4).

(6) Since G̃ is a central extension of G by Z/(n + 1)Z for a given n, we get
that G̃/(Z/(n + 1)Z) ∼= G where Z/(n + 1)Z ≤ Z(G̃). But it is easy to see
that if Z/(n+ 1)Z ≤ Z(G̃) and G is nilpotent, then G̃ is nilpotent too (see for
example [24, p. 117, Exercise 5.38]).

We note here that if G is a nilpotent group of class c (means that the last non-
zero term of the lower central series is the c-th term), then G̃ is a nilpotent
group of class c or c+1. It will be of class c if and only if the 2-cocycle defining
the extension is symmetric (see [25]).

Here we indicate one more family of group properties which are preserved by
the constructions.

Remark 4.8 Let C be a plane curve with a fundamental group G which has
a subgroup N of finite index with a special property (for example: solvable,
nilpotent, etc.). Then the fundamental group G̃ of the resulting curve C̃ has a
subgroup Ñ of finite index with the same special property too.

In particular, if G is virtually-nilpotent or virtually-solvable, then G̃ has the
same property as well.
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Proof Let n ∈ N. Since G̃ is an extension of G by Z/(n + 1)Z, then
G̃/(Z/(n+ 1)Z) ∼= G. Hence there exists Ñ ≤ G̃ such that Ñ/(Z/(n+ 1)Z) ∼=
N . Obviously [G̃ : Ñ ] = [G : N ] <∞. Since G̃ is a central extension, one can
show that also Ñ is a central extension of N by Z/(n+1)Z (since Z/(n+1)Z is
a subgroup of the intersection of Z(G̃) and Ñ , and hence in Z(Ñ)). Therefore,
one can apply Proposition 4.7 to show that the properties of N are moved to
Ñ .

Remark 4.9 Note that all the results of this section hold also for the con-
structions of Oka [20] and Shimada [26], since also in their constructions the
fundamental group of the resulting curve is a central extension of the funda-
mental group of the original curve by a cyclic group.

5 The curves obtained by the constructions

In this section we investigate the curves which can be obtained using Uludağ’s
original construction and the general constructions we have presented in the
previous sections. In the first subsection, we will describe the types of singular-
ities which are added by the constructions. In Subsection 5.2 we compute the
degrees of the resulting curves. In the next subsections, we describe some fam-
ilies of curves which can be obtained by applying the constructions on several
different types of curves.

5.1 The types of singularities which are added to the curves

At the beginning of this subsection, we want to fix a notation for singular points.
We follow the notations of Flenner and Zaidenberg [10]. Although in general
it is possible that a singular point splits into several points by a blow up, in
most of our cases (except for Proposition 3.8), only one singular point appears
by a blow up. Hence, any singular point P has a very simple resolution by a
sequence of s blow ups. We denote by ti > 1 (1 ≤ i ≤ s) the multiplicity of
the curve at P before the i-th blow up. Then [t1, · · · , ts] is called the type of
the singularity. If we have a sequence of r equal multiplicities l , we abbreviate
it by lr . For example, [2, 2, 2] = [23] corresponds to a ramphoid cusp, which
has to be blown up three times (each time of multiplicity 2) for smoothing it.

To simplify the description, we also introduce the notion of a d-tacnode.
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Definition 5.1 A d-tacnode is a singular point where d smooth branches of
the curve have a common tangent at the same point. A d-tacnode of order k
is a d-tacnode such that the higher derivatives of the branches are also equal
up to order k .

For example, the usual tacnode is 2-tacnode of order 1.

Here we describe the singularities which are added to the curve during these
constructions:

Proposition 5.2 Let C be a curve of degree d. Let (n1, · · · , nk) ∈ Nk be a
k -tuple. Let C̃ = T(n1,···,nk)(C) (see Theorem 3.7).

Then C̃ has k+ 1 additional singularities to those of C : k d-tacnodes of order
ni − 1 (1 ≤ i ≤ k), and another singular point which is a blow down of a
d-tacnode of order n1 + · · ·+nk−1 (i.e., the curve has the following additional
singularities: [dn1 ], · · · , [dnk ] and [d(n1 + · · ·+ nk), d(n1+···+nk)]).

Proof The first blow-up (from P2 to F1 ) does not change the curve. Each
sequence of ni elementary transformations of the first type on the fiber Qi
and its proper transforms creates one d-tacnode of order ni − 1: The first
elementary transformation of the first type creates one intersection point (of d
branches). The second elementary transformation of the first type converts it
into a d-tacnode of order 1, and another ni − 2 elementary transformations of
the first type convert it into a d-tacnode of order ni − 1. This d-tacnode is
located at the proper transform of Qi , outside the exceptional section.

The sequence of n1 + · · · + nk elementary transformations of the second type
(from Fn1+···+nk+1 to F1 ) creates another d-tacnode of order n1 + · · ·+nk− 1,
as in the case of the elementary transformations of the first type. The difference
is that now this d-tacnode is located at the exceptional section. Hence, when
we blow down this section in order to return to P2 , this d-tacnode of order
n1 + · · ·+ nk − 1 is blown down too to a more complicated singular point.

The following remark states the situation after applying only Uludağ’s original
construction.

Remark 5.3 Let C be a curve of degree d. Let n ∈ N. Let C̃ be the curve
obtained by Uludağ’s original construction for this n (see Section 2).

Then C̃ has two additional singularities to those of C : a d-tacnode of order
n − 1, and another singular point which is a blow down of a d-tacnode of
order n − 1 (i.e., the curve has the following additional singularities: [dn] and
[dn, dn]).
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Here we describe the situation concerning the special case (Proposition 3.9).

Proposition 5.4 Let C be a curve of degree d. Let n ∈ N. Let C̃ = Tn(C).

Then C̃ has one additional singularity to those of C : a blow down of a d-
tacnode of order 2n− 1 (i.e., the curve has the following additional singularity:
[2nd, d2n]).

Proof As before, the first blow-up does not change the curve. The sequence
of n elementary transformations of the first type creates one d-tacnode of order
n− 1. Since we apply the second sequence of n elementary transformations of
the second type on the same fiber, we continue to deepen this singularity into a
d-tacnode of order 2n− 1 which is now located also at the exceptional section.
Hence, when we blow down this section in order to return to P2 , this d-tacnode
of order 2n− 1 is blown down too to a more complicated singular point.

The description of the curves obtained by Proposition 3.8 is a little bit more
complicated: In this case we indeed have a singular point which is splitted after
the first blow-up into several singular points.

Proposition 5.5 Let C be a curve of degree d. Let (n1, · · · , nk,m1, · · · ,ml) ∈
Nk+l be a (k+ l)-tuple such that

∑
ni =

∑
mj . Let C̃ = T(n1,···,nk;m1,···,ml)(C)

(see Proposition 3.8).

Then C̃ has k+ 1 additional singularities to those of C : k d-tacnodes of order
ni − 1 (1 ≤ i ≤ k), and another singular point which is a blow down of l
d-tacnodes of order mj − 1 (1 ≤ j ≤ l) on the exceptional section of that blow
down (i.e., the curve has the following additional singularities: [dn1 ], · · · , [dnk ]
and [d(n1 + · · · + nk), ([dm1 ], · · · , [dml ])]).

Proof The proof is similar to the proofs of the previous propositions. As
before, the elementary transformations of the first type create k d-tacnodes of
order ni − 1.

The sequences of mj (1 ≤ j ≤ l) elementary transformations of the second
type on the fibers P1, · · · , Pl create l d-tacnodes of order mj − 1, which are
all located at the exceptional section. Hence, when we blow this section down
in order to return to P2 , these l d-tacnodes are blown down together to a
complicated singular point.
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5.2 Change of the degree of the curve

In this subsection, we compute the degree of the resulting curve:

Proposition 5.6 Let C be a plane projective curve of degree d.
Let (n1, · · · , nk) ∈ Nk . Let C̃ = T(n1,···,nk)(C) (see Theorem 3.7).

Then the degree of the resulting curve is d(n1 + · · ·+ nk + 1).

Proof Let d̃ be the degree of C̃ . We have to show that d̃ = d(n1+· · ·+nk+1).
When we blow up once one of the singularities, say P , in order to resolve it,
we have to decrease the self-intersection of the original curve C̃ by (multC̃P )2

(where multC̃P is the local multiplicity of C̃ at P ) to get the self-intersection of
the curve C̃ after the blow-up. Since this is the data which is given by the types
of the singularities, one can compute easily the change in the self-intersection.

So, we start with C̃ whose self-intersection is d̃2 , since C̃ is in P2 . For all
1 ≤ i ≤ k , the ni blow-ups of the singular point [dni ] yield a decreasing of the
self-intersection by ni · d2 , since the multiplicity of the curve at the singular
point is d. The n1 + · · · + nk + 1 blow-ups of the singular point of the type
[d(n1+· · ·+nk), dn1+···+nk ] yield an additional decreasing of the self-intersection
by (d(n1 + · · ·+nk))2 + (n1 + · · ·+nk)d2 , since the multiplicity of the curve at
the singular point in the first blow up is d(n1 + · · ·+nk) and in the other blow
ups it is again d. After all these blow-ups, we reach the original curve C in P2

and hence its self-intersection is d2 . Therefore, we have the following equation:

d̃2 −
k∑
i=1

(ni · d2)− ((d(n1 + · · ·+ nk))2 + (n1 + · · · + nk)d2) = d2

and hence d̃2 = d2(n1 + · · ·+ nk + 1)2 , which gives us d̃ = d(n1 + · · ·+ nk + 1)
as needed.

One can perform the same computations also for the curves obtained by the
constructions presented in Propositions 3.8 and 3.9 (see Propositions 5.5 and
5.4 respectively for the descriptions of the additional singularities). Hence,
Proposition 5.6 holds for those curves too.

5.3 Families of curves obtained by starting with smooth irre-
ducible curves

In this subsection we describe the families of curves which are obtained by
Uludağ’s original construction and its generalizations if we apply them to a
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smooth irreducible curve C of degree d (and therefore π1(P2−C) ∼= Z/dZ, see
Zariski [36]).

Proposition 5.7 Let C be a smooth irreducible curve of degree d. Let n ∈ N.
Let C̃ be the curve obtained by Uludağ’s construction in such a way that
its fundamental group is a central extension of G = π1(P2 − C) = Z/dZ by
Z/(n+ 1)Z.

Then for n = 1, C̃ has an intersection point of d smooth branches and one
d-tacnode (i.e., the curve has the singularities: [d] and [d2]).

For n ≥ 2, C̃ has a d-tacnode of order n−1, and another singular point which
is a blow down of a d-tacnode of order n − 1 (i.e., the curve has the following
singularities: [dn] and [dn, dn]).

The degree of the resulting curve is d(n + 1).

Proof Since a smooth curve has no singularities, then the only singularities
of the resulting curve are those which were created by Uludağ’s construction
(see Remark 5.3). Therefore the curve has only the singularities described in
Remark 5.3.

The degree of the curve can be computed directly by Proposition 5.6.

For the particular case d = 2 and n = 1, we indeed get a quadric with a
node and a tacnode, and its equation can be found in [19, p. 147, case 2]:
(x2 + y2 − 3x)2 = 4x2(2− x).

Using Proposition 4.3, we have that

π1(P2 − C̃) ∼= Z/(d(n + 1))Z.

Now, we describe the family of curves which are obtained by the general con-
struction (Subsection 3.3).

Proposition 5.8 Let C be a smooth irreducible curve. Let (n1, · · · , nk) ∈ Nk
be a k -tuple. Let C̃ = T(n1,···,nk)(C) (see Theorem 3.7).

For every 1 ≤ i ≤ k , C̃ has a d-tacnode of order ni − 1, and another singular
point which is a blow down of a d-tacnode of order n1+· · ·+nk−1 (i.e., the curve
has the following singularities: [dn1 ], · · · , [dnk ] and [d(n1 +· · ·+nk), dn1+···+nk ]).

The degree of the resulting curve is d(n1 + · · ·+ nk + 1).
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Proof Similar to the proof of the previous proposition, but here we use the
results of Proposition 5.2.

Using Proposition 4.3 again, we have that

π1(P2 − C̃) ∼= Z/(d(n1 + · · ·+ nk + 1))Z.

5.4 Families of curves obtained by starting with line arrange-
ments

In this subsection we describe the families of curves and their groups which are
obtained by Uludağ’s original construction and its generalizations if we apply
them to some types of line arrangements.

Proposition 5.9 Let L be a line arrangement consisting of m lines inter-
secting in one point. Let n ∈ N. Let L̃ be the curve obtained by Uludağ’s
construction in such a way that its fundamental group is a central extension of
G = π1(P2 − L) = Fm−1 by Z/(n+ 1)Z.

Then for n = 1, L̃ has two intersection points of m smooth branches and one
m-tacnode (i.e., the curve has the following singularities: [m],[m] and [m2]).

For n ≥ 2, L̃ has one intersection points of m smooth branches, one m-tacnode
of order n−1, and another singular point which is a blow down of a m-tacnode
of order n − 1 (i.e., the curve has the following singularities: [m],[mn] and
[mn,mn]).

The degree of the resulting curve is m(n+ 1).

Proof Since L has one intersection point of m smooth branches, then the
singularities of the resulting curve are those which were created by Uludağ’s
construction (see Remark 5.3) and an additional singularity which was in L.

The degree of the curve is computed directly by Proposition 5.6.

Since H2(Fm−1,Z/(n+ 1)Z) is trivial, then we get that:

π1(P2 − L̃) ∼= Fm−1 ⊕ Z/(n+ 1)Z.

Now, we describe the family of curves which are obtained by the general con-
struction (Subsection 3.3).
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Proposition 5.10 Let L be a line arrangement consisting of m lines inter-
secting in one point. Let (n1, · · · , nk) ∈ Nk be a k -tuple. Let L̃ = T(n1,···,nk)(L)
(see Theorem 3.7).

Then: in addition to the original intersection point of L, for every 1 ≤ i ≤ k ,
L̃ has a m-tacnode of order ni− 1, and another singular point which is a blow
down of a m-tacnode of order n1 + · · ·+nk−1 (i.e., the curve has the following
singularities: [m], [mn1 ], · · · , [mnk ] and [m(n1 + · · ·+ nk),mn1+···+nk ]).

The degree of the resulting curve is m(n1 + · · · + nk + 1).

Proof Similar to the proof of the previous proposition, but here we use the
results of Proposition 5.2.

As before, since H2(Fm−1,Z/(n1 + · · ·+ nk + 1)Z) is trivial, then we get that:

π1(P2 − L̃) ∼= Fm−1 ⊕ Z/(n1 + · · ·+ nk + 1)Z.

Now we deal with another important type of line arrangements: lines in a
general position, which means that there is no intersection of more than two
lines in a point. We describe the family of curves which are obtained by the
general construction (Subsection 3.3).

Proposition 5.11 Let L be a line arrangement consisting of m lines in a
general position. Let (n1, · · · , nk) ∈ Nk be a k -tuple. Let L̃ = T(n1,···,nk)(L)
(see Theorem 3.7).

Then: in addition to the
(m

2

)
nodal points of L, for every 1 ≤ i ≤ k , L̃ has a

m-tacnode of order ni−1, and another singular point which is a blow down of a
m-tacnode of order n1+· · ·+nk−1 (i.e., the curve has the following singularities:
[mn1], · · · , [mnk ], [m(n1 + · · ·+nk),mn1+···+nk ] and

(
m
2

)
singularities of the type

[2]).

The degree of the resulting curve is m(n1 + · · · + nk + 1).

Proof Since L has
(
m
2

)
nodal points, then the singularities of the resulting

curve are those which were created by the general construction (see Proposition
5.2) and

(m
2

)
nodal points.

The degree of the curve is computed directly by Proposition 5.6.
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Since a central extension of Zm−1 by Z/(n1 + · · · + nk + 1)Z is not unique, it
is interesting to know which group is indeed obtained in this case. For this, we
perform a direct computation for finding a presentation for the fundamental
group of the complement of L̃, using braid monodromy techniques and van
Kampen’s theorem (for similar computations, see [1, 2, 17]). We get that:

π1(P2 − L̃) ∼= Zm−1 ⊕ Z/(n1 + · · ·+ nk + 1)Z
This result is mainly achieved due to the commutative relations induced by the(
m
2

)
nodal points, and the torsion subgroup is created by the projective relation.

6 An application to Zariski pairs

As already mentioned, we call a Zariski pair to a pair of plane curves which
have the same combinatorics, but their complements are not homeomorphic.

In this short section, we want to use the above constructions to produce new
Zariski pairs.

Not every Zariski pair (C1, C2) can produce a family of Zariski pairs by our
construction, since even if G1 = π1(P2−C1) and G2 = π1(P2−C2) are different,
it is not guaranteed that G̃1 = π1(P2 − C̃1) and G̃2 = π1(P2 − C̃2) will be still
different, as there are several ways to construct the same group by central
extensions. Therefore, we have to characterize Zariski pairs which induce such
families.

A possible characterization is the following:

Proposition 6.1 Let (C1, C2) be a Zariski pair of two irreducible curves. If
π1(P2−C1) is a cyclic group and π1(P2−C2) is not a cyclic group, then (C̃1, C̃2)
is a Zariski pair too.

Proof Since (C1, C2) is a Zariski pair, then by definition C1 and C2 have the
same degree and the same singularities. Therefore, using the results of Section
5, C̃1 and C̃2 have the same degree and the same singularities too.

Since π1(P2−C1) is cyclic and C1 is irreducible, then π1(P2− C̃1) is cyclic too
(by Proposition 4.3). On the other hand, a central extension of non-cyclic group
can never be cyclic and hence π1(P2 − C̃2) is not cyclic. Therefore, (C̃1, C̃2) is
a Zariski pair too.

The examples of Zariski [36, 37], Oka [22] and Shimada [27] satisfy the condi-
tions of Proposition 6.1, and hence can be used for producing families of new
examples of Zariski pairs.
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