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The Chess conjecture

Rustam Sadykov

Abstract We prove that the homotopy class of a Morin mapping f : P p !
Qq with p − q odd contains a cusp mapping. This a�rmatively solves a
strengthened version of the Chess conjecture [5],[3]. Also, in view of the
Saeki-Sakuma theorem [10] on the Hopf invariant one problem and Morin
mappings, this implies that a manifold P p with odd Euler characteristic
does not admit Morin mappings into R2k+1 for p � 2k + 1 6= 1; 3; 7.

AMS Classi�cation 57R45; 58A20, 58K30

Keywords Singularities, cusps, fold mappings, jets

1 Introduction

Let P and Q be two smooth manifolds of dimensions p and q respectively and
suppose that p � q . The singular points of a smooth mapping f : P ! Q
are the points of the manifold P at which the rank of the di�erential df of the
mapping f is less than q . There is a natural strati�cation breaking the singular
set into �nitely many strata. We recall that the kernel rank krx(f) of a smooth
mapping f at a point x is the rank of the kernel of df at x. At the �rst stage
of the strati�cation every stratum is indexed by a non-negative integer i1 and
de�ned as

�i1(f) = f x 2 P j krx(f) = i1g:

The further strati�cation proceeds by induction. Suppose that the stratum
�n−1(f) = �i1;:::;in−1(f) is de�ned. Under assumption that �n−1(f) is a sub-
manifold of P , we consider the restriction fn−1 of the mapping f to �n−1(f)
and de�ne

�i1;:::;in(f) = f x 2 �n−1(f) j krx(fn−1) = ing:

Boardman [4] proved that every mapping f can be approximated by a mapping
for which every stratum �n(f) is a manifold.

We abbreviate the sequence (i1; :::; in) of n non-negative integers by I . We
say that a point of the manifold P is an I -singular point of a mapping f if
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it belongs to a singular submanifold �I(f). There is a class of in a sense
the simplest singularities, which are called Morin. Let I1 denote the sequence
(p − q + 1; 0) and for every integer k > 1, the symbol Ik denote the sequence
(p − q + 1; 1; :::; 1; 0) with k non-zero entries. Then Morin singularities are
singularities with symbols Ik . A Morin mapping is an Ik -mapping if it has
no singularities of type Ik+1 . For k = 1; 2 and 3, points with the symbols
Ik are called fold, cusp and swallowtail singular points respectively. In this
terminology, for example, a fold mapping is a mapping which has only fold
singular points.

Given two manifolds P and Q, we are interested in �nding a mapping P ! Q
that has as simple singularities as possible. Let f : P ! Q be an arbitrary
general position mapping. For every symbol I , the Z2 -homology class repre-
sented by the closure �I(f) does not change under general position homotopy.
Therefore the homology class [�I(f)] gives an obstruction to elimination of
I -singularities by homotopy.

In [5] Chess showed that if p−q is odd and k � 4, then the homology obstruction
corresponding to Ik -singularities vanishes. Chess conjectured that in this case
every Morin mapping f is homotopic to a mapping without Ik -singular points.

We will show that the statement of the Chess conjecture holds. Furthermore
we will prove a stronger assertion.

Theorem 1.1 Let P and Q be two orientable manifolds, p − q odd. Then
the homotopy class of an arbitrary Morin mapping f : P ! Q contains a cusp
mapping.

Remark The standard complex projective plane CP 2 does not admit a fold
mapping [9] (see also [1], [12]). This shows that the homotopy class of f may
contain no mappings with only I1 -singularities.

Remark The assumption on the parity of the number p− q is essential since
in the case where p− q is even homology obstructions may be nontrivial [5].

Remark We refer to an excellent review [11] for further comments. In par-
ticular, see Remark 4.6, where the authors indicate that Theorem 1.1 does not
hold for non-orientable manifolds.

In [10] (see also [7]) Saeki and Sakuma describe a remarkable relation between
the problem of the existence of certain Morin mappings and the Hopf invariant
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one problem. Using this relation the authors show that if the Euler character-
istic of P is odd, Q is almost parallelizable, and there exists a cusp mapping
f : P ! Q, then the dimension of Q is 1; 2; 3; 4; 7 or 8.

Note that if the Euler characteristic of P is odd, then the dimension of P is
even. We obtain the following corollary.

Corollary 1.2 Suppose the Euler characteristic of P is odd and the dimension
of an almost parallelizable manifold Q is odd and di�erent from 1; 3; 7. Then
there exist no Morin mappings from P into Q.

2 Jet bundles and suspension bundles

Let P and Q be two smooth manifolds of dimensions p and q respectively. A
germ at a point x 2 P is a mapping from some neighborhood about x in P
into Q. Two germs are equivalent if they coincide on some neighborhood of x.
The class of equivalence of germs (or simply the germ) at x represented by a
mapping f is denoted by [f ]x .

Let U be a neighborhood of x in P and V be a neighborhood of y = f(x) in
Q. Let

�U : (U; x)! (Rp; 0) and �V : (V; y)! (Rq; 0)

be coordinate systems. Two germs [f ]x and [g]x are k-equivalent if the map-
pings �V � f � �−1

U and �V � g � �−1
U , which are de�ned in a neighborhood of

0 2 Rp , have the same derivatives at 0 2 Rp of order � k . The notion of k -
equivalence is well-de�ned, i.e. it does not depend on choice of representatives
of germs and on choice of coordinate systems. A class of k -equivalent germs at
x is called a k-jet. The set of all k -jets constitute a set Jk(P;Q). The pro-
jection Jk(P;Q) ! P �Q that takes a germ [f ]x into a point x� f(x) turns
Jk(P;Q) into a bundle (for details see [4]), which is called the k-jet bundle over
P �Q.

Let y be a point of a manifold and V a neighborhood of y . We say that two
functions on V lead to the same local function at y , if at the point y their partial
derivatives agree. Thus a local function is an equivalence class of functions
de�ned on a neighborhood of y . The set of all local functions at the point y
constitutes an algebra of jets F(y). Every smooth mapping f : (U; x)! (V; y)
de�nes a homomorphism of algebras f � : F(y)! F(x): The maximal ideal my

of F(y) maps under the homomorphism f� to the maximal ideal mx � F(x).
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The restriction of f� to my and the projection of f�(my) � mx onto mx=m
k+1
x

lead to a homomorphism

fk;x : my ! mx=m
k+1
x :

It is easy to verify that k -jets of mappings (U; x) ! (V; y) are in bijective
correspondence with algebra homomorphisms my ! mx=m

k+1
x . That is why

we will identify a k -jet with the corresponding homomorphism.

The projections of P �Q onto the factors induce from the tangent bundles TP
and TQ two vector bundles � and � over P �Q. The latter bundles determine
a bundle HOM(�; �) over P �Q. The �ber of HOM(�; �) over a point x� y
is the set of homomorphisms Hom(�x; �y) between the �bers of the bundles �
and � . The bundle � determines the k -th symmetric tensor product bundle
�k� over P �Q, which together with � leads to a bundle HOM(�k�; �).

Lemma 2.1 The k -jet bundle contains a vector subbundle Ck isomorphic to
HOM(�k�; �).

Proof De�ne Ck as the union of those k -jets fk;x which take my to mk
x . With

each fk;x 2 Ck we associate a homomorphism (for details, see [4, Theorem 4.1])

�x � ::: � �x| {z }
k

⊗my=m
2
y ! R (1)

which sends v1�::::�vk⊗� into the value of v1�:::�vk at a function representing
fk;x(�): In view of the isomorphism my=m

2
y � Hom(�y;R), the homomorphism

(1) is an element of Hom(�k�x; �y). It is easy to verify that the obtained
correspondence Ck !HOM(�k�x; �y) is an isomorphism of vector bundles.

Corollary 2.2 There is an isomorphism Jk−1(P;Q) � Ck � Jk(P;Q).

Proof Though the sum of two algebra homomorphisms may not be an algebra
homomorphism, the sum of a homomorphism fk;x 2 Jk(P;Q) and a homomor-
phism h 2 Ck is a well de�ned homomorphism of algebras (fk;x+h) 2 Jk(P;Q).
This de�nes an action of Ck on Jk(P;Q). Two k -jets � and � map under the
canonical projection

Jk(P;Q) −! Jk(P;Q)=Ck

onto one point if and only if � and � have the same (k − 1)-jet. Therefore
Jk(P;Q)=Ck is canonically isomorphic to Jk−1(P;Q).
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Remark The isomorphism Jk−1(P;Q)�Ck � Jk(P;Q) constructed in Corol-
lary 2.2 is not canonical, since there is no canonical projection of the k -jet
bundle onto Ck .

In [8] Ronga introduced the bundle

Sk(�; �) = HOM(�; �)�HOM(� � �; �) � :::�HOM(�k�; �);

which we will call the k -suspension bundle over P �Q.

Corollary 2.3 The k -jet bundle is isomorphic to the k -suspension bundle.

3 Submanifolds of singularities

There are canonical projections Jk+1(P;Q) ! Jk(P;Q), which lead to the in-
�nite dimensional jet bundle J(P;Q) := lim − Jk(P;Q). Let f : P ! Q be a
smooth mapping. Then at every point x�f(x) of the manifold P�Q, the map-
ping f determines a k -jet. The k -jets de�ned by f lead to a mapping jkf of
P to the k -jet bundle. These mappings agree with projections of lim − Jk(P;Q)
and therefore de�ne a mapping jf : P ! J(P;Q), which is called the jet exten-
sion of f . We will call a subset of J(P;Q) a submanifold of the jet bundle if it is
the inverse image of a submanifold of some k -jet bundle. A function � on the
jet bundle is said to be smooth if locally � is the composition of the projection
onto some k -jet bundle and a smooth function on Jk(P;Q). In particular, the
composition ��jf of a smooth function � on J(P;Q) and a jet extension jf is
smooth. A tangent to the jet bundle vector is a di�erential operator. A tangent
to J(P;Q) bundle is de�ned as a union of all vectors tangent to the jet bundle.

Suppose that at a point x 2 P the mapping f determines a jet z . Then the
di�erential of jf sends di�erential operators at x to di�erential operators at z ,
that is d(jf) maps TxP into some space Dz tangent to the jet bundle. In fact,
the space Dz and the isomorphism TxP ! Dz do not depend on representative
f of the jet z . Let � denote the composition of the jet bundle projection and
the projection of P � Q onto the �rst factor. Then the tangent bundle of the
jet space contains a subbundle D , called the total tangent bundle, which can be
identi�ed with the induced bundle ��TP by the property: for any vector �eld
v on an open set U of P , any jet extension jf and any smooth function �
on J(P;Q), the section V of D over �−1(U) corresponding to v satis�es the
equation

V � � jf = v(� � jf):
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We recall that the projections P � Q onto the factors induce two vector bun-
dles � and � over P � Q which determine a bundle HOM(�; �). There is a
canonical isomorphism between the 1-jet bundle and the bundle HOM(�; �).
Consequently 1-jet component of a k -jet z at a point x 2 P de�nes a homomor-
phism h : TxP ! TyQ, y = z(x). We denote the kernel of the homomorphism
h by K1;z . Identifying the space TxP with the �ber Dz of D , we may assume
that K1;z is a subspace of Dz . Hence at every point z 2 J(P;Q) we have a
space K1;z . Boardman showed that the union �i = �i(P;Q) of jets z with
dimK1;z = i is a submanifold of J(P;Q).

Suppose that we have already de�ned a submanifold �n−1 = �i1;:::;in−1 of the
jet space. Suppose also that at every point z 2 �n−1 we have already de�ned
a space Kn−1;z . Then the space Kn;z is de�ned as Kn−1;z \ Tz�n−1 and �n

is de�ned as the set of points z 2 �n−1 such that dim Kn;z = in . Boardman
proved that the sets �n are submanifolds of J(P;Q). In particular every sub-
manifold �n comes from a submanifold of an appropriate �nite dimensional
k -jet space. In fact the submanifold with symbol In is the inverse image of the
projection of the jet space onto n-jet bundle. To simplify notation, we denote
the projections of �n to the k -jet bundles with k � n by the same symbol �n .

Let us now turn to the k -suspension bundle. Following the paper [4], we will
de�ne submanifolds ~�I of the k -suspension bundle.

A point of the k -suspension bundle over a point x � y 2 P � Q is the set
of homomorphisms h = (h1; :::; hk), where hi 2 Hom(�i�x; �y). For every k -
suspension h we will de�ne a sequence of subspaces TxP = K0 � K1 � ::: � Kk .
Then we will de�ne the singular set ~�i1;:::;in as

~�i1;:::;in = f h j dimKj = ij for j = 1; :::; n g:
We start with de�nition of a space K1 � K0 and a projection of P0 = TyQ
onto a factor space Q1 . The h1 -component of h is a homomorphism of K0 into
P0 . We de�ne K1 and Q1 as the kernel and the cokernel of h1 :

0 −! K1 −! K0
h1−! P0 −! Q1 −! 0:

The cokernel homomorphism of this exact sequence gives rise to a homomor-
phism Hom(K1; P0)! Hom(K1; Q1), coimage of which is denoted by P1 . The
sequence of the homomorphisms

Hom(K1 �K1; P0)! Hom(K1;Hom(K1; P0))! Hom(K1; P1)

takes the restriction of h2 on K1 �K1 to a homomorphism �(h2) : K1 ! P1 .
Again the spaces K2 and Q2 are respectively de�ned as the kernel and the
cokernel of the homomorphism �(h2).
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The de�nition continues by induction. In the n-th step we are given some
spaces Ki; Qi for i � n, spaces Pi for i � n− 1 and projections

Hom(Kn−1; P0)! Pn−1;

Pn−1 ! Qn;

where Kn−1 abbreviates the product Kn−1 � ::: �K1 .

First we de�ne Pn as the coimage of the composition

Hom(Kn; P0)! Hom(Kn;Hom(Kn−1; P0))! Hom(Kn; Qn);

where the latter homomorphism is determined by the two given projections.
Then we transfer the restriction of the homomorphism hn+1 on Kn �Kn to a
homomorphism �(hn+1) : Kn ! Pn using the composition

Hom(Kn �Kn; P0)! Hom(Kn;Hom(Kn; P0))! Hom(Kn; Pn):

Finally we de�ne Kn+1 and Qn+1 by the exact sequence

0 −! Kn+1 −! Kn
�(hn+1)−! Pn −! Qn+1 −! 0:

In the previous section we established a homeomorphism between the �bers
of the k -jet bundle and k -suspension bundle. Suppose that neighborhoods of
points x 2 P and y 2 Q are equipped with coordinate systems. Then every
k -jet g which takes x to y has the canonical decomposition into the sum of k -
jets gi , i = 1; :::; k , such that in the selected coordinates the partial derivatives
of the jet gi at x of order 6= i and � k are trivial. In other words the choice
of local coordinates determines a homeomorphism

Jk(P;Q)jx�y ! C1jx�y � :::� Ckjx�y: (2)

Since Cijx�y is isomorphic to Hom(�i�x; �y), we obtain a homeomorphism be-
tween the �bers of the k -jet bundle and k -suspension bundle.

Remark From [4] we deduce that this homeomorphism takes the singular
submanifolds �I to ~�I . Suppose that a k -jet z maps onto a k -suspension
h = (h1; :::; hk). The homomorphisms fhig depends not only on z but also on
choice of coordinates in Ui . However Boardman [4] showed that the spaces Ki ,
Qi , Pi and the homomorphisms �(hi) de�ned by h are independent from the
choice of coordinates.

Lemma 3.1 For every integer k � 1, there is a homeomorphism of bundles
rk : Jk(P;Q)! Sk(�; �) which takes the singular sets �I to ~�I .
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Proof Choose covers of P and Q by closed discs. Let U1; :::; Ut be the closed
discs of the product cover of P � Q. For each disc Ui , choose a coordinate
system which comes from some coordinate systems of the two disc factors of
Ui . We will write Jk for the k -jet bundle and JkjUi for its restriction on Ui . We
adopt similar notations for the k -suspension bundle. The choice of coordinates
in Ui leads to a homeomorphism

�i : JkjUi ! SkjUi :

Let f’ig be a partition of unity for the cover fUig of P � Q. We de�ne
rk : Jk ! Sk by

rk = ’1�1 + ’2�2 + :::+ ’k�k:

Suppose that Ui\Uj is nonempty and z is a k -jet at a point of Ui\Uj . Suppose

�i(z) = (hi1; :::; h
i
k) and �j(z) = (hj1; :::; h

j
k):

Then by the remark preceding the lemma, the homomorphisms �(his) and �(hjs)
coincide for all s = 1; :::; k . Consequently, rk takes �I to ~�I .

The mapping rk is continuous and open. Hence to prove that rk is a homeo-
morphism it su�ces to show that rk is one-to-one.

For k = 1, the mapping rk is the canonical isomorphism. Suppose that rk−1

is one-to-one and for some di�erent k -jets z1 and z2 , we have rk(z1) = rk(z2).
Since rk−1 is one-to-one, the k -jets z1 and z2 have the same (k − 1)-jet com-
ponents. Hence there is v 2 Ck for which z1 = z2 + v . Here we invoke the fact
that Ck has a canonical action on Jk .

For every i, we have �i(z1) = �i(z2) + �i(v). Therefore

rk(z1) = rk(z2) + rk(v): (3)

The restriction of the mapping rk to Ck is a canonical identi�cation of Ck with
HOM(�k�k; �). Hence rk(v) 6= 0. Then (3) implies that rk(z1) 6= rk(z2).

Corollary 3.2 There is an isomorphism of bundles r : J(P;Q) ! S(�; �)
which takes every set �n isomorphically onto ~�n .

The space Jk(P;Q) may be also viewed as a bundle over P with projection

� : Jk(P;Q)! P �Q! P:

Let f : P ! Q be a smooth mapping. Then at every point p 2 P the mapping
f de�nes a k -jet. Consequently, every mapping f : P ! Q gives rise to a
section jkf : P ! Jk(P;Q); which is called the k-extension of f or the k-jet
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section a�orded by f . The sections fjkfgk determined by a smooth mapping
f commute with the canonical projections Jk+1(P;Q) ! Jk(P;Q). Therefore
every smooth mapping f : P ! Q also de�nes a section jf : P ! J(P;Q),
which is called the jet extension of f .

A smooth mapping f is in general position if its jet extension is transversal to
every singular submanifold �I . By the Thom Theorem every mapping has a
general position approximation.

Let f be a general position mapping. Then the subsets (jf)−1(�I) are sub-
manifolds of P . Every condition krx(fn−1) = in in the de�nition of �I(f)
can be substituted by the equivalent condition dim Kn;x(f) = in , where the
space Kn;x(f) is the intersection of the kernel of df at x and the tangent space
Tx�n−1(f). Hence the sets (jf)−1(�I) coincide with the sets �I(f). In partic-
ular the jet extension of a mapping f without I -singularities does not intersect
the set �I .

Let Ωr = Ωr(P;Q) � J(P;Q) denote the union of the regular points and the
Morin singular points with indexes of length at most r .

Theorem 3.3 (Ando-Eliashberg, [2], [6]) Let f : P p ! Qq ,p � q � 2, be
a continuous mapping. The homotopy class of the mapping f contains an
Ir -mapping, r � 1, if and only if there is a section of the bundle Ωr .

Note that every general position mapping f : P p ! Qq , q = 1, is a fold map-
ping. That is why for q = 1, Theorem 1.1 holds and we will assume that
q � 2.

Let ~Ωr denote the subset of the suspension bundle corresponding to the set
Ωr(P;Q) � J(P;Q). Every mapping f : P ! Q de�nes a section jf of
J(P;Q). The composition r � (jf) is a section of S(P;Q). In view of Lemma
3.1 the Ando-Eliashberg Theorem implies that to prove that the homotopy class
of a mapping f contains a cusp mapping, it su�ces to show that the section
of the suspension bundle de�ned by f is homotopic to a section of the bundle
~Ω2 � S(�; �).

4 Proof of Theorem 1.1

We recall that in a neighborhood of a fold singular point x, the mapping f has
the form

Ti = ti; i = 1; 2; :::; q − 1; (4)
Z = Q(x); Q(x) = �k2

1 � :::� k2
p−q+1:
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If x is an Ir -singular point of f and r > 1, then in some neighborhood about
x the mapping f has the form

Ti = ti; i = 1; 2; :::; q − r;
Li = li; i = 2; 3; :::; r; (5)

Z = Q(x) +
rX
t=2

ltk
t−1 + kr+1; Q(x) = �k2

1 � :::� k2
p−q:

Let f : P ! Q be a Morin mapping, for which the set �2(f) is nonempty. We
de�ne the section fi : P ! Hom(�i�; �) as the i-th component of the section
r � (jf) of the suspension bundle S(�; �)! P . Over �2(f) the components f1

and f2 de�ned by the mapping f determine the bundles Ki; Qi , i = 1; 2 and
the exact sequences

0 −! K1 −! TP −! TQ −! Q1 −! 0;

0 −! K2 −! K1 −! HOM(K1; Q1) −! Q2 −! 0:

From the latter sequence one can deduce that the bundle Q2 is canonically
isomorphic to HOM(K2; Q1) and that the homomorphism

K1=K2 ⊗K1=K2 −! Q1; (6)

which is de�ned by the middle homomorphism of the second exact sequence, is a
non-degenerate quadratic form (see Chess, [5]). Since the dimension of K1=K2

is odd, the quadratic form (6) determines a canonical orientation of the bundle
Q1 . In particular the 1-dimensional bundle Q1 is trivial. This observation also
belongs to Chess [5].

Assume that the bundle K2 is trivial. Then the bundle Q2 being isomorphic
to HOM(K2; Q1) is trivial as well. Let

~h : K2 !HOM(K2; Q2) � HOM(K2 ⊗K2; Q1)

be an isomorphism over �2(f) and h : P !HOM(�3�; �) an arbitrary section,
the restriction of which on �3K2 over �2(f) followed by the projection given
by � ! Q1 , induces the homomorphism ~h. Then the section of a suspension
bundle whose �rst three components are f1; f2 and h is a section of the bundle
~Ω2 . Since for i > 0 the bundle HOM(�i�; �) is a vector bundle, we have that
the composition r�(jf) is homotopic to the section s and therefore the original
mapping f is homotopic to a cusp mapping.

Now let us prove the assumption that K2 is trivial over �2(f).

Lemma 4.1 The submanifold �2(f) is canonically cooriented in the subman-
ifold �1(f).
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Proof For non-degenerate quadratic forms of order n, we adopt the convention
to identify the index � with the index n− �. Then the index ind Q(x) of the
quadratic form Q(x) in (4) and (5) does not depend on choice of coordinates.

With every Ik -singular point x by (4) and (5) we associate a quadratic mapping
of the form Q(x). It is easily veri�ed that for every cusp singular point y
and a fold singular point x of a small neighborhood of y , we have Q(x) =
Q(y)�k2

p−q+1 . Moreover, if x1 and x2 are two fold singular points and there is
a path joining x1 with x2 which intersects �2(f) transversally and at exactly
one point, then ind Q(x1)− ind Q(x2) = �1. In particular, the normal bundle
of �2(f) in �1(f) has a canonical orientation.

Lemma 4.2 Over every connected component of �2(f) the bundle K2 has a
canonical orientation.

Proof At every point x 2 �2(f) there is an exact sequence

0 −! K3;x −! K2;x −! HOM(K2;x; Q2;x) −! Q3;x −! 0:

If the point x is in fact a cusp singular point, then the space K3;x is trivial and
therefore the sequence reduces to

0 −! K2;x −! HOM(K2;x; Q2;x) −! 0

and gives rise to a quadratic form

K2;x ⊗K2;x −! Q2;x � HOM(K2;x; Q1;x):

This form being non-degenerate orients the space HOM(K2;x; Q1;x). Since
Q1;x has a canonical orientation, we obtain a canonical orientation of K2;x .

Let γ : [−1; 1]! �2(f) be a path which intersects the submanifold of non-cusp
singular points transversally and at exactly one point.

Lemma 4.3 The canonical orientations of K2 at γ(−1) and γ(1) lead to
di�erent orientations of the trivial bundle γ�K2 .

Proof If necessary we slightly modify the path γ so that the unique intersec-
tion point of γ and the set �3(f) is a swallowtail singular point. Then the
statement of the lemma is easily veri�ed using the formulas (5).

Now we are in position to prove the assumption.
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Lemma 4.4 The bundle K2 is trivial over �2(f).

Proof Assume that the statement of the lemma is wrong. Then there is a
closed path γ : S1 ! �2(f) which induces a non-orientable bundle γ�K2 over
the circle S1 .

We may assume that the path γ intersects the submanifold �3(f) transversally.
Let t1; :::; tk; tk+1 = t1 be the points of the intersection γ \ �3(f). Over every
interval (ti; ti+1) the normal bundle of �2(f) in �1(f) has two orientations.
One orientation is given by Lemma 4.1 and another is given by the canonical
orientation of the bundle K2 . By Lemma 4.3 if these orientations coincide
over (ti−1; ti), then they di�er over (ti; ti+1). Therefore the number of the
intersection points is even and the bundle γ�K2 is trivial. Contradiction.

Remark The statement similar to the assertion of Lemma 4.4 for the jet
bundle J(P;Q) is not correct. The vector bundle K2 over �I2 � J(P;Q) is non-
orientable. This follows for example from the study of topological properties of
�Ir in [2, x4].
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