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The Chess conjecture

Rustam Sadykov

Abstract We prove that the homotopy class of a Morin mapping f: PP 1
QY% with p —q odd contains a cusp mapping. This a rmatively solves a
strengthened version of the Chess conjecture [5],[3]. Also, in view of the
Saeki-Sakuma theorem [10] on the Hopf invariant one problem and Morin
mappings, this implies that a manifold PP with odd Euler characteristic
does not admit Morin mappings into R?<*1 forp 2k+161;3;7.

AMS Classi cation 57R45; 58A20, 58K30
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1 Introduction

Let P and Q be two smooth manifolds of dimensions p and g respectively and
suppose that p  q. The singular points of a smooth mapping f: P ¥ Q
are the points of the manifold P at which the rank of the di erential df of the
mapping T is less than g. There is a natural strati cation breaking the singular
set into nitely many strata. We recall that the kernel rank kry(f) of a smooth
mapping T at a point x is the rank of the kernel of df at x. At the rst stage
of the strati cation every stratum is indexed by a non-negative integer i, and
de ned as
1(f) = Fx 2 P j kry(F) = i10:

The further strati cation proceeds by induction. Suppose that the stratum
n—1(F) = 'W5in—1(F) is de ned. Under assumption that ,—1(F) is a sub-
manifold of P, we consider the restriction f,—1 of the mapping f to —1(f)
and de ne o
esin(f) =F x 2 pa(F) j krx(Fa-1) = ing:
Boardman [4] proved that every mapping f can be approximated by a mapping
for which every stratum ,(f) is a manifold.

We abbreviate the sequence (i1;:::;in) of n non-negative integers by 1. We
say that a point of the manifold P is an I-singular point of a mapping f if
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778 Rustam Sadykov

it belongs to a singular submanifold '(f). There is a class of in a sense
the simplest singularities, which are called Morin. Let I; denote the sequence
(p —q+ 1;0) and for every integer k > 1, the symbol I, denote the sequence
(p —q+1;1;:::;1;0) with k non-zero entries. Then Morin singularities are
singularities with symbols lx. A Morin mapping is an l-mapping if it has
no singularities of type Ix+1. For k = 1;2 and 3, points with the symbols
Iy are called fold, cusp and swallowtail singular points respectively. In this
terminology, for example, a fold mapping is a mapping which has only fold
singular points.

Given two manifolds P and Q, we are interested in nding a mapping P ¥ Q
that has as simple singularities as possible. Let f: P ¥ Q be an arbitrary
general position mapping. For every symbol I, the Z,-homology class repre-
sented by the closure !'(f) does not change under general position homotopy.
Therefore the homology class [ '(f)] gives an obstruction to elimination of
I -singularities by homotopy.

In [5] Chess showed that if p—q isodd and k 4, then the homology obstruction
corresponding to lx-singularities vanishes. Chess conjectured that in this case
every Morin mapping T is homotopic to a mapping without I-singular points.

We will show that the statement of the Chess conjecture holds. Furthermore
we will prove a stronger assertion.

Theorem 1.1 Let P and Q be two orientable manifolds, p —q odd. Then
the homotopy class of an arbitrary Morin mapping f: P ¥ Q contains a cusp
mapping.

Remark The standard complex projective plane CP? does not admit a fold
mapping [9] (see also [1], [12]). This shows that the homotopy class of f may
contain no mappings with only I;-singularities.

Remark The assumption on the parity of the number p — g is essential since
in the case where p — q is even homology obstructions may be nontrivial [5].

Remark We refer to an excellent review [11] for further comments. In par-
ticular, see Remark 4.6, where the authors indicate that Theorem 1.1 does not
hold for non-orientable manifolds.

In [10] (see also [7]) Saeki and Sakuma describe a remarkable relation between
the problem of the existence of certain Morin mappings and the Hopf invariant
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one problem. Using this relation the authors show that if the Euler character-
istic of P is odd, Q is almost parallelizable, and there exists a cusp mapping
f: P ¥ Q, then the dimension of Q is 1;2;3;4;7 or 8.

Note that if the Euler characteristic of P is odd, then the dimension of P is
even. We obtain the following corollary.

Corollary 1.2 Suppose the Euler characteristic of P is odd and the dimension
of an almost parallelizable manifold Q is odd and di erent from 1;3;7. Then
there exist no Morin mappings from P into Q.

2 Jet bundles and suspension bundles

Let P and Q be two smooth manifolds of dimensions p and g respectively. A
germ at a point x 2 P is a mapping from some neighborhood about x in P
into Q. Two germs are equivalent if they coincide on some neighborhood of x.
The class of equivalence of germs (or simply the germ) at x represented by a
mapping f is denoted by [f]x.

Let U be a neighborhood of x in P and V be a neighborhood of y = f(x) in
Q. Let
u: (U;x) X (RP;0) and  v: (Vy) T (R%0)

be coordinate systems. Two germs [f]x and [g]x are k-equivalent if the map-
pingg v f [J'and v g ', which are de ned in a neighborhood of
0 2 RP, have the same derivatives at 0 2 RP of order k. The notion of k-
equivalence is well-de ned, i.e. it does not depend on choice of representatives
of germs and on choice of coordinate systems. A class of k-equivalent germs at
X is called a k-jet. The set of all k-jets constitute a set JX(P; Q). The pro-
jection JX(P;Q) ¥ P  Q that takes a germ [f]y into a point x  f(x) turns
JX(P; Q) into a bundle (for details see [4]), which is called the k-jet bundle over
P Q.

Let y be a point of a manifold and V a neighborhood of y. We say that two
functionson V lead to the same local function at y, if at the point y their partial
derivatives agree. Thus a local function is an equivalence class of functions
de ned on a neighborhood of y. The set of all local functions at the point y
constitutes an algebra of jets F(y). Every smooth mapping f: (U;x) ¥ (V;y)
de nes a homomorphism of algebras  : F(y) ¥ F(x): The maximal ideal my
of F(y) maps under the homomorphism f to the maximal ideal my F(X).
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The restriction of f to my and the projection of f (my) my onto my=mk*?
lead to a homomorphism

fiex: my ¥ mye=mk*+i:

It is easy to verify that k-jets of mappings (U;x) ¥ (V;y) are in bijective
correspondence with algebra homomorphisms my ¥ my,=mk*1 That is why
we will identify a k-jet with the corresponding homomorphism.

The projections of P Q onto the factors induce from the tangent bundles TP

and TQ two vector bundles and over P Q. The latter bundles determine

a bundle HOM( ; ) over P Q. The ber of HOM( ; ) over a point X y
is the set of homomorphisms Hom( x; y) between the bers of the bundles

and . The bundle determines the k-th symmetric tensor product bundle
kK over P Q, which together with leads to a bundle HOM( K : ).

Lemma 2.1 The k-jet bundle contains a vector subbundle CK isomorphic to
HOM( X ; ).

Proof De ne CK as the union of those k-jets fi.x which take my to m&. With
each fi.x 2 C* we associate a homomorphism (for details, see [4, Theorem 4.1])

P _f % [my=m; ¥ R Q)
k

which sends vi 1 v [C_Into the value of v; ::: vi at a function representing
Tix( ): In view of the isomorphism mysz, Hom( y;R), the homomorphism
(1) is an element of Hom( ¥ 4; y). It is easy to verify that the obtained
correspondence CK ¥ HOM( ¥ ; y) is an isomorphism of vector bundles. O

Corollary 2.2 There is an isomorphism J*"1(P:Q) ck JX(P; Q).

Proof Though the sum of two algebra homomorphisms may not be an algebra
homomaorphism, the sum of a homomorphism fy.x 2 JX(P; Q) and a homomor-
phism h 2 CK is a well de ned homomorphism of algebras (fi.x+h) 2 JX(P; Q).
This de nes an action of CX on JX(P; Q). Two k-jets and map under the
canonical projection

J¥(P;Q) —¥ J*(P; Q)=C

onto one point if and only if and have the same (k — 1)-jet. Therefore
JX(P; Q)=CK is canonically isomorphic to J¥"1(P; Q). O
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Remark The isomorphism JK"1(P;Q) CX JX(P;Q) constructed in Corol-
lary 2.2 is not canonical, since there is no canonical projection of the k-jet
bundle onto CK,

In [8] Ronga introduced the bundle
SK(; )=HOM(; ) HOM( ;) ::: HOM(X ;)

which we will call the k-suspension bundle over P Q.

Corollary 2.3 The k-jet bundle is isomorphic to the k-suspension bundle.

3 Submanifolds of singularities

There are canonical projections J*1(P; Q) ¥ JX(P;Q), which lead to the in-

nite dimensional jet bundle J(P; Q) := lim JX(P; Q). Let f: P ¥ Q be a
smooth mapping. Then at every point x f(x) of the manifold P Q, the map-
ping £ determines a k-jet. The k-jets de ned by f lead to a mapping j¥f of
P to the k-jet bundle. These mappings agree with projections of lim J¥(P; Q)
and therefore de ne a mapping jf: P ¥ J(P;Q), which is called the jet exten-
sion of £. We will call a subset of J(P; Q) a submanifold of the jet bundle if it is
the inverse image of a submanifold of some k-jet bundle. A function on the
jet bundle is said to be smooth if locally is the composition of the projection
onto some k-jet bundle and a smooth function on JX(P; Q). In particular, the
composition  jf of a smooth function on J(P;Q) and a jet extension jf is
smooth. A tangent to the jet bundle vector is a di erential operator. A tangent
to J(P; Q) bundle is de ned as a union of all vectors tangent to the jet bundle.

Suppose that at a point x 2 P the mapping f determines a jet z. Then the
di erential of Jf sends di erential operators at x to di erential operators at z,
that is d(Jf) maps TxP into some space D, tangent to the jet bundle. In fact,
the space D, and the isomorphism TP ¥ D, do not depend on representative
f of the jet z. Let denote the composition of the jet bundle projection and
the projection of P Q onto the rst factor. Then the tangent bundle of the
jet space contains a subbundle D, called the total tangent bundle, which can be
identi ed with the induced bundle TP by the property: for any vector eld
v on an open set U of P, any jet extension jf and any smooth function
on J(P;Q), the section V of D over ~1(U) corresponding to v satis es the
equation
v  jf=v( jf):
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We recall that the projections P Q onto the factors induce two vector bun-
dles and over P Q which determine a bundle HOM( ; ). Thereis a
canonical isomorphism between the 1-jet bundle and the bundle HOM( ; ).
Consequently 1-jet component of a k-jet z at a point x 2 P de nes a homomor-
phism h: T,P ¥ T,Q, y = z(x). We denote the kernel of the homomorphism
h by Ki.;. Identifying the space TxP with the ber D, of D, we may assume
that Kj.; is a subspace of D,. Hence at every point z 2 J(P; Q) we have a

space Kj,. Boardman showed that the union ' = 1(P;Q) of jets z with
dim Kjy.; =i is a submanifold of J(P; Q).
Suppose that we have already de ned a submanifold ,—; = '15in-1 of the

jet space. Suppose also that at every point z 2 ,—1 we have already de ned
a space Kp—1.z. Then the space K., is de ned as Kn—1; \T; n—1 and
is de ned as the set of points z 2 —; such that dim K,.; = in. Boardman
proved that the sets n are submanifolds of J(P; Q). In particular every sub-
manifold , comes from a submanifold of an appropriate nite dimensional
k-jet space. In fact the submanifold with symbol I, is the inverse image of the
projection of the jet space onto n-jet bundle. To simplify notation, we denote
the projections of | to the k-jet bundles with k n by the same symbol .

Let us now turn to the k-suspension bundle. Following the paper [4], we will
de ne submanifolds ~! of the k-suspension bundle.

A point of the k-suspension bundle over a point x 'y 2 P Q is the set
of homomorphisms h = (hy;:::; he), where h; 2 Hom( ' ; y). For every k-
suspension h we will de ne a sequence of subspaces TxP = Ky K; i K.

Then we will de ne the singular set ~'1:in gg

~hiEin = f b jdimK; =ij for j = 1,550 g

We start with de nition of a space K;  Kg and a projection of Po = T,Q
onto a factor space Q;. The h;-component of h is a homomorphism of Kq into
Po. We de ne K; and Q; as the kernel and the cokernel of hy:

0—¥ K; —¥ Ko 8 Py —¥ Q, -1 0:

The cokernel homomorphism of this exact sequence gives rise to a homomor-
phism Hom(K3; Pg) ¥ Hom(Kj; Q1), coimage of which is denoted by P;. The
sequence of the homomorphisms

Hom(K1 Kl;Po) ¥ Hom(Kl;Hom(Kl;Po)) L] Hom(Kl;Pl)

takes the restriction of h, on K; Kj; to a homomorphism (hy): K; ¥ P;.
Again the spaces K, and Q, are respectively de ned as the kernel and the
cokernel of the homomorphism (hy).
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The de nition continues by induction. In the n-th step we are given some
spaces K;; Qi for i n, spaces P; for i n—1 and projections

Hom(K"™%;Pg) ¥ Pny;
Pr-1 ¥ Qn;
where K"~ abbreviates the product Kn—; :: Kj.
First we de ne P, as the coimage of the composition
Hom(K"; Pg) ¥ Hom(K,; Hom(K"™1;Py)) ¥ Hom(K,; Qn);

where the latter homomorphism is determined by the two given projections.
Then we transfer the restriction of the homomorphism hn41 on K, K" to a
homomorphism (hn+1): Kn ¥ P using the composition

Hom(K, K™ Pgy) ¥ Hom(K,;Hom(K";Pg)) ¥ Hom(Kg;Py):

Finally we de ne Kn+1 and Qn+1 by the exact sequence

h
0—1 Knsr =1 Ky, &Y P, —8 Quyy —1 O

In the previous section we established a homeomorphism between the bers
of the k-jet bundle and k-suspension bundle. Suppose that neighborhoods of
points X 2 P and y 2 Q are equipped with coordinate systems. Then every
k-jet g which takes x to y has the canonical decomposition into the sum of k-
jets gi, i = 1;::;k, such that in the selected coordinates the partial derivatives
of the jet gij at x of order & i1 and Kk are trivial. In other words the choice
of local coordinates determines a homeomorphism

J*P;Qix y ¥ Clix y = CKjx 2)

Since Cljy y Is isomorphic to Hom( S y), We obtain a homeomorphism be-
tween the Dbers of the k-jet bundle and k-suspension bundle.

Remark From [4] we deduce that this homeomorphism takes the singular
submanifolds ' to ~!'. Suppose that a k-jet z maps onto a k-suspension
h = (hy;:::; hg). The homomorphisms fh;g depends not only on z but also on
choice of coordinates in U;. However Boardman [4] showed that the spaces K;,
Qi, Pi and the homomorphisms (hj) de ned by h are independent from the
choice of coordinates.

Lemma 3.1 For every integer k 1, there is a homeomorphism of bundles
re: JX(P; Q) ¥ SK( ; ) which takes the singular sets ' to ~!.
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Proof Choose covers of P and Q by closed discs. Let Uy;:::; Ut be the closed
discs of the product cover of P Q. For each disc Uj, choose a coordinate
system which comes from some coordinate systems of the two disc factors of
Ui. We will write J¥ for the k-jet bundle and Jjy, for its restriction on U;. We
adopt similar notations for the k-suspension bundle. The choice of coordinates
in U; leads to a homeomorphism

it Iy, 1 SKju;:
Let f7jg be a partition of unity for the cover fUjg of P Q. We de ne
re: JK 1 sk py
rk=7"11+72 2+ + 7

Suppose that Ui \Uj is nonempty and z is a k-jet at a point of Uj\U;j. Suppose
i(2) = (hi;:nhl) and  j(2) = (bl hd):

Then by the remark preceding the lemma, the homomorphisms (his) and (h{)

coincide for all s = 1;:::;k. Consequently, ry takes ' to ~!.

The mapping ri is continuous and open. Hence to prove that ry is a homeo-
morphism it su ces to show that ry is one-to-one.

For k = 1, the mapping ry is the canonical isomorphism. Suppose that rx—;
is one-to-one and for some di erent k-jets z; and z,, we have ri(z1) = re(z2).
Since rx—; is one-to-one, the k-jets z; and z, have the same (k — 1)-jet com-
ponents. Hence there is v 2 CX for which z; = z, +v. Here we invoke the fact
that CK has a canonical action on JX.

For every i, we have i(z1) = i(z2) + i(v). Therefore

rk(z1) = re(z2) + re(v): (3)
The restriction of the mapping r, to CX is a canonical identi cation of CK with
HOM( X \; ). Hence r(v) & 0. Then (3) implies that r(z1) & re(z2). D

Corollary 3.2 There is an isomorphism of bundles r: J(P;Q) ¥ S(; )

which takes every set | isomorphically onto .

The space JX(P; Q) may be also viewed as a bundle over P with projection
cJXP;Q) TP QU P

Let f: P ¥ Q be a smooth mapping. Then at every point p 2 P the mapping
f de nes a k-jet. Consequently, every mapping f: P ¥ Q gives rise to a
section jKf: P ¥ JK(P;Q); which is called the k-extension of f or the k-jet
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section a orded by . The sections fj<fg, determined by a smooth mapping
f commute with the canonical projections J**1(P; Q) ¥ JK(P;Q). Therefore
every smooth mapping f: P ¥ Q also de nes a section jf: P ¥ J(P;Q),
which is called the jet extension of f.

A smooth mapping T is in general position if its jet extension is transversal to
every singular submanifold '. By the Thom Theorem every mapping has a
general position approximation.

Let T be a general position mapping. Then the subsets (jF)~1( ') are sub-
manifolds of P. Every condition kry(f,—1) = iy in the de nition of ()
can be substituted by the equivalent condition dim Kp.x(f) = in, where the
space Kn.x(T) is the intersection of the kernel of df at x and the tangent space
Tx n—1(F). Hence the sets (jf)~1( ') coincide with the sets '(f). In partic-
ular the jet extension of a mapping f without I -singularities does not intersect
the set !.

Let Q, = Q,(P;Q) J(P;Q) denote the union of the regular points and the
Morin singular points with indexes of length at most r.

Theorem 3.3 (Ando-Eliashberg, [2], [6]) Let f: PP ® Q%p g 2, be
a continuous mapping. The homotopy class of the mapping f contains an
I.-mapping, r 1, if and only if there is a section of the bundle Q.

Note that every general position mapping f: PP ® QY, g =1, is a fold map-
ping. That is why for g = 1, Theorem 1.1 holds and we will assume that
q 2.

Let Q, denote the subset of the suspension bundle corresponding to the set
Qr(P; Q) J(P;Q). Every mapping f: P ¥ Q de nes a section jf of
J(P; Q). The composition r (jf) is a section of S(P;Q). In view of Lemma
3.1 the Ando-Eliashberg Theorem implies that to prove that the homotopy class
of a mapping T contains a cusp mapping, it su ces to show that the section

of the suspension bundle de ned by f is homotopic to a section of the bundle
Q S(; ).

4 Proof of Theorem 1.1

We recall that in a neighborhood of a fold singular point x, the mapping f has
the form

T = t; i=12:59—1 4)
Z = QM); Q)= k{ i Kige
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If x is an I,-singular point of ¥ and r > 1, then in some neighborhood about
X the mapping f has the form

Ti = t;, 1=12;259—r,
Li = li; 1=2;3;:0m; (5)
X
Z = QU+ Kk"'+k™ Q)= K& o Koy
t=2
Let f: P ¥ Q be a Morin mapping, for which the set (f) is nonempty. We
de ne the section fj: P ¥ Hom( ' ; ) as the i-th component of the section
r (jf) of the suspension bundle S(; ) ¥ P. Over ,(f) the components f;
and f, de ned by the mapping f determine the bundles K;;Qj, i = 1;2 and

the exact sequences
0-¥ K —¥ TP -1 TQ-1Q;-10;
0-—1 K, =T K; —1 HOM(Kl;Ql)—! Qz—! 0:

From the latter sequence one can deduce that the bundle Q; is canonically
isomorphic to HOM(K3; Q1) and that the homomorphism

K=Kz CKl=K; =¥ Qq; (6)
which is de ned by the middle homomorphism of the second exact sequence, is a
non-degenerate quadratic form (see Chess, [5]). Since the dimension of K=K
is odd, the quadratic form (6) determines a canonical orientation of the bundle

Q1. In particular the 1-dimensional bundle Q1 is trivial. This observation also
belongs to Chess [5].

Assume that the bundle K5 is trivial. Then the bundle Q, being isomorphic
to HOM(Kj; Qq) is trivial as well. Let

h: Ky ¥ HOM(K2;Q2) HOM(K; CK}; Q1)

be an isomorphism over ,(f) and h: P ¥ HOM( 2 ; ) an arbitrary section,
the restriction of which on 3K, over ,(f) followed by the projection given
by ¥ Q, induces the homomorphism h. Then the section of a suspension
bundle whose rst three components are f1; f, and h is a section of the bundle
Q,. Since for i > 0 the bundle HOM( ' ; ) is a vector bundle, we have that
the composition r (jf) is homotopic to the section s and therefore the original
mapping f is homotopic to a cusp mapping.

Now let us prove the assumption that K is trivial over »(f).

Lemma 4.1 The submanifold »(f) is canonically cooriented in the subman-
ifold 1(F).
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Proof For non-degenerate quadratic forms of order n, we adopt the convention
to identify the index with the index n— . Then the index ind Q(x) of the
quadratic form Q(x) in (4) and (5) does not depend on choice of coordinates.

With every lIy-singular point x by (4) and (5) we associate a quadratic mapping
of the form Q(x). It is easily veri ed that for every cusp singular point y
and a fold singular point x of a small neighborhood of y, we have Q(x) =
Q) kg_qﬂ. Moreover, if x; and X, are two fold singular points and there is
a path joining x; with x> which intersects ,(f) transversally and at exactly
one point, then ind Q(x1) —ind Q(x2) = 1. In particular, the normal bundle
of ,(f) in 1(f) has a canonical orientation. ]

Lemma 4.2 Over every connected component of ,(F) the bundle K, has a
canonical orientation.

Proof At every point x 2 ,(f) there is an exact sequence
0—¥ K3x =¥ Kyx =8 HOM(K2:x;Q2;x) =¥ Qs:x =1 O:

If the point x is in fact a cusp singular point, then the space Ksz.x is trivial and
therefore the sequence reduces to

and gives rise to a quadratic form
KZ;X EKb;x -1 Q2;x HOM(KZ;X; Ql;x):

This form being non-degenerate orients the space HOM(Kz.x; Q1:x). Since
Q1.x has a canonical orientation, we obtain a canonical orientation of Ky.x. O

Lety: [-1;1] ¥ ,(f) be a path which intersects the submanifold of non-cusp
singular points transversally and at exactly one point.

Lemma 4.3 The canonical orientations of K, at y(—1) and y(1) lead to
di erent orientations of the trivial bundle y K.

Proof If necessary we slightly modify the path y so that the unique intersec-
tion point of y and the set 3(f) is a swallowtail singular point. Then the
statement of the lemma is easily veri ed using the formulas (5). O

Now we are in position to prove the assumption.
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Lemma 4.4 The bundle K; is trivial over ,(f).

Proof Assume that the statement of the lemma is wrong. Then there is a
closed path y: St ¥ ,(F) which induces a non-orientable bundle y K, over
the circle S*.

We may assume that the path y intersects the submanifold 3(f) transversally.
Let t1;:::; tk; tke1 = t1 be the points of the intersection y \ 3(f). Over every
interval (tj;ti+1) the normal bundle of »(f) in 1(F) has two orientations.
One orientation is given by Lemma 4.1 and another is given by the canonical
orientation of the bundle K,. By Lemma 4.3 if these orientations coincide
over (ti—1;tj), then they di er over (tj;ti+1). Therefore the number of the
intersection points is even and the bundle y Kj is trivial. Contradiction. 0O

Remark The statement similar to the assertion of Lemma 4.4 for the jet

bundle J(P; Q) is not correct. The vector bundle K, over 2 J(P; Q) is non-

orientable. This follows for example from the study of topological properties of
Ir in [2, x4].
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