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1 Introduction

Given a simple graph with nontrivial groups as vertices, a group is formed by
taking the free product of the vertex groups, with added relations implying
that elements of adjacent groups commute. This group is said to be the graph
product of the vertex groups. If the graph is discrete then the graph product
is the free product of the vertex groups; while if the graph is complete then
the graph product is the restricted direct product1 of the vertex groups. Graph
products were �rst de�ned in Elisabeth Green’s Ph.D. thesis [8], and have been
studied by other authors [9, 10, 11].

Important special cases of graph products arise when we specify the vertex
groups. If all vertex groups are in�nite cyclic, then the graph product is called
a graph group or a right-angled Artin group. Graph groups have been studied
by many authors [7, 16, 17]. If all vertex groups have order two, then the graph
product is called a right-angled Coxeter group. These groups were �rst studied
by Ian Chiswell [2], and they have been studied by many other authors [4, 5, 6].

In this article we investigate the question of uniqueness for graph product de-
compositions. Carl Droms [7] proved that two graph products of in�nite cyclic
groups are isomorphic if and only if their graphs are isomorphic. Elisabeth
Green [8] proved that if a group can be represented as a graph product of cyclic
groups of prime order, then this representation is unique. This result was ex-
tended to primary cyclic groups by the present author [14]. Our main result
is the following: If a group can be represented as a graph product of directly
indecomposable �nite groups, then this representation is unique.

1By \restricted" we mean that all but �nitely many entries are the identity.
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2 Graphs and modular partitions

A graph is an ordered pair of sets (V;E) where E is a set of two-element subsets
of V . Elements of V are called vertices, and elements of E are called edges.
For the remainder of this paper we shall assume that V is �nite. A clique is a
maximal complete subgraph, or (by abuse of terminology) the set of vertices of
a maximal complete subgraph.

A module of a graph (V;E) is a subset X of V such that for every v 2 V −X ,
either v is adjacent to every element of X or v is adjacent to no element of X .
A modular partition is a partition of V into non-empty modules. A modular
partition induces a quotient graph ( �V ; �E) where �V is the set of partition classes
and f�; �g 2 �E if and only fu; vg 2 E for some (and hence for all) u 2 � and
v 2 � . We may regard ( �V ; �E) as a compressed version of the original graph.
Given the quotient graph and the subgraphs induced by the partition classes, it
is possible to reconstruct the original graph. For this reason, modular partitions
have been studied extensively by computer scientists [12].

We say that a graph (V;E) is T0 if no edge is a module. This means that for
all fu; vg 2 E , there exists w 2 V − fu; vg so that w is adjacent to u or v
but not both. A graph is T0 if and only if vertices are distinguished by the
cliques to which they belong. That is, a graph is T0 if and only if the following
condition holds: for every pair of distinct vertices, there exists a clique which
contains exactly one of them.

Let us say that two vertices are equivalent if they cannot be distinguished by
the cliques. Then the set of equivalence classes is a modular partition. The
quotient graph resulting from this partition satis�es the T0 condition, and it
will be called the T0 quotient.

Similarly, a graph (V;E) is T1 if for all fu; vg 2 E there exists w 2 V −fu; vg
so that fu;wg 2 E and fv;wg 62 E . Equivalently, a graph is T1 if and only if
every vertex is the intersection of the set of cliques to which it belongs. Note
that this condition is stronger than the T0 condition.

3 Graph products of groups

Let Γ = (V;E) be a graph, and let fGvgv2V be a collection of groups which is
indexed by the vertex set of Γ. We say that (Γ; Gv) is a graph of groups.2 Two

2This di�ers from the usual de�nition, which has vertex groups and edge groups,
together with monomorphisms from the edge groups to the vertex groups [1].
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graphs of groups, (Γ; Gv) and (Γ0; G0v), are isomorphic if there exists a graph
isomorphism � : Γ! Γ0 so that Gv and G0�(v) are isomorphic for all v 2 V .

The graph product G of a graph of groups is the quotient of the free product
of the vertex groups by the normal subgroup generated by all commutators
of elements taken from pairs of adjacent groups. That is, G = F=N where
F =

‘
v2V Gv and N is the normal closure in F of

fg−1h−1gh : g 2 Gu; h 2 Gv; fu; vg 2 Eg:
The canonical monomorphism from Gv to F induces a monomorphism from
Gv to G. We may thus identify each vertex group Gv with its image in G, in
which case we say that G is an internal graph product.

The graph product can also be described in terms of generators and relations.
Choose a presentation (γv; �v) for each vertex group, so that the generating
sets γv are pairwise disjoint. Then G has a presentation (

S
γv;
S
�v[�) where

� = fa−1b−1ab : a 2 γu; b 2 γv; fu; vg 2 Eg.
If A is a subset of V , then we denote by ΓA the subgraph of Γ that is induced
by A, and we denote by G(A) the subgroup of G that is generated by

S
a2AGa .

Theorem 3.1 [8, 14] If A is a subset of V then G(A) is the internal graph
product of (ΓA; Ga).

Corollary 3.2 If A is complete then G(A) is the (restricted) direct product
of the Ga , and if A is discrete then G(A) is the free product of the Ga .

Theorem 3.3 If A � V then there is a homomorphism �A : G ! G(A) so
that �A(x) = x for all x 2 G(A) and �A(x) = 1 for all x 2 G(V −A). We call
�A a retraction homomorphism.

Proof For each a 2 A let ha : Ga ! G(A) be the inclusion homomorphism,
and for b 2 V − A let hb : Gb ! G(A) be the trivial homomorphism. Then
there exists a homomorphism �A which extends hv for all v 2 V . It is clear
that �A(x) = x for all x 2 G(A), since �A(x) = x for all x 2

S
a2AGa , and

likewise that �A(x) = 1 for all x 2 G(V −A).

Theorem 3.4 If A and B are subsets of V then G(A[B) = hG(A) [G(B) i .

Proof G(A) =
〈S

a2AGa
�

and G(B) =
〈S

b2B Gb
�
, thus

hG(A) [G(B) i =

* [
c2A[B

Gc

+
= G(A [B):
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Theorem 3.5 If A and B are subsets of V then G(A) \G(B) = G(A \B).

Proof It is clear that G(A \ B) � G(A) \ G(B). For the reverse inclusion,
let �A : G ! G(A) be the retraction homomorphism of Theorem 3.3, and let
x 2 G(A) \ G(B). It remains to prove that x 2 G(A \ B). If b 2 A \ B
then �A(y) = y for all y 2 Gb . If b 2 B − A then �A(y) = 1 for all x 2 Gb .
In either case �A(y) 2 G(A \ B) for all y 2 Gb and all b 2 B . Therefore
�A(x) 2 G(A \ B). But �A(x) = x since x 2 G(A). Therefore x 2 G(A \ B)
as claimed.

Theorem 3.6 Let A;B � V be complete. If x 2 G(A) and x is conjugate to
an element y 2 G(B), then x 2 G(A \B).

Proof Let � : G ! G(V − B) be the retraction homomorphism of Theorem
3.3. Then �(y) = 1, so �(x) = 1 as well, since the kernel is a normal subgroup.

By Corollary 3.2, we may express x uniquely as x =
Q
a2A xa , where xa 2 Ga

for all a 2 A. Then �(x) =
Q
a2A �(xa) =

Q
a2A−B xa . But �(x) = 1, so

xa = 1 for all a 2 A−B . Therefore x 2 G(A \B).

Corollary 3.7 If A;B � V are complete and G(A) is conjugate to G(B) then
A = B .

The proof of the following theorem is left to the reader.

Theorem 3.8 Let �Γ = ( �V ; �E) be the quotient graph resulting from a modular
partition of Γ = (V;E). Then G is the graph product of (�Γ; G(A)), where A
varies over the modules of Γ.

Since the partition of a graph into its components (or co-components) is mod-
ular, we obtain the following corollary. (Recall that a co-component of a graph
is a component of the complement.)

Corollary 3.9 If the components of Γ are A1; : : : ; An then G �=
‘
iG(Ai). If

the co-components of Γ are B1; : : : ; Bm then G �=
L

iG(Bi).

We also require the following result, which is proved in [8].

Theorem 3.10 For every �nite subgroup F of G there exists a complete
subgraph C so that F is conjugate to a subgroup of G(C).
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Corollary 3.11 If all vertex groups are �nite, then F is a maximal �nite
subgroup of G if and only if there exists a clique C so that F is conjugate to
G(C).

Proof Let F be a maximal �nite subgroup of G. By the previous theorem,
there exists a clique C so that F is conjugate to a subgroup of G(C). However,
G(C) itself is a �nite subgroup of G. Therefore F is conjugate to G(C).

Conversely, let C be a clique, and let F be a conjugate of G(C). Let F 0 be
a �nite subgroup of G so that F 0 � F . By the previous theorem there exists
a clique D so that F 0 is conjugate to a subgroup of G(D). Therefore G(C)
is conjugate to a subgroup of G(D). It follows from Theorem 3.6 that C is a
subset of D . But C is a clique, hence C = D and F 0 = F . Consequently F is
a maximal �nite subgroup.

Remark 3.12 An alternate proof of this corollary can be obtained by consid-
ering the action of G on the CAT(0) cube complex de�ned by John Meier and
other authors [13, 3, 11]. Any �nite group acting on cellularly on a CAT(0)
complex �xes some cell. Since stabilizers of cubes in this complex are conjugates
of the groups G(C), the corollary follows.

4 Conjugacy classes of �nite subgroups

Let G be the internal graph product of (Γ; Gv). We assume for the remainder
of this article that Γ = (V;E) is a �nite graph, and that each vertex group Gv
is �nite.

Let F denote the set of conjugacy classes of �nite subgroups of G. We write
[F ] to denote the set of subgroups of G which are conjugate to a given �nite
subgroup F . We de�ne a partial ordering on F as follows: If A and B are
�nite subgroups of G, then [A] � [B] if and only if there exists g 2 G so that
A � gBg−1 .

Theorem 4.1 The relation � is a well-de�ned partial ordering on F .

Proof � is well de�ned: Let A and B be �nite subgroups of G, and suppose
that there exists g 2 G so that A � gBg−1 . Let A0 and B0 be subgroups of
G which are conjugate to A and B respectively. There exist h; k 2 G so that
A0 = hAh−1 and B0 = kBk−1 . Now A0 � h(gBg−1)h−1 = hgk−1B0kg−1h−1 ,
so A0 � mB0m−1 where m = hgk−1 .
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� is transitive: Let A;B;C be �nite subgroups of G so that [A] � [B] and
[B] � [C]. There exist g; h 2 G so that A � gBg−1 and B � hCh−1 . Then
A � ghC(gh)−1 , hence [A] � [C].

� is irreflexive: Let A and B be �nite subgroups of G so that [A] � [B]
and [B] � [A]. Then there exist g; h so that A � gBg−1 and B � hAh−1 .
Since A and B are �nite, it follows that jAj = jBj and A = gBg−1 . Therefore
[A] = [B].

Recall that if A is a subset of a partially ordered set (X;�) then the least upper
bound of A, denoted

W
A, is an element x 2 X so that a � x for all a 2 A,

and if a � y for all a 2 A then x � y . The least upper bound is unique when
it exists. Similarly, the greatest lower bound of A, denoted

V
A, is an element

x 2 X so that x � a for all a 2 A, and if y � a for all a 2 A then y � x.

Theorem 4.2 If A;B 2 C then [G(A \B)] = [G(A)] ^ [G(B)].

Proof It is obvious that [G(A \ B)] � [G(A)] and [G(A \ B)] � [G(B)].
Suppose that F is a �nite subgroup of G so that [F ] � [G(A)] and [F ] �
[G(B)]. We need to show that [F ] � [G(A \B)].

We may assume without loss of generality that F � G(A). If x 2 F then x is
conjugate to an element of G(B), hence x 2 G(B) by Theorem 3.6. Therefore
F � G(A) \G(B) = G(A \B) by Theorem 3.5, so we are done.

Theorem 4.3 Let A;B 2 C . If A[B 2 C then [G(A[B)] = [G(A)]_ [G(B)].
If A [B 62 C , then [G(A)] and [G(B)] do not have a common upper bound.

Proof Suppose that A [ B 2 C . Then [G(A [ B)] is an upper bound for
[G(A)] and [G(B)]. We wish to show that it is the least upper bound.

Let [F ] be another upper bound of [G(A)] and [G(B)]. By Theorem 3.10, there
exists C 2 C and h 2 G so that hFh−1 � G(C). Then C � A[B by Theorem
3.6.

Now hFh−1 contains conjugates of G(A) and G(B), so hFh−1 contains both
G(A) and G(B) by Theorem 3.6. Therefore hFh−1 � G(A [ B), and hence
[G(A [B)] � [F ].

Now suppose that A[B 62 C . If [F ] is an upper bound for [G(A)] and [G(B)],
then (since F is �nite) there exists a complete subgraph D so that F � G(D).
By Theorem 3.6, D contains A [B . But A [B is not complete, and this is a
contradiction.
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5 Uniqueness of graph product decompositions

Let Γ = (V;E) and Γ0 = (V 0; E0) be �nite graphs so that V \ V 0 = ;. Let
G be a group, and suppose that Gv is a nontrivial �nite subgroup of G for
each v 2 V [V 0 . Finally, suppose that G is the internal graph product of both
(Γ; Gv) and (Γ0; Gv0).

Theorem 5.1 For each clique C of Γ there is a unique clique C 0 of Γ0 so that
[G(C)] = [G(C 0)].

Proof If C is a clique of Γ then G(C) is a maximal �nite subgroup of G by
Corollary 3.11. Again by Corollary 3.11, G(C) is conjugate to G(C 0) for some
clique C 0 of Γ0 . Therefore [G(C)] = [G(C 0)].

Uniqueness of C 0 follows from Corollary 3.7.

Theorem 5.2 If Γ and Γ0 are T1 then there is a graph isomorphism � : Γ! Γ0

so that [Gv ] = [G�(v)] for all v 2 V . In particular, (Γ; Gv) and (Γ0; Gv0) are
isomorphic graphs of groups.

Proof Let v 2 V , and let fC1; : : : ; Cng be the set of all cliques of Γ which
contain v . Then fvg =

Tn
i=1 Ci since Γ is T1 .

For each i there exists a clique C 0i of Γ0 so that [G(Ci)] = [G(C 0i)] by Theorem
5.1. Now [Gv ] =

V
i[G(Ci)] =

V
i[G(C 0i)] = [G(C 0)], where C 0 =

T
iC
0
i . In

particular, C 0 is not empty since [G(C 0)] is non-trivial.

I claim that C 0 has only one element. Suppose that C 0 contains two distinct
elements r0; s0 . Since Γ0 is T1 , there is a clique D0 of Γ0 which contains r0

but not s0 , and by Theorem 5.1 there is a corresponding clique D of Γ so that
[G(D)] = [G(D0)].

Now D \
Tn
i=1 Ci = ;, since v 62 D . But r0 2 D0 \

Tn
i=1 C

0
i , which is a

contradiction. Therefore C 0 has a unique element v0 = �(v) as claimed, and so
[Gv] = [Gv0 ].

Similarly, there is a function �0 : V 0 ! V so that [Gv ] = [G�(v)] for all v 2 V 0 .
Then �0 � � = idV and � � �0 = idV 0 , so � is a bijection and �0 = �−1 .

If fu; vg 2 E then there is a clique C of Γ so that fu; vg � C . Then
f�(u); �(v)g � C 0 , therefore f�(u); �(v)g 2 E0 . Conversely, if f�(u); �(v)g 2
E0 then there exists a clique C 0 of Γ0 so that f�(u); �(v)g � C 0 . Hence
fu; vg � C and so fu; vg 2 E . Therefore � is an isomorphism of graphs,
as claimed.
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Theorem 5.3 If Γ and Γ0 are T0 graphs, then (Γ; Gv) and (Γ0; Gv0) are
isomorphic graphs of groups.

Proof Let v 2 V . Let fC1; : : : ; Cng be the set of cliques of Γ which contain
v , and let fD1; : : : ;Dmg be the set of cliques of Γ which do not contain v . It
follows from the T0 hypothesis that fvg =

T
iCi −

S
iDi .

For each Ci and each Di there are cliques C 0i and D0i of Γ0 so that [G(Ci)] =
[G(C 0i)] and [G(Di)] = [G(D0i)]. Observe that C − fvg =

S
i(C \ Di). Let

C 0 =
T
iC
0
i and D0 =

S
(C 0 \D0i).

Now

[G(C)] = [G(
T
iCi)] =

V
i[G(Ci)] =

V
i[G(C 0i)] = [G(

T
iC
0
i)] = [G(C 0)]

and

[G(C − fvg)] = [G(
S
i(C \Di))] =

W
i[G(C \Di)] =

W
i([G(C)] ^ [G(Di)])

=
W
i ([G(C 0)] ^ [G(D0i)]) =

W
i[G(C 0 \D0i)] = [G(

S
i(C
0 \D0i))] = [G(D0)]:

Choose h 2 G so that G(C) = hG(C 0)h−1 . Then hG(C − fvg)h−1 is a
subgroup of G(C 0) that is conjugate to G(D0). Theorem 3.6 implies that
hG(C − fvg)h−1 = G(D0). Therefore,

Gv �= G(C)=G(C − fvg) �= G(C 0)=G(D0) �= G(C 0 −D0):

In particular, C 0 − D0 is nonempty. But the T0 hypothesis prevents C 0 − D0
from having more than one element, since two elements of C 0−D0 would belong
to the same cliques of Γ0 . So C 0 −D0 has a unique element v0 = �(v).

In a similar manner, we can associate to each v0 2 V 0 a unique element v =
�0(v0) of V . Now �0 � �(v) belongs to the same cliques that v does, so �0 � � =
idV , and likewise � � �0 = idV 0 .

Therefore � is a bijection from V to V 0 such that Gv �= G�(v) for all v 2 V . It
remains only to prove that � is a graph isomorphism. Now, if fu; vg 2 E then
there exists a clique C so that fu; vg � C . Then f�(u); �(v)g � C 0 , where C 0

is a clique of Γ0 and [G(C)] = [G(C 0)]. Therefore f�(u); �(v)g 2 E0 . A similar
argument shows that if f�(u); �(v)g 2 E0 then fu; vg 2 E . So � is a graph
isomorphism, and we are done.

Theorem 5.4 If Gv is directly indecomposable for all v 2 V [V 0 then (Γ; Gv)
and (Γ0; Gv0) are isomorphic graphs of groups.
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Proof Let �Γ = ( �V ; �E) and �Γ0 = ( �V 0; �E0) be the T0 quotients of Γ = (V;E)
and Γ0 = (V 0; E0) respectively. Then G is the internal graph product of both
(�Γ; G(A)) and ( �Γ0; G(A0)).

If A 2 �V then G(A) = �a2AGa , so G(A) is a �nite group. Likewise each G(A0)
is a �nite group. By the previous theorem, there exists a graph isomorphism
�� : �V ! �V 0 so that G(A) �= G(��(A)) for all A 2 �V .

It is well-known that every �nite group has a unique factorization as a direct
product of directly indecomposable groups, up to isomorphism and order of
factors [15]. Thus, for each A 2 �V there is a bijection �A : A ! ��(A) so that
Gv �= G�A(v) for all v 2 A.

Let � : V ! V 0 be the union of the �A ’s. Then � is clearly a graph isomor-
phism between Γ and Γ0 , and Gv �= G�(v) for all v 2 V . Therefore � is an
isomorphism between the two graphs of groups.
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