G lobal structure of the mod two symmetric algebra, H ($\mathrm{BO} ; \mathbb{F}_{2}$), over the Steenrod Algebra

David J. Pengel I ey
Frank Williams

Abstract

The algebra S of symmetric invariants over the edd with two elements is an unstable algebra over the Steenrod algebra A , and is isomorphic to the mod two cohomology of BO, the classifying space for vector bundles. We provide a minimal presentation for S in the category of unstable A-algebras, i.e, minimal generators and minimal relations.

Fromthis we produce minimal presentations for various unstable A -algebras associated with the cohomology of related spaces, such as the BO(2 $\left.2^{m}-1\right)$ that classify nite dimensional vector bundles, and the connected covers of BO. The presentationsthen show that certain of these unstable A -algebras coalesce to produce the Dickson algebras of general linear group invariants, and we speculate about possible related topological realizability.

Our methods also produce a related simple minimal A -module presentation of the cohomology of in nite dimensional real projective space, with Itered quotients the unstable modules $F\left(2^{p}-1\right)=A \bar{A}_{p-2}$, as described in an independent appendix.

AMS Classi cation $55 \mathrm{R} 45 ; 13 \mathrm{~A} 50,16 \mathrm{~W} 22,16 \mathrm{~W} 50,55 \mathrm{R} 40,55 \mathrm{~S} 05,55 \mathrm{~S} 10$
Keywords Symmetric algebra, Stenrod algebra, unstable algebra, classifying space, Dickson algebra, B O, real projective space

1 Introduction

We continue our study [9] of invariant algebras as unstable algebras over the Steenrod algebra A by proving a structure theorem for the algebra S of symmetric invariants over the edd \mathbb{F}_{2}. The algebra S is isomorphic to the mod two cohomology of B O, the classifying space for vector bundles [8], and we identify the two. We also make several applications to the cohomology of related spaces, which then reveal a relationship between S and the Dickson algebras [13].

Our goal is to provide a minimal presentation for $\mathrm{S}=\mathrm{H}\left(\mathrm{BO} ; \mathbb{F}_{2}\right)$ in the category of unstable A-algebras [11], beginning with a minimally presented generating A-module and then introducing a minimal set of A-algebra relations. This reveals how a minimal set of A-module building blocks for $S t$ together in its A-algebra structure In brief, our main result (Theorem 3.5) is that $\mathrm{S}=\mathrm{H}\left(\mathrm{BO} ; \mathbb{F}_{2}\right)$ is minimally presented in the category of unstable A -algebras as the free unstable A-algebra on the two-power Stiefel-Whitney classes $\mathrm{w}_{2 \mathrm{k}}$ modulo relations expressing the fact that, for each i $k-2, S q^{2^{i}} w_{2^{k}}$ di ers from $S q^{2^{k-1}} S q^{2^{i}} w_{2^{k-1}}$ by a decomposable. (By contrast, and at rst seemingly paradoxically, we shall also see (Theorem 2.3) that while S is generated as an A -algebra by $f w_{2^{k}}: k \quad 0 g$, with relations linking the resulting algebra generators, in fact the A -submodule of S generated by $f w_{m}$: $m \quad 0 g$ is a fre unstable A -module on all the Stiefd-Whitney classes.)
We apply this structure theorem to characterize similarly the cohomology images B (n) for the connected covers of BO (Theorem 4.2) [3], which includethe full cohomology algebras of BSO, BSpin, and BO hBi. We likewise characterize the quotients $\mathrm{H}\left(\mathrm{BO}(\mathrm{q}) ; \mathbb{F}_{2}\right)$ for the classifying spaces of nite dimensional vector bundles [8], and in particular (Theorem 4.3) we analyze H ($\mathrm{BO}\left(2^{\mathrm{n}+1}-\right.$ 1); \mathbb{F}_{2}).

Finally, we shall produce an A -algebra epimorphism from $\mathrm{S}=\mathrm{H}\left(\mathrm{BO} ; \mathbb{F}_{2}\right)$ to each of the mod two Didkson algebras (Theorem 4.4), which we characterized in [9] as unstable A -algebras. In fact we shall show that the ($\mathrm{n}+1$)-st Didkson algebra has the role of capturing precisely the quotient of $\mathrm{S}=\mathrm{H}\left(\mathrm{BO} ; \mathbb{F}_{2}\right)$ common to the cohomology of the n-th distinct connected cover BOh (n)i and to $\mathrm{BO}\left(2^{\mathrm{n}+1}-1\right)$. We speculate about how this phenomenon may relate to spaces beyond the range in which Didkson algebras are directly realizable topologically.

Our minimal A-algebra presentations for all the above objects will devolve naturally from our main presentation of S, and in that sense these A-algebras are all \backslash parallel" to the main presentation.

In Appendix I, which is independent of the rest of the paper, we present a related result, in which the unstable A-modules $F\left(2^{p}-1\right)=A \bar{A}_{p-2}$ appear as the Itered quotients of a simple minimal A-presentation for $H\left(R P^{1} ; \mathbb{F}_{2}\right)$. We thank Don Davis, Kathryn Lesh, and Haynes Miller for useful conversations regarding these modules. We also thank J ohn Greenlees for a stimulating conversation leading to Remark 2.4.
The rst author dedicates this paper to his parents, Daphne M. and Eric T. Pengelley, in memoriam.

2 Motivation, rst steps, and a plan

The unstable A -algebra of symmetric invariants $\mathrm{S}=\mathrm{H}\left(\mathrm{BO} ; \mathbb{F}_{2}\right)$ is a polynomial algebra $\mathbb{F}_{2}\left[\mathrm{w}_{\mathrm{m}}: m \quad 0 ; \mathrm{w}_{0}=1\right]$, with each elementary symmetric function (Stiefe-Whitney class) w_{m} having degree m [8]. The action of the Steenrod algebra is completely determined from the Wu formulas [3, 12, 14]

$$
S^{j} w_{m}=\sum_{l=0}^{X} \quad m-j+1-1 \quad w_{j-I} w_{m+l}
$$

and the Cartan formula on products [11].
To ease into our categorical point of view, and to illustrate our approach and methods, let us begin by seeing that abstract Stiefel-Whitney dasses, taken all together as free unstable A -algebra generators, along with imposed $\backslash \mathrm{Wu}$ formulas", actually \present" S. This is something one might easily take for granted, but should actually prove, since in principle there might be \other" relations lurking in S beyond those inherent in the Wu formulas. To avoid confusion from notational abuse, we build from abstract classes t_{m} which will correspond to the actual Stiefd-Whitney classes under an isomorphism.

Proposition 2.1 (Wu formulas present S) The unstable A-algebra $\mathrm{S}=$ $\mathrm{H}\left(\mathrm{BO} ; \mathbb{F}_{2}\right)$ is isomorphic to the quotient of the abstract fre unstable Aalgebra on classes t_{m} in each degree $m \quad 1$, modulo the left A-ideal generated by abstract \Wu formulas" formed by writing t's in place of w's in the Wu formulas above.

Proof Iterating the abstract Wu formulas via the Cartan formula shows that the abstract classes ft_{m} : $\mathrm{m} \quad 1 \mathrm{~g}$ actually generate the abstract A -algebra quotient considered merely as an algebra, i.e, its (algebra) indecomposablequotient has rank at most one in each degree. On the other hand, by its construction the abstract A-algebra quotient must map onto S by sending each t_{m} to w_{m}, since the respective Wu formulas correspond. Thus the two must be isomorphic, since S is free as a commutative algebra.

Notice, however, that this presentation of S is far from minimal in the category of unstable A -algebras, since it used vastly moregenerators than needed. What we seek instead is to achieve three features for a minimal presentation:
Step 1 Find a minimal A-submodule of S that will generate S as an Aalgebra.

Step 2 Find a minimal presentation of this A -submodule, i.e, with minimal generators and minimal relations.

Step 3 Form the fre unstable A -algebra U on this module, and nd minimal relations on U so that its A-algebra quotient produces S.

To begin, let us nd a minimal set of A-algebra generators for S . Consider the (algebra) indecomposable quotient QS, i.e, the vector space with basis $\mathrm{f} \mathrm{w}_{\mathrm{m}}$: $\mathrm{m} \quad 1 \mathrm{~g}$ and induced A-action

$$
S q^{j} w_{m}={\underset{j}{m-1} w_{m+j}: ~}_{\text {: }}
$$

Since m_{j} is is always zero mod two when $\mathrm{m}+\mathrm{j}$ is a two-power, and never zero when m is a two-power and j is less than m, we see that the A-module indecomposables of QS have basis exactly $f \mathrm{w}_{2^{k}}: \mathrm{k} \quad \mathrm{Og}$.

Since our philosophy is to begin the presentation at the A -module level, with minimal A -al gebra generators and minimal modulerelations, wethus start with

De nition 2.2 Let M be the free unstable A-module on abstract classes $\mathrm{ft}_{2^{k}}$: $\mathrm{k} \quad 0 \mathrm{~g}$, where subscripts indicate the topological degree of each class.

We wish to map M to S via $t_{2^{k}}$! $w_{2^{k}}$, and need rst to ask whether M injects. In other words, is the A-submodule of $S=H\left(B O ; \mathbb{F}_{2}\right)$ generated by $f \mathrm{w}_{2^{k}}$: $\mathrm{k} \quad \mathrm{Og}$ fre? Or are there, to the contrary, A -relations amongst the two-power Stiefe-Whitney classes, which will compe us to introduce module relations on M in order to complete steps 1 and 2 above? The Wu formulas appear to suggest that no such relations exist. In fact we can prove something even stronger.

Theorem 2.3 (Stiefel-Whitney classes inject freely) The A -submodule of $\mathrm{S}=\mathrm{H}\left(\mathrm{BO} ; \mathbb{F}_{2}\right)$ generated by $\mathrm{f} \mathrm{w}_{\mathrm{m}}: \mathrm{m} \quad \mathrm{Og}$ is free unstable on these classes.

The proof is in Section 5.

Remark 2.4 The proof also shows that in

$$
H\left(B O(q) ; \mathbb{F}_{2}\right)=H\left(B O ; \mathbb{F}_{2}\right)=\left(w_{m}: m>q\right) ;
$$

the A -submodule generated by $f w_{m}$: $0 \quad m \quad q g$ is free unstable on these classes.

Remark 2.5 Thefact that the fre unstable A-module F_{m} on a single class in degree m injects into $H\left(B O(m) ; \mathbb{F}_{2}\right)$ on the class w_{m} is clear from the al ready known result [4, page 55] that F_{m} is isomorphic to the invariants $F_{1}^{\otimes m}{ }^{m}$; which clearly inject naturally into $\left(H\left(R P^{1} ; \mathbb{F}_{2}\right)^{\otimes m}\right)^{m}=H\left(B O(m) ; \mathbb{F}_{2}\right)$ on w_{m} : Theorem 2.3 generalizes this by handling all F_{m} simultaneously, showing that they do not interfere when simultaneously perched on the Stiefe-Whitney classes in the symmetric algebra $\mathrm{S}=\mathrm{H}\left(\mathrm{BO} ; \mathbb{F}_{2}\right)$:

Corollary 2.6 The A -submoduleof $S=H\left(B O ; \mathbb{F}_{2}\right)$ generated by $f w_{2^{k}}: k$ 0 g is free unstable, so M injects naturally into S .

This completes steps 1 and 2 of our goal, and we can begin step 3.
De nition 2.7 Let U be the fre unstable A-algebra on M, in other words, U is the free unstable A-algebra on abstract classes $\mathrm{ft}_{2^{k}}: \mathrm{k} \quad 0 \mathrm{~g}$.

Clearly U maps via $\mathrm{t}_{2^{k}}$! $\mathrm{w}_{2^{k}}$ onto the desired A -algebra S , but the map has an enormous kerne, since QS is the vector space $\mathbb{F}_{2} f w_{m}$: $m \quad 1 g$, while QU is much larger. Our goal in step 3 is to describe a minimal set of A-algebra relations producing S from U , i.e., minimal generators for the kerne as an A -ideal.

Let us explore a prototype example in degree ve, which is the rst place a di erence occurs. There QS has only w_{5}, whereas $\mathrm{Sq}^{1} \mathrm{t}_{4}$ and $\mathrm{Sq}^{2} \mathrm{Sq}^{1} \mathrm{t}_{2}$ are distinct indecomposables in QU (recall that $\mathrm{QU}=\Omega \mathrm{M}$, and that a basis for M consists of the unstable admissible monomials on the A -generators $\mathrm{t}_{2 \mathrm{k}}$ [11]). A few calculations with the Wu formulas show that in S we have

$$
\begin{aligned}
\mathrm{Sq}^{1} w_{4} & =w_{5}+w_{1} w_{4} \text { and } \\
\mathrm{Sq}^{2} S q^{1} w_{2} & =w_{5}+w_{1} w_{4}+w_{2} w_{3}+w_{1} w_{2}^{2}+w_{1}^{2} w_{3}+w_{1}^{3} w_{2}:
\end{aligned}
$$

Thus to imitate S abstractly via U, we must impose an algebra relation on U decreing that

$$
\mathrm{Sq}^{1} \mathrm{t}_{4}=\mathrm{Sq}^{2} \mathrm{Sq}^{1} \mathrm{t}_{2}+\text { some decomposable },
$$

per the calculations above. One challenge in doing even this, though, is that it is not clear how to describe that needed decomposable di erence in U, since there we have no name as yet for the element corresponding to w_{3}. To remedy this, and to describe general formulas for relationships like the one we have just discovered, we wish to use the Wu formulas to focus our understanding as
much as possible on both two-power Steenrod squares and two-power StiefelWhitney classes. Thus one of our formulas in the next section will express each Stiefe-Whitney class purdy in this way (Lemma 3.2).

While the plethora of algebra relations, such as the one above, needed to obtain S from U may appear intractable to specify, recall that our chosen task is actually somewhat di erent. Since we are working in the category of A -al gebras, we seek relations in U whose A -algebra consequences, not just their algebra consequences, will produce S. We shall show that this requires only a much smaller and more tractable set of relations, for which our illustration in degree
ve serves as perfect prototype. Speci cally, the relationship between $\mathrm{Sq}^{2^{i}} w_{2^{k}}$ and $S q^{2^{k-1}} S q^{2^{i}} w_{2^{k-1}}$ for every $i \quad k-2$ will bethekey place to focus attention. We shall impose one abstract relation on U for each such pair (k ; i), and prove that these are precisely the minimal relations producing $\mathrm{S}=\mathrm{H}\left(\mathrm{BO} ; \mathbb{F}_{2}\right)$ in the category of A-algebras.

Our general plan is as follows. Form our abstract presentation candidate as just outlined; call it G. The construction of G will immediately provide a natural A -algebra epimorphism to S . The hard part now is showing that our (k ; i)-indexed family of A-algebra relations leaves no remaining kerne, i.e, that we have put in enough relations to generate the kerne as an A-ideal. To achieve this we show that the epimorphism G ! S induces a monomorphism QG! QS, on the indecomposable quotients, by computing a basis for QG. For this we appeal to our earlier understanding [9], via the Kudo-Araki-May algebra K [10] (see Appendix II), of bases for the unstable cyclic A -modules arising in the analogous structure theorem for the Didkson algebras. With QG! QS an isomorphism, G! S must be an isomorphism also, since S is a fre commutative algebra. The minimality of the (k ; i)-family of relations is then not hard to see by appropriate Itering.

3 Main theorem

We rst identify the key A-algebra relations in $S=H\left(B O ; \mathbb{F}_{2}\right)$.
Analysis of the binomial coe cients in the Wu formulas shows that if $r \quad 1$; then

$$
\begin{equation*}
S q^{j^{j-1}} w_{r 2 j}=w_{2 j-1} w_{r 2 j}+w_{2 j-1+r^{j}}: \tag{3.1}
\end{equation*}
$$

This formula will serve two purposes. It will guide us below in how to specify any Stiefe-Whitney dass from just the two-power ones, which is needed for
creating our abstract presentation. But before this it will lead us to the key relations needed from S.

To nd these, recall from the previous section that we seek a relation involving a decomposable di erence between $S q^{2^{i}} w_{2^{k}}$ and $S q^{q^{k-1}} S q^{2^{i}} w_{2^{k-1}}$ for every i $k-2$. We begin with a special case of equation (3.1): For i $k-2$; we have

$$
\mathrm{Sq}^{2^{i}} \mathrm{w}_{2^{k-1}}=\mathrm{w}_{2^{i}} \mathrm{w}_{2^{\mathrm{k}-1}}+\mathrm{w}_{2^{\mathrm{k}-1}+2^{i}}:
$$

Applying $\mathrm{Sq}^{2^{k-1}}$; we get

$$
S q^{2^{k-1}} S q^{i^{i}} w_{2^{k-1}}=S q^{2^{k-1}}\left(w_{2^{2}} w_{2^{k-1}}\right)+S q^{z^{k-1}} \quad w_{2^{k-1}}+2^{i} .
$$

Using a Wu formula on the last term, analyzing the binomial coe cients, and using (3.1) again, the reader may check that we obtain the following relations.

Proposition 3.1 (Key relations in S) For i k - 2,

$$
\begin{align*}
S q^{2^{-1}} S q^{2^{i}} w_{2^{k-1}}= & S q^{2^{i}} w_{2^{k}}+ \\
& S q^{2^{k-1}}\left(w_{2^{i}} w_{2^{k-1}}\right)+{ }_{l=0}^{2^{k} \dot{X}^{-1}-2} w_{2^{k-1}-2^{i}\left|w_{2^{k-1}}+2^{i}+2^{i}\right| ;} \tag{3.2}
\end{align*}
$$

These show explicitly how the elements $S q^{2^{i}} w_{2^{k}}$ and $S q^{2^{k-1}} S q^{q^{1}} w_{2^{k-1}}$ di er by a decomposable, and will guide us to the corresponding abstract relations needed in G. However, the relations we have found here involve non-two-power Stiefe-Whitney classes, which still have as yet no analogs in U. We remedy this problem now by extending equation (3.1).

Mixing notations, we write (3.1) as

$$
w_{2 j-1}+r^{2 j}=\left(S q^{j j-1}+w_{2 j-1}\right) w_{r 2 j}
$$

(i.e., $\left(S q^{m}+w_{m}\right) x$ means $\left.S q^{m} x+w_{m} \quad x\right)$. The following lemma is then immediate.

Lemma 3.2 (Expressing Stiefe-Whitney dasses) Every Stiefe-Whitney class can be expressed in terms of two-power classes and two-power squares as follows: If we write any $m=2^{n_{1}}+\quad+2^{n_{s}}$; where $n_{1} \gg n_{5}$, we have

$$
\begin{equation*}
w_{m}=S q^{2^{n_{s}}}+w_{2^{n_{s}}} \quad S q^{2^{n_{2}}}+w_{2^{n_{2}}} \quad w_{2^{n_{1}}}: \tag{3.3}
\end{equation*}
$$

We are now ready to de ne formally the abstract presentation G.

De nition 3.3 In U, extend the set of generators $\mathrm{ft}_{2^{k}} ; \mathrm{k} \quad \mathrm{Og}$, to de ne elements t_{m} for all $\mathrm{m} \quad 1$, by rst writing $\mathrm{m}=2^{\mathrm{n}_{1}}+\quad+2^{\mathrm{n}_{5}}$; where $n_{1} \gg n_{s}$. Then by analogy with equation (3.3) set

$$
t_{m}=\left(S q^{n_{s}}+t_{2^{n_{s}}}\right) \quad S q^{2^{n_{2}}}+t_{2^{n_{2}}} \quad t_{2^{n_{1}}}:
$$

De nition 3.4 (Abstract key relations) Imitating equation (3.2), let G be the the A-algebra quotient of U by the left A-ideal generated by the elements

$$
\begin{align*}
& (k ; i)=S q^{2^{i}} t_{2^{k}}+S q^{2^{k-1}} S q^{2^{i}} t_{2^{k-1}}+ \\
& \tag{3.4}\\
& \qquad S q^{2^{k-1}}\left(t_{2^{k-1}} t_{2^{i}}\right)+\prod_{I=0}^{2^{k}-\dot{X}^{-1}-2} t_{2^{k-1}-2^{2} \mid} t_{2^{k-1}}+2^{i}+2^{i} ।
\end{align*}
$$

for i k-2:
Theorem 3.5 (Structure of S) The symmetric algebra $\mathrm{S}=\mathrm{H}\left(\mathrm{BO} ; \mathbb{F}_{2}\right)$ is isomorphic to G as an algebra over the Steenrod algebra. Moreover, the relations (3.4) generating the A-ideal are minimal, i.e, nonredundant.

The proof is in Section 5.

4 Applications and speculation

We apply the main structure theorem to the cohomology images from the connected covers of B O, and to the cohomology of the spaces B O(q) for classifying nite dimensional vector bundles. Finally we shall see how these descriptions naturally converge into the Dickson invariant algebras.
First we consider cohomology images from the connected covers.
De nition 4.1 Following [3], let B (n) be the cohomology image of the map induced by the projection
BOh (n)i ! BO;
where B Oh (n)i is the n-th distinct connected cover of $B O$. That is, $B O h(n) i$

In particular, for $\mathrm{n}=0 ; 1 ; 2 ; 3$ the projections are surjective in cohomology, so the unstable A-algebras $B(n)$ are isomorphic to the cohomologies of BO, BSO, BSpin, and BO hBi [3]. In general, $B(n)$ is $\left(2^{n}-1\right)$-connected, and is the quotient of $B(0)=H \quad B O=S$ by the A-ideal generated by $f w_{2^{k}}: k<n g$ [3].

Theorem 4.2 (Structure of connected cover images) An abstract presentation of $\mathrm{B}(\mathrm{n})$ is obtained from that of $\mathrm{B}(0)=\mathrm{H} B O=\mathrm{S}$ (Theorem 3.5) as the quotient by the A-ideal generated by $\mathrm{ft}_{2^{k}}: \mathrm{k}<\mathrm{ng}$. This produces a minimal presentation as follows.

Let K_{n} denote the direct sum of the A-module $M(n ; 0)$ on $t_{2^{n}}$ with the free unstable A -module on the $t_{2 k}$; $k \quad n+1$: Here $M(n ; 0)$ is as de ned in [9], namely the fre unstable A -module on one generator $t_{2 n}$ modulo the left A-submodule generated by $S q^{2} t_{2 n} ; i \quad n-2$:

Then B (n) is isomorphic to the quotient of the free unstable A-algebra on K_{n} by the left A-ideal generated by the elements ($k ; i$), $k \quad n+1, i \quad k-2$, subject to the requirement that all appearances in $(k ; i)$ of $t_{m} ; 0<m<2^{n}$; are replaced by zero.

The proof is in Section 5.
For our second application, we note that the presentation for H BO in our main theorem will immediately produce presentations for the cohomologies of the classifying spaces $\mathrm{H} \quad \mathrm{BO}(\mathrm{q})$, sinceeach is just the algebra quotient (actually also A-algebra quotient) of H BO by the ideal generated by $\mathrm{f} \mathrm{w}_{\mathrm{m}}$: $\mathrm{m}>\mathrm{qg}$ [8], and w_{m} corresponds to t_{m}, which wede ned in the presentation of H BO. The resulting presentation becomes both tractable and useful for $\mathrm{HBO}\left(2^{\mathrm{n}+1}-1\right)$.

Theorem 4.3 (Structure of $\mathrm{HBO}\left(2^{\mathrm{n}+1}-1\right)$) An abstract presentation of $\mathrm{HBO}\left(2^{\mathrm{n}+1}-1\right)$ is obtained from that of $\mathrm{B}(0)=\mathrm{H} \quad \mathrm{BO}=\mathrm{S}$ (Theorem 3.5) as the quotient by the A-ideal generated by $\mathrm{ft}_{2^{k}}: \mathrm{k} \quad \mathrm{n}+1 \mathrm{~g}$. This produces a minimal presentation as follows.

H BO $\left(2^{n+1}-1\right)$ is presented by the free unstable A-algebra on abstract classes $\mathrm{ft}_{2^{k}}$: $0 \mathrm{k} \quad \mathrm{ng}$, modulo the left A-ideal generated by the elements $(\mathrm{k} ; \mathrm{i})$ for $k \quad n+1$, $\mathrm{i} \quad \mathrm{k}-2$, (using De nition 3.3 of t_{m} for $\mathrm{m}<2^{\mathrm{n}+1}$), subject to the requirement that when $k=n+1$, the term $\mathrm{Sq}^{2} \mathrm{t}_{2^{n+1}}$ is replaced by zero for each i (all other terms involve only t 's in degrees less than $2^{\mathrm{n}+1}$).

The proof is in Section 5.
Finally, combining the relations on $\mathrm{S}=\mathrm{H}\left(\mathrm{BO} ; \mathbb{F}_{2}\right)$ from the two theorems above will produce the common A-algebra quotient of $\mathrm{B}(\mathrm{n})$ and $\mathrm{HBO}\left(2^{\mathrm{n+1}}-\right.$ 1). Since the rst of these is $\left(2^{n}-1\right)$-connected, while the second is decomposable beyond degree $2^{n+1}-1$, we will obtain an A-algebra with algebra generators in the range 2^{n} through $2^{n+1}-1$: Surprisingly, this much smaller quotient of $\mathrm{S}=\mathrm{H}$ BO turns out to be already familiar. We will show now
that as an A-algebra it is isomorphic to the n-th Dickson algebra $\mathrm{W}_{\mathrm{n}+1}$ (see Figure 1). In this sense one can say that the Dickson algebra captures precisely the cohomology common to BOh (n)i and BO(2 $2^{n+1}-1$) from H BO, i.e, it is the A -algebra pushout.

$$
\mathrm{W}_{\mathrm{n}+1} \quad \mathrm{HBO}\left(2^{\mathrm{n}+1}-1\right)
$$

11
B (n) H BO

Figure 1
Theorem 4.4 (Convergence to Dickson algebras) The quotient of the symmetric algebra S by the left A-ideal generated by $f w_{2^{k}}: k \in n g$ is isomorphic to the $\mathrm{n}+1$-st mod 2 Dickson algebra, $\mathrm{W}_{\mathrm{n}+1}$. Speci cally, using the notation of the presentation of Theorem 3.5, as an A -algebra it is minimally presented by the free unstable A-algebra on the module $M(n ; 0)$ (de ned in Theorem 4.2), subject to the single A-algebra relation

$$
S q^{2^{n}} S q^{2^{n-1}} t_{2^{n}}=t_{2^{n}} S q^{2 q^{n-1}} t_{2^{n}}:
$$

We proved in [9] that this precisely characterizes the Didkson algebra $\mathrm{W}_{\mathrm{n}+1}$.
The proof is in Section 5.
Let us speculate on how Figure 1 might t in with something topologically realizable. It is known that $\mathrm{W}_{\mathrm{n}+1}$ is realizable precisely for n 3 [6], and that B (n) H BOh (n)i is an isomorphism also precisely in this range [3]. Thus for $\mathrm{n} \quad 3$ it is reasonable to expect that Figure 1 be realizable. For general n it is perhaps reasonable to hope for the existence of a space X_{n} and a homotopy commutative square (Figure 2) whose cohomology is compatible with Figure 1 in the sense of combining to produce the commutative diagram of Figure 3. Additionally we would like X_{n} to have the property that the outer square in Figure 3 is also a pushout of unstable A-algebras. In other words, X_{n} does its best to realize a Dickson algebra, even when this is no longer possible

5 Proofs

Proof of Theorem 2.3 Let F_{m} be the free unstable A -module(equivalently K module) on a generator t_{m} in degree m. We shall show that the A-module map f : m o F_{m} ! H BO determined by $f\left(t_{m}\right)=w_{m}$ is injective

X_{n}	$!$	$B O\left(2^{n+1}-1\right)$
$\#$	$\#$	
$B O h(n) i$	$!$	$B O$

Figure 2

$H X_{n}$	W_{n+1}	$H B O\left(2^{n+1}-1\right)$
H BOh (n)i	B (n)	$"$
"	H BO	

Figure 3
From [10], basis elements for the domain of f consist of $D_{J} t_{m}$ where J $=$ ($\mathrm{j}_{1} ;::: ; \mathrm{j}_{\mathrm{s}}$) and $0 \quad \mathrm{j}_{1} \quad \mathrm{j}_{\mathrm{s}}<\mathrm{m}$. (Appendix II recalls the features of the elements D_{J} in the Kudo-Araki-May algebra K essential to what follows.)
On the other side of f, basis monomials of the range H BO can be written as $\mathrm{w}_{\mathrm{n}_{2}} \mathrm{w}_{\mathrm{n}_{1}}$ with nondecreasing indices, i.e, labeled by nitely nonzero tuples $\left(::: ; n_{2} ; n_{1}\right)$ with $0 \quad n_{2} \quad n_{1}$. We order the latter reverse lexicographically.
Now for each basis element $D_{ر} t_{m}$, we consider its image $f\left(D_{ر} t_{m}\right)=D_{J} w_{m}$, and we claim that this element of H BO has a \leading" monomial term, i.e, that

This will complete the proof, since distinct $D_{J} w_{m}$ clearly produce distinct leading monomials, with remaining terms al ways of higher order; so the $\mathrm{D}_{\mathrm{J}} \mathrm{w}_{\mathrm{m}}$ are all linearly independent, and thus f is injective.
We will use the following notation: As a subscript, $\backslash>k$ k" (resp. $\backslash<k$ " $)$ denotes any index greater (resp. less) than k, each occurrence of an unsubscripted w denotes any element of H BO, and expressions involving any of these mean any sum of expressions of such form.
We prove our claim by induction on s, based on the Wu formula
$D_{j} w_{m}=S q^{m-j} w_{m}=w_{m-j} w_{m}+$ higher order terms of form $w w>m$.

Clearly the claim holds for lengths 0 and 1. For the inductive step, consider D_{ρ} of length $s+1$, and note that application of any nontrivially-acting D_{j} always increases the order of a monomial in H BO. Now calculate, using the K-Cartan formula [10] as needed, and recalling that the leading term z was de ned above:

$$
\begin{aligned}
& D_{j}-W_{m}
\end{aligned}
$$

since the terms of v^{2} have higher order than x^{2}.

Proof of Theorem 3.5 There is a map of A -algebras U! S obtained by taking $\mathrm{t}_{2^{k}}$ to $\mathrm{w}_{2^{k}}$; and from Lemma 3.2 and De nition 3.3 this map takes each t_{m} to w_{m} : Since the relations (3.4) that de ne G map to those also satis ed in S (3.2), there is an induced A -algebra epimorphism G! S. We shall show that this map is monic by showing that the induced map on the indecomposable quotients is monic, essentially a counting argument.

To start with, note that the indecomposables are

$$
\mathrm{QU}=\mathrm{D}^{\mathrm{Sq}} \mathrm{t}_{2^{k}}: \mathrm{k} \quad 0 ; \text { I admissible, of excess }<2^{\mathrm{k}} \text { : }
$$

Then QG is QU modulo the A -relations (degenerate versions of $(k ; i)=0$)

$$
S q^{2^{i}} t_{2^{k}}=S q^{2^{k-1}} S q^{2^{i}} t_{2^{k-1}} ; i \quad k-2:
$$

There is an A-module Itration

$$
F_{p} Q U=S q^{\prime} t_{2^{k}}: 0 \quad k \quad p, I \text { admissible, of excess }<2^{k} \text {; }
$$

which induces an A-module Itration $\mathrm{F}_{\mathrm{p}} \mathrm{QG}$. Then

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{p} Q}=F_{\mathrm{p}-1} \mathrm{QG}= \\
& \quad \mathrm{Sq}^{\prime} \mathrm{t}_{2^{p}}: \text { I admissible, of excess }<2^{\mathrm{p}} \Rightarrow \mathrm{~A}^{\mathrm{n}} \mathrm{Sq}^{2^{i}} \mathrm{t}_{2^{p}}: i \quad \mathrm{p}-2^{\mathrm{o}}:
\end{aligned}
$$

This is the suspension of the module $M(p ; 1)$ analyzed in [9, Theorem 2.11] ${ }^{1}$, and the basis described there suspends to

$$
f D_{1} t_{2^{p}}: I=\left(2^{a_{1}} ;::: ; 2^{a_{1}}\right) ; \text { where } 0 \quad a_{1} \quad a_{1}<p g:
$$

(As in the proof of Theorem 2.3, we refer the reader to Appendix II for essentials concerning the elements $D_{\text {I }}$ in the Kudo-A raki-May algebra K.)
We shall nish the proof of isomorphism by showing that the above basis elements for $\quad \mathrm{p}{ }_{0} \mathrm{~F}_{\mathrm{p}} \mathrm{QG} \mathrm{F}_{\mathrm{p}-1} \mathrm{QG}$ are in distinct degrees; in fact we claim there is exactly one in each positive degree (The appendix discusses the modules $M(p ; 1)$ in relation to the literature, and points out an alternative path for substantiating our claim.). Let m be a positive integer. Then m may be written uniquely in the form

$$
m=2^{r}-X_{j=1}^{X^{s}} 2^{q} \text {; }
$$

wheres 0 and $0 \quad b_{1} \ll b_{5}<r-1$. Thereader may check by induction on s that the unique basis element in degree m is $D_{1} t_{2}$; where $p=r-s$ and $I=\left(2^{a_{1}} ;::: ; 2^{\mathrm{a}_{5}}\right)$; with $\mathrm{a}_{\mathrm{j}}=\mathrm{b}-\mathrm{j}+1$. With both QG and QS having rank one in each degree, QG! QS is an isomorphism. Then since S is a free commutative algebra, the epimorphism G! S must be an isomorphism also.

That the relations are minimal (nonredundant) is clear from the fact that in $\mathrm{F}_{\mathrm{p}} \mathrm{QU}=\mathrm{F}_{\mathrm{p}-1} \mathrm{QU}$, which is the suspension of the free unstable module on a dass in degree $2^{p}-1$, the induced relations are simply $S q^{2} t_{2^{p}}=0$, for $i \quad p-2$, and these are all nonredundant.

Proof of Theorem 4.2 We have already mentioned that according to [3], $B(n)$ is isomorphic to thequotient of S by the A -ideal generated by $f w_{2^{k}}: k$ $n-1 \mathrm{~g}$: Hence the images under the projection S! B (n) of all $w_{m} ; 1 \quad m$ $2^{n}-1$; are certainly zero from Lemma 3.2. From [3] we also have that B (n) is a polynomial algebra generated by certain remaining w_{m} (see below). We denote the images of the w_{m} in $B(n)$ by the same symbols w_{m} :

[^0]Let H_{n} denote thequotient of thefree unstable A -al gebra on K_{n} by the left A ideal generated by theelements (k ; i), for $\mathrm{k} \quad \mathrm{n}+1$, subject to the requirement that all appearances of t_{m}; $0<\mathrm{m}<2^{\mathrm{n}}$, are replaced by zero, as in the statement of the theorem.

We begin by de ning a map from K_{n} to $B(n)$ by, as in the preceding proof, assigning $t_{2^{k}}$ to $w_{2^{k}}$ for $k \quad n$: Since the de ning relations for K_{n} are clearly satis ed in B (n) (from equation (3.2)), this assignment extends to the desired map. And since the de ning relations for the algebra H_{n} are also dearly satis ed in $B(n)$, this extends to an A-algebra map H_{n} ! $B(n)$: This map is epimorphic (since $B(n)$ is generated by certain w_{m} with $i \quad 2^{n}$), so as in the preceding proof, we need only show the the induced map on indecomposables is monomorphic.
According to $[3]^{2}$, the polynomial generators of B (n) are the w_{m} for which ($m-1$); the number of ones in the binary representation of $m-1$; is at least n . We Iter QH_{n} as in the proof of the previous theorem,

$$
\mathrm{F}_{\mathrm{p}} \mathrm{QH}_{\mathrm{n}}=\mathrm{Sq}^{\prime} \mathrm{t}_{2^{k}} 2 \mathrm{QH}_{\mathrm{n}}: \mathrm{k} \quad \mathrm{p} ;
$$

and as in the previous proof the Itered quotient $\mathrm{F}_{\mathrm{p}} \mathrm{QH}_{n} F_{\mathrm{p}-1} \mathrm{QH}_{\mathrm{n}}$ is the suspension of the module $M(p ; 1)$ for $p \quad n$, and 0 for $p<n$. It is straightforward to check that the alpha numbers of one less than the degrees of the dements

$$
f D_{1} t_{2^{p}}: I=\left(2^{a_{1}} ;::: ; 2^{\mathrm{a}_{1}}\right) ; \text { where } 0 \quad a_{1} \quad a_{l}<p g
$$

are exactly $p \quad n$, so these are all in degrees where $B(n)$ has generators. Since we showed in the previous proof that these elements are also in distinct degrees, this similarly completes the proof. Minimal ity follows as in the previous proof.

Proof of Theorem 4.3 It is clear that the presentation of S collapses in the manner stated. Minimality follows for most of the relations as in the previous proofs. We comment only that to con rm that the collapsed top relations

$$
0=(n+1 ; i) \quad S q^{2^{n}} S q^{2^{i}} t_{2^{n}}+\text { decomposables for } i \quad n-1
$$

are also all nonredundant, one can observe that there is a natural map of the new presentation without these nal relations to the presentation for S, and compute that on indecomposables, each $\mathrm{Sq}^{2^{n}} \mathrm{Sq}^{2^{1}} \mathrm{t}_{2^{n}}$ maps to $\mathrm{w}_{2^{n+1}+2^{i}}$. Now from the Wu formulas, QH BO is Itered over A by $\mathrm{F}_{\mathrm{p}} \mathrm{QH} \mathrm{BO}=$ $f \mathrm{w}_{\mathrm{m}}$: $(\mathrm{m}-1) \mathrm{pg}$, and $\mathrm{w}_{2^{n+1}+2^{i}}$ is in Itration exactly $\mathrm{i}+1$. Thus

[^1]$f W_{2^{n+1}+2^{i}}$: in $\quad n-1 g$ must bea minimal generating set for the A -submoduleit generates in QH BO. The same then must betrue of $f(n+1 ; i): i \quad n-1 g$ in the indecomposables of the new presentation without these nal relations; so they too are minimal.

Proof of Theorem 4.4 In [9] we proved that the ($\mathrm{n}+1$)-st Dickson algebra $\mathrm{W}_{\mathrm{n}+1}$ is isomorphic to thequotient of thefreeunstable A-algebra on the module $M(n ; 0)$ on generator $x_{2^{n}}$ by the single A-algebra relation

$$
S q^{2^{n}} S q^{2^{n-1}} x_{2^{n}}=x_{2^{n}} S q^{2 n-1} x_{2^{n}} ;
$$

and that $\mathrm{M}(\mathrm{n} ; 0)$ injects into $\mathrm{W}_{\mathrm{n}+1}$ ([9], proof of Theorem 2.11). In other words, this is a minimal presentation in our sense.

Now let us turn to the quotient of the symmetric algebra that combines the relations from the previous two theorems, i.e., the quotient by the left A-ideal generated by $\mathrm{ft}_{2^{k}} ; \mathrm{k} \in \mathrm{ng}$. Let us denote this quotient by J n : In J n ; the relations ($\mathrm{k} ; \mathrm{i}$) are all trivial except when k is $\mathrm{n}+1$ or n : When $\mathrm{k}=\mathrm{n}$; they reduce to $S q^{2} t_{2^{n}}=0$, $i \quad n-2$; the de ning relations for $M(n ; 0)$: When $\mathrm{k}=\mathrm{n}+1$, we have the redations

$$
\begin{aligned}
& 0=(n+1 ; i) \quad S q^{2^{n}} S q^{2^{i}} t_{2^{n}}+S q^{2^{i}} t_{2^{n+1}}+ \\
& S q^{2^{n}}\left(t_{2^{n}} t_{2^{i}}\right)+{ }_{l=0}^{2^{n} x^{i}-2} t_{2^{n}-2^{i} t_{2^{n}}+2^{i}+2^{i} 1}
\end{aligned}
$$

for in-1: These reduce to

$$
S q^{2^{n}} S q^{i^{i}} t_{2^{n}}=t_{2^{n}} t_{2^{n}+2^{i}}:
$$

Now since

$$
\mathrm{t}_{2^{n}} \mathrm{t}_{2^{n}+2^{i}}=\mathrm{t}_{2^{n}} \quad \mathrm{~S} q^{2^{i}} \mathrm{t}_{2^{n}}+\mathrm{t}_{2^{i}} \mathrm{t}_{2^{n}}=\mathrm{t}_{2^{n}} \mathrm{Sq}{q^{2^{i}} \mathrm{t}_{2^{n}} ; ~}_{\text {n }}
$$

the relations can be rewritten as

$$
S q^{2^{n}} S q^{2^{i}} t_{2^{n}}=t_{2^{n}} S q^{q^{2}} t_{2^{n}}:
$$

Since $\mathrm{Sq}^{2^{\mathrm{i}}} \mathrm{t}_{2^{\mathrm{n}}}=0$ for $\mathrm{i}<\mathrm{n}-1$, these are trivial for $\mathrm{i}<\mathrm{n}-1$, and yidd

$$
S q^{2^{n}} S q^{2 n-1} t_{2^{n}}=t_{2^{n}} S q^{2^{n-1}} t_{2^{n}}
$$

for $\mathrm{i}=\mathrm{n}-1$. This precisely matches the single relation (stated above) dharacterizing the Didkson algebra, so we obtain an isomorphism of A-algebras from $\mathrm{J} n$ to $\mathrm{W}_{\mathrm{n}+1}$ by taking $\mathrm{t}_{2^{\mathrm{n}}} 2 \mathrm{~J} \mathrm{n}$ to the generator $\mathrm{x}_{2^{\mathrm{n}}} 2 \mathrm{~W}_{\mathrm{n}+1}$:

6 Appendix I: The unstable modules $F\left(2^{p}-1\right)=A \bar{A}_{p-2}$ and a minimal A-presentation for $H\left(R P^{1}\right)$

For each p 0 , the module $\mathrm{M}(\mathrm{p} ; 1)$ is de ned in [9] as the quotient of the fre unstable A -module on a class $\mathrm{x}_{2 \mathrm{p}-1}$ in degree $2^{\mathrm{p}}-1$ modulo the action of $S q^{2}$ for i $p-2$; in other words, in usual notation,

$$
M(p ; 1)=F\left(2^{p}-1\right)=A \bar{A}_{p-2}:
$$

These modules aretractable, important, and interesting, and we shall show they are the Itered quotients of a simple minimal A-presentation for $H \mathrm{RP}^{1}$.

In the proof of our primary Theorem 3.5 above, we appealed to our development in [9, Theorem 2.11] of bases for these modules. The proof used the bases to \ count" that the direct sum of the modules (we were actually dealing with their suspensions in that theorem) has rank exactly one in each nonnegative degree In fact we know the rank separately for each module:

Theorem 6.1 (Rank of $M(p ; 1)$) The module $M(p ; 1)$ has precisely a single nonzero element in each degree with alpha number p, i.e., with p ones in its binary expansion, and nothing else.

Proof The basis for M ($\mathrm{p} ; 1$) provided in [9, Theorem 2.11] is
$f D_{1} x_{2^{p}-1}$: the multi-index I consists of nonnegative, nondecreasing entries of form $2^{\mathrm{k}}-1, \mathrm{k}<\mathrm{pg}$:

The reader may check that the degrees of these elements are precisely those with al pha number p (see A ppendix II for a recollection of essentials regarding the elements D_{I} in the Kudo-Araki-May algebra K).

This suggests a connection to the cohomology of RP ${ }^{1}$. Recall that

$$
\begin{equation*}
H R P^{1}=\mathbb{F}_{2}[y] \text { with } S \alpha^{j} y^{\prime}=\frac{1}{j} y^{1+j} ; \tag{6.1}
\end{equation*}
$$

from which one sees that H RP ${ }^{1}$ is A - Itered by the number of ones in the binary expansion of degrees. Indeed it is now not hard to prove

Theorem $6.2\left(\mathrm{M}(\mathrm{p} ; 1)\right.$ and $\left.\mathrm{H} R \mathrm{R}^{1}\right)$ The $\mathrm{A}-\operatorname{module} \mathrm{M}(\mathrm{p} ; 1)$ is isomorphic to the p -th Itered quotient of $\mathrm{HRP}{ }^{1}$.

Proof The module M $(p ; 1)$ clearly maps nontrivially to the p-th Itered quotient of $H R P^{1}$, since the quotient begins with $y^{2^{p}-1}$, and $S q^{2^{i}} y^{2^{p}-1}$ lies in lower Itration for i p-2. The map is onto because one sees from (6.1) that the p-th Itered quotient of H RP ${ }^{1}$ is generated over A from degree $2^{\mathrm{p}}-1$. Now the previous theorem shows that the ranks agree, so the two are isomorphic.

Remark 6.3 This result also follows from [2], where it essentially appears in a stabilized form. Indeed, in [2] the A -modules

$$
2^{2^{p}-1} A=A^{n} S q^{2 j}: j \in p-1{ }^{0}
$$

arestudied with stablepurposes in mind. Each of these modules obviously maps onto the corresponding $\mathrm{M}(\mathrm{p} ; 1)$, and thus the two would clearly be isomorphic if it were known that the domain module is unstable, which does not seem obvious. In fact, though, it is proven in [2] that these modules are isomorphic to the same Itered quotients of $\mathrm{H} \mathrm{RP}^{1}$. Thus they are indeed unstable and isomorphic to the modules $M(p ; 1)$. The theorem follows.

Remark 6.4 The modules M ($\mathrm{p} ; 1$) are also used in [5], where Remark 2.6 claims that in an unpublished manuscript [7], William Massey calculated that $M(p ; 1)$ is A-isomorphic to the p-th Itered quotient of $H R P^{1}$, i.e, the theorem above However, this does not actually seem to appear explicitly in [7]. Finally, we note that the Itered quotients of H RP ${ }^{1}$ arise again in [1, after Prop. 3.1] in a fashion closely related both to [5] and [7].

We are now equipped to show
Theorem 6.5 (Minimal A -presentation of $\mathrm{H}\left(R P^{1}\right)$) There is a minimal unstable A-module presentation of $H \quad\left(R P^{1} ; \mathbb{F}_{2}\right)$, as the quotient of the fre unstable module on abstract classes $\mathrm{s}_{2^{k}-1}$ in degrees $2^{k}-1$ by the relations

$$
\mathrm{Sq}^{2^{i}} \mathrm{~s}_{2^{k}-1}=\mathrm{Sq}^{\mathrm{k}^{k-1}} \mathrm{Sq}^{\mathrm{i}^{2}} \mathrm{~s}_{2^{k-1}-1} ; \mathrm{i} \quad \mathrm{k}-2:
$$

Proof There is an A-module map from the abstract quotient to $\mathrm{H}^{\mathrm{RP}}{ }^{1}$, carrying each A -generator nontrivially, since the given relations are easily calculated also to hold amongst the nonzero classes in $\mathrm{H} \mathrm{RP}{ }^{1}$. Moreover this is epic, since $H R P^{1}$ is generated over A from degrees oneless than a two-power. To see that the two are isomorphic, we need merely show that these relations are enough, i.e, that the abstract quotient has only rank one in each degree This we do by considering the A- Itration of the abstract quotient in which
the p-th Itration is the A -submodule generated by $\mathrm{fs}_{1} ;::: ; \mathrm{s}_{2^{\mathrm{p}}-1} \mathrm{~g}$. The p -th Itered quotient is clearly $M(p ; 1)$. That the union of these has rank one in each nonnegative degree follows from either of the two previous theorems.

Minimality of the presentation is clear. The nonzero classes in H RP ${ }^{1}$ in degrees one less than a power of two cannot be reached from below, so the generating set is minimal, and unique The nonredundancy of all the relations is clear from the Itered quotients and the fact that two-power squares are minimal generators of A.

An alternative proof would be to obtain this presentation simply by collapsing the relations (3.4) in the A -algebra presentation of H BO in Theorem 3.5 to the indecomposable quotient, since $\mathrm{H} \mathrm{RP}{ }^{1}=\mathrm{QH}$ BO as A-modules (Wu formulas).

7 Appendix II: The K udo-A raki-May algebra K

We recall herejust the bare essentials about K needed to understand the proofs in this paper. We refer the reader to [10] for much more extensive information about K.

The mod two Kudo-Araki-May algebra K is the \mathbb{F}_{2}-bialgebra (with identity) generated by elements $f D_{i}: i \quad 0 g$ subject to homogeneous (Adem) relations [10, Def. 2.1], with coproduct determined by the formula

$$
\left(D_{i}\right)=\sum_{t=0}^{x_{t}^{i}} D_{t} \otimes D_{i-t}:
$$

It is bigraded by length and topological degrees ($j \mathrm{D}_{\mathrm{i}} \mathrm{j}=\mathrm{i}$), which behave skewadditively under multiplication [10, Def. 2.1].

The \mathbb{F}_{2}-cohomology of any space is an unstable algebra over the Stenrod algebra, and there is a correspondence between unstable A -algebras and unstable K -algebras, completely determined by iterating the conversion formulae: On any element x_{l} of degre I, and for all $j 0$, one has

$$
D_{j} x_{l}=S q^{1-j} x_{1} \text {, equivalently, } S q^{j} x_{l}=D_{l-j} x_{1} \text { : }
$$

Since the degree of the element is involved in the conversion, and this changes as operations are composed, the algebra structures of A and K are very di erent, and the skew additivity of the bigrading in K reflects this.

The requirements for an unstable K-algebra, corresponding to the nature and requirements of an unstable A-algebra, are: On any element x_{1} of degree I,

$$
D_{1} x_{I}=x_{1}, D_{j} x_{I}=0 \text { for } j>I \text {, and } D_{0} x_{I}=x_{1}^{2}:
$$

Finally, and used in our proofs, the K-algebra structure obeys the (Cartan) formula according to the coproduct in K :

$$
D_{i}(x y)={ }_{t=0}^{x^{i}} D_{t}(x) D_{i-t}(y):
$$

References

[1] A.K. Bous eld, D.M. Davis, On the unstable Adams spectral sequence for SO and U, and splittings of unstable Ext groups, Boletin de la Sociedad Matematica Mexicana (2) 37(1992), 41\{53.
[2] D. Davis, Some quotients of the Steenrod algebra, Proc. Amer. Math. Soc. 83 (1981), 616\{618.
[3] S. K ochman, An algebraic Itration of H B O, in proc., Northwestern Homotopy Theory Conference (Evanston, III., 1982), Contemporary Math. 19 (1983), Amer. Math. Soc., 115\{143.
[4] J. Lannes, S. Zarati, Foncteurs derives de la destabilisation, Math. Zeit. 194 (1987), $25\{59$.
[5] K. Lesh, A conjecture on the unstable Adams spectral sequences for SO and U , Fundamenta Mathematicae 174 (2002), 49\{78.
[6] Mathematical Reviews \#93k:55022, American Mathematical Society, 1993.
[7] W. Massey, The mod 2 cohomology of certain Postnikov systems, unpublished handwritten manuscript (1978), 20 pages, courtesy of Haynes Miller.
[8] J. Milnor, J. Stashe , Characteristic Classes, Annals of Mathematics Studies 76, Princeton Univ. Press, Princeton, NJ, 1974.
[9] D. Pengelley, F. Peterson, F. Williams, A global structure theorem for the mod 2 Didkson algebras, and unstable cyclic modules over the Steenrod and K udo-Araki-May algebras, Math. Proc. Camb. Phil. Soc. 129 (2000), $263\{275$.
[10] D. Pengelley, F. Williams, Sheared algebra maps and operation bialgebras for mod 2 homology and cohomology, Transactions of the American Mathematical Society 352 (2000), 1453\{1492.
[11] N.E. Steenrod, D.B.A. Epstein, Cohomology Operations, Princeton Univ. Press, 1962.
[12] R. Stong, Determination of $H\left(B O(k ;::: ; 1) ; Z_{2}\right)$ and $H\left(B U(k ;::: ; 1) ; Z_{2}\right)$, Trans. Amer. Math. Soc. 107 (1963), 526\{544.
[13] C. Wilkerson, A primer on the Dickson invariants, in proc., Northwestern Homotopy Theory Conference (Evanston, III., 1982), Contemporary Math. 19 (1983), Amer. Math. Soc., $421\{434$, as corrected at the Hopf Topology Archive, htt p: / / hopf . nath. pur due. edu/ pub/ hopf . ht mh.
[14] W. Wu, Les i-carres dans une variete grassmannienne, C.R. Acad. Sci. Paris 230 (1950), 918\{920.

New Mexico State University
Las Cruces, NM 88003, USA
Email: davi dp@nnsu. edu, frank@nnsu. edu
Received: 24 October 2003

[^0]: ${ }^{1} \mathrm{M}(\mathrm{p} ; 1)$ is de ned in [9] as the quotient of the free unstable A-module on a class in degree $2^{p}-1$ modulo the action of $S q^{2}$ for $i \quad p-2$; in other words, in usual notation, $M(p ; 1)=F\left(2^{p}-1\right)=A \bar{A}_{p-2}$:

[^1]: ${ }^{2}$ K ochman describes degrees of generators in terms of $(m)+(m)(\quad$ is the $2-$ divisibility), but we equivalently use $(m-1)=(m)+(m)-1$.

