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Abstract The algebra S of symmetric invariants over the �eld with two
elements is an unstable algebra over the Steenrod algebra A, and is isomor-
phic to the mod two cohomology of BO , the classifying space for vector
bundles. We provide a minimal presentation for S in the category of un-
stable A-algebras, i.e., minimal generators and minimal relations.

From this we produce minimal presentations for various unstable A-algebras
associated with the cohomology of related spaces, such as the BO(2m − 1)
that classify �nite dimensional vector bundles, and the connected covers of
BO . The presentations then show that certain of these unstable A-algebras
coalesce to produce the Dickson algebras of general linear group invariants,
and we speculate about possible related topological realizability.

Our methods also produce a related simple minimal A-module presenta-
tion of the cohomology of in�nite dimensional real projective space, with
�ltered quotients the unstable modules F (2p − 1) =AAp−2 , as described in
an independent appendix.

AMS Classi�cation 55R45; 13A50, 16W22, 16W50, 55R40, 55S05, 55S10

Keywords Symmetric algebra, Steenrod algebra, unstable algebra, clas-
sifying space, Dickson algebra, BO , real projective space.

1 Introduction

We continue our study [9] of invariant algebras as unstable algebras over the
Steenrod algebra A by proving a structure theorem for the algebra S of sym-
metric invariants over the �eld F2 . The algebra S is isomorphic to the mod two
cohomology of BO , the classifying space for vector bundles [8], and we identify
the two. We also make several applications to the cohomology of related spaces,
which then reveal a relationship between S and the Dickson algebras [13].
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1120 David J. Pengelley and Frank Williams

Our goal is to provide a minimal presentation for S = H�(BO;F2) in the cat-
egory of unstable A-algebras [11], beginning with a minimally presented gen-
erating A-module and then introducing a minimal set of A-algebra relations.
This reveals how a minimal set of A-module building blocks for S �t together
in its A-algebra structure. In brief, our main result (Theorem 3.5) is that
S = H�(BO;F2) is minimally presented in the category of unstable A-algebras
as the free unstable A-algebra on the two-power Stiefel-Whitney classes w2k

modulo relations expressing the fact that, for each i � k − 2, Sq2iw2k di�ers
from Sq2k−1

Sq2iw2k−1 by a decomposable. (By contrast, and at �rst seemingly
paradoxically, we shall also see (Theorem 2.3) that while S is generated as an
A-algebra by fw2k : k � 0g, with relations linking the resulting algebra gen-
erators, in fact the A-submodule of S generated by fwm : m � 0g is a free
unstable A-module on all the Stiefel-Whitney classes.)

We apply this structure theorem to characterize similarly the cohomology im-
ages B�(n) for the connected covers of BO (Theorem 4.2) [3], which include the
full cohomology algebras of BSO , BSpin, and BO h8i. We likewise character-
ize the quotients H�(BO(q);F2) for the classifying spaces of �nite dimensional
vector bundles [8], and in particular (Theorem 4.3) we analyze H�(BO(2n+1−
1);F2).

Finally, we shall produce an A-algebra epimorphism from S = H�(BO;F2) to
each of the mod two Dickson algebras (Theorem 4.4), which we characterized
in [9] as unstable A-algebras. In fact we shall show that the (n+ 1)-st Dickson
algebra has the role of capturing precisely the quotient of S = H�(BO;F2)
common to the cohomology of the n-th distinct connected cover BO h�(n)i
and to BO(2n+1 − 1). We speculate about how this phenomenon may relate
to spaces beyond the range in which Dickson algebras are directly realizable
topologically.

Our minimal A-algebra presentations for all the above objects will devolve
naturally from our main presentation of S , and in that sense these A-algebras
are all \parallel" to the main presentation.

In Appendix I, which is independent of the rest of the paper, we present a
related result, in which the unstable A-modules F (2p − 1) =AAp−2 appear as
the �ltered quotients of a simple minimal A-presentation for H�(RP1;F2).
We thank Don Davis, Kathryn Lesh, and Haynes Miller for useful conversa-
tions regarding these modules. We also thank John Greenlees for a stimulating
conversation leading to Remark 2.4.

The �rst author dedicates this paper to his parents, Daphne M. and Eric T.
Pengelley, in memoriam.
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Structure of mod two symmetric algebra 1121

2 Motivation, �rst steps, and a plan

The unstable A-algebra of symmetric invariants S = H�(BO;F2) is a polyno-
mial algebra F2[wm : m � 0; w0 = 1], with each elementary symmetric function
(Stiefel-Whitney class) wm having degree m [8]. The action of the Steenrod
algebra is completely determined from the Wu formulas [3, 12, 14]

Sqjwm =
jX
l=0

�
m− j + l − 1

l

�
wj−lwm+l

and the Cartan formula on products [11].

To ease into our categorical point of view, and to illustrate our approach and
methods, let us begin by seeing that abstract Stiefel-Whitney classes, taken
all together as free unstable A-algebra generators, along with imposed \Wu
formulas", actually \present" S . This is something one might easily take for
granted, but should actually prove, since in principle there might be \other"
relations lurking in S beyond those inherent in the Wu formulas. To avoid
confusion from notational abuse, we build from abstract classes tm which will
correspond to the actual Stiefel-Whitney classes under an isomorphism.

Proposition 2.1 (Wu formulas present S ) The unstable A-algebra S =
H�(BO;F2) is isomorphic to the quotient of the abstract free unstable A-
algebra on classes tm in each degree m � 1, modulo the left A-ideal generated
by abstract \Wu formulas" formed by writing t’s in place of w ’s in the Wu
formulas above.

Proof Iterating the abstract Wu formulas via the Cartan formula shows that
the abstract classes ftm : m � 1g actually generate the abstract A-algebra quo-
tient considered merely as an algebra, i.e., its (algebra) indecomposable quotient
has rank at most one in each degree. On the other hand, by its construction
the abstract A-algebra quotient must map onto S by sending each tm to wm ,
since the respective Wu formulas correspond. Thus the two must be isomorphic,
since S is free as a commutative algebra.

Notice, however, that this presentation of S is far from minimal in the category
of unstable A-algebras, since it used vastly more generators than needed. What
we seek instead is to achieve three features for a minimal presentation:

Step 1 Find a minimal A-submodule of S that will generate S as an A-
algebra.
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Step 2 Find a minimal presentation of this A-submodule, i.e., with minimal
generators and minimal relations.

Step 3 Form the free unstable A-algebra U on this module, and �nd minimal
relations on U so that its A-algebra quotient produces S .

To begin, let us �nd a minimal set of A-algebra generators for S . Consider
the (algebra) indecomposable quotient QS , i.e., the vector space with basis
fwm : m � 1g and induced A-action

Sqjwm =
�
m− 1
j

�
wm+j :

Since
(m−1

j

�
is always zero mod two when m + j is a two-power, and never

zero when m is a two-power and j is less than m, we see that the A-module
indecomposables of QS have basis exactly fw2k : k � 0g.

Since our philosophy is to begin the presentation at the A-module level, with
minimal A-algebra generators and minimal module relations, we thus start with

De�nition 2.2 Let M be the free unstable A-module on abstract classes
ft2k : k � 0g, where subscripts indicate the topological degree of each class.

We wish to map M to S via t2k ! w2k , and need �rst to ask whether M
injects. In other words, is the A-submodule of S = H�(BO;F2) generated by
fw2k : k � 0g free? Or are there, to the contrary, A-relations amongst the
two-power Stiefel-Whitney classes, which will compel us to introduce module
relations on M in order to complete steps 1 and 2 above? The Wu formulas
appear to suggest that no such relations exist. In fact we can prove something
even stronger.

Theorem 2.3 (Stiefel-Whitney classes inject freely) The A-submodule of
S = H�(BO;F2) generated by fwm : m � 0g is free unstable on these classes.

The proof is in Section 5.

Remark 2.4 The proof also shows that in

H�(BO(q);F2) �= H�(BO;F2)= (wm : m > q) ;

the A-submodule generated by fwm : 0 � m � qg is free unstable on these
classes.
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Remark 2.5 The fact that the free unstable A-module Fm on a single class in
degree m injects into H�(BO(m);F2) on the class wm is clear from the already
known result [4, page 55] that Fm is isomorphic to the invariants

(
F⊗m1

��m ;
which clearly inject naturally into (H�(RP1;F2)⊗m)�m �= H�(BO(m);F2) on
wm: Theorem 2.3 generalizes this by handling all Fm simultaneously, showing
that they do not interfere when simultaneously perched on the Stiefel-Whitney
classes in the symmetric algebra S = H�(BO;F2):

Corollary 2.6 The A-submodule of S = H�(BO;F2) generated by fw2k : k �
0g is free unstable, so M injects naturally into S .

This completes steps 1 and 2 of our goal, and we can begin step 3.

De�nition 2.7 Let U be the free unstable A-algebra on M, in other words,
U is the free unstable A-algebra on abstract classes ft2k : k � 0g.

Clearly U maps via t2k ! w2k onto the desired A-algebra S , but the map has
an enormous kernel, since QS is the vector space F2fwm : m � 1g, while QU
is much larger. Our goal in step 3 is to describe a minimal set of A-algebra
relations producing S from U , i.e., minimal generators for the kernel as an
A-ideal.

Let us explore a prototype example in degree �ve, which is the �rst place a
di�erence occurs. There QS has only w5 , whereas Sq1t4 and Sq2Sq1t2 are
distinct indecomposables in QU (recall that QU �= �ΩM, and that a basis
for M consists of the unstable admissible monomials on the A-generators t2k
[11]). A few calculations with the Wu formulas show that in S we have

Sq1w4 = w5 + w1w4 and

Sq2Sq1w2 = w5 + w1w4 + w2w3 + w1w
2
2 + w2

1w3 + w3
1w2:

Thus to imitate S abstractly via U , we must impose an algebra relation on U
decreeing that

Sq1t4 = Sq2Sq1t2 + some decomposable,

per the calculations above. One challenge in doing even this, though, is that
it is not clear how to describe that needed decomposable di�erence in U , since
there we have no name as yet for the element corresponding to w3 . To remedy
this, and to describe general formulas for relationships like the one we have
just discovered, we wish to use the Wu formulas to focus our understanding as
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much as possible on both two-power Steenrod squares and two-power Stiefel-
Whitney classes. Thus one of our formulas in the next section will express each
Stiefel-Whitney class purely in this way (Lemma 3.2).

While the plethora of algebra relations, such as the one above, needed to obtain
S from U may appear intractable to specify, recall that our chosen task is ac-
tually somewhat di�erent. Since we are working in the category of A-algebras,
we seek relations in U whose A-algebra consequences, not just their algebra
consequences, will produce S . We shall show that this requires only a much
smaller and more tractable set of relations, for which our illustration in degree
�ve serves as perfect prototype. Speci�cally, the relationship between Sq2iw2k

and Sq2k−1
Sq2iw2k−1 for every i � k−2 will be the key place to focus attention.

We shall impose one abstract relation on U for each such pair (k; i), and prove
that these are precisely the minimal relations producing S = H�(BO;F2) in
the category of A-algebras.

Our general plan is as follows. Form our abstract presentation candidate as
just outlined; call it G . The construction of G will immediately provide a
natural A-algebra epimorphism to S . The hard part now is showing that our
(k; i)-indexed family of A-algebra relations leaves no remaining kernel, i.e.,
that we have put in enough relations to generate the kernel as an A-ideal. To
achieve this we show that the epimorphism G ! S induces a monomorphism
QG ! QS , on the indecomposable quotients, by computing a basis for QG .
For this we appeal to our earlier understanding [9], via the Kudo-Araki-May
algebra K [10] (see Appendix II), of bases for the unstable cyclic A-modules
arising in the analogous structure theorem for the Dickson algebras. With
QG ! QS an isomorphism, G ! S must be an isomorphism also, since S is
a free commutative algebra. The minimality of the (k; i)-family of relations is
then not hard to see by appropriate �ltering.

3 Main theorem

We �rst identify the key A-algebra relations in S = H�(BO;F2).

Analysis of the binomial coe�cients in the Wu formulas shows that if r � 1;
then

Sq2j−1
wr2j = w2j−1wr2j + w2j−1+r2j : (3.1)

This formula will serve two purposes. It will guide us below in how to specify
any Stiefel-Whitney class from just the two-power ones, which is needed for
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creating our abstract presentation. But before this it will lead us to the key
relations needed from S .

To �nd these, recall from the previous section that we seek a relation involving
a decomposable di�erence between Sq2iw2k and Sq2k−1

Sq2iw2k−1 for every i �
k − 2. We begin with a special case of equation (3.1): For i � k − 2; we have

Sq2iw2k−1 = w2iw2k−1 + w2k−1+2i :

Applying Sq2k−1
; we get

Sq2k−1
Sq2iw2k−1 = Sq2k−1

(w2iw2k−1) + Sq2k−1 (
w2k−1+2i

�
.

Using a Wu formula on the last term, analyzing the binomial coe�cients, and
using (3.1) again, the reader may check that we obtain the following relations.

Proposition 3.1 (Key relations in S ) For i � k − 2,

Sq2k−1
Sq2iw2k−1 = Sq2iw2k+

Sq2k−1
(w2iw2k−1) +

2k−i−1−2X
l=0

w2k−1−2ilw2k−1+2i+2il; (3.2)

These show explicitly how the elements Sq2iw2k and Sq2k−1
Sq2iw2k−1 di�er

by a decomposable, and will guide us to the corresponding abstract relations
needed in G . However, the relations we have found here involve non-two-power
Stiefel-Whitney classes, which still have as yet no analogs in U . We remedy
this problem now by extending equation (3.1).

Mixing notations, we write (3.1) as

w2j−1+r2j = (Sq2j−1
+w2j−1)wr2j

(i.e., (Sqm +wm) x means Sqmx + wm � x). The following lemma is then
immediate.

Lemma 3.2 (Expressing Stiefel-Whitney classes) Every Stiefel-Whitney class
can be expressed in terms of two-power classes and two-power squares as follows:
If we write any m = 2n1 + � � �+ 2ns ; where n1 > � � � > ns , we have

wm =
(
Sq2ns + w2ns

�
� � �
(
Sq2n2 + w2n2

�
w2n1 : (3.3)

We are now ready to de�ne formally the abstract presentation G .
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De�nition 3.3 In U , extend the set of generators ft2k ; k � 0g, to de�ne
elements tm for all m � 1, by �rst writing m = 2n1 + � � � + 2ns ; where
n1 > � � � > ns . Then by analogy with equation (3.3) set

tm = (Sq2ns + t2ns ) � � �
(
Sq2n2 + t2n2

�
t2n1 :

De�nition 3.4 (Abstract key relations) Imitating equation (3.2), let G be
the the A-algebra quotient of U by the left A-ideal generated by the elements

� (k; i) = Sq2it2k + Sq2k−1
Sq2it2k−1+

Sq2k−1
(t2k−1t2i) +

2k−i−1−2X
l=0

t2k−1−2ilt2k−1+2i+2il (3.4)

for i � k − 2:

Theorem 3.5 (Structure of S ) The symmetric algebra S = H�(BO;F2)
is isomorphic to G as an algebra over the Steenrod algebra. Moreover, the
relations (3.4) generating the A-ideal are minimal, i.e., nonredundant.

The proof is in Section 5.

4 Applications and speculation

We apply the main structure theorem to the cohomology images from the con-
nected covers of BO , and to the cohomology of the spaces BO(q) for classifying
�nite dimensional vector bundles. Finally we shall see how these descriptions
naturally converge into the Dickson invariant algebras.

First we consider cohomology images from the connected covers.

De�nition 4.1 Following [3], let B�(n) be the cohomology image of the map
induced by the projection

BO h�(n)i ! BO;

where BOh�(n)i is the n-th distinct connected cover of BO . That is, BOh�(n)i
is (�(n)− 1)-connected, where n = 4s + t, 0 � t � 3, and �(n) = 8s+ 2t .

In particular, for n = 0; 1; 2; 3 the projections are surjective in cohomology,
so the unstable A-algebras B�(n) are isomorphic to the cohomologies of BO ,
BSO , BSpin, and BO h8i [3]. In general, B�(n) is (2n − 1)-connected, and is
the quotient of B�(0) = H�BO = S by the A-ideal generated by fw2k : k < ng
[3].
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Theorem 4.2 (Structure of connected cover images) An abstract presenta-
tion of B�(n) is obtained from that of B�(0) = H�BO = S (Theorem 3.5)
as the quotient by the A-ideal generated by ft2k : k < ng. This produces a
minimal presentation as follows.

Let Kn denote the direct sum of the A-module M(n; 0) on t2n with the free
unstable A-module on the t2k ; k � n + 1: Here M(n; 0) is as de�ned in
[9], namely the free unstable A-module on one generator t2n modulo the left
A-submodule generated by Sq2it2n ; i � n− 2:

Then B�(n) is isomorphic to the quotient of the free unstable A-algebra on
Kn by the left A-ideal generated by the elements � (k; i) , k � n+ 1, i � k− 2,
subject to the requirement that all appearances in � (k; i) of tm; 0 < m < 2n;
are replaced by zero.

The proof is in Section 5.

For our second application, we note that the presentation for H�BO in our
main theorem will immediately produce presentations for the cohomologies of
the classifying spaces H�BO(q), since each is just the algebra quotient (actually
also A-algebra quotient) of H�BO by the ideal generated by fwm : m > qg [8],
and wm corresponds to tm , which we de�ned in the presentation of H�BO . The
resulting presentation becomes both tractable and useful for H�BO(2n+1− 1).

Theorem 4.3 (Structure of H�BO(2n+1 − 1)) An abstract presentation of
H�BO(2n+1 − 1) is obtained from that of B�(0) = H�BO = S (Theorem 3.5)
as the quotient by the A-ideal generated by ft2k : k � n + 1g. This produces
a minimal presentation as follows.

H�BO(2n+1−1) is presented by the free unstable A-algebra on abstract classes
ft2k : 0 � k � ng, modulo the left A-ideal generated by the elements � (k; i)
for k � n+ 1, i � k − 2, (using De�nition 3.3 of tm for m < 2n+1 ), subject to
the requirement that when k = n + 1, the term Sq2it2n+1 is replaced by zero
for each i (all other terms involve only t’s in degrees less than 2n+1 ).

The proof is in Section 5.

Finally, combining the relations on S = H�(BO;F2) from the two theorems
above will produce the common A-algebra quotient of B�(n) and H�BO(2n+1−
1). Since the �rst of these is (2n − 1)-connected, while the second is decom-
posable beyond degree 2n+1 − 1, we will obtain an A-algebra with algebra
generators in the range 2n through 2n+1 − 1: Surprisingly, this much smaller
quotient of S = H�BO turns out to be already familiar. We will show now
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that as an A-algebra it is isomorphic to the n-th Dickson algebra Wn+1 (see
Figure 1). In this sense one can say that the Dickson algebra captures precisely
the cohomology common to BO h�(n)i and BO(2n+1 − 1) from H�BO , i.e., it
is the A-algebra pushout.

Wn+1  H�BO(2n+1 − 1)

" "

B�(n)  H�BO

Figure 1

Theorem 4.4 (Convergence to Dickson algebras) The quotient of the sym-
metric algebra S by the left A-ideal generated by fw2k : k 6= ng is isomorphic
to the n+ 1-st mod 2 Dickson algebra, Wn+1 . Speci�cally, using the notation
of the presentation of Theorem 3.5, as an A-algebra it is minimally presented
by the free unstable A-algebra on the module M(n; 0) (de�ned in Theorem
4.2), subject to the single A-algebra relation

Sq2nSq2n−1
t2n = t2nSq

2n−1
t2n :

We proved in [9] that this precisely characterizes the Dickson algebra Wn+1 .

The proof is in Section 5.

Let us speculate on how Figure 1 might �t in with something topologically
realizable. It is known that Wn+1 is realizable precisely for n � 3 [6], and that
B�(n) � H�BO h�(n)i is an isomorphism also precisely in this range [3]. Thus
for n � 3 it is reasonable to expect that Figure 1 be realizable. For general n it
is perhaps reasonable to hope for the existence of a space Xn and a homotopy
commutative square (Figure 2) whose cohomology is compatible with Figure
1 in the sense of combining to produce the commutative diagram of Figure 3.
Additionally we would like Xn to have the property that the outer square in
Figure 3 is also a pushout of unstable A-algebras. In other words, Xn does its
best to realize a Dickson algebra, even when this is no longer possible.

5 Proofs

Proof of Theorem 2.3 Let Fm be the free unstable A-module (equivalently
K module) on a generator tm in degree m. We shall show that the A-module
map f : �m�0 Fm ! H�BO determined by f(tm) = wm is injective.

Algebraic & Geometric Topology, Volume 3 (2003)
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Xn ! BO(2n+1 − 1)

# #

BO h�(n)i ! BO

Figure 2

H�Xn  Wn+1  H�BO(2n+1 − 1)

" " "

H�BO h�(n)i � B�(n)  H�BO

Figure 3

From [10], basis elements for the domain of f consist of DJ tm where J =
(j1; : : : ; js) and 0 � j1 � � � � � js < m. (Appendix II recalls the features of the
elements DJ in the Kudo-Araki-May algebra K essential to what follows.)

On the other side of f , basis monomials of the range H�BO can be written as
� � �wn2wn1 with nondecreasing indices, i.e., labeled by �nitely nonzero tuples
(: : : ; n2; n1) with 0 � � � � � n2 � n1 . We order the latter reverse lexicographi-
cally.

Now for each basis element DJ tm , we consider its image f (DJ tm) = DJwm ,
and we claim that this element of H�BO has a \leading" monomial term, i.e.,
that

DJwm = w2s−1

m−jsw
2s−2

m−js−1
� � �w2

m−j2wm−j1wm| {z }
z

+ higher order terms.

This will complete the proof, since distinct DJwm clearly produce distinct
leading monomials, with remaining terms always of higher order; so the DJwm
are all linearly independent, and thus f is injective.

We will use the following notation: As a subscript, \> k" (resp. \< k") denotes
any index greater (resp. less) than k , each occurrence of an unsubscripted w
denotes any element of H�BO , and expressions involving any of these mean
any sum of expressions of such form.

We prove our claim by induction on s, based on the Wu formula

Djwm = Sqm−jwm = wm−jwm + higher order terms of form ww>m.

Algebraic & Geometric Topology, Volume 3 (2003)
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Clearly the claim holds for lengths 0 and 1. For the inductive step, consider
D
Ĵ

of length s + 1, and note that application of any nontrivially-acting DJ

always increases the order of a monomial in H�BO . Now calculate, using the
K-Cartan formula [10] as needed, and recalling that the leading term z was
de�ned above:

D
Ĵ
wm

= Dj1Dj2 � � �Djs+1wm = Dj1

(
Dj2 � � �Djs+1wm

�
= Dj1

0B@w2s−1

m−js+1
� � �wm−j2| {z }
x

wm + higher order terms than xwm

1CA
= x2wm−j1wm + x2ww>m + wD<j1wm

+Dj1

0@ww>m + higher order terms than x| {z }
v

wm

1A
= z + ww>(m−j1)wm + higher order terms than z

+
(
ww>m + v2wm−j1wm + ww>(m−j1)wm

�
= z + higher order terms than z,

since the terms of v2 have higher order than x2 .

Proof of Theorem 3.5 There is a map of A-algebras U ! S obtained by
taking t2k to w2k ; and from Lemma 3.2 and De�nition 3.3 this map takes each
tm to wm: Since the relations (3.4) that de�ne G map to those also satis�ed
in S (3.2), there is an induced A-algebra epimorphism G ! S . We shall show
that this map is monic by showing that the induced map on the indecomposable
quotients is monic, essentially a counting argument.

To start with, note that the indecomposables are

QU =
D
SqIt2k : k � 0; I admissible, of excess < 2k

E
:

Then QG is QU modulo the A-relations (degenerate versions of �(k; i) = 0)

Sq2it2k = Sq2k−1
Sq2it2k−1 ; i � k − 2:

There is an A-module �ltration

FpQU =
D
SqIt2k : 0 � k � p, I admissible, of excess < 2k

E
;
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which induces an A-module �ltration FpQG . Then

FpQG=Fp−1QG =〈
SqIt2p : I admissible, of excess < 2p

�
=A
n
Sq2it2p : i � p− 2

o
:

This is the suspension of the module M(p; 1) analyzed in [9, Theorem 2.11]1,
and the basis described there suspends to

fDIt2p : I = (2a1 ; : : : ; 2al); where 0 � a1 � � � � � al < pg :
(As in the proof of Theorem 2.3, we refer the reader to Appendix II for essentials
concerning the elements DI in the Kudo-Araki-May algebra K .)

We shall �nish the proof of isomorphism by showing that the above basis el-
ements for �p�0FpQG=Fp−1QG are in distinct degrees; in fact we claim there
is exactly one in each positive degree (The appendix discusses the modules
M(p; 1) in relation to the literature, and points out an alternative path for
substantiating our claim.). Let m be a positive integer. Then m may be
written uniquely in the form

m = 2r −
sX
j=1

2bj ;

where s � 0 and 0 � b1 < � � � < bs < r−1. The reader may check by induction
on s that the unique basis element in degree m is DI t2p ; where p = r− s and
I = (2a1 ; : : : ; 2as); with aj = bj − j + 1. With both QG and QS having rank
one in each degree, QG ! QS is an isomorphism. Then since S is a free
commutative algebra, the epimorphism G ! S must be an isomorphism also.

That the relations are minimal (nonredundant) is clear from the fact that in
FpQU=Fp−1QU , which is the suspension of the free unstable module on a class
in degree 2p − 1, the induced relations are simply Sq2it2p = 0, for i � p − 2,
and these are all nonredundant.

Proof of Theorem 4.2 We have already mentioned that according to [3],
B�(n) is isomorphic to the quotient of S by the A-ideal generated by fw2k : k �
n− 1g: Hence the images under the projection S !B�(n) of all wm; 1 � m �
2n − 1; are certainly zero from Lemma 3.2. From [3] we also have that B�(n)
is a polynomial algebra generated by certain remaining wm (see below). We
denote the images of the wm in B�(n) by the same symbols wm:

1M(p; 1) is de�ned in [9] as the quotient of the free unstable A-module on a class
in degree 2p − 1 modulo the action of Sq2i for i � p − 2; in other words, in usual
notation, M(p; 1) = F (2p − 1) =AAp−2:
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Let Hn denote the quotient of the free unstable A-algebra on Kn by the left A-
ideal generated by the elements � (k; i), for k � n+1, subject to the requirement
that all appearances of tm; 0 < m < 2n , are replaced by zero, as in the
statement of the theorem.

We begin by de�ning a map from Kn to B�(n) by, as in the preceding proof,
assigning t2k to w2k for k � n: Since the de�ning relations for Kn are clearly
satis�ed in B�(n) (from equation (3.2)), this assignment extends to the desired
map. And since the de�ning relations for the algebra Hn are also clearly sat-
is�ed in B�(n), this extends to an A-algebra map Hn ! B�(n): This map is
epimorphic (since B�(n) is generated by certain wm with i � 2n ), so as in the
preceding proof, we need only show the the induced map on indecomposables
is monomorphic.

According to [3]2, the polynomial generators of B�(n) are the wm for which
�(m− 1); the number of ones in the binary representation of m− 1; is at least
n. We �lter QHn as in the proof of the previous theorem,

FpQHn=
〈
SqIt2k 2 QHn : k � p

�
;

and as in the previous proof the �ltered quotient FpQHn=Fp−1QHn is the sus-
pension of the moduleM(p; 1) for p � n, and 0 for p < n. It is straightforward
to check that the alpha numbers of one less than the degrees of the elements

fDIt2p : I = (2a1 ; : : : ; 2al); where 0 � a1 � � � � � al < pg
are exactly p � n, so these are all in degrees where B�(n) has generators.
Since we showed in the previous proof that these elements are also in distinct
degrees, this similarly completes the proof. Minimality follows as in the previous
proof.

Proof of Theorem 4.3 It is clear that the presentation of S collapses in the
manner stated. Minimality follows for most of the relations as in the previous
proofs. We comment only that to con�rm that the collapsed top relations

0 = � (n+ 1; i) � Sq2nSq2it2n + decomposables for i � n− 1

are also all nonredundant, one can observe that there is a natural map of
the new presentation without these �nal relations to the presentation for S ,
and compute that on indecomposables, each Sq2nSq2it2n maps to w2n+1+2i .
Now from the Wu formulas, QH�BO is �ltered over A by FpQH

�BO =
fwm : �(m− 1) � pg, and w2n+1+2i is in �ltration exactly i + 1. Thus

2Kochman describes degrees of generators in terms of �(m) + �(m) (� is the 2-
divisibility), but we equivalently use �(m− 1) = �(m) + �(m)− 1.
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fw2n+1+2i : i � n− 1g must be a minimal generating set for the A-submodule it
generates in QH�BO . The same then must be true of f� (n+ 1; i) : i � n− 1g
in the indecomposables of the new presentation without these �nal relations;
so they too are minimal.

Proof of Theorem 4.4 In [9] we proved that the (n+ 1)-st Dickson algebra
Wn+1 is isomorphic to the quotient of the free unstable A-algebra on the module
M(n; 0) on generator x2n by the single A-algebra relation

Sq2nSq2n−1
x2n = x2nSq

2n−1
x2n ;

and that M(n; 0) injects into Wn+1 ([9], proof of Theorem 2.11). In other
words, this is a minimal presentation in our sense.

Now let us turn to the quotient of the symmetric algebra that combines the
relations from the previous two theorems, i.e., the quotient by the left A-ideal
generated by ft2k ; k 6= ng. Let us denote this quotient by Jn: In Jn; the
relations � (k; i) are all trivial except when k is n+ 1 or n: When k = n; they
reduce to Sq2it2n = 0, i � n − 2; the de�ning relations for M(n; 0): When
k = n+ 1, we have the relations

0 = � (n+ 1; i) � Sq2nSq2it2n + Sq2it2n+1+

Sq2n (t2nt2i) +
2n−i−2X
l=0

t2n−2ilt2n+2i+2il

for i � n− 1: These reduce to

Sq2nSq2it2n = t2nt2n+2i :

Now since
t2nt2n+2i = t2n

�
Sq2it2n + t2it2n

�
= t2nSq

2it2n ;

the relations can be rewritten as

Sq2nSq2it2n = t2nSq
2it2n :

Since Sq2it2n = 0 for i < n− 1, these are trivial for i < n− 1, and yield

Sq2nSq2n−1
t2n = t2nSq

2n−1
t2n

for i = n− 1. This precisely matches the single relation (stated above) charac-
terizing the Dickson algebra, so we obtain an isomorphism of A-algebras from
Jn to Wn+1 by taking t2n 2 Jn to the generator x2n 2Wn+1:
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6 Appendix I: The unstable modules F(2p−1) =AAp−2

and a minimal A-presentation for H�(RP1)

For each p � 0 , the module M(p; 1) is de�ned in [9] as the quotient of the
free unstable A-module on a class x2p−1 in degree 2p− 1 modulo the action of
Sq2i for i � p− 2; in other words, in usual notation,

M(p; 1) = F (2p − 1) =AAp−2:

These modules are tractable, important, and interesting, and we shall show they
are the �ltered quotients of a simple minimal A-presentation for H�RP1 .

In the proof of our primary Theorem 3.5 above, we appealed to our development
in [9, Theorem 2.11] of bases for these modules. The proof used the bases to
\count" that the direct sum of the modules (we were actually dealing with their
suspensions in that theorem) has rank exactly one in each nonnegative degree.
In fact we know the rank separately for each module:

Theorem 6.1 (Rank of M(p; 1)) The module M(p; 1) has precisely a single
nonzero element in each degree with alpha number p, i.e., with p ones in its
binary expansion, and nothing else.

Proof The basis for M(p; 1) provided in [9, Theorem 2.11] is

fDIx2p−1 : the multi-index I consists of nonnegative,

nondecreasing entries of form 2k − 1, k < pg:

The reader may check that the degrees of these elements are precisely those
with alpha number p (see Appendix II for a recollection of essentials regarding
the elements DI in the Kudo-Araki-May algebra K).

This suggests a connection to the cohomology of RP1 . Recall that

H�RP1 �= F2[y] with Sqjyl =
�
l

j

�
yl+j; (6.1)

from which one sees that H�RP1 is A-�ltered by the number of ones in the
binary expansion of degrees. Indeed it is now not hard to prove

Theorem 6.2 (M(p; 1) and H�RP1) The A-moduleM(p; 1) is isomorphic
to the p-th �ltered quotient of H�RP1 .
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Proof The module M(p; 1) clearly maps nontrivially to the p-th �ltered quo-
tient of H�RP1 , since the quotient begins with y2p−1 , and Sq2iy2p−1 lies in
lower �ltration for i � p − 2. The map is onto because one sees from (6.1)
that the p-th �ltered quotient of H�RP1 is generated over A from degree
2p − 1. Now the previous theorem shows that the ranks agree, so the two are
isomorphic.

Remark 6.3 This result also follows from [2], where it essentially appears in
a stabilized form. Indeed, in [2] the A-modules

�2p−1A=A
n
Sq2j : j 6= p− 1

o
are studied with stable purposes in mind. Each of these modules obviously maps
onto the corresponding M(p; 1), and thus the two would clearly be isomorphic
if it were known that the domain module is unstable, which does not seem
obvious. In fact, though, it is proven in [2] that these modules are isomorphic
to the same �ltered quotients of H�RP1 . Thus they are indeed unstable and
isomorphic to the modules M(p; 1). The theorem follows.

Remark 6.4 The modules M(p; 1) are also used in [5], where Remark 2.6
claims that in an unpublished manuscript [7], William Massey calculated that
M(p; 1) is A-isomorphic to the p-th �ltered quotient of H�RP1 , i.e., the
theorem above. However, this does not actually seem to appear explicitly in
[7]. Finally, we note that the �ltered quotients of H�RP1 arise again in [1,
after Prop. 3.1] in a fashion closely related both to [5] and [7].

We are now equipped to show

Theorem 6.5 (Minimal A-presentation of H� (RP1)) There is a minimal
unstable A-module presentation of H� (RP1;F2), as the quotient of the free
unstable module on abstract classes s2k−1 in degrees 2k − 1 by the relations

Sq2is2k−1 = Sq2k−1
Sq2is2k−1−1; i � k − 2:

Proof There is an A-module map from the abstract quotient to H�RP1 ,
carrying each A-generator nontrivially, since the given relations are easily cal-
culated also to hold amongst the nonzero classes in H�RP1 . Moreover this is
epic, since H�RP1 is generated over A from degrees one less than a two-power.
To see that the two are isomorphic, we need merely show that these relations
are enough, i.e., that the abstract quotient has only rank one in each degree.
This we do by considering the A-�ltration of the abstract quotient in which
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the p-th �ltration is the A-submodule generated by fs1; : : : ; s2p−1g. The p-th
�ltered quotient is clearly M(p; 1). That the union of these has rank one in
each nonnegative degree follows from either of the two previous theorems.

Minimality of the presentation is clear. The nonzero classes in H�RP1 in
degrees one less than a power of two cannot be reached from below, so the
generating set is minimal, and unique. The nonredundancy of all the relations
is clear from the �ltered quotients and the fact that two-power squares are
minimal generators of A.

An alternative proof would be to obtain this presentation simply by collapsing
the relations (3.4) in the A-algebra presentation of H�BO in Theorem 3.5 to
the indecomposable quotient, since �H�RP1 �= QH�BO as A-modules (Wu
formulas).

7 Appendix II: The Kudo-Araki-May algebra K

We recall here just the bare essentials about K needed to understand the proofs
in this paper. We refer the reader to [10] for much more extensive information
about K .

The mod two Kudo-Araki-May algebra K is the F2 -bialgebra (with identity)
generated by elements fDi : i � 0g subject to homogeneous (Adem) relations
[10, Def. 2.1], with coproduct � determined by the formula

�(Di) =
iX
t=0

Dt ⊗Di−t:

It is bigraded by length and topological degrees (jDij = i), which behave skew-
additively under multiplication [10, Def. 2.1].

The F2 -cohomology of any space is an unstable algebra over the Steenrod alge-
bra, and there is a correspondence between unstable A-algebras and unstable
K-algebras, completely determined by iterating the conversion formulae: On
any element xl of degree l , and for all j � 0, one has

Djxl = Sql−jxl, equivalently, Sqjxl = Dl−jxl:

Since the degree of the element is involved in the conversion, and this changes as
operations are composed, the algebra structures of A and K are very di�erent,
and the skew additivity of the bigrading in K reflects this.
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The requirements for an unstable K-algebra, corresponding to the nature and
requirements of an unstable A-algebra, are: On any element xl of degree l ,

Dlxl = xl, Djxl = 0 for j > l, and D0xl = x2
l :

Finally, and used in our proofs, the K-algebra structure obeys the (Cartan)
formula according to the coproduct � in K :

Di(xy) =
iX
t=0

Dt(x)Di−t(y):
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