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Real versus complex K-theory using Kasparov’s
bivariant KK-theory

Thomas Schick

Abstract In this paper, we use the KK-theory of Kasparov to prove ex-
actness of sequences relating the K-theory of a real C∗ -algebra and of its
complexification (generalizing results of Boersema).

We use this to relate the real version of the Baum-Connes conjecture for
a discrete group to its complex counterpart. In particular, the complex
Baum-Connes assembly map is an isomorphism if and only if the real one
is, thus reproving a result of Baum and Karoubi. After inverting 2, the
same is true for the injectivity or surjectivity part alone.
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1 Motivation

In the majority of available sources about the subject, complex C∗ -algebras
and Banach algebras and their K-theory is studied. However, for geometrical
reasons, the real versions also play a prominent role.

Before describing the results of this paper, we want to give the geometric mo-
tivation why both variants are necessary.

(1) Real K-Theory (meaning K-theory of real C∗ -algebra) is more powerful
since it contains additional information. Most notably this can be seen
at Hitchin’s Z/2-obstructions to positive scalar curvature in dimensions
8k+ 1 and 8k+ 2 [8]. They take values in KOj(R) for j = 1, 2. Related
to this is the fact that there are 8 different groups, and not just 2, since
real K-theory does not have the 2-periodicity of complex K-theory, but
is 8-periodic.
In particular, we mention the following result of Stephan Stolz: if the
real Baum-Connes map µR,red : RKOΓ

∗ (EΓ)→ KO∗(C∗R,redΓ) is injective,
then the stable Gromov-Lawson-Rosenberg conjecture is true for Γ. This
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means that a spin manifold with fundamental group Γ stably admits
a metric with positive scalar curvature if and only if the Mishchenko-
Fomenko index of its Dirac operator vanishes.

(2) Unfortunately, a real structure of some kind is needed to define indices
in real K-theory. In particular, there is no good way to define a (higher)
real index of the signature operator in dimension 4k + 2.

This explains why for the Dirac operator, and therefore for the study of metrics
of positive scalar curvature on spin manifolds, one traditionally uses real K-
theory, whereas complex K-theory is used for the signature operator and the
study of higher signatures.

This issue came up in the paper [14] of Paolo Piazza and the author, where we
studied both the signature operator and the spin Dirac operator.

2 Real versus complex K-theory

In this paper, we give a theoretical comparison of real and complex K-theory.
The results of this short note are essentially “folklore” knowledge. Early results
date back to [1]. However, there only the special case of commutative C∗ -
algebras (in other words, spaces) is considered.

General results about the relation between real and complex K-theory are
proved by Max Karoubi in [9], using some modern homotopy theory. The
results of [9] are applied in [13] by Paul Baum and Max Karoubi to prove
that, for discrete groups, the complex Baum-Connes conjecture implies the real
Baum-Connes conjecture. Their proof is based, apart from [9], on the interpre-
tation of the Baum-Connes map as a connecting homomorphism as explained
by Roe in [15]. Our results are related to and in part equal to their results. We
use, however, a different method entirely embedded in (real) bivariant K-theory
(i.e. KK-theory), as developed by Kasparov (compare e.g. [11] and [10]).

In the non-equivariant setting, the exact sequences stated below relating real
and complex KK-theory are established (with similar methods) by Boersema
in [3] and [5]. His united KK-theory can be extended to the equivariant setting
and then the framework of the so called acyclic CRT-modules and there prop-
erties as introduced by Bousfield [6] could be used to give another proof of the
equivalence of the real and complex Baum-Connes conjecture.

To keep the paper self contained, we reprove a number of results which (modulo
extension to the equivariant case) can be found in [4, 3].

We prove the following theorems.
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2.1 Theorem Let A be a separable real σ -unital C∗ -algebra and AC :=
A⊗ C. Then there is a long exact sequence in K-theory of C∗ -algebras

· · · → KOq−1(A)
χ−→ KOq(A) c−→ Kq(AC) δ−→ KOq−2(A)→ · · · (2.2)

Here, c is complexification, χ is multiplication by the generator η ∈ KO1(R) ∼=
Z/2 (in particular χ3 = 0), and δ is the composition of the inverse of multipli-
cation with the Bott element in K2(C) with “forgetting the complex structure”.

2.3 Remark Real and complex C∗ -algebras and their K-theory are connected
by “complexification” and “forgetting the complex structure”. We use these
terms throughout, precise definitions are given in Definitions 3.7 and 3.8.

2.4 Corollary In the situation of Theorem 2.1, if we invert 2, in particular if
we tensor with Q, the sequence splits into short split exact sequences

0→ KOq(A)⊗ Z[
1
2

] c−→ Kq(AC)⊗ Z[
1
2

] δ−→ KOq−2(A)⊗ Z[
1
2

]→ 0. (2.5)

Proof We obtain short exact sequences because 2η = 0, i.e. the image of χ
(and therefore the kernel of c) in (2.2) consists of 2-torsion.

The sequence is split exact, with split being given by “forgetting the com-
plex structure” K∗(AC) → KO∗(A), since the composition of “complexifica-
tion” with “forgetting the complex structure” induces multiplication with 2 in
KO∗(A), i.e. an automorphism after inverting 2. For more details, compare
Definition 3.7, Definition 3.8 and Lemma 3.9.

2.6 Theorem Assume that Γ is a discrete group and X is a proper Γ-space.
Let B be a separable real σ -unital Γ-C∗ -algebra. Then we have a long ex-
act sequence in equivariant representable K-homology with coefficients in B
(defined e.g. via Kasparov’s KK-theory)

· · · → RKOΓ
q−1(X;B)

χ−→ RKOΓ
q (X;B) c−→ RKΓ

q (X;BC) δ−→ RKOΓ
q−2(X;B) · · ·

(2.7)
Here, c is again complexification, and χ is given by multiplication with the
generator in KO1(pt) = Z/2, i.e. χ3 = 0. δ is the composition of (the inverse
of) the complex Bott periodicity isomorphism with “forgetting the complex
structure”.

2.8 Corollary In the situation of Theorem 2.6, after inverting 2, in particular
after tensor product with Q, we obtain split short exact sequences

0→ KOΓ
q (X;B) ⊗ Z[

1
2

] c−→ KΓ
q (X;BC)⊗ Z[

1
2

] δ−→ KOΓ
q−2(X;B) ⊗ Z[

1
2

]→ 0.

(2.9)
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Proof Compare the proof of Corollary 2.4.

2.10 Theorem Let Γ be a discrete group. Consider the special case of The-
orem 2.1 where A = C∗R,red(Γ;B) is the crossed product of B by Γ, and the
special case of Theorem 2.6 where X = EΓ, the universal space for proper
Γ-actions. We have (Baum-Connes) index maps

µred : RKΓ
p (EΓ;BC)→ Kp(C∗red(Γ;BC)); (2.11)

µR,red : RKOΓ
p (EΓ;B)→ Kp(C∗R,red(Γ;B)). (2.12)

Using the canonical identification C∗R,red(Γ;B)C = C∗red(Γ;BC), the index maps
(2.11) commute with the maps in the long exact sequences (2.2) and (2.9).

2.13 Corollary The real Baum-Connes conjecture is true if and only if the
complex Baum-Connes conjecture is true, i.e. µred of (2.11) is an isomorphism
if and only if µR,red is an isomorphism.

After inverting 2, in particular after tensoring with 2, injectivity and surjec-
tivity are separately equivalent in the real and complex case, i.e. in

µred ⊗ idZ[ 1
2

] : RK
Γ
p (EΓ;BC)⊗ Z[

1
2

]→ Kp(C∗red(Γ;BC))⊗ Z[
1
2

];

µR,red ⊗ Z[
1
2

] : RKOΓ
p (EΓ;B)⊗ Z[

1
2

]→ Kp(C∗R,red(Γ;B))⊗ Z[
1
2

],

one of the maps is injective for all p if and only if the other maps is injective
for all p, and is surjective for all p if and only if the other map is surjective for
all p.

Proof Using the long exact sequences (2.2) and (2.7) and the 5-lemma, if
µR,red is an isomorphism then also µred is an isomorphism. For the converse,
we use the algebraic Lemma 3.1 and the fact that χ3 = 0.

After inverting 2, the long exact sequences split into short exact sequences,
and consequently we can deal with injectivity and surjectivity separately, using
e.g. the general form of the 5-lemma [7, Proposition 1.1].

2.14 Theorem Corresponding results to the ones stated above hold if we
replace the reduced C∗ -algebras with the maximal ones (and the reduced index
map with the maximal assembly map).

Corresponding results also hold if we replace the classifying space for proper
actions EΓ with the classifying space for free actions EΓ. If BΓ := EΓ/Γ
is a finite CW-complex, and B = R, then RKOp(BΓ, B) = KOp(BΓ) is the
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real K-homology of the space BΓ. We get the new index map as composition
of the index map of Theorem 2.10 with a canonical map RKOΓ

p (EΓ;B) →
RKOΓ

p (EΓ;B).

2.15 Remark Of course, in Theorem 2.14, the assembly map will in many
cases not be an isomorphism —whereas no example is known such that the
assembly map of Theorem 2.10 is not an isomorphism. In Theorem 2.14 we
only claim that it is an isomorphism for the real version if and only if is an
isomorphism for the complex version.

The long exact sequences of Theorem 2.1 and Theorem 2.6 are special cases of
the following bivariant theorem.

2.16 Theorem Let Γ be a discrete group and A, B separable real σ -unital
Γ-C∗ -algebras. Then there is a long exact sequence

· · ·→KKOΓ
q−1(A;B)

χ−→ KKOΓ
q (A;B) c−→ KKΓ

q (AC;BC) δ−→ KKOΓ
q−2(A;B) · · ·

(2.17)
Here, χ is given by Kasparov product with the generator of KKOΓ

1 (R,R) =
Z/2, c is given by complexification as defined in Definition 3.7, and δ is the
composition of the inverse of the complex Bott periodicity isomorphism with
“forgetting the complex structure” as defined in Definition 3.8.

In particular, 2η = 0, 2χ = 0, and χ3 = 0.

3 Proofs of the theorems

Note first that Theorem 2.1 and Theorem 2.6 indeed are special cases of Theo-
rem 2.16. For Theorem 2.1 we simply have to take Γ = {1}, A = R (and then
B of Theorem 2.16 is A of Theorem 2.1). For Theorem 2.6 let first Y be a
Γ-compact Γ-invariant subspace of X , and set A = C0(Y ). By definition,

RKOΓ
p (X;B) = dirlimKKOΓ

p (C0(Y ), B),

where the (direct) limit is taken over all Γ-compact subspaces of X . The
corresponding sequence for each Y is exact. Since the direct limit functor is
exact, the same is true for the sequence (2.7).

We therefore only have to prove Theorem 2.16, Theorem 2.10 and Lemma 3.1
(which was used in the proof of Corollary 2.13).
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An algebraic lemma

3.1 Lemma Assume that one has a commutative diagram of abelian groups
with exact rows which are 3-periodic:

· · · −−−−→ A
χ−−−−→ A

c−−−−→ B
δ−−−−→ A −−−−→ · · ·yµA yµA yµB yµA

· · · −−−−→ U
χU−−−−→ U

cU−−−−→ V
δV−−−−→ U −−−−→ · · ·

(3.2)

Let χ and χU be endomorphisms of finite order. Then µB is an isomorphism
if and only if the same is true for µA .

Proof If µA is an isomorphism so is µB by the 5-lemma.

Perhaps the most elegant way to prove the converse is to observe that the rows
from exact couples in the sense of [12, Section 2.2.3]. Consequently, we get
derived commutative diagrams of abelian groups with exact rows which are
3-periodic:

· · · −−−−→ χn(A)
χ|−−−−→ χn(A) cn−−−−→ Bn

δn−−−−→ χn(A) −−−−→ · · ·yµA| yµA| y(µB)n

yµA|
· · · −−−−→ χnU (U)

χU |−−−−→ χnU (U)
(cU )n−−−−→ Vn

(δV )n−−−−→ χnU(U) −−−−→ · · ·

(3.3)

Here, χn(A) is the image of A under the n-fold iterated map χ. One defines
inductively Bn := ker(cn−1 ◦ δn−1)/ im(cn−1 ◦ δn−1); this is a certain homology
of Bn−1 , cn is the composition of cn−1|χn(A) with the projection map, and δn
and (µB)n are the maps induced by δn−1 and (µB)n−1 , respectively, which one
proves are well defined on homology classes.

In particular, (µB)n is an isomorphism if µB is (an isomorphism of chain com-
plexes induces an isomorphism on homology).

We prove now by reverse induction that µA| : χn(A) → χnU (V ) is an isomor-
phism for each n. Since χ and χU have finite order, there images are eventually
zero, so the assertion is true for n large enough.

Under the assumption that µA|χn(A) is an isomorphism, we have to prove the
same for µA| : χn−1(A) → χn−1

U (U). For this, consider the commutative dia-
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gram with exact rows

χn−1(A)/χn(A)
cn−1−−−−→ Bn−1

δn−1−−−−→ χn−1(A)
χ−−−−→ χn(A) −−−−→ 0yµA| y(µB)n−1

yµA|χn−1(A)

yµA|χn(A)

y
χn−1
U (U)/χnU (U)

cUn−1−−−−→ Vn−1
(δV )n−1−−−−−→ χn−1

U (U)
χU−−−−→ χnU (U) −−−−→ 0

(3.4)
obtained by cutting the long exact sequence (3.3). We have just argued that
(µB)n−1 is an isomorphism since µB is one by assumption, and by the induction
assumption µA|χn(A) is an isomorphism. By the 5-lemma [7, Proposition 1.1]
µA|χn−1(A) therefore is onto. This implies that the leftmost vertical map in
(3.4) also is onto. Now we can use the 5-lemma [7, Proposition 1.1] again to
conclude that µA|χn−1(A) also is injective.

Induction concludes the proof.

3.5 Remark The proof of “injectivity implies injectivity” in Corollary 2.10
follows from the fact that, after inverting 2,

Kp(BC)⊗ Z[
1
2

] ∼= (KOp(B)⊕KOp−2(B))⊗ Z[
1
2

]

for any real C∗ -algebra B in a natural way, with a similar assertion for the left
hand side of the Baum-Connes assembly map.

In particular, injectivity or surjectivity, respectively, in degree p for the complex
Baum-Connes map is (after inverting 2) equivalent to injectivity or surjectivity,
respectively, in the two degrees p and p− 2 for the real Baum-Connes map.

We should note that not only the proof of this assertion in Theorem 2.10 does
not work if 2 is not inverted. Worse: the underlying algebraic statement is
actually false. The easiest example is given by the short exact sequence for
K -theory of a point. If we tensor this with Z[1/2], it remains exact. The
natural map M → M ⊗ Z[1/2] connects the original exact sequence with the
new exact sequence. For complex K -theory, the relevant maps are the inclusion
Z ↪→ Z[1/2] and 0 → 0. In particular, this is injective in all degrees. For real
K-theory, we also get (in degrees 1 and 2 mod 8) the map Z/2 → 0, i.e. the
map here is not injective in all degrees.

Exterior product with “small” KK-elements

3.6 Definition In the sequel, we will frequently encounter homomorphisms
f : KKOΓ

pΓ(A,B ⊗M1)→ KKOΓ
p+l(A,B ⊗M2), where M1 , M2 are “elemen-

tary” C∗ -algebras (with trivial Γ-action), e.g. Mi ∈ {R,C,M2(R), · · · }. In

Algebraic & Geometric Topology, Volume 4 (2004)



340 Thomas Schick

most cases, f will be induced by exterior Kasparov product with an element
[f ] ∈ KKl(M1,M2).

Such a homomorphism will be called small, or given by Kasparov product with
a small element. It is clear that the composition of small homomorphisms is
again a small homomorphism.

Complexification and forgetting the real structure

3.7 Definition Let A be a real Γ-C∗ -algebra with complexification AC :=
A ⊗ C. Note that AC can also be viewed as a real Γ-C∗ -algebra, with a
canonical natural inclusion A ↪→ AC . This map, and the maps it induces on
K-theory are called “complexification” and denoted by c.

For A and B separable real Γ-C∗ -algebras, A unital, the map induced by
c : A ↪→ AC can be composed with the isomorphism of Proposition 3.10, to get

cC : KKOΓ
n(B,A)

[c]−→ KKOΓ
n(B,AC) ∼= KKΓ

n (BC, AC).

This is what we call the complexification homomorphism in KK-theory, it in-
duces corresponding maps in K-theory and K-homology. Note that c is a small
homomorphism, induced from [c : R→ C] ∈ KKO0(R,C).

3.8 Definition Let A be a real separable Γ-C∗ -algebra, AC its complexifi-
cation. We have a canonical natural inclusion AC ↪→ M2(A), using the usual
inclusion i : C → M2(R). If A is σ -unital and B is another separable Γ-
C∗ -algebra, using Morita equivalence, we get the induced homomorphisms in
K-theory

fC : KKΓ
n (BC, AC) ∼= KKOΓ

n(B,AC)
f−→ KKOΓ

n(B,M2(A))
∼=−→
M

KKOΓ
n(B,A),

called “forgetting the complex structure”. Note that f is a small homomor-
phism, induced by [i : C ↪→ M2(R)] ∈ KKO0(C,M2(R)). Also M is a small
homomorphism, as explained in the proof of Lemma 3.9. We define fR :=
[i] • [MR] ∈ KKO0(C,R) to be the corresponding composition of small KKO-
elements.

3.9 Lemma In the situation of Definitions 3.7 and 3.8, the composition of first
complexification and then forgetting the complex structure is multiplication
by 2.
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Proof By definition, this composition is the small homomorphism given by ex-
terior Kasparov product with [i : R ↪→ M2(R)] (i the diagonal inclusion) com-
posed with the small Morita equivalence homomorphism [MR] ∈ KKO0(M2(R),
R). It is known that [i] • [MR] = 2 ∈ KKO0(R,R), which by associativity im-
plies the claim. For a short KK-theoretic proof, observe that [MR] = [R2⊕0, 0] ∈
KKO0(M2(R,R), with the obvious left M2(R) and right R-module structure
on R2 , and with operator 0. On the other hand, [i] = (M2(R) ⊕ 0, 0). Since
both operators in our representatives are 0 we get (compare e.g. [2])

[i] • [MR] = [R2 ⊕ 0, 0] = 2[R ⊕ 0, 0] ∈ KKΓ
0 (R,R).

Since [R⊕ 0, 0] = 1 ∈ KKΓ
0 (R,R), the claim follows.

Lemma 3.9 implies that, after inverting 2, the long exact sequences of Section
2 give rise to the split short exact sequences we claim to get.

To relate the K-theory of a complex C∗ -algebra with the K-theory of the same
C∗ -algebra, considered as a real C∗ -algebra, we already used the following
results.

3.10 Proposition Let Γ be a discrete group. If A is a σ -unital complex
Γ-C∗ -algebra (which can also be considered as a real C∗ -algebra) and B is
a separable real Γ-C∗ -algebra, then the inclusion B ↪→ BC induces a natural
isomorphisms

b : KKΓ
n (BC, A)

∼=−→ KKOΓ
n(B,A) (3.11)

Proof The isomorphism of (3.11) is given by the fact that there is a one to one
correspondence already on the level of Kasparov triples: since A is σ -unital,
every Hilbert AC -module E is a complex vector space, and therefore the same
is true for the set of bounded operators on E . Therefore, the real linear maps
B → B(E) are in one-to-one correspondence with the complex linear maps
BC → B(E). All the other conditions on equivariant Kasparov triples, and
the equivalence relations are preserved by this correspondence. All this follows
directly by inspecting Definitions 2.1 to 2.3 in [11].

Proof of Theorem 2.16

Special cases of Theorem 2.16 are well known, compare e.g. [1, (3.4)]. We are
going to use these known results below.

Following the notation of [1, Section 2] and [9, Section 7], let R1,0 be the real
line with the involution x 7→ −x, and D1,0 , S1,0 the unit disc and sphere,
respectively, with the induced involution.
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Given any real C∗ -algebra A and a locally compact space X with involution
x 7→ x, following [9, Section 6] we define

A(X) := {f : X → A⊗ C | f(x) = f(x); f(x) x→∞−−−→ 0}.
This is again a real C∗ -algebra.

We have the short exact sequence

0→ R(R1,0)→ R(D1,0)→ R(S1,0)→ 0, (3.12)

where we identify R1,0 with the open unit interval in D1,0 . This short exact
sequence admits a completely positive cross section, using a cutoff function
ρ : D1 → [0, 1] with value 1 at the boundary and 0 at the origin to extend
functions on S1,0 to the disc.

For an arbitrary real Γ-C∗ -algebra A, tensoring (3.12) with A, we get a short
exact sequence (using the canonical isomorphism A⊗R R(X) ∼= A(X))

0→ A(R1,0)→ A(D1,0)→ A(S1,0)→ 0, (3.13)

which again admits a completely positive cross section induced from the com-
pletely positive cross section of (3.12).

Moreover, evaluation at 1 gives a natural and canonical C∗ -algebra isomor-
phism

φ : A(S1,0)
∼=−→ AC.

We also note that the evaluation map

A(D1,0)→ A; f 7→ f(0)

is a homotopy equivalence in the sense of KK-theory. The homotopy inverse
maps x ∈ A to the constant map with value x. In particular, we have natural
isomorphisms

ψ : KKOΓ
∗ (B,A) ∼= KKOΓ

∗ (B,A(D1,0)),

where the maps in both directions are small homomorphisms in the sense of
Definition 3.6.

Concerning A(R1,0), by [10, Paragraph 5, Theorem 7]

α : KKOΓ
n(B,A(R1,0))

∼=−→ KKOΓ
n−1(B,A),

where the map α and its inverse are given by exterior Kasparov product with
small elements.

(We remark that the corresponding, but slightly different statements in [16,
2.5.1] are partly wrong, since Schröder is disregarding the gradings.)

Algebraic & Geometric Topology, Volume 4 (2004)



Real versus complex K-theory 343

Therefore, the short exact sequence (3.12) induces via the short exact sequence
(3.13) for separable real σ -unital Γ-C∗ -algebras A and B a long exact sequence
in equivariant bivariant real K-theory, and we get the following commutative
diagram: y y y
KKOΓ

n+1(B,A(S1,0))
∼=−−−−→
φ∗

KKOΓ
n+1(B,AC)

∼=←−−−−
b

KKΓ
n+1(BC, AC)

δ

y δ′
y δ′′

y
KKOΓ

n(B,A(R1,0)) −−−−→
=

KKOΓ
n(B,A(R1,0))

∼=−−−−→
α

KKOΓ
n−1(B,A)

i

y ρ

y χ

y
KKOΓ

n(B,A(D1,0))
∼=←−−−−
ψ

KKOΓ
n(B,A) −−−−→

=
KKOΓ

n(B,A)

j

y i2

y c

y
KKOΓ

n(B,A(S1,0))
∼=−−−−→
φ∗

KKOΓ
n(B,AC)

∼=←−−−−
b

KKΓ
n (BC, AC)y y y

In this diagram, all the horizontal maps are isomorphisms which have been
explained above. The vertical maps in the middle and right row are induced by
the maps of the left row and the horizontal isomorphisms. The horizontal maps
are small homomorphisms where the inverse is also a small homomorphism. In
particular φ∗ is induced from the isomorphism of C∗ -algebras φ : R(S1,0)→ C
(and therefore is small). Here, b is a somewhat exceptional homomorphism: it
is the identification of KK-groups of Proposition 3.10 which is true on the level
of cycles.

The construction of the long exact sequence in KK-theory implies that δ , i and
j are small homomorphisms (compare [16, Theorem 2.5.6]), and i and j are
induced from the maps in the short exact sequence (3.12).

Since the compositions of small homomorphisms are small, the same follows
for δ′ , ρ, i2 and χ. Composing the maps, we see that i2 is induced from the
inclusion R ↪→ C, and therefore c is the complexification homomorphism of
Definition 3.7. Since δ′′ equals α ◦ δ′ (upto the canonical identification b) we
can also consider δ′′ as a small homomorphism.

To identify the small homomorphisms χ̃ ∈ KK1(R,R) = Z/2 and δ′′ , it suffices
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to study the case A = B = R and Γ = {1}. Then we get

· · · → Kn+1(C) δ′′−→ KOn−1(R)
χ−→ KOn(R) c−→ Kn(C)→ · · · (3.14)

This exact sequence, including the identification of χ as multiplication with
the generator of KKO1(R) = KKO1(R,R) = Z/2 and of δ′′ as composition
of complex Bott periodicity with “forgetting the complex structure” is already
established in [1]. Alternatively, a careful analysis of the constructions in this
special case also identifies χ and δ′′ without much difficulty. Note that without
these computations we nevertheless identify χ̃ = χ, since it has to be non-zero
by the known K-theory of R and C, and there is only one non-zero element
in KK1(R,R). Since, in this paper, we don’t use the explicit description of
δ′′ , the main results of this paper are established without using [1] (or Remark
3.15).

Finally, observe that χ has additive order 2. Moreover, if we iterate χ three
times, we take the Kasparov product with third power of the generator in
KK1(R,R) which is zero, and therefore χ3 = χ ◦ χ ◦ χ = 0.

3.15 Remark A possible way to calculate δ′′ is the following: the same ar-
guments which lead to the K-theoretic exact sequence (3.14) give rise to a
corresponding sequence in K-homology. Using that we know KKO∗(R,R),
this implies that KKO−2(C,R) ∼= Z. Moreover, using the fact that “forget-
ting the complex structure” gives a unital ring homomorphism KK∗(C,C) →
KKO∗(C,C) (using the arguments of Proposition 3.10) we get Bott periodicity
KKO−2(C,R) ∼= KKO0(C,R), where the map is given by multiplication with
the complex Bott periodicity element β ∈ KKO2(C,C). In particular, the
generators of KKO−2(C,R) are products of the inverse β−1 ∈ KKO−2(C,C)
of the complex Bott periodicity element with the generators of KKO0(C,R).
Using the K-homology version of (3.14) again (where Z ∼= KKO0(C,R) →
KKO0(R,R) ∼= Z is induced by the inclusion R ↪→ C), the element “forgetting
the complex structure” fR (defined in 3.8) defines a generator of KKO0(C,R)
(since this element is mapped to 2; and we conclude from the long exact se-
quence that this also happens to a generator). It follows that the Kasparov
product of β−1 with fR is an additive generator of KKO−2(C,R).

The exact sequence (3.14) implies that δ′′ can not be divisible. Since it is given
by some element of Z ∼= KKO−2(C,R), it has (up to a sign which we don’t
have to determine) to coincide with the generator, i.e. the product of β−1 and
fR .
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Proof of Theorem 2.10

It remains to prove that the Baum-Connes assembly maps are compatible with
the maps in the long exact sequences. To do this, we have to recall this assembly
(or index) map. It is in the real and complex case given by the same procedure,
which we describe for complex K-theory.

µ is given as composition of two maps. The first of these is

descent : KKΓ
n (C0(EΓ),C)→ KKn(C∗red(Γ;C0(EΓ)), C∗red(Γ;C)). (3.16)

To be precise, we have to apply this map to Γ-compact subsets of EΓ and
then pass to the limit. We avoid this to simplify notation. By [2, Theorem
20.6.2] (and [16, Theorem 2.4.13] for the real case) this descent is compatible
with Kasparov products. Since Γ acts trivially on the right hand factor C,
C∗red(Γ;C) ∼= C ⊗C C∗redΓ ∼= C∗redΓ. Note that the construction of descend for
trivial actions just amounts to the exterior Kasparov product with the identity
on the level of KK. In other words, if A and B have a trivial Γ-action, then

descent : KK(A,B)→ KK(A⊗ C∗redΓ, B ⊗ C∗redΓ)

is given by exterior tensor product with the identity.

Since descent is compatible with the intersection product, it follows that descent
commutes with exterior Kasparov product with small elements in the sense of
Definition 3.6 in (3.16).

The second map

KK(C∗red(Γ;C0(EΓ)), C∗redΓ)→ KK(C, C∗redΓ) (3.17)

is given by left Kasparov product with a certain element, the “Mishchenko
line bundle”, in KK(C, C0(EΓ)). This also commutes with exterior Kasparov
product with small KK-elements.

Now the Baum-Connes assembly map µ is the composition of the two homomor-
phisms just described, and therefore also commutes with small homomorphisms.

Since the homomorphisms in the long exact sequences are all small, the Baum-
Connes maps are compatible with them, which is the assertion of Theorem
2.10.

Variations

It is clear that all the arguments given in this section apply in exactly the same
way in the situations described in Theorem 2.14, which is therefore also true.
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