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Introduction

Cheeger-Simons differential characters can be thought of equivalence classes of
some “higher” version of line bundles-with-connection. In dimension two this
can be taken to mean gerbes-with-connection, as explained in [2]. One way
to think about “higher” line bundles-with-connection is in terms of Turaev’s
homotopy quantum field theories [9] (see also [8, 1]), where in dimension two
such a thing provides a vector bundle over the free loop space together with a
generalised (flat) connection where parallel transport is defined across surfaces.
To make contact with gerbes and differential characters one needs to define
a more rigid variation of 1+1-dimensional homotopy quantum field theory as
explained [3] (see also [10] and for a similar approach [7]).

There is, however, an intrinsic difference between differential characters and
homotopy quantum field theories. The former are defined in terms of homo-
logical information and the latter in terms of bordism. In dimension two this
difference is unimportant (cf. the isomorphism between degree two homology
and bordism) but in higher dimensions one would expect this difference to be-
come apparent. The underlying geometrical picture of homotopy quantum field
theories is however very appealing: one thinks of a bundle over some space
of n-manifolds in X with a generalised connection where parallel transport is
defined across (n+ 1)-cobordisms. The motivation for the present work was to
reconcile this picture with the homological needs of differential characters.
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The “functorial approach” of the title refers to the fact that many geometrical
constructions can be defined in terms of representations of a geometrical cat-
egory i.e. functors from a geometrical category to a category of vector spaces.
Homotopy quantum field theories are a good example, but more familiar is the
case of a line bundle-with-connection on X . One can define the path category
of X as the category with objects the points of X and morphisms smooth paths
between points. A line bundle with connection on X can be thought of as a
functor from the path category of X to the category of one-dimensional vector
spaces: a point in X is assigned to its fibre and a path to parallel transport
along that path. This functor must also be continuous in an appropriate way.
This was the point of view in [3] where the authors gave similar description for
gerbes-with-connection, by considering rank one representations of a category
with objects loops in X and morphisms equivalence classes of surfaces in X .

We recall now the definition of Cheeger-Simons differential characters [4]. Let-
ting Zn+1X denote the group of smooth (n + 1)-cycles in X , a degree n + 1
differential character is a homomorphism f : Zn+1X → U(1) together with a
closed (n+ 2)-form c such that if β is an (n+ 2)-chain then

f(∂β) = exp(2πi
∫
β
c).

The collection of these is denoted Ĥn+1(X) where the index n+ 1 follows the
convention in [4] (rather than that in [2] where the index n+ 2 is used for this
group).

Outline of the paper

In order to marry the homological nature of differential characters with the
functorial viewpoint we introduce new objects which we have dubbed chain
field theories. These are symmetric monoidal functors from a category whose
objects are smooth n-cycles in X and whose morphisms are (n + 1)-chains
in X , to one-dimensional vector spaces. Such an object should be thought of
as a line bundle over the group of n-cycles in X together with a generalised
connection in which parallel transport is defined across (n + 1)-chains. The
holonomy of such a bundle is a Cheeger-Simons differential character. The
reader should beware that the bundle analogy only goes so far as we do not
demand continuous functors (see also the remarks at the end of section 2). From
one point of view, a chain field theory provides a possible interpretation of an
n-gerbe-with-connection.
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In Section 1 we define the chain category of X , give the definition of chain field
theory and give two important examples. In Section 2 we prove the following
theorem.

Theorem 2.1 On a finite dimensional smooth manifold there is an isomor-
phism from the group of (n+ 1)-dimensional chain field theories (up to isomor-
phism) to the group of (n+ 1)-dimensional differential characters.

In Section 3 we characterise flat chain field theories as those that are invariant
under deformation by (n+ 2)-chains and finally we discuss the classification of
flat theories by the group Hn+1(X;U(1)).

1 Chain Field Theories

We will construct a symmetric monoidal category, Gn+1X of n-cycles and (n+
1)-chains in X , and then define a chain field theory to be a 1-dimensional
representation of this category. Throughout we will work with cubical chains,
for consistency with the work of Cheeger and Simons.

Chain categories

Let X be a smooth finite dimensional manifold. Let CkX denote the group of
smooth k -chains in X and let ZkX (resp. BkX ) be the subgroup of smooth
cycles (resp. boundaries).

The (n+ 1)-dimensional chain chain category of X , denoted Gn+1X is defined
in the following way. The objects are smooth n-cycles in X and a morphism
from γ to γ′ is a smooth (n + 1)-chain σ satisfying ∂σ = −γ + γ′ . The
composition σ ◦ σ′ is defined to be sum of chains σ + σ′ . Associativity follows
from the fact that Cn+1X is a group. Noting that the endomorphisms of an
object γ can be identified with the group of (n + 1)-cycles, we take the zero
cycle as the identity morphism for γ . To simplify notation we will write G for
Gn+1X where there is no ambiguity and we will write G(γ, γ′) for the set of
morphisms from γ to γ′ . We will also make no notational distinction between
the identity morphisms for different n-cycles.

We define a bifunctor ⊗ : G × G → G on objects by γ1 ⊗ γ2 = γ1 + γ2 , where
the sum on the right is taken in ZnX and on morphisms by σ1⊗σ2 = σ1 + σ2 ,
where the sum is taken in Cn+1X . This provides G with the structure of a
monoidal category where the monoidal unit is the zero cycle in ZnX .
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Proposition 1.1 G is a strict symmetric strict monoidal groupoid. Its con-
nected components are in one-to-one correspondence with Hn(X;Z).

Proof That Gn+1X is strict symmetric strict monoidal follows easily from the
fact that Cn+1X and ZnX and abelian groups.

To see that G is a groupoid, let σ ∈ G(γ, γ′) and note that −σ ∈ G(γ′, γ) since
∂(−σ) = −∂(σ) = −(−γ + γ′) = −γ′ + γ . Moreover (−σ) ◦ σ = σ + (−σ) = 0
which is the identity element in G(γ, γ).

To prove the statement about connected components observe that γ is in the
same path component as γ′ if and only if there exists an (n + 1)-chain σ ∈
G(γ, γ′) such that ∂σ = −γ + γ′ i.e. γ and γ′ are homologous.

In fact, the objects of this category also possess inverses and Gn+1X is a cate-
gorical group i.e. a group object in the category of groupoids.

The definition of chain field theories

We let Lines denote the category with objects 1-dimensional complex vector
spaces with Hermitian inner product and morphisms isometries. We regard this
as a monoidal category under tensor product. For background information on
monoidal categories, functors and so forth we refer to the appendix in [3] where
all relevant definitions can be found.

An (n+1)-dimensional chain field theory on X is a symmetric monoidal functor
E : Gn+1X → Lines together with a closed differential (n+ 2)-form c such that
for any (n+ 2)-chain β the following holds:

E(∂β)(1) = exp(2πi
∫
β
c).

The left hand side of this equation should be interpreted in the following man-
ner. The boundary of an (n+2)-chain is an (n+1)-cycle and hence a morphism
in G(0, 0). Since 0 is the monoidal unit in G and the functor E is monoidal
there is an isomorphism E(0) ∼= C, and in this way E(∂β) is a unitary map
C→ C. This condition should be thought of as a smoothness condition of the
functor E . We note that as part of the definition of a monoidal functor there
are natural isomorphisms ΦE

γ,γ′ : E(γ) ⊗ E(γ′) → E(γ + γ′) for objects γ and
γ′ .

We say that a chain field theory is flat if the (n + 2)-form c is zero. The
reader should think of a chain field theory as a line bundle over the space of
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n-cycles with parallel transport defined across (n + 1)-chains. At first sight it
is tempting to provide a more general definition in which the functor E takes
values in the category of hermitian vector spaces (rather than one-dimensional
ones). However, the objects of G have inverses and E is monoidal so for an
object γ we have E(γ) ⊗ E(−γ) ∼= E(0) ∼= C from which it follows that E(γ)
is one dimensional.

Two chain field theories are isomorphic when there is a monoidal natural iso-
morphism between them. Recall that this requires a natural transformation
Ψ: E → E′ such that for each object γ , the map Ψγ : E(γ) → E′(γ) is an
isomorphism and for each pair of objects γ and γ′

Ψγ+γ′ ◦ΦE
γ,γ′ = ΦE′

γ,γ′ ◦ (Ψγ ⊗Ψγ′).

The set of isomorphism classes of (n + 1)-dimensional chain field theories on
X becomes a group, denoted ChFT n+1(X), with product ? defined as follows.
Given two theories E and F form E ?F by defining (E ?F )(γ) = E(γ)⊗F (γ)
and (E ? F )(σ) = E(σ) ⊗ F (σ). The (n + 2)-form of E ? F is the sum in
the group of (n + 2)-forms and the monoidal structure isomorphisms are the
obvious ones. The identity of the group is the trivial chain field theory, which
assigns all objects to C and all morphisms to the identity map. The (n + 2)-
form of the trivial chain field theory is the zero form and the monoidal structure
isomorphisms are the canonical identification of C⊗C with C. The inverse of
E is defined by E−1(γ) = E(γ)∗ = Hom(E(γ),C) and E−1(σ) = E(σ)∗ . The
set of flat chain field theories forms a subgroup of this group.

A chain field theory has the following very useful invertibility property. Given
a morphism σ we have E(−σ) = E(σ)−1 . This is because

E(−σ) = E(−σ)◦E(σ)◦E(σ)−1= E(−σ+σ)◦E(σ)−1= E(0)◦E(σ)−1= E(σ)−1.

Just as line bundles with connection have holonomy defined for closed paths, a
chain field theory has holonomy defined for closed (n + 1)-chains i.e. (n + 1)-
cycles. If σ is an (n+ 1)-cycle then it can be regarded as an element of G(0, 0)
and we define the holonomy of σ by

HolE(σ) = E(σ)(1).

Notice that flat theories have trivial holonomy on boundaries since if β is an
(n+ 2)-chain then HolE(∂β) = exp(2πi

∫
β c) = 1.

If σ ∈ G(γ, γ) then ∂σ = −γ + γ = 0 so we can also regard σ as an element
of G(0, 0) and hence holonomy can be defined. As the next lemma shows, this
holonomy is consistent with the map E(σ) : E(γ)→ E(γ).
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Lemma 1.2 If γ is an object in G and σ is an automorphism of γ , then the
map E(σ) : E(γ)→ E(γ) is given by multiplication by HolE(σ).

Proof Since E is a monoidal functor there is an isomorphism Φ: E(γ) ⊗
E(−γ) ∼= E(0) = C. By naturality of the monoidal structure isomorphisms we
have the following commutative diagram.

E(γ)⊗ E(−γ) Φ
//

E(σ)×Id
��

E(0)

E(σ)
��

E(γ)⊗ E(−γ)
Φ

// E(0)

Letting a and b be generators of E(γ) and E(−γ) respectively we can write
E(σ)(a) = λa. By chasing a ⊗ b around the diagram one way we get Φ(a ⊗
b) HolE(σ) and the other way λΦ(a⊗ b). It follows that λ = HolE(σ).

This lemma has two corollaries which will be useful later on.

Corollary 1.3 If σ1 and σ2 ∈ G(γ, γ′) and HolE(σ1 − σ2) = 1 then E(σ1) =
E(σ2).

Proof We have that E(−σ2) ◦ E(σ1) = E(−σ2 ◦ σ1) = E(σ1 − σ2) and using
the lemma above we see that this is multiplication by HolE(σ1 − σ2) = 1 i.e.
E(−σ2) ◦ E(σ1) = IdE(γ) . Thus

E(σ1) = IdE(γ′) ◦ E(σ1) = E(σ2) ◦ E(−σ2) ◦ E(σ1) = E(σ2) ◦ IdE(γ) = E(σ2).

Corollary 1.4 For a flat theory the holonomy of an (n+ 1)-cycle σ depends
only on the homology class [σ] ∈ Hn+1(X,Z).

Proof Suppose σ′ = σ + ∂β for some (n+ 2)-chain β . Then

HolE(σ′)/HolE(σ) = HolE(−σ) HolE(σ′) = HolE(−σ + σ′) = HolE(∂β) = 1.
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Examples

We now give two of examples of chain field theories.

Example 1.5

In the first example we construct an (n+1)-dimensional chain field theory from
an (n + 1)-form. We let Ω∗(X) denote the smooth complex differential forms
on X . By Ω∗(X)0,Z we denote the subspace of closed forms which have periods
in Z. Recall from [4] that there is an injection

Ωk(X)→ Hom(CkX,U(1)) (1)

given by sending ω ∈ Ωk(X) to the map β 7→ exp(2πi
∫
β ω).

Let ω ∈ Ωn+1(X) and define a chain field theory Eω : Gn+1X → Lines as
follows. For any object γ set Eω(γ) = C and for a morphism (n + 1)-chain
σ define Eω(σ) : C → C to be multiplication by exp(2πi

∫
σ ω). The monoidal

structure is the canonical one and the (n+ 2)-form c is taken to be dω . Using
Stokes theorem we see that for any (n+ 2)-chain β

Eω(∂β)(1) = exp(2πi
∫
∂β
ω) = exp(2πi

∫
β
c)

as required.

As the differential on (n+ 1)-forms is linear this gives rise to a homomorphism

Ωn+1(X)→ ChFT n+1(X). (2)

Notice that if ω is closed then the chain field theory constructed above is flat.
Moreover if two closed (n+ 1)-forms differ by an exact form then the resulting
chain field theories are isomorphic. To see this let ω = ω′ + dθ for some
θ ∈ Ωn(X). For an object γ ∈ ZnX define τγ : C = Eω(γ) → Eω

′
(γ) = C

to be multiplication by exp(2πi
∫
−γ θ). This defines a natural transformation

τ : Eω → Eω
′
. Thus (2) becomes a homomorphism

Hn+1(X,U(1)) → FlatChFT n+1(X). (3)

Example 1.6

Now we construct a chain field theory from a Cheeger-Simons differential char-
acter. Recall ([4] and [2]) that the Cheeger-Simons group of differential char-
acters is defined by:
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Ĥn+1(X) = {f ∈ Hom(Zn+1X,U(1)) | ∃c ∈ Ωn+2
0,Z (X) such that

∀β ∈ Cn+2X, f(∂β) = exp(2πi
∫
β
c)}

This group fits in to the following exact sequences:

0→ Hn+1(X,U(1)) → Ĥn+1(X) c→ Ωn+2
0,Z (X) (4)

0→ Ωn+1(X)/Ωn+1(X)0,Z → Ĥn+1(X)→ Hn+2(X,Z)→ 0 (5)

Starting with a differential character f : Zn+1X → U(1) with (n+2)-form c we
will define an (n+ 1)-dimensional chain field theory Ef : G → Lines as follows.

There is a short exact sequence

0→ Zn+1X
ι→ Cn+1X

∂→ BnX → 0

which gives rise to an exact sequence

0→ Hom(BnX,U(1)) ∂∗→ Hom(Cn+1X,U(1)) ι∗→ Hom(Zn+1X,U(1))→ 0. (6)

This sequence is exact on the left since U(1) is divisible and it follows that
Ext(Zn+1X,U(1)) vanishes.

Using this exact sequence choose a lift f̃ : Cn+1X → U(1) of f and for objects
set Ef (γ) = C and for morphisms define Ef (σ) : C → C to be multiplication
by f̃(σ). The monoidal structure is taken to be the canonical one and the
(n+ 2)-form is taken to be c.

That this provides a well defined symmetric monoidal functor follows from the
fact that Cn+1X is an abelian group. The condition on c is also immediate
since for any β ∈ Cn+2X we have that ∂β ∈ Zn+1X so

E(∂β)(1) = f̃(∂β) = f(∂β) = exp(2πi
∫
β
c).

A priori this construction depends on the choice of lift of f , however another
choice yields an isomorphic chain field theory. Moreover, the construction above
is additive.

Proposition 1.7 The construction above provides a homomorphism of groups
Ĥn+1(X)→ ChFT n+1(X).
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Proof To show the construction is independent of the lift, let f be another
lift which gives rise to another chain field theory E

f and claim that Ef is
isomorphic to E

f .

Noting that f̃ /f ∈ Ker(Hom(Cn+1X,U(1)) → Hom(Zn+1X,U(1))) by using
the exact sequence (6) we can regard f̃ /f as a homomorphism Bn → U(1).
There is an exact sequence

0→ BnX → ZnX → Hn(X,Z)→ 0

and thus (again since U(1) divisible) an exact sequence

0→ Hom(Hn(X,Z), U(1)) → Hom(ZnX,U(1))→ Hom(BnX,U(1))→ 0. (7)

Thus we can lift f̃/f to a homomorphism h : ZnX → U(1). We now define
a natural transformation τ : Ef → E

f as follows. For an object n-cycle γ in
Gn+1X define τγ : C = Ef (γ)→ E

f (γ) = C to be multiplication by h(γ). Note
that since h is a homomorphism τ satisfies τγ+γ′ = τγτγ′ and τ−γ = τ−1

γ . To
show that τ is natural we must show that for any morphism σ from γ to γ′

we have τγ(1)f (σ) = τγ′(1)f̃ (σ). This is true since

f(σ)/f̃(σ) = (f/f̃)(∂σ) = h(−γ + γ′) = τ−γ+γ′(1) = τ−γ(1)τγ′(1).

Thus, up to isomorphism, the construction above is independent of the choice
of lift.

Finally, to see that we have a homomorphism we must show that for differential
characters f and f ′ we have an isomorphism Ef+f ′ ∼= Ef ? Ef

′
. This follows

immediately from the definition of ? and the fact that if we have lifts f̃ and
f̃ ′ of f and f ′ we can choose the lift of f + f ′ to be f̃ + f̃ ′ , from which we
see that the canonical identification of C⊗C with C provides an isomorphism
from Ef ? Ef

′
to Ef+f ′ .

If the (n+2)-form c above is zero, then the chain field theory constructed above
is flat and using exact sequence (4), we can regard the differential character as
an element of Hn(X,U(1)) and there is a homomorphism

Hn+1(X,U(1)) → FlatChFT n+1(X).

This is the same homomorphism as (3). In fact Example 1.5 is a special case
of Example 1.6, using the fact that an n + 1-form ω determines a differential
character by f = exp(2πi

∫
ω) and c = dω .

It is interesting to compare the example above with the constructions found
in the integration theory of Freed and Quinn ([6, 5]) in the context of Chern-
Simons theory.
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2 Classification by Cheeger-Simons groups

We now show that equivalence classes of (n+1)-dimensional chain field theories
are classified by the Cheeger-Simons group Ĥn+1(X). Taking holonomy of a
chain field theory defines a function

Hol : ChFT n+1(X)→ Ĥn+1(X).

Recall the notation used before: the holonomy of E is denoted HolE . Using
this notation the function Hol above sends (E, c) to (HolE , c) and this function
is a homomorphism of groups since

HolE?F (σ) = (E ? F )(σ)(1) = E(σ)(1)F (σ)(1) = HolE(σ) HolF (σ).

The proof of the following theorem is a reformulation of the proof of the main
theorem in [3].

Theorem 2.1 On a finite dimensional smooth manifold there is an isomor-
phism from the group of (n+ 1)-dimensional chain field theories (up to isomor-
phism) to the group of (n+ 1)-dimensional differential characters.

Proof We will show that the holonomy homomorphism Hol is an isomorphism
with inverse provided by the homomorphism in Proposition 1.7.

Firstly, we will show that Ker(Hol) is trivial. Let E ∈ Ker(Hol), so HolE(σ) = 1
for all σ ∈ Zn+1X . Writing H for the category with objects the elements of
Hn(X,Z) only identity morphisms we can assign to E a symmetric monoidal
functor H → Lines as follows. Given objects γ and γ′ in the same connected
component of G there is a canonical identification of E(γ) with E(γ′), since if
σ1 and σ2 are both morphisms from γ to γ′ then HolE(σ1−σ2) = 1 and hence
by Corollary 1.3 E(σ1) = E(σ2). It follows from the fact that the connected
components of G are in one-to-one correspondence with Hn(X,Z) that we can
associate a line Lx to each x ∈ Hn(X,Z). Since the morphisms in H are
identities, this defines a functor H → Lines. By choosing representatives for
each x ∈ Hn(X,Z), we can use the monoidal structure isomorphisms of E to
define natural isomorphisms Φx,x′ : Lx⊗Lx′ → Lx+x′ showing that the functor
H → Lines is monoidal and moreover symmetric.

Conversely given a symmetric monoidal functor φ : H → Lines we can construct
a chain field theory with trivial holonomy by setting E(γ) = φ([γ]) and E(σ) =
Id. This provides an identification of Ker(Hol) with the group of symmetric
monoidal functors H → Lines. Using Lemma 6.2 of [3] reformulated for U(1)
rather than C× , the latter can be identified with Ext(Hn(X,Z), U(1)), but this
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group is trivial since U(1) is divisible. We have thus shown that the holonomy
homomorphism is injective.

To see that Hol is surjective (and that the homomorphism in Proposition 1.7
provides an inverse) let f be a differential character and claim that HolE

f
= f ,

where Ef is the chain field theory produced in Proposition 1.7. This is immedi-
ate however, since for σ ∈ Zn+1X we know that Ef (σ) : C→ C is multiplication
by f(σ), so as an element of U(1) we have HolE

f
(σ) = Ef (σ)(1) = f(σ).

It is important to note that the theorem above relates equivalence classes of
chain field theories with differential characters. If, for example, one chooses
to interpret 1-dimensional characters as classifying equivalence classes of line
bundles-with-connection then there is only an identification of line bundles-
with-connection with chain field theories after quotienting up to equivalence.
One could modify the definition of chain field theory so that the functor is con-
tinuous which would get closer to a genuinely geometric interpretation, but we
haven’t done that here. I am grateful to Simon Willerton and Mark Brightwell
for clarifying this point.

3 Flat theories

In this section we show that flat chain field theories are characterised by in-
variance under deformation by (n + 2)-chains. This is analogous to the fact
that for flat line bundles parallel transport is invariant under deformation by
homotopy.

Let σ1, σ2 ∈ G(γ, γ′) and suppose β is an (n+2)-chain such that ∂β = −σ1+σ2 .
We say that a chain field theory E is invariant under chain deformation if for
all such σ1, σ2 and β we have E(σ1) = E(σ2).

Proposition 3.1 A chain field theory E is flat if and only if it is invariant
under chain deformation.

Proof We remarked after the definition of holonomy that if E is flat then
holonomy is trivial on boundaries. Thus

HolE(−σ1 + σ2) = HolE(∂β) = 1.

So by Corollary 1.3, we see that E(σ1) = E(σ2) and hence E is invariant under
chain deformation.
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Conversely, if E is invariant under chain deformation we claim that c = 0.
Letting β ∈ Cn+1X we can write ∂β = −0 + ∂β and so the definition of
invariance under chain deformation implies E(∂β) = E(0) = Id. Thus for all
β ∈ Cn+2X

exp(2πi
∫
β
c) = E(∂β)(1) = 1.

Using the injectivity of (1) we conclude that c = 0.

This can be rephrased as follows. Define Gn+1(X) to be the quotient category
obtained from Gn+1(X) by imposing the following relation on morphisms. Let
σ1, σ2 ∈ G(γ, γ′), then the relation is

σ1 ∼ σ2 iff there exists an (n+ 2)-chain β such that ∂β = −σ1 + σ2 .

Composition is still well defined and the category inherits a monoidal structure
from Gn+1(X).

The above proposition states that a flat chain field theory is one that factors
through Gn+1(X). Moreover it is clear that given a symmetric monoidal functor
Gn+1(X) → Lines the composite Gn+1(X) → Gn+1(X) → Lines is a flat chain
field theory and this assignment is one-to-one. Hence we have the following
theorem.

Theorem 3.2 There is a one-to-one correspondence between flat chain field
theories and symmetric monoidal functors Gn+1(X)→ Lines.

Corollary 1.4 states that the holonomy of a flat chain field theory factors through
Hn+1(X,Z) and thus may be thought of as a homomorphism Hn+1(X,Z) →
U(1). One may proceed as in the last section to study the function

Hol : Flat ChFT n+1(X)→ Hom(Hn+1(X,Z), U(1)) ∼= Hn+1(X,U(1))

to establish that this is an isomorphism of groups with the homomorphism (3)
providing an inverse. As the proof is merely a reformulation of the proof of
Theorem 2.1 and the result is expected once one knows that theorem (compare
with the exact sequence (4)), we omit the details.
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