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Character varieties of mutative 3–manifolds
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Abstract We describe a birational map between subvarieties in the char-
acter varieties of mutative 3–manifolds. By studying the birational map,
one can decide in certain circumstances whether a mutation surface is de-
tected by an ideal point of the character variety.
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1 Introduction

Let M be an irreducible 3–manifold. A mutation surface (S, τ) is a properly
embedded incompressible, ∂–incompressible surface S , which is not boundary
parallel, and an orientation preserving involution τ of S . The manifold ob-
tained by cutting M open along S and regluing via τ is a (S, τ)–mutant of
M , and denoted by M τ . Two manifolds are mutative if they are related by
a finite sequence of mutations. Mutative manifolds share many geometric and
topological properties. Work of Ruberman [5] and Cooper and Long [2] shows
that a relationship between the character varieties of mutants exists, and we
now formalise this for both SL2(C)– and PSL2(C)–character varieties.

We construct a birational map between certain subvarieties of the character
varieties of M and M τ , which shows that in many cases the character vari-
eties are birationally equivalent. A subvariety Xτ (M) in the SL2(C)–character
variety X(M) will be defined, and the birational equivalence is defined for sub-
varieties of Xτ (M) which contain a dense set of mutable characters. All these
notions descend to the PSL2(C)–character variety, and the objects are denoted
by placing a bar over the previous notation.

Proposition 1 Let (S, τ) be a mutation surface in an irreducible 3–manifold
M , and let C be an irreducible component of Xτ (M) which contains the char-
acter of a representation whose restriction to im(π1(S)→ π1(M)) is irreducible
and has trivial centraliser.

Then C is birationally equivalent to an irreducible component of Xτ (M τ ).
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Figure 1: Ruberman’s symmetric surfaces: a thrice-punctured sphere S3 , a four-
punctured sphere S4 , a once-punctured torus T1 , a twice-punctured torus T2 and
a genus-two surface G2 along with the shown involutions.

Proposition 2 Let (S, τ) be a separating mutation surface in an irreducible 3–
manifold M , and let C be an irreducible component of Xτ (M) which contains
the character of a representation whose restriction to im(π1(S) → π1(M)) is
irreducible.

Then C is birationally equivalent to an irreducible component of Xτ (M τ ).

If M admits a complete hyperbolic structure of finite volume, then there is a
discrete and faithful representation of π1(M) into PSL2(C), which lies on the
Dehn surgery component X0(M) of X(M), and lifts to a component X0(M) of
X(M). We now focus on the symmetric surfaces shown in Figure 1.

Corollary 3 (Hyperbolic knots) Let k be a hyperbolic knot and kτ be a
Conway mutant of k. Then X0(k) and X0(kτ ), as well as X0(k) and X0(kτ ), are
birationally equivalent. Moreover, the associated factors of the A–polynomials
are equal.

Algebraic & Geometric Topology, Volume 4 (2004)



Character varieties of mutative 3–manifolds 135

It is noted in [9] that any Conway mutation of a knot can be realised by at most
two mutations along genus two surfaces. The previous corollary is therefore a
special case of the following:

Corollary 4 (Separating in hyperbolic) Let (S, τ) be a separating symmetric
surface in a finite volume hyperbolic 3–manifold M . If S is a twice–punctured
torus or a genus two surface, then X0(M) and X0(M τ ) as well as X0(M) and
X0(M τ ) are birationally equivalent.

The restriction to the two surfaces in the above corollary is necessary in general.
There are no separating incompressible and ∂–incompressible thrice punctured
spheres and once–punctured tori in hyperbolic 3–manifolds, and it is easy to
find examples of Conway mutation on links with the property that only a proper
subvariety in each of the respective Dehn surgery components is contained in
Xτ (M) and Xτ (M). If the surface is non–separating, one can similarly find ex-
amples such that mutation along a twice–punctured torus or a thrice punctured
sphere does not allow a general statement, which limits us to the following:

Corollary 5 (Non–separating in hyperbolic) Let (S, τ) be a non–separating
symmetric surface in a finite volume hyperbolic 3–manifold M . If S is a once–
punctured torus or a genus two surface, then X0(M) and X0(M τ ) are bira-
tionally equivalent.

This corollary does not extend to SL2(C)–Dehn surgery components in general:
mutation of the figure eight knot complement along the fibre results in the
associated sister manifold, and the smooth projective models of their SL2(C)–
Dehn surgery components are a torus and a sphere respectively.

The proofs of the above results are contained in Section 2. Some of the ideas
in the proofs are useful in other settings; e.g. they produce examples of “holes
in the eigenvalue variety” in [9]. The extension lemma (see Lemma 10) can
be used to study the character variety of a 3–manifold by successively cutting
along non–separating surfaces.

In certain cases, analysis of the points where the birational equivalence is not
well–defined can be used to decide whether a mutation surface is detected by
an ideal point of the character variety. It is still an open problem whether every
essential surface is detected by an ideal point of the character variety. Necessary
and sufficient conditions which have to be satisfied by a connected surface are
given in Section 3, and the birational equivalence is used to show that symmetric
surfaces are detected in the complements the Kinoshita–Terasaka knot and the
figure eight knot, as well as the so–called sister manifold of the latter.
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2 Tentatively mutable representations

Our standard references for character varieties are [3, 1]. We recall some def-
initions and facts. The SL2(C)–representation variety of a finitely generated
group Γ is R(Γ) = Hom(Γ, SL2(C)). Each ρ ∈ R(Γ) defines a character
χρ : Γ→ C by χρ(γ) = tr ρ(γ), and the set of characters X(Γ) is the SL2(C)–
character variety. Both varieties are regarded as affine algebraic sets, and there
is a regular map t : R(Γ)→ X(Γ). If Γ is the fundamental group of a topological
space M , we write R(M) and X(M) instead of R(Γ) and X(Γ) respectively.

A representation is irreducible if the only subspaces of C2 invariant under its
image are trivial. Otherwise it is reducible. Irreducible representations are
determined by characters up to inner automorphisms of SL2(C). Let Ri(Γ)
denote the closure of the set of irreducible representations, then the images
Xr(Γ) = t(Red(Γ)) and Xi(Γ) = t(Ri(Γ)) are closed algebraic sets, and we
have Xr(Γ) ∪ Xi(Γ) = X(Γ). The variety Xr(Γ) is completely determined by
the abelianisation of Γ.

There is a character variety arising from representations into PSL2(C), and
the relevant objects are denoted by placing a bar over the previous notation.
As with the SL2(C)–character variety, the surjective map t : R(Γ) → X(Γ)
is constant on conjugacy classes and if ρ is an irreducible representation, then
t−1(t(ρ)) is the orbit of ρ under conjugation. The natural map q : X(Γ)→ X(Γ)
is finite–to–one, but in general not onto. It is the quotient map corresponding
to the action of Hom(Γ,ZZ2) on X(M). This action is not free in general.

2.1 Tentatively mutable in SL2(C)

Given a mutation surface (S, τ), we define a subvariety in R(S) by

Rτ (S) = {ρ ∈ R(S) | tr ρ(γ) = tr ρ(τ∗γ) for all γ ∈ π1(S)}.
This subvariety descends to the character variety, and we let Xτ (S) = t(Rτ (S)).
In fact, τ induces a polynomial automorphism of X(S), and Xτ (S) is the
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set of its fixed points. If Rτ (S) contains an irreducible representation, then
the subvariety of reducible representations has positive codimension. For the
symmetric surfaces, one obtains the following result:

Lemma 6 [9] Let (S, τ) be a symmetric surface as described in Figure 1. If
S = T1 or S = G2 , then R(S) = Rτ (S). Otherwise the character of ρ ∈ R(S)
is invariant under τ if and only if it satisfies the following equations:

• if S = S3 , π1(S3) = 〈a, b〉 then tr ρ(a) = tr ρ(b),

• if S = S4 , π1(S4) = 〈a, b, c〉 then tr ρ(a) = tr ρ(b) and tr ρ(c) = tr ρ(abc),

• if S = T2 , π1(T2) = 〈a, b, c〉 then tr ρ(c) = tr ρ(c−1[a, b]).

The subvariety of reducible representations in Rτ (S) has codimension one.
Moreover, this property is preserved under t.

If (S, τ) is a mutation surface in a 3–manifold M , we call a representation
ρ ∈ R(M) tentatively mutable with respect to (S, τ) if its character restricted to
S is invariant under τ . The set Rτ (M) of these representations is a subvariety
of R(M). Let t(Rτ (M)) = Xτ (M). The S–reducible characters form a closed
set in Xτ (M), which we denote by F(M). Let the closure of Xτ (M)−F(M) in
Xτ (M) be M(M).1 Then M(M) ⊆ Xi(M) is the union of irreducible compo-
nents of Xτ (M) which contain the character of a S–irreducible representation.

In particular, if (S, τ) is one of the symmetric surfaces (T1, τ) or (G2, τ), we
have Xτ (M) = X(M), so Xr(M) ⊆ F(M), and the same is true for M τ . In
general, it is not true that Xτ (M) = X(M) implies Xτ (M τ ) = X(M τ ).

2.2 Tentatively mutable in PSL2(C)

Given a mutation surface (S, τ), we define a subvariety in R(S) by

Rτ (S) = {ρ ∈ R(S) | χρ = χρτ∗}.
This subvariety descends to the character variety, and we let Xτ (S) = t(Rτ (S)).
For the symmetric surfaces, we have the following lemma.2

Lemma 7 Let (S, τ) be a symmetric surface as described in Figure 1 and ρ be
a PSL2(C)–representation of π1(S). If S is one of the surfaces with boundary,
then χρ = χρτ∗ if and only if there is a lift ρ of ρ such that χρ = χρτ∗ .

1The varieties S , T and F of [9] are here denoted by Rτ , Xτ and Fi respectively.
2The author thanks Steven Boyer for pointing out that an earlier version of this

lemma was incorrect.
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If S = G2 , then ρ ∈ Rτ (G2) either if ρ lifts to a SL2(C)–representation, or if

(tr ρ(ad−1))2 = (tr ρ(bc−1))2 = (tr ρ(abd−1))2 = (tr ρ(b−1cd))2 = (tr ρ(acd))2 = 0.

Proof We use Lemma 3.1 of [1] throughout this proof, and assume familiarity
with the notation used there; in particular, ε denotes a homomorphism into the
group {±1}.

Let ρ ∈ R(S), and assume that there is a lift ρ of ρ such that ρ ∈ Rτ (S). It
then follows that ρ ∈ Rτ (S), by choosing ρ′ = ρτ∗ and ε = id.

Since the fundamental groups of the surfaces with boundary are free, every
PSL2(C)–representation of these surfaces lifts to a SL2(C)-representation. We
now verify the statement of the lemma for these surfaces.

Case S = T1 Since R(T1) = q(R(T1)) and R(T1) = Rτ (T1), there is nothing
to prove. In particular, we have R(T1) = Rτ (T1).

Case S = T2 Let ρ ∈ Rτ (S), and ρ ∈ R(S) be a lift of ρ. We have χρ = χρτ∗
if and only if there is ε ∈ Hom(π1(S), {±1}) such that εχρ = χρτ∗ . Now
ε(a) tr ρ(a) = tr ρτ(a) = tr ρ(a−1) forces ε(a) = 1. Similarly, ε(b) tr ρ(b) =
tr ρτ(b) = tr ρ(ab−1a−1) forces ε(b) = 1. Then ε(bc) tr ρ(bc) = tr ρτ(bc) =
tr ρ(bc) yields ε(c) = ε(b). Thus, ε = id, and the claim follows.

Case S = S3 Let ρ ∈ Rτ (S), and ρ ∈ R(S) be a lift of ρ. Since τ(a) = b, we
have (tr ρ(a))2 = (tr ρ(b))2 . If tr ρ(a) = tr ρ(b), then ρ ∈ Rτ (S). If tr ρ(a) =
− tr ρ(b), then define σ(a) = ρ(a) and σ(b) = −ρ(b). Then σ is a lift of ρ and
σ ∈ Rτ (S). This completes the proof in this case.

Case S = S4 Let ρ ∈ Rτ (S), and ρ ∈ R(S) be a lift of ρ. We have
χρ = χρτ∗ if and only if there is a homomorphism ε ∈ Hom(π1(S), {±1}) such
that εχρ = χρτ∗ . As above, considering the action of τ yields ε(a) = ε(b) = ε(c).
If ε is trivial, then ρ ∈ Rτ (S). Otherwise, the character of the lift σ defined
by σ(a) = ρ(a), σ(b) = ρ(b) and σ(c) = −ρ(c) is invariant under τ .

Now consider S = G2 . It follows from Theorem 5.1 in [4] that X(G2) has two
topological components with the property that every representation in one of
the components lifts to SL2(C), and every representation in the other does not.
We only have to consider the latter component since R(G2) = Rτ (G2).

Assume that ρ is a PSL2(C)–representation of G2 with representative matri-
ces A,B,C,D for the generators a, b, c, d, such that [A,B][C,D] = −E . Then
ρ does not lift to SL2(C). Now assume that ρ ∈ Rτ (S), and define a rep-
resentation ρ ∈ R(F4) by ρ(α) = A, ρ(β) = B , ρ(γ) = C and ρ(δ) = D .
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By assumption, there is ε ∈ Hom(F4, {±1}) such that εχρ = χρτ , where ρτ is
defined by

ρτ(α) = A−1, ρτ(γ) = (B−1CD)C−1(B−1CD)−1,

ρτ(β) = AB−1A−1, ρτ(δ) = (B−1C)D−1(B−1C)−1.

Then ε(a) trA = ε(a) tr ρ(α) = tr ρτ(α) = trA−1 forces ε(a) = 1. We similarly
obtain 1 = ε(b) = ε(c) = ε(d). But then ε = id, and we have

tr(AD) =ε(αδ) tr ρ(αδ) = tr ρτ(αδ)

= tr(A−1(B−1CD−1C−1B)) | by definition of ρτ

= tr(A) tr(D)− tr(AB−1CD−1C−1B) | by trX−1Y = trX trY − trXY

= tr(A) tr ρ(D) + tr(AB−1D−1ABA−1) | by [A,B][C,D] = −E
= tr(A) tr(D) + tr(D−1A)

= tr(AD) + 2 tr(D−1A) | by trX−1Y = trX trY − trXY .

Thus, tr(AD−1) = 0, and therefore (tr ρ(ad−1))2 = 0. The other stated trace
identities follow similarly. This completes the proof of the lemma.

If ρ ∈ Rτ (S) is an irreducible representation, then there exists an element
X ∈ PSL2(C), such that ρ = X

−1
ρτX . The centraliser of an element Y

in PSL2(C) is the quotient of its centraliser in SL2(C) unless (trY )2 = 0.
Thus, if Γ is a finitely generated group, then the centraliser of an irreducible
representation ρ ∈ R(Γ) is trivial if (tr ρ(γi))2 6= 0 for all generators γi of Γ.
Let F2 be the free group in two elements 〈α, β〉. We have X(F2) ∼= C3 , and the
map X(F2) → C3 given by χρ → ((tr ρ(α))2, (tr ρ(β))2, (tr ρ(αβ))2) is a 2 : 1
covering map.

Lemma 8 Consider the above two–to–one parameterisation of the PSL2(C)–
character variety of F2 = 〈α, β〉 by the points ((tr ρα)2, (tr ρβ)2, (tr ραβ)2) in
C3 . Then the set of irreducible representations with non–trivial centraliser is
contained in the union of the three coordinate axes.

Proof Assume that ρ is an irreducible representation of F2 with non–trivial
centraliser in PSL2(C). According to the above discussion at least one of
(tr ρα)2 or (tr ρβ)2 is equal to zero. Assume that (tr ρα)2 = 0. Direct calcula-
tion shows that the centraliser of ρ(F2) is non–trivial if and only if (tr ρβ)2 = 0
or (tr ραβ)2 = 0. If both are equal to zero, then the image of ρ is a Kleinian
four group in PSL2(C) and equal to its centraliser, and if one of the traces is
not equal to zero, then the centraliser has order equal to two.
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It follows that if (S, τ) is a mutation surface and Rτ (S) contains an irreducible
representation with trivial centraliser, then the set of reducible representations
and the set of irreducible representations with non–trivial centraliser are con-
tained in subvarieties of positive codimension. In particular:

Lemma 9 Let (S, τ) be a symmetric surface. The set of reducible repre-
sentations in Rτ (S) and the set of representations in Rτ (S) with non–trivial
centralisers are contained in a finite union of subvarieties, each of which has
codimension one. Moreover, this property is preserved under t.

Proof The subvariety of reducible representations has codimension one since
the proof of Lemma 6 (Lemma 2.1.3 in [9]) applies again. The set of irreducible
representations with non–trivial centralisers are contained in a union of sub-
varieties each of which is defined by stating that two coordinates are equal to
zero. Each of these subvarieties is easily observed to have codimension at least
one in Rτ (S) for each of the symmetric surfaces.

We can now define M(M) to be the union of the irreducible components of
Xτ (M) which contain the character of an S–irreducible representation such
that the image of im(π1(S)→ π1(M)) has trivial centraliser.

2.3 Extension lemma

Let A be a finitely generated group and ϕ : A1 → A2 be an isomorphism
between finitely generated subgroups of A. Define

Rϕ(A) := {ρ ∈ R(A) | χρ|A1 = χρϕ|A1},

and t(Rϕ(A)) = Xϕ(A). Let Γ = 〈A, k | k−1ak = ϕ(a)∀a ∈ A1〉 be a HNN–
extension of A. Assume that ρ ∈ Rϕ(A) has the property that ρ|A1 is irre-
ducible with trivial centraliser. Then there exists a unique ρ′ ∈ R(Γ) such
that ρ′|A = ρ: the assignment ρ′(k) is the unique element of PSL2(C) which
conjugates ρ to ρϕ.

Lemma 10 Let Γ and Xϕ(A) be as defined above. Let V be an irreducible
component of X(Γ) containing the character of a representation which restricted
to A1 is irreducible and has trivial centraliser. Then the restriction map r :
X(Γ)→ Xϕ(A) is a birational equivalence between V and r(V ).
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Proof The restriction map is a polynomial map, and hence W := r(V ) is
an irreducible component of Xϕ(A). If follows from Lemma 8, Lemma 4.1
of [1] and the fact that irreducible representations with the same character
are equivalent, that the above construction of PSL2(C)–representations of Γ
from PSL2(C)–representations of A is a well–defined 1–1 correspondence of
PSL2(C)–characters in V and W apart from a subvariety of codimension at
least one. Thus, r has degree one and is therefore a birational isomorphism
onto its image.

2.4 Proofs of the main results

Proof of Proposition 2 The following construction is taken from [2]. Given
a separating mutation surface (S, τ), we obtain a decomposition

π1(M) ∼= π1(M−) ?π1(S) π1(M+).

The varieties R(M) and R(M τ ) can be viewed as a subsets of R(M−)×R(M+),
and the inclusion map is the restriction to the respective subgroups. Let ρ ∈
Rτ (M) be an S–irreducible representation. Since ρ−τ is equivalent to ρ−
on π1(S), there is an element X ∈ SL2(C) such that ρ− = X−1ρ−τX on
π1(S), and X is defined up to sign. We can now define a representation ρτ

of M τ as follows: Let ρτ+ = ρ+ on π1(M+) and ρτ− = X−1ρ−τX on π1(M−).
Then ρτ = (ρτ−, ρ+) ∈ R(M τ ) is well defined, since both definitions agree on
the amalgamating subgroup, and the map ρ→ ρτ only depends upon the inner
automorphism induced by X . Both ρ and ρτ are irreducible and ρτ ∈ Rτ (M τ ).
It is shown in [9] that this construction yields an isomorphism µ : M(M) →
M(M τ ) defined everywhere apart from the subvariety Fi(M) of characters of
irreducible representations which are reducible on π1(S). Moreover, it is shown
on pages 567-568 of [9] that µ is a birational equivalence between irreducible
components (since they contain a S–irreducible character).

Proof of Proposition 1 Assume that S is separating. The previous con-
struction of representations also works for projective representations with triv-
ial centraliser, and the argument in the above mentioned proof goes through if
one uses Lemma 4.1 of [1] instead of Proposition 1.1.1 of [3].

Thus, let S be a non–separating mutation surface. The boundary of M − S
contains two copies S+ and S− of S . Let A = im(π1(M − S) → π1(M)),
A1 = im(π1(S+) → π1(M)) ≤ A and A2 = im(π1(S−) → π1(M)) ≤ A. Then
π1(M) is an HNN–extension of A by some k ∈ π1(M) across A1 and A2 :

π1(M) = 〈A, k | k−1A1k = A2〉.
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The action of k is determined by the gluing map S+ → S− , and the mutation
changes the gluing map by τ . We thus obtain a presentation of π1(M τ ):

π1(M τ ) = 〈A, k | k−1τ(A1)k = A2〉.

Let ρ be a PSL2(C)–representation of M . Note that ρ(k) is only deter-
mined up to the centraliser of ρ(A1). Assume that ρ is tentatively mutable
and ρ(A1) is irreducible and has trivial centraliser. Then ρ(k) is uniquely de-
termined by ρ(A1) and the gluing map. Furthermore, ρ(a) is conjugate to
ρτ(a) via some uniquely determined X ∈ PSL2(C) for all a ∈ A1 . It follows
that ρ(k)−1ρ(a1)ρ(k) = ρ(a2) is equivalent to ρ(k)−1X−1ρτ(a1)Xρ(k) = ρ(a2).
Define a representation ρτ ∈ R(M τ ) by ρτ (a) := ρ(a) for all a ∈ A, and
ρτ (k) = Xρ(k). Denote the corresponding map by µ. Since we can define an
inverse map, we have a natural 1–1 correspondence of A1 –irreducible represen-
tations (with non–trivial centraliser on A1 ) in Rτ (M) and Rτ (M τ ). Moreover,
this map is well–defined for equivalence classes of representations, and hence
for the corresponding characters in M(M) and M(M τ ).

Let C be an irreducible component of M(M), i.e. a component of Xτ (M) which
contains the character of a S–irreducible PSL2(C)–representation such that
the image of π1(S) has trivial centraliser. By definition, the restriction maps
r : M(M) → Xϕ(A) and rτ : M(M τ ) → Xϕτ (A) have range in a subvariety
of Xϕ(A) ∩ Xϕτ (A). The construction of µ gives r(χ) = rτ (µχ), whenever
applicable. Since µ is defined on a dense subset of C , Lemma 10 implies that
it is the composition (rτ )−1 ◦ r .

Proof of Corollary 4 Assume that M is a finite volume hyperbolic 3–
manifold and S is a separating symmetric surface and either T2 or G2 . If
X0(M) ⊆ Xτ (M), then X0(M) ⊆ Xτ (M), since q(X0) = X0 and Lemma 7
applies. The two boundary components of any separating incompressible T2

have to lie on the same boundary component of M , hence Lemma 6 implies
that Xτ (M) = X(M). Since ρ0 is torsion free and S–irreducible, both X0(M)
and X0(M) satisfy the hypotheses of Propositions 1 and 2 (where applicable).
It follows from [5] that the birational equivalence takes the complete represen-
tation of M to the complete representation of M τ , and hence it restricts to a
birational equivalence between the two Dehn surgery components.

Proof of Corollary 5 Since S = T1 or S = G2 , we have X0(M) ⊆ Xτ (M)
and X0(M τ ) ⊆ Xτ (M τ ). The same arguments as in the proof of Corollary 4
now yield the conclusion.
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Remark The proofs of Propositions 1 and 2 show that we have birational
equivalences µ : M(M) → M(M τ ) and µ : M(M) → M(M τ ). Since every
knot group abelianises to ZZ, this in particular implies:

Proposition 11 Let k and kτ be Conway mutant knots. If every component
of X(k) and X(kτ ) which contains the character of an irreducible representation
contains the character of a S–irreducible representation, then X(k) and X(kτ )
are birationally equivalent.

3 Surfaces and ideal points

We build on the construction by Culler and Shalen [7, 1] to give a method to
determine whether a connected essential surface is associated to an ideal point.
This method is then applied to two pairs of mutative manifolds in conjunction
with the respective birational equivalences.

3.1 Surface associated to the action

Let M be an orientable, irreducible 3–manifold, and assume that Tv is Serre’s
tree associated to an ideal point ξ of a curve C in X(M) or X(M). A surface
associated to the action of π1(M) on Tv is defined by Culler and Shalen using
a construction due to Stallings. If the given manifold is not compact, replace it
by a compact core. Choose a triangulation of M and give the universal cover
M̃ the induced triangulation. One can then construct a simplicial, π1(M)–
equivariant map f from M̃ to Tv . The inverse image of midpoints of edges is
a surface in M̃ which descends to a non–empty, 2–sided surface S in M . The
map f is changed by a homotopy (if necessary) so that S is incompressible and
has no boundary parallel or sphere components. We then say that S is essential.
The associated surface S depends upon the choice of triangulation of M and
the choice of the map f . An associated surface often contains finitely many
parallel copies of one of its components. They are somewhat redundant, and
we implicitly discard them, whilst we still call the resulting surface associated.

3.2 Surface detected by an ideal point

We now describe associated surfaces satisfying certain non–triviality conditions.
An essential surface S in M gives rise to a graph of groups decomposition of
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π1(M). Let t1, ..., tk be the generators of the fundamental group of the graph
of groups arising from HNN –extensions. Let M1, ...,Mm be the components
of M − S , let TS be the dual tree to S̃ in M̃ and GS be the dual graph to
S in M . For each component Mi of M − S , fix a representative Γi of the
conjugacy class of im(π1(Mi) → π1(M)) as follows. Let T ′ ⊂ TS be a tree of
representatives, i.e. a lift of a maximal tree in GS , and let {s1, . . ., sm} be the
vertices of T ′ , labelled such that si maps to Mi under the composite mapping
TS → GS →M . Then let Γi be the stabiliser of si .

Assume that S does not contain parallel copies of one of its components. Then
S is detected by an ideal point of the character variety with Serre tree Tv if

S1 every vertex stabiliser of the action on TS is included in a vertex stabiliser
of the action on Tv ,

S2 every edge stabiliser of the action on TS is included in an edge stabiliser
of the action on Tv ,

S3 if Mi and Mj , where i 6= j , are identified along a component of S ,
then there are elements γi ∈ Γi and γj ∈ Γj such that γiγj acts as a
loxodromic on Tv ,

S4 each of the generators ti can be chosen to act as a loxodromic on Tv .

Lemma 12 Let M be an orientable, irreducible 3–manifold. An essential
surface S in M which is detected by an ideal point ξ of a curve C in X(M) is
associated to the action of π1(M) on the Serre tree Tv .

Proof Choose a sufficiently fine triangulation of M such that the 0–skeleton
of the triangulation is disjoint from S , and such that the intersection of any edge
in the triangulation with S consists of at most one point. Give M̃ the induced
triangulation. We may assume that the retraction M̃ → TS is simplicial, and
we now define a map TS → Tv .

The vertices {s1, . . ., sm} of the tree of representatives are a complete set of orbit
representatives for the action of π1(M) on the 0–skeleton of TS . Condition S3
implies that we may choose vertices {v1, . . ., vm} of Tv such that vi is stabilised
by Γi , and if Mi 6= Mj , then vi 6= vj . Define a map f0 between the 0–skeleta
of TS and Tv as follows. Let f0(si) = vi . For each other vertex s of TS there
exists γ ∈ π1(M) such that γsi = s for some i. Then let f0(s) = γf0(si). We
thus obtain a π1(M)–equivariant map from T 0

S → T 0
v , which extends uniquely

to a map f1 : TS → Tv , since the image of each edge is determined by the
images of its endpoints. Since vi 6= vj for i 6= j , and since each tk acts as a
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loxodromic on Tv , the image of each edge of TS is a path of length greater or
equal to one in Tv .

If f1 is not simplicial, then there is a subdivison of TS giving a tree TS′ and a
π1(M)–equivariant, simplicial map f : TS′ → Tv . There is a surface S′ in M
which is obtained from S by adding parallel copies of components such that
TS′ is the dual tree of S̃′ .

As before, choose a sufficiently fine triangulation of M such that the 0–skeleton
of the triangulation is disjoint from S′ , and such that the intersection of any
edge in the triangulation with S′ consists of at most one point, and give M̃
the induced triangulation. The composite map M̃ → TS′ → Tv is π1(M)–
equivariant and simplicial, and the inverse image of midpoints of edges descends
to the surface S′ in M . Thus, S′ is associated to the action of π1(M) on Tv .

We now wish to decide whether a given essential surface S in M is detected
by an ideal point of a curve in X(M). Denote the components of M − S by
M1, . . .,Mm . If S is detected by an ideal point, then the limiting character
restricted to each Mi is finite. There is a natural map from X(M) to X(M1)×
. . .×X(Mm) by restricting to the respective subgroups. Splittings along S which
are detected by ideal points of curves in X(M) correspond to points (χ1, . . ., χm)
in the cartesian product satisfying the following necessary conditions:

C1 χi ∈ X(Mi) is finite for each i = 1, . . .,m.
C2 For each component of S , let ϕ : S+ → S− be the gluing map between

its two copies arising from the splitting, and assume that S+ ⊂ ∂Mi

and S− ⊂ ∂Mj , where i and j are not necessarily distinct. Denote the
homomorphism induced by ϕ on fundamental group by ϕ∗ . Then for
each γ ∈ im(π1(S+)→ π1(Mi)), χi(γ) = χj(ϕ∗γ).

C3 For each i = 1, . . .,m, the restriction of χi to any component of S in
∂Mi is reducible.

C4 There is an ideal point ξ of a curve C in X(M) and a connected open
neighbourhood U of ξ on C such that the image of U under the map
to the cartesian product contains an open neighbourhood of (χ1, . . ., χm)
on a curve in X(M1)× . . .× X(Mm), but not (χ1, . . ., χm) itself.

The first condition implies that im(π1(Mi)→ π1(M)) is contained in a vertex
stabiliser for each i = 1, . . .,m. The second defines a subvariety of the cartesian
product containing the image of X(M) under the restriction map. Condition
C3 must be satisfied since it is shown in [7] that the limiting representation
of every component of an associated surface is reducible. The last condition
implies that the action of π1(M) on Serre’s tree is non–trivial.
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Lemma 13 Let S be a connected essential surface in an orientable, irreducible
3-manifold M . Then S is associated to an ideal point of the character variety
of M if and only if there are points in the cartesian product of the character
varieties of the components of M − S satisfying conditions C1–C4.

Proof We need to show that the conditions are sufficient. Assume that S is
non–separating. Let A = im(π1(M − S)→ π1(M)), and denote the subgroups
of A corresponding to the two copies of S in ∂(M − S) by A1 and A2 . Then
π1(M) is an HNN–extension of A by some t ∈ π1(M) across A1 and A2 . We
may assume that t−1A1t = A2 .

Let ξ be the ideal point provided by C4, and denote Serre’s tree associated to
ξ by Tv . C1 implies that the subgroup A stabilises a vertex Λ of Tv , and hence
condition S1 is satisfied.

Note that A is finitely generated. Condition C4 yields that the action of π1(M)
on Tv is non–trivial, and Corollary 2 in Section I.6.5 of [6] implies that either
t is loxodromic with respect to the action on Tv or there is a ∈ A such that ta
or at is loxodromic. In the first case, we keep A1 and A2 as they are; in the
second case, we replace t by ta and A2 by a−1A2a; and in the third case, we
replace t by at and A1 by aA1a

−1 . Thus, t satisfies condition S4.

Since A stabilises Λ, t−1At stabilises t−1Λ, and since t acts as a loxodromic,
we have t−1Λ 6= Λ. In particular, A2 fixes these two distinct vertices, and
hence the path [Λ, t−1Λ] pointwise, which implies that it is contained in an
edge stabiliser. Thus, condition S2 is satisfied, and the lemma is proven in the
case where S is connected, essential and non–separating, since condition S3
does not apply.

The proof for the separating case is similar, and will therefore be omitted.

The conditions are not sufficient when S has more than one component, since
condition C4 does not rule out the possibility that the limiting character is
finite on all components of M − S′ for a proper subsurface S′ of S .

3.3 The Kinoshita–Terasaka knot

Let M and M τ denote the complements of the Kinoshita–Terasaka knot and its
Conway mutant respectively, and S the corresponding Conway sphere. In [9],
the S–reducible–non–abelian representations in R(M) and R(M τ ) are com-
puted up to conjugacy, and a comparison thereof leads to the conclusion that
a closed essential surface in M is associated to an ideal point of X(M).
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Lemma 13 together with the calculations in [9] implies that the Conway sphere
as well as any surface obtained by joining boundary components of the sphere
with annuli is a surface associated to the ideal points of X(M) at which the
holes in the eigenvalue variety occur. Two detected genus two surfaces and
their involutions are shown in Figures 3(a) and 3(b) in [9].

3.4 The figure eight knot

The complement M of the figure eight knot k in S3 is a once–punctured torus
bundle with fibre a Seifert surface of the knot. Mutation along this surface
results in the so–called sister manifold. The mutation is detected by the first
homology group, but also by the SL2(C)–Dehn surgery components. We verify
that the PSL2(C)–Dehn surgery components are birationally equivalent, and
use the mutation map to show that the fibres in both manifolds are detected
by ideal points. This method may have non–trivial applications.
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Figure 2: Mutation along the Seifert surface

A Seifert surface T1 is shown in Figure 2. A base point and generators are
chosen such that τ(a) = a−1 , τ(b) = ab−1a−1 , and we compute the presentation
Γ = 〈t, a, b | t−1at = aba, t−1bt = ba〉 for π1(M). The action of t corresponds
to the isomorphism Φ induced by the monodromy of the fibre bundle. The
isomorphism for the mutative manifold M τ is Φτ (a) := τ(Φ(a)) = b−1a−2 and
Φτ (b) := τ(Φ(b)) = ab−1a−2 , which yields a presentation Γτ for π1(M τ ). Both
presentations can be simplified to:

Γ = 〈t, a | t−1a−1t−1ata−2ta = 1〉 and Γτ = 〈t, a | t−1ata2tat−1a = 1〉.
Note that H1(M) ∼= ZZ and H1(M τ ) ∼= ZZ5 ⊕ ZZ. Let x = tr ρ(t) and y =
tr ρ(a). A computation reveals Xr(M) = {(x, y) ∈ C2 | 0 = (2 − y)} and
Xr(M τ ) = {(x, y) ∈ C2 | 0 = (2− y)(1− y − y2)}.
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It turns out that the character varieties have only one component containing
the character of an irreducible representation:

X0(M) = {(x, y) ∈ C2 | 0 = 1− y − y2 + (−1 + y)x2},
X0(M τ ) = {(x, y) ∈ C2 | 0 = 1 + (−1 + y)x2}.

The curve X0(M) has no singularities and no singularities at infinity. Its smooth
projective completion is therefore a torus. The curve X0(M τ ) is rational, and
a smooth projective model is hence a sphere.

Each PSL2(C)–representation lifts to SL2(C) for each example, and the quo-
tient map is given by q(x, y) = (x2, y). Thus:

X(M) = {(X, y) ∈ C2 | 0 = (2− y)(1− y − y2 + (−1 + y)X)}
X(M τ ) = {(X, y) ∈ C2 | 0 = (2− y)(1− y − y2)(1 + (−1 + y)X)}

The rational maps between the Dehn surgery components induced by mutation
show that X0(M) and X0(M τ ) are in fact homeomorphic:

µ : X0(M)→ X0(M τ ) (X, y)→
( 1

1− y , y
)
,

µ−1 : X0(M τ )→ X0(M) (X, y)→
(1− y − y2

1− y , y
)
.

The surfaces detected by the Dehn surgery components do not include the fibre,
but one can recover curves of reducible representations as follows. There are
only three points on each of the projective Dehn surgery components on which
µ and µ−1 are not defined a priori, and they correspond to the intersection with
{(2−y)(1−y−y2) = 0}. The corresponding representations of M and M τ are
T1–abelian and satisfy τ(ρ(γ)) = ρ(γ)−1 . For each we can find a 1–parameter
family of elements in PSL2(C) which realise the action of τ . Consider the
following lift to SL2(C) of an irreducible PSL2(C)–representation of M :

ρ(t) =
(
i 1
0 i−1

)
and ρ(a) =

(
u 0

i(u−1 − u) u−1

)
subject to 0 = 1 + u + u2 + u3 + u4 . These are dihedral representations, and
they are abelian on the fibre. Elements realising the involution are:

H(z) =
(

iz z
z − z−1 i−1z

)
for any z ∈ C− {0},

and we obtain the following representations ρz ∈ R(M τ ):

ρz(t) = H(z)ρ(t) =
(

−z 0
i(z − z−1) −z−1

)
and ρz(a) = ρ(a).
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These representations are abelian. The construction yields a map C − {0} →
X(M τ ), which is non–constant since (tr ρz(t))2 = (z + z−1)2 , and the image is
a curve in X(M τ ). At an ideal point of this curve, the conditions of Lemma 13
are satisfied with respect to the fibre in M τ . One can do a similar construction
for the other points in X

i(M) ∩ F(M).

Using characters in X
i(M τ )∩F(M τ ), one only obtains a curve in X(M) for the

point corresponding to the intersection with {y = 2}, whilst the points in the
intersection with {1 = y + y2} yield a map C→ X(M) which is constant.
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