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Abstract Let Bn(RP 2) (respectively Pn(RP 2)) denote the braid group
(respectively pure braid group) on n strings of the real projective plane
RP 2 . In this paper we study these braid groups, in particular the associated
pure braid group short exact sequence of Fadell and Neuwirth, their torsion
elements and the roots of the ‘full twist’ braid. Our main results may be
summarised as follows: first, the pure braid group short exact sequence
1 −→ Pm−n(RP 2 \ {x1, . . . , xn}) −→ Pm(RP 2) −→ Pn(RP 2) −→ 1 does
not split if m ≥ 4 and n = 2, 3. Now let n ≥ 2. Then in Bn(RP 2), there is
a k -torsion element if and only if k divides either 4n or 4(n− 1). Finally,
the full twist braid has a kth root if and only if k divides either 2n or
2(n − 1).
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1 Introduction

Braid groups of the plane E 2 were defined by Artin in 1925 [A1], and further
studied in [A2, A3]. They were later generalised using the following definition
due to Fox [FoN]. Let M be a compact, connected surface, and let n ∈ N. We
denote the set of all ordered n-tuples of distinct points of M , known as the nth

configuration space of M , by:

Fn(M) = {(p1, . . . , pn) | pi ∈ M and pi 6= pj if i 6= j}.

The configuration spaces Fn(M) play an important rôle in several branches of
mathematics and have been extensively studied, see [CG] for example.

The symmetric group Sn on n letters acts freely on Fn(M) by permuting
coordinates. The corresponding quotient will be denoted by Dn(M). Notice
that Fn(M) is a regular covering of Dn(M). The nth pure braid group Pn(M)
(respectively the nth braid group Bn(M)) is defined to be the fundamental
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group of Fn(M) (respectively of Dn(M)). If m > n are positive integers,
then we may define a homomorphism p∗ : Pm(M) −→ Pn(M) induced by the
projection p : Fm(M) −→ Fn(M) defined by p((x1, . . . , xm)) = (x1, . . . , xn).
Representing Pm(M) geometrically as a collection of m strings, p∗ corresponds
to forgetting the last (m − n) strings.

We adopt the convention that, unless explicitly stated, all homomorphisms

Pm(M) −→ Pn(M) in the text will be this one.

If M is without boundary, Fadell and Neuwirth study the map p, and show
[FaN, Theorem 3] that it is a locally trivial fibration. The fibre over a point
(x1, . . . , xn) of the base space is Fm−n(M \ {x1, . . . , xn}) which we consider to
be a subspace of the total space via the map i : Fm−n(M \ {x1, . . . , xn}) −→
Fm(M) defined by i((y1, . . . , ym−n)) = (x1, . . . , xn, y1, . . . , ym−n). Applying the
associated long exact homotopy sequence, we obtain the generalised pure braid

group short exact sequence of Fadell and Neuwirth:

1 −→ Pm−n(M \ {x1, . . . , xn})
i∗−→ Pm(M)

p∗
−→ Pn(M) −→ 1, (PBS)

where n ≥ 3 if M = S2 [Fa, FVB], n ≥ 2 if M = RP 2 [VB], and n ≥ 1
otherwise [FaN], and where i∗ and p∗ are the homomorphisms induced by the
maps i and p respectively. The sequence also exists in the case where M is the
2-disc D 2 .

This short exact sequence has been widely studied, notably in recent work in
relation to the structure of the mapping class groups [PR]. An interesting ques-
tion is that of whether the sequence (PBS) splits. If M is a K(π, 1) then the
existence of a section for p∗ is equivalent to that of a cross-section for the fibra-
tion. In [A2], Artin showed that if M = D 2 then the sequence (PBS) splits for
all n ∈ N. He used this result to solve the word problem in Bn(D 2) by showing
that Pn(D 2) may be expressed as a repeated semi-direct product of free groups.
Since then, the splitting problem has been studied for other surfaces besides
the plane. In the case M = S2 , it was known that there exists a section on
the geometric level for all n ≥ 3 [Fa]. If M is the 2-torus then for all n ≥ 1,
Birman exhibits an explicit algebraic section for the sequence (PBS) [Bi]. How-
ever, for compact orientable surfaces without boundary of genus g ≥ 2, she
poses the question of whether the short exact sequence (PBS) splits. The
authors of this paper have recently resolved this question, the answer being
positive if and only if n = 1 [GG1]. We will treat the case of non-orientable
surfaces of genus at least two in a forthcoming paper [GG3].

In this paper we shall study the braid groups of RP 2 , in particular the splitting
of the sequence (PBS), and the existence of a section for the fibration p.
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These groups were first studied by Van Buskirk [VB], and more recently by
Wang [Wa]. Van Buskirk showed that P1(RP 2) = B1(RP 2) ∼= Z2 , P2(RP 2)
is isomorphic to the quaternion group Q8 , B2(RP 2) is a dicyclic group of
order 16, and for n > 2, Pn(RP 2) and Bn(RP 2) are infinite. He also proved
that these groups have elements of finite order (including one of order 2n),
such elements later being characterised by Murasugi [M]. With respect to the
splitting problem, Van Buskirk showed that for n ≥ 2, neither the fibration
p : Fn(RP 2) −→ F1(RP 2) nor the homomorphism p∗ : Pn(RP 2) −→ P1(RP 2)
admit a cross-section, but that the fibration p : F3(RP 2) −→ F2(RP 2) admits
a cross-section (and hence so does the corresponding homomorphism). In order
to understand better the configuration space Fn(RP 2), n ∈ N, in Proposition 6
we determine the homotopy type of its universal covering space. From this, we
may deduce its ith homotopy groups, i ≥ 2 (see Section 2):

Proposition 1 Let n ∈ N, and let i ≥ 2.

(1) If n = 1 then πi(F1(RP 2)) ∼= πi(S
2).

(2) If n ≥ 2 then πi(Fn(RP 2)) ∼= πi(S
3).

We then show that for m ≥ 4 and n = 2, 3, neither the fibration nor the short
exact sequence (PBS) admit a section. More precisely:

Theorem 2 Let m ≥ 4. Then:

(1) the fibration p : Fm(RP 2) −→ F2(RP 2) does not admit a cross-section;

(2) the fibration p : Fm(RP 2) −→ F3(RP 2) does not admit a cross-section.

Theorem 3 For n = 2, 3 and for all m ≥ 4, the Fadell-Neuwirth pure braid
group short exact sequence :

1 −→ Pm−n(RP 2 \ {x1, . . . , xn})
i∗−→ Pm(RP 2)

p∗
−→ Pn(RP 2) −→ 1

does not split.

Also in Section 2, we give an explicit algebraic section in the case m = 3 and
n = 2, which we use in Section 3 to study further the structure of P3(RP 2),
notably its subgroups abstractly isomorphic to P2(RP 2).

Let D 2 ⊆ RP 2 be a topological disc. This inclusion induces a (non-injective)
homomorphism ι : Bn(D 2) −→ Bn(RP 2). Let σ1, . . . , σn−1 be a standard set
of generators of Bn(D 2), and let:

∆n = (σ1 · · · σn−1)
n, (1)
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be the full twist braid of Bn(D 2). By convention, we set ∆1 = 1. The braid
ι(∆n) which for n ≥ 2 is of order 2 and generates the centre Z(Bn(RP 2)) of
Bn(RP 2) [VB], shall also be denoted by ∆n , and will be called the full twist

of Bn(RP 2). If k ∈ N, then we shall say that α ∈ Bn(M) is a kth root of

∆n if αk = ∆n and αj 6= ∆n for all 1 ≤ j < k . As we previously mentioned,
the torsion elements of Bn(RP 2), as well as the roots of the full twist were
characterised by Murasugi. However, in both cases, the orders of the elements
are not completely clear, even for Pn(RP 2). In Section 3, we study the torsion
as well as the roots of ∆n in Pn(RP 2) using methods different to those of
Murasugi, and prove that for all n ≥ 2 the torsion of Pn(RP 2) is precisely 2
and 4 (see Corollary 19). In Section 4, we do the same for Bn(RP 2):

Theorem 4 Let n ≥ 2. Then Bn(RP 2) has an element of order ℓ if and only
if ℓ divides either 4n or 4(n − 1).

From Proposition 23 (see also Section 4), ∆n is the unique element of Bn(RP 2)
of order 2. It thus follows that:

Theorem 5 Let n ≥ 2. Then the full twist ∆n has a kth root in Bn(RP 2) if
and only if k divides either 2n or 2(n − 1).

Acknowledgements This work began during the visit of the second author to
the Departmento de Matemática do IME-Universidade de São Paulo during the
period 7th July – 3rd August 2002. The visit was supported by the international
Cooperation Capes/Cofecub project number 364/01.

2 The splitting problem for RP 2

In this section, we recall, reformulate and generalise some results obtained
in [Fa, VB] concerning the configuration spaces Fn(RP 2) of the projective
plane. If n ≥ 2, we show that the universal covering of the configuration spaces
Fn(RP 2) has the homotopy type of the 3-sphere S3 . We then prove that if

n ≥ 2, the problem of finding a cross-section for the fibrations Fm(RP 2)
p

−→
Fn(RP 2) introduced in Section 1 is equivalent to that of the splitting of the cor-
responding pure braid group short exact sequence. Finally, we prove Theorems 2
and 3, that is, if n = 2, 3 and m ≥ 4 then the fibration Fm(RP 2)

p
−→ Fn(RP 2)

does not admit a cross-section, with a similar conclusion for the splitting of the
short exact sequence (PBS).
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2.1 The configuration spaces Fn(RP 2) and a description of their

homotopy groups

We first determine the homotopy type of the universal covering of the config-
uration spaces Fn(RP 2) and discuss their fundamental groups. Partial results
in this direction were obtained in [Fa, VB].

Proposition 6

(1) Let m > n ≥ 2. Then for each i > 1, the projection p : Fm(RP 2) −→
Fn(RP 2) onto the first n coordinates induces an isomorphism of the cor-
responding ith homotopy groups.

(2) For n = 1, the universal covering of Fn(RP 2) is the sphere S2 . The
fundamental group of F1(RP 2) is Z2 .

(3) For n = 2, the fundamental group of Fn(RP 2) is isomorphic to the
quaternion group Q8 of order 8.

(4) For n ≥ 3, the fundamental group of Fn(RP 2) is infinite.

(5) For n ≥ 2, the homotopy type of the universal covering of Fn(RP 2) is
that of the 3-sphere S3 .

(6) The orbit space arising from the standard action of Q8 on S3 has the
same homotopy type as F2(RP 2).

Notice that Proposition 6 implies Proposition 1.

Proof of Proposition 6 To prove part (1), let m > n ≥ 2. For i > 1,
consider the long exact sequence in homotopy associated to the (locally trivial)
fibration p : Fm(RP 2) −→ Fn(RP 2) given by p((x1, . . . , xm)) = (x1, . . . , xn):

· · · −→ πi(F ) −→ πi(Fm(RP 2)) −→ πi(Fn(RP 2)) −→ πi−1(F ) −→ · · ·

· · · −→ π2(F ) −→ π2(Fm(RP 2)) −→ π2(Fn(RP 2)) −→ π1(F ) −→ · · ·

where F = Fm−n(RP 2 \{x1, . . . , xn}) is the fibre over (x1, . . . , xn) ∈ Fn(RP 2).
Since F is an aspherical space [FaN], and π2(Fq(RP 2)) = 0 for all q ≥ 2 [VB],
it follows that p induces an isomorphism of πi(Fm(RP 2)) onto πi(Fn(RP 2)).

part (2) is clear, since F1(RP 2) = RP 2 , and parts (3) and (4) follow from [VB].

Before proving part (5), let us recall the following general facts. For m ≥ 1,
Fm(RP 2) is a 2m-dimensional smooth manifold [CJ], and so there exists a CW-
complex Km (of dimension less than or equal to 2m) whose homotopy type is
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that of Fm(RP 2) [Hi]. Let K̃m (respectively ˜Fm(RP 2)) denote the universal

covering of Km (respectively Fm(RP 2)). Then K̃m is also a CW-complex

whose homotopy type is that of ˜Fm(RP 2) [Hi].

To prove part (5), we first prove the statement for n = 2. Let

{
S2−→RP 2

v 7−→[v]

denote the usual covering map which identifies antipodal points. Consider the

map

{
ϕ : V3,2 −→F2(RP 2)

(e1, e2) 7−→([e1], [e2])
where V3,2 is the Stiefel manifold of orthogonal

2-frames in Euclidean 3-space. Then ϕ : V3,2 −→ ϕ(V3,2) is a covering map
with discrete fibre consisting of 4 points, and so V3,2 and ϕ(V3,2) have the
same homotopy type. Further, ϕ(V3,2) is a deformation retract of F2(RP 2);
indeed, if ([v1], [v2]) ∈ F2(RP 2) then one may obtain an element of ϕ(V3,2)
by deforming the second vector v2 within the plane containing v1 and v2 to
a vector v′2 orthogonal to v1 . Although v′2 is not unique in V3,2 , its image in
RP 2 is, and this gives rise to a (well-defined) deformation retract of F2(RP 2)
onto ϕ(V3,2). It follows that V3,2 and F2(RP 2) have the same homotopy type.
So their universal covers do too, and the result follows from the fact that V3,2

is homeomorphic to RP 3 whose universal covering is S3 .

Now suppose that n ≥ 3. Consider the fibration p : Fn(RP 2) −→ F2(RP 2). By
part (1), p induces an isomorphism of the ith homotopy groups of Fn(RP 2) and
F2(RP 2) for i ≥ 2. Composing p appropriately with homotopy equivalences
between Kn and Fn(RP 2), and K2 and F2(RP 2), it follows that there exists a
map Kn −→ K2 which induces an isomorphism of their ith homotopy groups
for i ≥ 2, and thus a map K̃n −→ K̃2 which induces an isomorphism of their
ith homotopy groups for i ≥ 2. From Whitehead’s theorem, we see that K̃n

and K̃2 are homotopy equivalent [Wh2]. Since K̃n and ˜Fn(RP 2) (respectively

K̃2 and ˜F2(RP 2)) have the same homotopy type, then so do ˜Fn(RP 2) and
˜F2(RP 2), and this completes the proof of part (5).

Finally, for part (6), consider the proof of part (5) in the case n = 2. The
covering map ϕ : V3,2 −→ ϕ(V3,2) is induced by the natural free action of Z2⊕Z2

on V3,2 given as follows: if εi ∈ {±1} for i = 1, 2 then (ε1, ε2) · (e1, e2) =
(ε1e1, ε2e2). Recall that S3 may be considered as the topological group of
quaternions of unit modulus. One may consider the quotient of S3 arising from
the standard action of Q8 in two stages: first quotient S3 by the centre Z2

of Q8 to obtain RP 3 which is homeomorphic to V3,2 , then quotient V3,2 by
Q8/Z2

∼= Z2 ⊕ Z2 . We saw above that this quotient has the same homotopy
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type as F2(RP 2), and this completes the proof of part (6) and thus that of the
proposition.

2.2 Generalities on the splitting problem

We now consider the problem of determining a cross-section to the fibration
Fm(RP 2)

p
−→ Fn(RP 2) defined in Section 1. If n ≥ 2 then this problem

is equivalent to showing that the corresponding pure braid group short exact
sequence splits:

Proposition 7 Let m > n ≥ 2. Then the fibration p : Fm(RP 2) −→ Fn(RP 2)
admits a cross-section if and only if the corresponding pure braid group short
exact sequence

1 −→ Pm−n(RP 2 \ {x1, . . . , xn}) −→ Pm(RP 2)
p∗
−→ Pn(RP 2) −→ 1

splits.

Proof The ‘only if’ part is clear. For the ‘if part’, the existence of the given
short exact sequence and its splitting imply that we can find a section over
the 1-skeleton, and then over the 2-skeleton of Fn(RP 2) [Ba, Theorem 4.3.1].
From [Wh1], the obstructions to extending the map over the q -skeleta, q ≥ 3,
lie in cohomology classes whose coefficients belong to the (q − 1)th homotopy
group of the fibre Fm−n(RP 2 \ {x1, . . . , xn}). But this fibre is an Eilenberg-
MacLane space. Hence we can extend to a section over the entire space, and
the result follows.

The cases not covered by Proposition 7 may be resolved as follows:

Proposition 8

(1) Let m ≥ 2. Then the surjective group homomorphism p∗ : Pm(RP 2) −→
P1(RP 2) does not admit a section.

(2) Let m ≥ 2. Then the fibration p : Fm(RP 2) −→ F1(RP 2) does not admit
a cross-section.

Proof (1) We first note that by the commutativity of the following diagram,

Pm(RP 2) −−−−→ P1(RP 2)
y

∥∥∥

P2(RP 2) −−−−→ P1(RP 2)
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the existence of a section for Pm(RP 2) −→ P1(RP 2) implies that there
exists a section for P2(RP 2) −→ P1(RP 2) (cf [GG1, Proposition 3]),
and hence it suffices to suppose that m = 2. To see that P2(RP 2) −→
P1(RP 2) does not admit a section, notice that P2(RP 2) ∼= Q8 has only
one element of order 2, the full twist ∆2 . But this element is sent to the
trivial element of P1(RP 2) ∼= Z2 under the projection onto P1(RP 2), and
so there is no section.

(2) If there were to exist a cross-section for Fm(RP 2) −→ F1(RP 2) then
there would exist a section for Pm(RP 2) −→ P1(RP 2), which contradicts
part (1).

Remark 9 The fact that the fibration given in part (2) of Proposition 8 does
not admit a cross-section also follows from the fact that RP 2 has the fixed
point property (see also [VB]).

2.3 The splitting problem for n ∈ {2, 3}, and the structure of

P3(RP 2)

This problem of the existence of a cross-section for the fibrations Fm(M) −→
Fn(M) was considered by Fadell and Neuwirth during the 1960’s [Fa, FaN]. The
case M = RP 2 was later studied by Van Buskirk who constructed an explicit
cross-section when m = 3 and n = 2 [VB]. He posed the question of the
characterisation of the values of m and n for which there exists a cross-section.
As far as we know, if m ≥ 4 and n ≥ 2, the question is still completely open.

We first consider the case m = 3 and n = 2 of Van Buskirk, and construct an
explicit splitting of the corresponding pure braid group short exact sequence.
This will be useful later on when we study P3(RP 2) in more detail. We show
that for m > 3 and n = 2, 3, the pure braid group short exact sequence does
not split. We obtain this result by showing that for m > 3, the fibration
Fm(RP 2) −→ F2(RP 2) does not admit a cross-section.

The cross-section σ : F2(RP 2) −→ F3(RP 2) defined by Van Buskirk to the
fibration F3(RP 2) −→ F2(RP 2) is given by σ([v1], [v2]) = ([v1], [v2], [v1

∧
v2]),

where
∧

is the vector product (cf the proof of part (5) of Proposition 6). Hence
the following short exact sequence splits:

1 −→ π1(RP 2 \ {x1, x2}) −→ P3(RP 2)
p∗
−→ P2(RP 2) −→ 1, (2)

where p is induced by the projection F3(RP 2) −→ F2(RP 2) onto the last
two coordinates. Since the kernel is isomorphic to F2 , the free group on two
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generators, it follows that P3(RP 2) is isomorphic to the semi-direct product of
F2 with Q8 .

If n ∈ N, a generating set for Pn(RP 2) = π1(Fn(RP 2), (x1, . . . , xn)) may be
obtained as follows. By removing a disc from RP 2 , one obtains a disc with
a twisted band attached. For 1 ≤ i ≤ n, let ρi be a braid represented by
the loop based at the point xi which goes round the band, while the other
points xj , j 6= i, stay fixed. Let D 2 ⊆ RP 2 be a topological disc which
contains {x1, . . . , xn}. This inclusion induces a (non-injective) homomorphism
Bn(D 2) −→ Bn(RP 2). Let σ1, . . . , σn−1 ∈ Bn(RP 2) be the images of the usual
Artin generators of Bn(D 2) under this homomorphism. For 1 ≤ j < k ≤ n, set
Bj,k = σk−1 · · · σj+1σ

2
j σ

−1
j+1 · · · σ

−1
k−1 ∈ Pn(RP 2). Then the union of the ρi and

Bj,k generates Pn(RP 2) (cf [VB, S]).

From equation (2), we may obtain a presentation of P3(RP 2), using the fact
that it is an extension [J]. It has generators {ρ1, ρ2, ρ3, B2,3} where {ρ1, ρ2} are
(coset representatives of) generators of the quotient P2(RP 2), and {ρ3, B2,3}
generates the kernel. A set of relations is given by:

ρ1B2,3ρ
−1
1 = B2,3 ρ2B2,3ρ

−1
2 = ρ−1

3 B−1
2,3ρ3

ρ−1
1 B2,3ρ1 = B2,3 ρ−1

2 B2,3ρ2 = B−1
2,3ρ3B2,3ρ

−1
3 B2,3

ρ1ρ3ρ
−1
1 = ρ−1

3 B2,3 ρ2ρ3ρ
−1
2 = ρ−1

3 B−1
2,3ρ

2
3

ρ−1
1 ρ3ρ1 = B2,3ρ

−1
3 ρ−1

2 ρ3ρ2 = B−1
2,3ρ3

ρ1ρ2ρ1ρ
−1
2 = B−1

2,3ρ2
3 ρ−2

1 ρ2
2 = B2,3ρ

−2
3 B2,3.





(3)

This presentation was obtained using the following useful relations:

ρ2
1 = B1,2B1,3, ρ2

2 = B1,2B2,3, ρ2
3 = B1,3B2,3,

and the presentation
〈
ρ1, ρ2

∣∣ ρ2
1 = ρ2

2, ρ2ρ1ρ
−1
2 = ρ−1

1

〉
of B2(RP 2).

Now we will define an algebraic section. It will be also be used in the following
section to study properties of the torsion elements of P3(RP 2).

Proposition 10 The function s : {ρ1, ρ2} −→ P3(RP 2) defined by s(ρ1) =
ρ1ρ3 and s(ρ2) = ρ3ρ2 extends to a homomorphism s : P2(RP 2) −→ P3(RP 2),
and gives a splitting of the short exact sequence (2).

Proof The set {ρ1, ρ2} generates the group P2(RP 2). One may check that
s(ρ2

1) = s(ρ2
2) and s(ρ2ρ1ρ

−1
2 ) = s(ρ−1

1 ). Since P2(RP 2) ∼= Q8 , this implies that
s is a homomorphism which composed with the homomorphism p∗ of the short
exact sequence (2) gives the identity.
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Corollary 11 The representation φ : Q8 −→ Aut(F2) induced by the section
s of Proposition 10 is given by φ(ρ1) = χ1 , φ(ρ2) = χ2 , and φ(ρ1ρ2) = χ3 ,
where:

χ1(x) = y χ1(y) = x,

χ2(x) = y−1 χ2(y) = x−1,

χ3(x) = x−1 χ3(y) = y−1,

and where x = ρ3 and y = ρ−1
3 B2,3 form a basis of F2 .

Proof From above, we know that {ρ−1
3 , B2,3} is a basis of F2 . The homomor-

phism s induces a representation φ of Q8 in the group of automorphisms of
F2 . For i = 1, 2, let χi denote the automorphism φ(ρi). Then we obtain:

χ1(ρ3) = ρ−1
3 B2,3, χ1(B2,3) = ρ−1

3 B2,3ρ3, χ2(ρ3) = B−1
2,3ρ3, χ2(B2,3) = B−1

2,3 .

Consider the basis x = ρ3 , y = ρ−1
3 B2,3 of F2 . With respect to {x, y}, the

automorphisms χ1 , χ2 and χ3 = χ2 ◦ χ1 are as given in the statement of the
corollary.

As a preliminary step to proving Theorem 2, let us show that P4(RP 2)
p∗
−→

P2(RP 2) does not split.

Proposition 12 Let f1, f2 : F2(RP 2) −→ RP 2 be a pair of coincidence-free
maps such that the induced homomorphism f1∗ : P2(RP 2) −→ P1(RP 2) is
surjective. Then f2∗ : P2(RP 2) −→ P1(RP 2) is also surjective, and f1∗ 6= f2∗

ie, the induced homomorphisms on the fundamental group are different and
both non trivial.

Proof Consider the map

{
(f1, f2) : F2(RP 2) −→ RP 2 × RP 2

w 7−→ (f1(w), f2(w)).
If (f1, f2) is

coincidence free (or can be deformed to a coincidence-free pair) then there is
a factorisation via F2(RP 2) = RP 2 × RP 2 \ ∆, where ∆ is the diagonal, and
so there exists a homomorphism φ : P2(RP 2) −→ P2(RP 2) which makes the
following diagram commute:

P2(RP 2)

g∗��
P2(RP 2)

φ
44iiiiiiiii

(f1,f2)∗
// π1(RP 2) × π1(RP 2),
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where g∗ is the homomorphism induced by the inclusion g : F2(RP 2) −֒→
RP 2 × RP 2 . Identifying π1(RP 2 × RP 2) with Z2 + Z2 in the obvious way, let
ρ1, ρ2 be generators of P2(RP 2) such that g∗(ρ1) = (1, 0) and g∗(ρ2) = (0, 1).
Let us first show that f2∗ cannot be the trivial homomorphism. Suppose on
the contrary that f2∗ = 0. If a ∈ P2(RP 2) then there exist i ∈ {0, 1, 2, 3}
and j ∈ {0, 1} such that φ(a) = ρi

1ρ
j
2 . Since g∗ ◦ φ = (f1, f2)∗ , it follows that

j = 0. Now f1∗ is surjective, so there exist b ∈ {ρ1, ρ2} and ε ∈ {±1} such
that φ(b) = ρε

1 . Hence P2(RP 2)/Ker(φ) ∼= Z4 . But P2(RP 2) ∼= Q8 of which
the only quotient of order 4 is Z2 +Z2 – a contradiction. Since P1(RP 2) ∼= Z2 ,
we conclude that f2∗ is surjective.

Suppose now that f1∗ = f2∗ . Let a ∈ P2(RP 2). Then there exist i ∈ {0, 1, 2, 3}
and j ∈ {0, 1} such that φ(a) = ρi

1ρ
j
2 . Since g∗ ◦ φ = (f1, f2)∗ , it follows

that i ≡ j mod 2. Now f1∗ is surjective, so there exist b ∈ {ρ1, ρ2} and
ε ∈ {±1} such that φ(b) = ρε

1ρ2 . By an argument similar to that of the
previous paragraph, we obtain a contradiction, whence f1∗ 6= f2∗ .

We are now able to prove the main results of this section.

Proof of Theorem 2(1) As in the proof of part (2) of Proposition 8, it
suffices to show that there is no section for m = 4. Suppose on the con-
trary that such a section exists. Then there exists a map ξ : F2(RP 2) −→
F4(RP 2) of the form ξ(x1, x2) = (x1, x2, f1(x1, x2), f2(x1, x2)). For i = 1, 2, let
pi : F2(RP 2) −→ RP 2 denote the map pi(x1, x2) = xi . Then the four maps
f1, f2, p1, p2 : F2(RP 2) −→ RP 2 are pairwise coincidence free, and so by Propo-
sition 12, the induced homomorphisms are all surjective and pairwise distinct.
But, since P2(RP 2) ∼= Q8 and P1(RP 2) ∼= Z2 , it follows that there are only
three surjective homomorphisms P2(RP 2) −→ P1(RP 2). We thus obtain a
contradiction, and the result follows.

Proof of Theorem 3 First let n = 2. By Proposition 7, if this sequence were
to split then there would exist a cross-section to the given fibration. But this
would contradict Theorem 2(1).

Now let n = 3. Consider the following commutative diagram:

Pm(RP 2) −−−−→ P3(RP 2)
∥∥∥

y

Pm(RP 2) −−−−→ P2(RP 2).
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Since the right-hand vertical arrow admits a section, if there were to exist a
section for Pm(RP 2) −→ P3(RP 2) then there would also exist a section for
Pm(RP 2) −→ P2(RP 2) which contradicts the previous paragraph.

Proof of Theorem 2(2) The result follows from Proposition 7 and Theo-
rem 3. This also completes the proof of Theorem 2.

3 Torsion elements and roots of the full twist in

Pn(RP 2)

Let ∆n denote the full twist braid of Bn(RP 2) as defined in equation (1).
In [M], Murasugi gave a characterisation of the torsion elements of Bn(RP 2)
and the quotient of Bn(RP 2) by its centre 〈∆n〉. However, the orders of the
elements are not clear, even in the case of Pn(RP 2). In this section, we study
the torsion and the roots of ∆n in Pn(RP 2) with methods different to those of
Murasugi. Using the pure braid group short exact sequence, we first show that
the possible torsion of Pn(RP 2) is 2 or 4. We then go on to prove that ∆n is
the unique element of Pn(RP 2) of order 2, and that for all n ≥ 2, Pn(RP 2)
possesses elements of order 4. It will follow that the full twist possesses kth

roots in Pn(RP 2), k ≥ 2, if and only if k = 2. Finally, using the semi-direct
product decomposition given in Proposition 10, we study in more detail the
torsion elements of P3(RP 2).

We first observe that the possible torsion of Pn(RP 2) is either 2 or 4.

Lemma 13 Let 1 −→ K −→ G
f

−→ H −→ 1 be a short exact sequence of
groups such that K is torsion free. If x ∈ G is a torsion element of order l ,
then the element f(x) of H has also order l .

Proof Let x ∈ G be a torsion element of order l . Therefore f(x)l = 1, and
the order k of f(x) divides l . Consider xk . It belongs to Ker(f) = K , and

(xk)
l

k = 1. Since K is torsion free, it follows that xk = 1, and we conclude
that k = l .

Corollary 14 Let n ∈ N. Then the possible (non-trivial) torsion of Pn(RP 2)
is 2 or 4.
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Proof Since P1(RP 2) ∼= Z2 and P2(RP 2) ∼= Q8 , the result follows if n ∈
{1, 2}. If n ≥ 3, consider the following pure braid group short exact sequence:

1 −→ Pn−2(RP 2 \ {x1, x2}) −→ Pn(RP 2)
p∗
−→ P2(RP 2) −→ 1.

Now Fn−2(RP 2\{x1, x2}) is a finite-dimensional Eilenberg-MacLane space, and
so by a theorem of P. Smith, Pn−2(RP 2 \ {x1, x2}) is torsion free [FaN]. The
result follows from Lemma 13.

Proposition 15 Let n ≥ 2. Then the full twist ∆n is the unique element of
Pn(RP 2) of order 2 in Pn(RP 2). In particular, the square of any element of
Pn(RP 2) of order 4 is the full twist.

Proof The proof of the first part is by induction. The result is true for n = 2,
since P2(RP 2) ∼= Q8 , and the unique element of order 2 of this group is the full
twist. Suppose that the result is true for some n ≥ 2. Consider the following
short exact sequence:

1 −→ F −→ Pn+1(RP 2)
p∗
−→ Pn(RP 2) −→ 1,

where F = π1(RP 2\{x1, . . . , xn}) is torsion free. If α ∈ Pn+1(RP 2) is of order 2
then p∗(α) ∈ Pn(RP 2) is also of order 2 by Lemma 13, and so p∗(α) = ∆n by
the induction hypothesis. Since p∗(∆n+1) = ∆n , it follows that α = ∆n+1 ·
w , where w ∈ F . Then 1 = α2 = ∆2

n+1 · w2 = w2 since ∆n+1 generates
Z(Pn+1(RP 2)) and is of order 2 [VB, M]. But F is torsion free, thus w = 1,
and so ∆n+1 is the unique element of Pn+1(RP 2) of order 2. The fact that
the square of any element of Pn(RP 2) of order 4 is the full twist then follows
easily.

Since P2(RP 2) has an element of order 4, it follows from Proposition 10 that

P3(RP 2) does too. In spite of the fact that Pn(RP 2)
p∗
−→ P2(RP 2) does not

admit a section, we will show that Pn(RP 2) contains elements of order 4 for
all n ≥ 2. We first recall a presentation of Bn(RP 2).

Proposition 16 (Van Buskirk [VB]) The following constitutes a presentation
of the group Bn(RP 2):

Generators
σ1, . . . , σn−1, ρ1, . . . , ρn.
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Relations
σiσj = σjσi if |i − j| ≥ 2,

σiσi+1σi = σi+1σiσi+1 for 1 ≤ i ≤ n − 2,

σiρj = ρjσi for j 6= i, i + 1,

ρi+1 = σ−1
i ρiσ

−1
i for 1 ≤ i ≤ n − 1,

ρ−1
i+1ρ

−1
i ρi+1ρi = σ2

i for 1 ≤ i ≤ n − 1,

ρ2
1 = σ1σ2 · · · σn−2σ

2
n−1σn−2 · · · σ2σ1.

We warn the reader that the ρi of Proposition 16 are slightly different from the
ρi defined in Section 2.3. From this presentation, if 2 ≤ j ≤ n, we obtain the
relation

ρj = σ−1
j−1 · · · σ

−1
1 ρ1σ

−1
1 · · · σ−1

j−1. (4)

Notice also that Bi,j+1 = σjBi,jσ
−1
j for all 1 ≤ i < j ≤ n − 1.

Lemma 17 Let 1 ≤ i < j ≤ n. Then ρjρi = ρiρjBi,j .

Proof Let 1 ≤ i ≤ n−1. The proof is by induction on j−i. Suppose first that
j − i = 1. Then ρi+1ρi = ρiρi+1σ

2
i = ρiρi+1Bi,i+1 by Proposition 16. Suppose

now that the given equation holds for i and j satisfying 1 ≤ i < j ≤ n− 1 and
1 ≤ j − i ≤ n − 2. Applying Proposition 16, we have:

ρj+1ρi = σ−1
j ρjσ

−1
j ρi = σ−1

j ρjρiσ
−1
j = σ−1

j ρiρjBi,jσ
−1
j

= ρiσ
−1
j ρjσ

−1
j σjBi,jσ

−1
j = ρiρj+1Bi,j+1,

which proves the lemma.

Proposition 18 Let n ∈ N. In Bn(RP 2), (ρn−1 · · · ρ1)
2 = ∆n .

Proof If n = 1 then both sides are trivial, and the result is true. So let
n ≥ 2. Let us first show that (ρn−1 · · · ρ1)

2 is central in Bn(RP 2). From
Proposition 16, it suffices to prove that it commutes with each member of the
generating set {σ1, . . . , σn−1, ρn}. By Lemma 17 we have that σiρi+1ρiσ

−1
i =

σiρiρi+1σi = σ2
i · σ−1

i ρiσ
−1
i · σiρi+1σi = σ2

i ρi+1ρi . Applying Proposition 16, we
obtain:

σi(ρn−1 · · · ρ1)σ
−1
i = ρn−1 · · · ρi+2σiρi+1ρiσ

−1
i ρi−1 · · · ρ1 = σ2

i (ρn−1 · · · ρ1).

Hence:

σi(ρn−1 · · · ρ1) = (ρn−1 · · · ρ1)σ
−1
i . (5)
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and so σi commutes with (ρn−1 · · · ρ1)
2 . Now let us show that ρn commutes

with (ρn−1 · · · ρ1)
2 . Set w = B1,n · · ·Bn−2,nBn−1,n . Using Lemma 17 and

Proposition 16, we see that

(ρ−1
1 · · · ρ−1

n−1)ρn(ρn−1 · · · ρ1) = (ρ−1
1 · · · ρ−1

n−2)ρn(ρn−2 · · · ρ1)Bn−1,n

= (ρ−1
1 · · · ρ−1

n−3)ρn(ρn−3 · · · ρ1)Bn−2,nBn−1,n

= ρnw. (6)

The relation w = σn−1 · · · σ2σ
2
1σ2 · · · σn−1 holds in Bn(RP 2) since it holds in

Bn(D 2). Thus (ρ−1
1 · · · ρ−1

n−1)w(ρn−1 · · · ρ1) = w−1 using equation (5), and so
from equation (6), we obtain

(ρ−1
1 · · · ρ−1

n−1)
2ρn(ρn−1 · · · ρ1)

2 = (ρ−1
1 · · · ρ−1

n−1)ρnw(ρn−1 · · · ρ1)

= ρnww−1 = ρn,

which shows that ρn commutes with (ρn−1 · · · ρ1)
2 .

Hence (ρn−1 · · · ρ1)
2 belongs to Z(Bn(RP 2)), which is the cyclic subgroup of or-

der 2 generated by ∆n . Suppose that (ρn−1 · · · ρ1)
2 = 1. Clearly, ρn−1 · · · ρ1 6=

1 (since under the projection Pn(RP 2) −→ P1(RP 2), ρn−1 · · · ρ1 is sent to
ρ1 ). So ρn−1 · · · ρ1 is an element of Pn(RP 2) of order 2. By Proposition 15,
it follows that ρn−1 · · · ρ1 = ∆n . But this cannot be so, because ∆n is cen-
tral in Bn(RP 2), while by equation (5), ρn−1 · · · ρ1 is not. We conclude that
(ρn−1 · · · ρ1)

2 = ∆n .

Since by Proposition 18 the element ρn−1 · · · ρ1 is of order 4, the characterisa-
tion of the torsion of Pn(RP 2) thus follows from Corollary 14:

Corollary 19 Let n ≥ 2. Then the (non-trivial) torsion of Pn(RP 2) is pre-
cisely 2 and 4.

We have a result analogous to that of Proposition 18 for ρn · · · ρ1 :

Proposition 20 Let n ∈ N. In Bn(RP 2), (ρn · · · ρ1)
2 = ∆n .

Proof If n = 1 then ρ2
1 = ∆1 = 1. So suppose that n ≥ 2. First, using

Proposition 16 and the definition of w given in the proof of Proposition 18, we
see that

ρ2
n = σ−1

n−1 · · · σ
−1
1 ρ1σ

−1
1 · · · σ−1

n−1 · σ
−1
n−1 · · · σ

−1
1 ρ1σ

−1
1 · · · σ−1

n−1

= σ−1
n−1 · · · σ

−2
1 · · · σ−1

n−1 = w−1. (7)
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By Proposition 16 and Lemma 17, we observe that:

(ρn · · · ρ1)
2 = ρnρn−1 · · · ρ1ρn−1ρnρn−2 · · · ρ1Bn−1,n

= ρn(ρn−1 · · · ρ1)
2ρnw = ρn∆nρnw = ∆nρ2

nw = ∆n,

using equation (7) and the fact that ∆n is central. The result follows.

Now we go on to study P3(RP 2) in more detail, using the fact that it is a
semi-direct product. Since P2(RP 2) ∼= Q8 , P2(RP 2) has 6 elements of order 4
which make up three distinct conjugacy classes. We will show that the same
happens in P3(RP 2).

Proposition 21 Let p∗ : P3(RP 2) −→ P2(RP 2) be the homomorphism in-
duced by the projection onto the first two coordinates. Then:

(1) p∗ sends the set of elements of P3(RP 2) of order 4 surjectively onto the
set of elements of P2(RP 2) of order 4;

(2) any two elements of P3(RP 2) of order 4 which project onto the same
element of P2(RP 2) are conjugate;

(3) the set of elements of P3(RP 2) of order 4 form three distinct conjugacy
classes;

(4) if H is a subgroup of P3(RP 2) abstractly isomorphic to Q8 , then p∗(H) ∼=
P2(RP 2). Further, any two such subgroups are conjugate.

Proof The proof of this proposition will rely on the results of Section 2, no-
tably the semi-direct product P3(RP 2) ∼= F2⋊P2(RP 2) given by Proposition 10,
and the corresponding representation φ : P2(RP 2) −→ Aut(F2) of Corollary 11.
If z ∈ P2(RP 2), let us write φ(z) = φz . In what follows we shall identify
P3(RP 2) with F2 ⋊ P2(RP 2), in particular, if (w, t) ∈ F2 ⋊ P2(RP 2) then
p∗((w, t)) = t ∈ P2(RP 2).

part (1) follows directly from the existence of the splitting. For part (2), suppose
that the element (w, t) ∈ F2⋊P2(RP 2) is of order 4. By part (1), t ∈ P2(RP 2) is
of order 4, and hence so is (1, t) ∈ F2 ⋊P2(RP 2). To prove the result, it suffices
to show that (w, t) and (1, t) are conjugate. From the explicit description of φ
given in Corollary 11, one sees that φt2 = IdF2 , and so:

(1, 1) = (w, t)4 = (wφt(w), t2)2 = (wφt(w)φt2(wφt(w)), t4) = ((wφt(w))2, 1).

Since F2 is torsion free and (wφt(w))2 = 1, it follows that wφt(w) = 1, and
so φt(w) = w−1 . Let us characterise such w ∈ F2 . Since φt2 = IdF2 for
all t ∈ P2(RP 2), we see that φt3 = φt , and so it suffices to suppose that
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t ∈ {ρ1, ρ2, ρ1ρ2}. Using the description of the associated automorphisms φt

given in Corollary 11, we see in each of the three possible cases that w is of the
(reduced) form w = w1w2 , where w2 = φt(w

−1
1 ). This implies that:

(w1, 1) ·(1, t) ·(w1, 1)
−1 = (w1, 1) ·(1, t) ·(w

−1
1 , 1) = (w1, 1) ·(φt(w

−1
1 ), t) = (w, t),

and part (2) follows. One may then check easily that if (1, t) and (1, t′) are
conjugate in F2 ⋊ P2(RP 2) then t and t′ are conjugate in P2(RP 2). Since
the set of elements of P2(RP 2) of order 4 splits into three conjugacy classes,
part (3) follows from parts (1) and (2).

For the first part of (4), since H is a torsion subgroup and the kernel of p∗
is torsion free, it follows that p∗|H : H −→ P2(RP 2) is injective, and thus
an isomorphism. For the second part, let K be the subgroup of P3(RP 2)
generated by s(ρ1) and s(ρ2), where s : P2(RP 2) −→ P3(RP 2) is the section
of Proposition 10, and let H be a subgroup of P3(RP 2) which is isomorphic to
Q8 . To prove the statement, it suffices to prove that H is conjugate to K . From
above, p∗(H) = P2(RP 2), so let b ∈ H be such that p∗(b) = ρ1 . By part (2),
there exists γ ∈ P3(RP 2) such that γbγ−1 = s(ρ1). Let H ′ = γHγ−1 . Then it
suffices to prove that H ′ = K . To do so, first notice that s(ρ1) ∈ H ′ ∩ K . Let
c ∈ H ′ be such that p∗(c) = ρ2 . Again by part (2), since p∗(s(ρ2)) = ρ2 , there
exists (w, t) ∈ F2 ⋊ P2(RP 2) such that:

c = (w, t) · (1, ρ2) · (w, t)−1 = (wφtρ
2
t−1(w−1), tρ2t

−1). (8)

We have once more identified P3(RP 2) with F2⋊P2(RP 2), in particular, s(ρi) =
(1, ρi) for i = 1, 2. By Corollary 11, we obtain φρ

2
= φρ−1

2

, and since tρ2t
−1 is

of the form ρ±1
2 , it follows that φtρ

2
t−1 = φρ

2
. From equation (8), we obtain:

c−1 = (wφρ
2
(w−1), ρ∓1

2 ). (9)

On the other hand, s(ρ1) · c · (s(ρ1))
−1 = c−1 in H ′ , so:

c−1 = (1, ρ1) · (wφρ
2
(w−1), ρ±1

2 ) · (1, ρ1)
−1 = (φρ

1
(wφρ

2
(w−1)), ρ∓1

2 ). (10)

Combining equations (9) and (10), we see that wφρ
2
(w−1) is a fixed element of

φρ
1
, but by Corollary 11, the only such element is the identity. So φρ

2
(w−1) =

w−1 , and similarly we conclude that w = 1. By equation (8), we see that
c = (1, ρ±1

2 ) = s(ρ±1
2 ), and since H ′ is generated by {c, s(ρ1)}, it follows that

H ′ = K as required.

Remark 22 For the case P3(RP 2), our results are compatible with those of
Murasugi [M]. His classification shows that the torsion elements of B3(RP 2)
are, up to powers and conjugacy, σ1σ2 (order 6), σ1σ2σ1 and ρ1σ2 (both of
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order 4), ρ2σ1 (order 8), and ρ3σ2σ1 (order 12). The torsion elements of
P3(RP 2) are, up to powers and conjugacy, ∆3 (order 2), ρ2ρ1 and ρ3ρ2ρ1 (both
of order 4). Then σ2(ρ2ρ1)

±1σ−1
2 = (ρ−1

3 ρ−1
2 ρ3ρ2ρ3ρ1)

±1 projects onto ρ±1
1 ,

(ρ3ρ2ρ1)
±1 projects onto (ρ2ρ1)

±1 , and the element σ1σ2(ρ2ρ1)
±1σ−1

2 σ−1
1 =

(ρ2
1ρ

−1
1 ρ−1

2 ρ1ρ2ρ3ρ
−1
2 ρ−1

1 ρ2ρ1ρ2)
±1 projects onto ρ∓1

2 .

4 Roots of the full twist and torsion elements in

Bn(RP 2)

In this section, we study the torsion of the group Bn(RP 2) for n ≥ 2. In [M],
Murasugi introduces elements A1(n, r, s, q) and A2(n, r, s, q) of Bn(RP 2), and
shows that if r > 0 then there are the relations mp = 2rk and mq = sk for
integers m 6= 0, and for these integers, we have A1(n, r, s, q)2rm = ∆n and
A2(n, r, s, q)4rm = 1. But the order of such elements is not given. We show
that the full twist ∆n is the unique element of order two in Bn(RP 2), and
then prove Theorem 4 which says that Bn(RP 2) has an element of order k
if and only if k divides either 4n or 4(n − 1). As a consequence, we obtain
Theorem 5, so that the full twist ∆n has a kth root if and only if k either
divides 2n or 2(n − 1). Our techniques are different to those of Murasugi, in
particular, we use the notion of intermediate coverings between Fn(RP 2) and
Dn(RP 2) introduced in [GG2].

Proposition 23 If n ≥ 2 then the full twist ∆n is the unique element of
Bn(RP 2) of order 2.

Proof Let π : Bn(RP 2) −→ Sn denote the natural epimorphism, and suppose
that α is an element of Bn(RP 2) of order 2 different from ∆n . So α /∈ Pn(RP 2)
by Proposition 15. It follows that the cycle decomposition of π(α) is a product
of a non-zero number of transpositions and a certain number (perhaps zero)
of cycles of length one. Let D2,n−2(RP 2) = Fn(RP 2)/S2 × Sn−2 be the inter-
mediate covering between Fn(RP 2) and Dn(RP 2) [GG2], and let B2,n−2(RP 2)
denote the corresponding subgroup of Bn(RP 2). Consider the homomorphism
ξ : B2,n−2(RP 2) −→ B2(RP 2) induced by the projection D2,n−2(RP 2) −→
D2(RP 2) onto the first two coordinates. By conjugating α if necessary, we
may suppose without loss of generality that α ∈ B2,n−2(RP 2), and that the
permutation of ξ(α) is a transposition. Since α is of order 2 then so is ξ(α).
But from [VB], the group B2(RP 2) is known to be the dicyclic group of or-
der 16 comprised of the identity, 10 elements of order 4, 4 elements of order 8
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and a single element of order 2 which is the full twist ∆2 . But this cannot be
the case because ∆2 ∈ P2(RP 2), so its permutation is trivial. We thus obtain
a contradiction, and this proves the result.

We now derive a necessary condition on the permutation associated with a
torsion element.

Lemma 24 (Fundamental Lemma) Let n ∈ N. Let α ∈ Bn(RP 2) \Pn(RP 2)
be a torsion element. If the permutation π(α) contains at least two cycles of
length one then α 6= ∆n but α2 = ∆n .

Proof Let α ∈ Bn(RP 2)\Pn(RP 2) (so n ≥ 2) be a torsion element of order k
such that the permutation π(α) contains at least two cycles of length one.
Since α /∈ Pn(RP 2), Proposition 15 implies that α 6= ∆n . Now ∆n belongs
to Z(Bn(RP 2)), so α would satisfy the equation α2 = ∆n if and only if its
conjugates did too. Conjugating α if necessary, we may thus assume without
loss of generality that α belongs to the subgroup B1,1,n−2(RP 2) of Bn(RP 2)
corresponding to the intermediate covering D1,1,n−2(RP 2) = Fn(RP 2)/S1×S1×
Sn−2 . Consider the homomorphism ξ : B1,1,n−2(RP 2) −→ P2(RP 2) induced
by the projection D1,1,n−2(RP 2) −→ F2(RP 2) onto the first two coordinates.
Now P2(RP 2) ∼= Q8 , thus (ξ(α))2 = ∆ε

2 , where ε ∈ {0, 1}. Since ∆n ∈
B1,1,n−2(RP 2) and ξ(∆n) = ∆2 , we have that α2 ·∆−ε

n ∈ Ker(ξ) = Bn−2(RP 2 \
{x1, x2}) which we know to be torsion free. But (α2 ·∆−ε

n )2k = 1 because ∆n is
central in Bn(RP 2). Hence α2 = ∆ε

n . If ε = 0 then α2 = 1 which since α 6= 1
implies that α = ∆n by Proposition 23. But we have already established that
this cannot be the case. Hence ε = 1, and thus α2 = ∆n as required.

Corollary 25 Let n ∈ N. If α is a torsion element of Bn(RP 2) then its order
divides 4n or 4(n − 1).

Proof Let ℓ denote the order of α. If α ∈ Pn(RP 2) then the result follows
from Proposition 15. So suppose that the cycle decomposition of π(α) contains
at least one cycle of length greater than or equal to two. Then there are three
possibilities:

(1) the non-trivial cycles in the cycle decomposition of π(α) are all of the
same length ℓ1 . Set ℓ0 = 1, and for i = 0, 1, let ki be the number of
cycles of length ℓi in the cycle decomposition of π(α). If k0 ≥ 2 then
it follows from the Fundamental Lemma that α2 = ∆n , and hence α is
of order 4 which divides 4n as required. So suppose that k0 ∈ {0, 1}.
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Then αℓ1 ∈ Pn(RP 2), and so by Corollary 14, either αℓ1 is the identity
element, and so α is of order ℓ, or αℓ1 is of order 2, and so α is of order
2ℓ, or else αℓ1 is of order 4, and so α is of order 4ℓ (we have used the
fact that αj /∈ Pn(RP 2) for all 1 ≤ j < ℓ). Since n = k0 + ℓ1k1 , we see
that ℓ1 divides n or n− 1, and so the order of α divides 4n or 4(n − 1)
as required.

(2) the non-trivial cycles in the cycle decomposition of π(α) are of two dif-
ferent lengths ℓ1, ℓ2 with 1 < ℓ1 < ℓ2 . Set ℓ0 = 1, and for i = 0, 1, 2,
let ki be the number of cycles of length ℓi in the cycle decomposition of
π(α). Applying the Fundamental Lemma to α, we see that k0 ∈ {0, 1}.
Consider the element αℓ1 ; it belongs to Bn(RP 2)\Pn(RP 2), and contains
at least two cycles of length one. Applying the Fundamental Lemma, it
follows that ℓ2 = 2ℓ1 , and α2ℓ1 = ∆n . Hence α is of order 4ℓ1 . Now
n = k0 + k1ℓ1 + k2ℓ2 = k0 + k1ℓ1 + 2k2ℓ1 , hence ℓ1 divides n or n − 1,
and thus the order 4ℓ1 of α divides 4n or 4(n − 1) as required.

(3) the cycle decomposition of π(α) contains cycles of at least three different
lengths ℓ1, ℓ2, ℓ3 with 1 < ℓ1 < ℓ2 < ℓ3 . Then αℓ1 is a torsion element
belonging to Bn(RP 2) \Pn(RP 2) containing at least two cycles of length
one. By the Fundamental Lemma, α2ℓ1 = ∆n , so the cycle decomposi-
tion of π(α) contains only transpositions and trivial cycles, but this is
impossible since ℓ1 < ℓ2 < ℓ3 .

Let n ≥ 2. We will show that there are elements in Bn(RP 2) of order 4n and
of order 4(n − 1). In Bn(RP 2), consider the following elements:

a = σ−1
n−1 · · · σ

−1
1 · ρ1

b = σ−1
n−2 · · · σ

−1
1 · ρ1.

}
(11)

Proposition 26 Let n ≥ 2. In Bn(RP 2), a is of order 4n and b is of order
4(n − 1).

Proof We start by proving that a2n = ∆n . As in Proposition 18, we shall do
this by showing that a2n is a non-trivial element of Bn(RP 2) that commutes
with each of the generators σ1, . . . , σn−1, ρ1 . We first establish two useful iden-
tities. Using Proposition 16 and equations (4) and (7), we have that:

σ−1
n−1 · · · σ

−1
1 ρ1σ1 · · · σn−1 = σ−1

n−1 · · · σ
−1
1 ρ1σ

−1
1 · · · σ−1

n−1σn−1 · · · σ2σ
2
1σ2 · · · σn−1

= ρn · ρ−2
n = ρ−1

n , (12)

and
σ1σ2 · · · σn−1ρ1σ

−1
n−1 · · · σ

−1
1 = σ1ρ1σ

−1
1 = σ2

1ρ2. (13)
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Using Proposition 16 and induction, we see that a−iσ1a
i = σi+1 for all 0 ≤ i ≤

n − 2. Further, writing a1 = σ−1
n−1 · · · σ

−1
1 , we see that

a−1σn−1a = ρ−1
1 σ1 · · · σn−2σn−1σn−1σ

−1
n−1σ

−1
n−2 · · · σ

−1
i ρ1,

and applying the braid relations, it follows that a−1σn−1a = ρ−1
1 a1σ1a

−1
1 ρ1 .

From this, we obtain a−1(a−1σn−1a)a = (a−1ρ−1
1 a1a)σ2(a

−1ρ−1
1 a1a)−1 . Equa-

tions (12) and (13) yield:

a−1ρ−1
1 a1a = ρ−1

1 σ1 · · · σn−1ρ
−1
1 σ−1

n−1 · · · σ
−1
1 σ−1

n−1 · · · σ
−1
1 ρ1

= ρ−1
1 ρ−1

2 σ−2
1 ρ−1

n σ−1
n−1 · · · σ

−1
1 .

Since σ−1
n−1 · · · σ

−1
1 σ2σ1 · · · σn−1 = σ1 , we obtain

a−2σn−1a
2 = ρ−1

1 · ρ−1
2 σ−2

1 · ρ−1
n σ−1

n−1 · · · σ
−1
1 · σ2 · σ1 · · · σn−1ρnσ2

1ρ2ρ1

= ρ−1
1 ρ−1

2 σ1ρ2ρ1.

Finally, by equation (5), we see that

a−1(a−1σn−1a)a = ρ−1
1 ρ−1

2 σ1ρ2ρ1 = ρ−1
1 · · · ρ−1

n σ1ρn · · · ρ1 = σ−1
1 .

Thus the conjugates of σ1 by successive powers of a−1 are:

σ1, . . . , σn−1, a
−1σn−1a, σ−1

1 , . . . , σ−1
n−1, a

−1σ−1
n−1a,

and then σ1 after 2n conjugations. In particular, a−2nσia
2n = σi for all 1 ≤

i ≤ n − 1, and so a2n commutes with σi .

Now consider the successive conjugates of ρ1 by a−1 . Using Proposition 16 and
induction, we see that a−iρ1a

i = ρi+1 for all 0 ≤ i ≤ n − 1. By equations (4)
and (7), we have that

ρn = σ−1
n−1 · · · σ

−1
1 ρ1σ

−1
1 · · · σ−1

n−1 = aρ1a
−1ρ2

n.

It follows from this that a−1ρna = ρ−1
1 , and hence that the successive conjugates

of ρ1 by a−1 are ρ1, . . . ρn, ρ−1
1 , . . . , ρ−1

n and then ρ1 . So a−2nρ1a
2n = ρ1 , and

with the conclusion of the previous paragraph, we see that a2n is central in
Bn(RP 2).

Suppose that a2n = 1. Since the permutation associated with a is an n-cycle,
it follows that a is of order n or 2n, and so an is central. If a is of order n this
is obvious, while if a is of order 2n, we have that (an)2 = 1, and so an = ∆n by
Proposition 15. But a−nσ1a

n = σ−1
1 from above, which yields a contradiction.

Since Z(Bn(RP 2)) is generated by the full twist ∆n of order 2, we deduce that
a2n = ∆n , and since n divides the order of a, it follows that a is of order 4n.
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Now let us show that b2(n−1) = ∆n . Notice first that b = σn−1a. By induction,
we see that for all 1 ≤ j ≤ n − 1, bj = ajσ−1

j−1 · · · σ
−1
1 · a−1σn−1a. Indeed if the

result is true for 1 ≤ j ≤ n− 2 then using the conclusion of the first paragraph
of this proof, we see that

bj+1 = ajσ−1
j−1 · · · σ

−1
1 · a−1σn−1a · σn−1a

= aj+1a−1σ−1
j−1 · · · σ

−1
1 · aa−2σn−1a

2 · a−1σn−1a

= aj+1σ−1
j · · · σ−1

1 a−1σn−1a.

Hence

b2(n−1) = (an−1σ−1
n−2 · · · σ

−1
1 a−1σn−1a)2

= a2n−(n+1)(σ−1
n−2 · · · σ

−1
1 a−1σn−1a)an+1−2(σ−1

n−2 · · · σ
−1
1 a−1σn−1a)aa−1

= ∆nσn−1 · · · σ1a
−1σ−1

n−1 · · · σ
−1
1 a−1

= ∆nσn−1 · · · σ1ρ
−2
1 σ1 · · · σn−1 = ∆n,

by Proposition 16. As for the case of a, to see that b is of order 4(n − 1), it
suffices to prove that bn−1 is not central. An easy induction argument shows
that b−iσ1b

i = σi+1 for 0 ≤ i ≤ n− 3. Further, a calculation analogous to that

above of a−2σn−1a
2 shows that b−2σn−1b

2 = σ−1
1 . So b−(n−1)σ1b

(n−1) = σ−1
1 ,

thus bn−1 is not central, and the proof of the proposition is complete.

This enables us to prove Theorem 4:

Proof of Theorem 4 To prove the ‘only if’ part, it suffices to consider an
appropriate power of one of the elements a and b, and to apply Proposition 26.
The ‘if’ part follows directly from Corollary 25.

Remark 27 It is possible (by an induction argument for example) to prove
that bn−1 = ρn−1 · · · ρ1 and an = ρn · · · ρ1 . Then the ‘only if’ part of Theorem 4
also follows from Propositions 18 and 20.

Finally, we are able to prove Theorem 5.

Proof of Theorem 5 To prove the ‘only if’ part, let α be a kth root of the full
twist. Then α is a torsion element of Bn(RP 2) of order 2k . By Theorem 4,
it follows that 2k divides either 4n or 4(n − 1), and the result follows. To
prove the ‘if part’, the element a (respectively, b) given in equation (11) has
the property that its 2nth (respectively, 2(n − 1)th ) power is of order 2, and
so is the full twist ∆n by Proposition 23. The result then follows by taking an
appropriate power of a or b.
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Remark 28 In the case n = 3, it follows from Remark 22 that our results in
this section are compatible with those of Murasugi.
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[GG3] DLGonçalves, JGuaschi, On the structure of pure braid groups for non-

orientable surfaces, in preparation.

[Hi] MW Hirsch, Differential topology, Graduate Texts in Mathematics 33,
Corrected reprint of the 1976 original, Springer-Verlag, New York, 1994.
MathReview

[J] DLJohnson, Presentation of groups, LMS Lecture Notes 22 (1976), Cam-
bridge University Press. MathReview

Algebraic & Geometric Topology, Volume 4 (2004)

http://www.ams.org/mathscinet-getitem?mr=0019087
http://www.ams.org/mathscinet-getitem?mr=0020989
http://www.ams.org/mathscinet-getitem?mr=0467748
http://www.ams.org/mathscinet-getitem?mr=0234447
http://www.ams.org/mathscinet-getitem?mr=1881013
http://www.ams.org/mathscinet-getitem?mr=1646248
http://www.ams.org/mathscinet-getitem?mr=0141127
http://www.ams.org/mathscinet-getitem?mr=0141126
http://www.ams.org/mathscinet-getitem?mr=0141128
http://www.ams.org/mathscinet-getitem?mr=0150755
http://www.ams.org/mathscinet-getitem?mr=1977999
http://www.ams.org/mathscinet-getitem?mr=1336822
http://www.ams.org/mathscinet-getitem?mr=0396763


780 Daciberg Lima Gonçalves and John Guaschi
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