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Abstract We show how an approach to Smith Theory about group actions
on CW{complexes using Bredon cohomology can be adapted to work for
algebraic varieties.
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1 Introduction

Peter May described in [8] a version of Smith Theory based on Bredon co-
homology, so it really applies to any complex of projective coe�cient systems
rather than just a topological space. Later Jeremy Rickard in [9] showed how
to associate a complex of p-permutation modules to a group action on a variety
in such a way that the cohomology of this complex is the �etale cohomology of
the variety. We show how to generalize this to obtain a complex of projective
coe�cient systems. Thus Smith Theory becomes available for algebraic vari-
eties, even over �elds of �nite characteristic. Our framework is also su�cient
to apply to varieties methods of Borel, Swan and others based on equivariant
cohomology, although we do not set out the details here.

2 Coe�cient systems

A coe�cient system L on a group G over a ring R is a functor from the right
orbit category of G to R-modules. In more concrete terms, it consists of a
collection of R-modules L(H), one for each subgroup H � G together with
R-linear restriction maps resHK : L(H) ! L(K) for each K � H � G and
conjugation maps cg;H : L(H)! L(gH) for each g 2 G and H � G.

These must satisfy the identities:
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122 Peter Symonds

(1) resHH = id; H � G;

(2) resKJ resHK = resHJ ; J � K � H � G;

(3) cg1;g2Hcg2;H = cg1g2;H ; H � G; g1; g2 2 G;

(4) res
gH
gK cg;H = cg;K resHK ; K � H � G; g 2 G;

(5) ch;H = id; H � G; h 2 H .

In particular, the conjugation maps make L(H) into a left RNG(H)=H -module.

A morphism f : L!M is a collection of R-linear maps f(H) : L(H)!M(H)
which commute with the res and c.

The coe�cient systems on G over R form an abelian category, which we denote
by CSR(G). If H � G there is a forgetful map ResGH : CSR(G)! CSR(H)

Examples (1) The constant coe�cient system �R , which is just R on each
evaluation and all the maps are the identity.

(2) The �xed point coe�cient system V ? , where V is a left RG-module and
the notation indicates that the evaluation on H � G is the �xed point
submodule V H . Restriction is inclusion and conjugation is multiplication
by g 2 G. These have the important property that HomCSR(G)(L; V ?) �=
HomRG(L(1); V ).

(3) A variation on V ? is V0 , which takes the value V on 1 and 0 elsewhere.

(4) The systems R[X?], where X is a left G-set and the evaluation at H is
the free R-module on the �xed point set XH .
The particular cases R[G=H?] have the important property

HomCSR(G)(R[G=H?]; L) �= L(H):

It follows that they are projective and that they provide enough projec-
tives. Thus every projective is a summand of a sum of these.

For more information on coe�cient systems see [10].

Given a set of coe�cient systems I it is convenient to de�ne add(I) to be the
full subcategory of CSR(G) in which the objects are isomorphic to a summand
of a coe�cient system of the form L1 � : : :� Ln; Li 2 I .

Thus the subcategory proj(CSR(G)) of �nitely generated projective coe�cient
systems is the same as add(fR[G=H?] : H � Gg).

If X is a G{CW{complex then there is a complex of coe�cient systems C[X?]
associated to it, in which Cn[X] = R[(Xn)?] where Xn is the G-set of n-cells
in X and the boundary morphisms are de�ned in the usual way.
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The Bredon cohomology of X with coe�cients in a coe�cient system L, as
de�ned in [3], is H�G(X;L) = H�(HomCSR(G)(C[X?]; L)).

Examples (1) H�G(X; (RG)?) �= H�(X;R), the usual CW{cohomology,

(2) H�G(X;RG) �= H�(XG; R), where RG takes the value R on G and 0
elsewhere.

(3) H�G(X; �R) �= H�(X=G;R),

(4) More generally we can regard H�? (X;R) as a coe�cient system itself
under the natural restriction and conjugation maps, and then we have
H�? (X; �R) �= H�(X=?; R).

The dual concept to that of a coe�cient system we term an e�cient system, in
which the restriction maps go in the opposite direction. E(H) is now a right
NG(H)-module, although we could remedy this by taking the contragredient
instead of the dual. The category of e�cient systems for G over R is denoted
by ESR(G).

If R is self-injective then applying HomR(−; R) provides a duality between the
subcategories taking values in �nitely generated modules.

The dual of R[G=H?] is denoted by R[G=H?]� . The evaluation on K � G can
be thought of as the functions on the �xed point set (G=H)K and the restriction
maps just restrict the functions. If R is self injective then R[G=H?]� is injective.

CSR(G) can also be viewed as the category of modules over an R-algebra
CR(G) of �nite rank over R, (cf. [2]). Similarly ESR(G) is equivalent to the
category of modules over another R-algebra ER(G).

3 Varieties

From now on k is an algebraically closed �eld and in this section X is a sepa-
rated scheme of �nite type over k .

Let A be a torsion Artin algebra and let F be a constructible sheaf of A-
modules over X . Let stalks(F) denote the set of stalks of F at the k -rational
points. This contains only a �nite number of isomorphism classes of A-modules.

Recall that RΓc(X;F) is a complex of A-modules, natural as an object of
the derived category D(A −Mod), whose homology is �etale cohomology with
compact supports H�c (X;F).

Our main tool will be the following result from [9]:
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Theorem 3.1 (Rickard) There is a complex of modules in add(stalks(F)) of
�nite type, which we denote by Ωc(X;F). It is well de�ned up to homotopy
equivalence. It has the following properties:

(1) Ωc(X;F) is isomorphic to RΓc(X;F) in D(A−Mod);

(2) F 7! Ωc(X;F) is a functor from constructible sheaves of A-modules over
X to Kb(A−mod);

(3) If f : Y ! X is a �nite morphism of separated schemes of �nite type
over k then there is an induced map Ωc(X;F)! Ωc(Y; f�F);

(4) If B is also a torsion Artin algebra and L is a functor add(stalks(F))!
B −mod then LΩc(X;F) �= Ωc(X; ~LF), where ~LF denotes the shea��-
cation of the presheaf LF .

We will apply this in the case that R = Z=‘n and A = ER(G).

We suppose that a �nite group G acts on X with quotient variety Y = X=G
and projection map � : X ! Y . We let F = FX be the shea��cation of
the presheaf that sends a Zariski open set U � Y in the Zariski topology to
R[(�0(�−1U))?]� , where �0(�−1U) is the G-set of components of �−1U . (This
extends to the �etale site on X by evaluating on the image of an �etale map
U ! X .) Then stalks(F) consists of injective modules.

Theorem 3.1 produces a complex of injective e�cient systems of �nite type
Ωc(Y;F). These complexes for di�erent n can be pieced together in such a
way that we can take the inverse limit and obtain a complex of �nite type of
e�cient systems in add(fẐ‘[G=H?]� : H the stabilizer of a k -rational pointg)
as in [9]. The dual of this by HomẐ‘(−; Ẑ‘) is the complex that we will denote
by C[X?].

Theorem 3.2 For any H � G, C[X?](H)� �= RΓc(XH ; Ẑ‘).

In other words C[X?](H) is a complex whose dual has cohomology H�c (XH ; Ẑ‘).
We can therefore think of it as the analogue of the complex C[X?] for the Bredon
cohomology of a G{CW{complex.

Since C[XH ](1) �= C[X?](H) our notation is justi�ed and, after the proof is
complete, we will write C[XH ] instead of C[X?](H).

We will prove theorem 3.2 as a corollary of some more general results.

Notice that C[X?] is natural with respect to group homomorphisms f : H ! G
for which the kernel acts trivially on X .
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Let A be a set of subgroups of G closed under supergroups and conjugation.
Let SAX =

S
J2AX

J .

De�ne LA : CSR(G) ! CSR(G) by taking LAC to be the smallest subsystem
of C that is equal to C(H) for all H 2 A. Then

LAR[G=H?] =

(
R[G=H?] H 2 A
0 otherwise

= R[(SAG=H)?]:

So LA induces a functor LA : add(fR[G=H?];H � Gg)! add(fR[G=H?];H 2
Ag).

Proposition 3.3 LAC[X?] is homotopy equivalent to C[(SAX)?].

Proof It is su�cient to prove the analogous statement for R = Z=‘n .

By 3.1, LAC[X?]� �= Ωc(Y; ~LAF1), where F1 is the shea��cation of F 01 : U 7!
Γ((�0(�−1U))?; R). So ~LAF1 is the shea��cation of U 7! Γ((SA�0(�−1U))?; R).

Now C[(SAX)?]� �= Ωc((SAX)=G;FSAX) �= Ωc(Y;F2), where F2 is the shea�-
�cation of F 02 : U 7! Γ((�0(�−1U \ SAX))?; R).

Inclusion of �xed points gives a map ~LAF 01 ! F 02 , which induces an isomor-
phism on the stalks and hence an isomorphism of sheaves.

Lemma 3.4 C[X?](1)� �= RΓc(X;R)

Proof Again it is enough to work over Z=‘n .

Considering the functor \evaluate at 1", we �nd Ωc(Y;F)(1) �= Ωc(Y; F̃(1)),
where F̃(1) is the shea��cation of U 7! Γ(�0(�−1U); R), which is just ��R.

Finally Ωc(Y; ��R) �= RΓc(Y; ��R) �= RΓc(X;R).

Remark The above lemma shows that C[X] = C[X?](1) is the dual of Rick-
ard’s complex of ‘-permutation modules.

Proof of 3.2. We can restrict to NG(H) if necessary, by naturality under
inclusions, so we may assume that H is normal in G. Let H be the set of sub-
groups of G containing H and apply 3.3 to obtain C[XH ](H) �= LHC[X?](H) =
C[X?](H).

Notice that C[XH ](H) �= C[XH ](1) by naturality under G! G=H and apply
3.4.
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A similar method will prove the following result (see [9]). We abbreviate
H0(G;M) to MG .

Lemma 3.5 C[X]G �= C[X=G].

Let S1 denote the set of non-trivial subgroups and write S = SS1 and L = LS1 .

Lemma 3.6 (C[X?]=LC[X?])� �= RΓc(X r SX;R)0 .

Proof Both sides are zero on non-trivial subgroups, so we only need to check
at the trivial group.

The inclusion map C[SX] ! C[X] is equivalent to LC[X] ! C[X]. It is also
dual to RΓc(X;R) ! RΓc(SX;R). Thus the triangles LC[X] ! C[X] !
C[X]=LC[X] and RΓc(X r SX;R)! RΓc(X;R)! RΓc(SX;R) are dual.

4 Smith Theory

Various results are known collectively as Smith Theory (see [4], for example),
but the prototype is the theorem that if a p{group P acts on a �nite dimensional
CW{complex which has the mod{p cohomology of a point then the �xed point
subcomplex also has the mod{p cohomology of a point. Once the case of P of
order p is proved this follows by induction on the order of P .

From now on we will take R to be Fp . We allow X to be either a CW{complex,
in which case our results are well known, or a separated scheme of �nite type
over an algebraically closed �eld k . In the latter case the ‘ in the previous
section becomes p and as a consequence we will need the characteristic of k
not to be equal to p in order to be able to use the �etale cohomology.

As before, we de�ne H�G(X;L) = H�(HomCSR(G)(C[X?]; L)).

Lemma 4.1 We have the following identi�cations:

H�G(X; (RG)?) �= H�c (X;R);

H�G(X; (RG?)=(RG)0) �= H�c (SX;R)
H�G(X;R0) �= H�c ((X r SX)=G;R):

The analogous result for G{CW{complexes is well known.

Algebraic & Geometric Topology, Volume 4 (2004)



Smith Theory for algebraic varieties 127

Proof By the adjointness property of (RG)? ,

HomCSR(G)(C[X?]; (RG)?) �= HomRG(C[X]; RG)
�= HomR(C[X]; R)
�= RΓc(X;R):

Notice that C[SX] �= LC[X], by 3.3. Because LC[X] is in add(fR[G=H?];
H 6= 1g) we obtain

HomCSR(G)(C[X?]; (RG)?=(RG)0) �= HomCSR(G)(LC[X?]; (RG)?)
�= HomRG(LC[X]; RG)
�= HomRG(C[SX]; RG)
�= HomR(C[SX]; R)
�= RΓc(SX;R):

There are no non-zero homomorphisms from add(fR[G=H?];H 6= 1g) to R0 .
Also C[X r SX] is in add(fR[G?]g), so vanishes o� the trivial group. We �nd
that

HomCSR(G)(C[X?]; R0) �= HomCSR(G)(C[X?]=LC[X?]; R0)
�= HomCSR(G)(C[(X r SX)?]; R0)
�= HomRG(C[X r SX]; R)
�= RΓc((X r SX)=G;R);

by 3.5.

May’s approach to Smith Theory considers the Bredon cohomology groups in
the lemma above and uses various long exact sequences associated to a short
exact sequence of coe�cient systems.

Let I denote the augmentation ideal of RG. Notice that if G is a p{group,
which we will denote by P , then (RP )?=I0

�= (RP )?=(RP )0 � R0 and the
composition factors of I0 are all R0 .

Let

aq = dimHq
G(X;R0) = dimHq

c ((X r SX)=G;R);

bq = dimHq
G(X; (RG)?) = dimHq

c (X;R);

cq = dimHq
G(X; (RG?)=(RG)0) = dimHq

c (SX;R):

May proves the following result in [8] for P {CW{complexes but, since the proof
uses only manipulations with Bredon cohomology and the identi�cations in 4.1,
it is valid for separated schemes of �nite type too.
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Theorem 4.2 (Floyd, May) The following inequality holds for any q � 0
and r � 0:

aq +
rX
i=0

(jP j − 1)icq+i �
rX
i=0

(jP j − 1)ibq+i + (jP j − 1)r+1aq+r+1:

In particular, if ai = 0 for i su�ciently large,

aq +
X
i�0

(jP j − 1)icq+i �
X
i�0

(jP j − 1)ibq+i:

Moreover, if ai; bi; ci = 0 for i su�ciently large then

�c(X) = �c(SX) + jP j�c((X r SX)=P ):

If P is cyclic of order p, and r is even if p 6= 2, then we can remove the factors
(jP j − 1), i.e.

aq +
rX
i=0

cq+i �
rX
i=0

bq+i + aq+r+1:

Remark (1) If X is a CW{complex then we can use ordinary cohomology
instead of compactly supported cohomology provided that we also replace
(X r SX)=G by (X=SX)=G and take its reduced cohomology.

(2) Notice that the last line includes Illusie’s result [6] for varieties that if
P acts freely on X then jP j divides �c(X). In fact, in this case, C[X]
is a complex of projective RP -modules and, since P is a p{group, the
modules are free.

(3) In the topological case, if we take X to be EP (the universal cover of
the classifying space) and q = 0 then we recover the well-known result
that the H i(P;Fp) are non-zero in every degree.

Recall that

H i
c(An(k);Fp) =

(
Fp; i = n

0; otherwise

provided that p is not the characteristic of k .

Corollary 4.3 Suppose that X has the cohomology of an a�ne space An and
also that if X is a CW{complex then it is �nite-dimensional. Then XP has the
cohomology of some a�ne space Am for some m, with n−m even if jP j 6= 2.

Remark (1) By taking n = 0 this includes the case that when X is mod-p
acyclic then XP must also be mod-p acyclic.
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(2) When X is compact a similar argument shows that if X is a mod-p
homology sphere then so is XP .

Proof By induction on P we can reduce to the case when P is cyclic of order
p. For P must have a normal subgroup Q of index p, and by induction XQ

has the cohomology of an a�ne space. But XP = (XQ)P .

From the last line in 4.2 with r large it follows that
P

i�0 ci � 1. The sum can
not be 0 by the Euler characteristic formula.

We now present a more conceptual approach to these results which shows how
coe�cient systems can provide a very flexible tool. It is based on the following
lemma:

Lemma 4.4 Any monomorphism between two projective coe�cient systems
in CSR(P ) is split.

Proof Consider a map R[P=U?] ! R[P=V ?]. It must be zero unless U is
conjugate to a subgroup of V . But then it can only be a monomorphism if
jU j � jV j so in fact U is conjugate to V and the map is an isomorphism.

Now any projective F is of the form F �=
L

j2J Fj , where each Fj is an in-
decomposable projective, so isomorphic to some R[P=V ?]. So suppose that we
have a monomorphism f : R[P=U?]!

L
j2J Fj . The socle of R[P=U?] is just

the sub-system generated by
P

g2P=U gP in degree 0. One of the components
of f , say fj : R[P=U?]! Fj must be non-zero on the socle, hence a monomor-
phism and so an isomorphism. The splitting is now projection onto Fj followed
by (fj)−1 .

Now consider the case f :
L

i2I Ei ! F . If I is �nite, say I = f1; : : : ; ng, then
we have a proof by induction on n. We have shown that F �= E1 � F=f(E1),
and there is an injection f 0 :

L
i2Inf1gEi ! F=f(E1). The latter splits by the

induction hypothesis.

The case of �nite I is enough for us to deduce that, for any I , the map f is
pure. But, for modules over an Artin algebra, any projective module is pure
injective (because it is a summand of a free module and the free module of rank
1 is �-pure-injective by condition (iii) of theorem 8.1 in [7]), so f is split.

Corollary 4.5 If C is a complex of projectives in CSR(P ) that is bounded
above and such that C(1) is exact then C is split exact.
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Proof Evaluation at 1 detects monomorphisms between projectives, so there
is an easy argument based on 4.4 and induction on the number of boundary
maps that can be split, starting from the left.

Corollary 4.6 Let f : C ! D be a map between two bounded complexes of
projective coe�cient systems in CSR(P ). If f(1) : C(1) ! D(1) is a quasi-
isomorphism, i.e. induces an isomorphism in homology, then f is a homotopy
equivalence.

Proof Apply 4.5 to the cone of f , to deduce that f is a quasi-isomorphism.
Since the complexes consist of projectives, f must be a homotopy equivalence.

Corollary 4.7 Let f : X ! Y be a �nite morphism of separated schemes that
induces an isomorphism on �etale cohomology with coe�cients in R . Suppose
that P acts on both X and Y and that f is equivariant. Then the induced
morphism fP : XP ! Y P also induces an isomorphism on cohomology.

Remark It is not su�cient to consider complexes of p-permutation modules.
For example, if we let C2 denote the cyclic group of order 2 take R = F2 then
there is a short exact sequence R! RC2 ! R. But this is not split.

Remark The methods of equivariant cohomology of Borel [1] can also be
applied to varieties. They all depend on analyzing the triangle C[SAX] !
C[X]! C[X]=LAC[X] of RG-modules. The proofs in [5] and [11] carry over.
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