Algebraic & Geometric Topology

Volume 5 (2005) 713–724 Published: 5 July 2005

H-space structure on pointed mapping spaces

Yves Félix Daniel Tanré

Abstract We investigate the existence of an H-space structure on the function space, $\mathcal{F}_*(X,Y,*)$, of based maps in the component of the trivial map between two pointed connected CW-complexes X and Y. For that, we introduce the notion of H(n)-space and prove that we have an H-space structure on $\mathcal{F}_*(X,Y,*)$ if Y is an H(n)-space and X is of Lusternik-Schnirelmann category less than or equal to n. When we consider the rational homotopy type of nilpotent finite type CW-complexes, the existence of an H(n)-space structure can be easily detected on the minimal model and coincides with the differential length considered by Y. Kotani. When X is finite, using the Haefliger model for function spaces, we can prove that the rational cohomology of $\mathcal{F}_*(X,Y,*)$ is free commutative if the rational cup length of X is strictly less than the differential length of Y, generalizing a recent result of Y. Kotani.

AMS Classification 55R80, 55P62, 55T99

Keywords Mapping spaces, Haefliger model, Lusternik-Schnirelmann category

1 Introduction

Let X and Y be pointed connected CW-complexes. We study the occurrence of an H-space structure on the function space, $\mathcal{F}_*(X,Y,*)$, of based maps in the component of the trivial map. Of course when X is a co-H-space or Y is an H-space this mapping space is an H-space. Here, we are considering weaker conditions, both on X and Y, which guarantee the existence of an H-space structure on the function space. In Definition 3, we introduce the notion of H(n)-space designed for this purpose and prove:

Proposition 1 Let Y be an H(n)-space and X be a space of Lusternik-Schnirelmann category less than or equal to n. Then the space $\mathcal{F}_*(X,Y,*)$ is an H-space.

The existence of an H(n)-structure and the Lusternik-Schnirelmann category (LS-category in short) are hard to determine. We first study some properties of H(n)-spaces and give some examples. Concerning the second hypothesis, we are interested in replacing $cat(X) \leq n$ by an upper bound on an approximation of the LS-category (see [5, Chapter 2]). We succeed in Proposition 7 with an hypothesis on the dimension of X but the most interesting replacement is obtained in the rational setting which constitutes the second part of this paper.

We use Sullivan minimal models for which we refer to [6]. We recall here that each finite type nilpotent CW-complex X has a unique minimal model $(\land V, d)$ that characterises all the rational homotopy type of X. We first prove that the existence of an H(n)-structure on a rational space X_0 can be easily detected from its minimal model. It corresponds to a valuation of the differential of this model, introduced by Y. Kotani in [11]: The differential d of the minimal model $(\land V, d)$ can be written as $d = d_1 + d_2 + \cdots$ where d_i increases the word length by i. The differential length of $(\land V, d)$, denoted dl(X), is the least integer n such that d_{n-1} is non zero. As a minimal model of X is defined up to isomorphism, the differential length is a rational homotopy type invariant of X, see [11, Theorem 1.1]. Proposition 8 establishes a relation between dl(X) and the existence of an H(n)-structure on the rationalisation of X.

Finally, recall that the rational cup-length $\sup_0(X)$ of X is the maximal length of a nonzero product in $H^{>0}(X;\mathbb{Q})$. In [11], by using this cup-length and the invariant $\operatorname{dl}(Y)$, Y. Kotani gives a necessary and sufficient condition for the rational cohomology of $\mathcal{F}_*(X,Y,*)$ to be free commutative when X is a rational formal space and when the dimension of X is less than the connectivity of Y. We show here that a large part of the Kotani criterium remains valid, without hypothesis of formality and dimension. We prove:

Theorem 2 Let X and Y be nilpotent finite type CW-complexes, with X finite.

- (1) The cohomology algebra $H^*(\mathcal{F}_*(X,Y,*);\mathbb{Q})$ is free commutative if $\sup_0(X) < \operatorname{dl}(Y)$.
- (2) If $\dim(X) \leq \operatorname{conn}(Y)$, then the cohomology algebra $H^*(\mathcal{F}_*(X,Y,*);\mathbb{Q})$ is free commutative if, and only if, $\sup_{0}(X) < \operatorname{dl}(Y)$.

As an application, we describe in Theorem 12 the Postnikov tower of the rationalisation of $\mathcal{F}_*(X,Y,*)$ where X is a finite nilpotent space and Y a finite type CW-complex whose connectivity is greater than the dimension of X. Our description implies the solvability of the rational Pontrjagin algebra of $\Omega(\mathcal{F}_*(X,Y,*))$.

Section 2 contains the topological setting and the proof of Proposition 1. The link with rational models is done in Section 3. Our proof of Theorem 2 uses the Haefliger model for mapping spaces. In order to be self-contained, we recall briefly Haefliger's construction in Section 4. The proof of Theorem 2 is contained in Section 5. Finally, Section 6 is devoted to the description of the Postnikov tower.

In this text, all spaces are supposed of the homotopy type of connected pointed CW-complexes and we will use cdga for *commutative differential graded algebra*. A *quasi-isomorphism* is a morphism of cdga's which induces an isomorphism in cohomology.

2 Structure of H(n)-space

First we recall the construction of Ganea fibrations, $p_n^X : G_n(X) \to X$.

- Let $F_0(X) \xrightarrow{i_0} G_0(X) \xrightarrow{p_0^X} X$ denote the path fibration on X, $\Omega X \to PX \to X$.
- Suppose a fibration $F_n(X) \xrightarrow{i_n} G_n(X) \xrightarrow{p_n^X} X$ has been constructed. We extend p_n^X to a map $q_n \colon G_n(X) \cup C(F_n(X)) \to X$, defined on the mapping cone of i_n , by setting $q_n(x) = p_n^X(x)$ for $x \in G_n(X)$ and $q_n([y,t]) = *$ for $[y,t] \in C(F_n(X))$.
- Now convert q_n into a fibration $p_{n+1}^X \colon G_{n+1}(X) \to X$.

This construction is functorial and the space $G_n(X)$ has the homotopy type of the n^{th} -classifying space of Milnor [12]. We quote also from [8] that the direct limit $G_{\infty}(X)$ of the maps $G_n(X) \to G_{n+1}(X)$ has the homotopy type of X. As spaces are pointed, one has two canonical applications $\iota_n^l \colon G_n(X) \to G_n(X \times X)$ and $\iota_n^r \colon G_n(X) \to G_n(X \times X)$ obtained from maps $X \to X \times X$ defined respectively by $x \mapsto (x, *)$ and $x \mapsto (*, x)$.

Definition 3 A space X is an H(n)-space if there exists a map $\mu_n : G_n(X \times X) \to X$ such that $\mu_n \circ \iota_n^l = \mu_n \circ \iota_n^r = p_n^X : G_n(X) \to X$.

Directly from the definition, we see that an $H(\infty)$ -space is an H-space and that any space is a H(1)-space. Recall also that any co-H-space is of LS-category 1. Then, Proposition 1 contains the trivial cases of a co-H-space X and of an H-space Y.

Proof of Proposition 1 From the hypothesis, we have a section $\sigma: X \to G_n(X)$ of the Ganea fibration p_n^X and a map $\mu_n: G_n(Y \times Y) \to Y$ extending the Ganea fibration p_n^Y , as in Definition 3. If f and g are elements of $\mathcal{F}_*(X,Y,*)$, we set

$$f \bullet g = \mu_n \circ G_n(f \times g) \circ G_n(\Delta_X) \circ \sigma$$

where Δ_X denotes the diagonal map of X. One checks easily that $f \bullet * \simeq * \bullet f \simeq f$.

In the rest of this section, we are interested in the existence of H(n)-structures on a given space. For the detection of an H(n)-space structure, one may replace the Ganea fibrations p_n^X by any functorial construction of fibrations $\hat{p}_n : \hat{G}_n(X) \to X$ such that one has a functorial commutative diagram,

$$\hat{G}_n(X)$$
 \hat{p}_n
 $Q_n(X)$
 p_n^X

Such maps \hat{p}_n are called fibrations à la Ganea in [13] and substitutes to Ganea fibrations here. Moreover, as we are interested in product spaces, the following filtration of the space $G_{\infty}(X) \times G_{\infty}(Y)$ plays an important role:

$$(G(X) \times G(Y))_n = \cup_{i+j=n} G_i(X) \times G_j(Y)$$
.

In [10], N. Iwase proved the existence of a commutative diagram

$$(G(X) \times G(Y))_n \xrightarrow{} G_n(X \times Y)$$

$$(F_i^X \times p_i^Y) \xrightarrow{} X \times Y$$

and used it to settle a counter-example to the Ganea conjecture. Therefore, in Definition 3, we are allowed to replace the Ganea space $G_n(X \times X)$ by $(G(X) \times G(X))_n$. Moreover, if $\hat{p}_n : \hat{G}_n(X) \to X$ are substitutes to Ganea fibrations as above, we may also replace $G_n(X \times X)$ by

$$(\hat{G}(X) \times \hat{G}(Y))_n = \bigcup_{i+j=n} \hat{G}_i(X) \times \hat{G}_j(Y)$$
.

We will use this possibility in the rational setting.

In the case n=2, we have a cofibration sequence,

$$\Sigma(G_1(X) \wedge G_1(X)) \xrightarrow{Wh} G_1(X) \vee G_1(X) \longrightarrow G_1(X) \times G_1(X),$$

coming from the Arkowitz generalisation of a Whitehead bracket, [2]. Therefore, the existence of an H(2)-structure on a space X is equivalent to the triviality of $(p_1^X \vee p_1^X) \circ Wh$. As the loop Ωp_1^X of the Ganea fibration $p_1^X : G_1(X) \to X$ admits a section, we get the following necessary condition:

– if there is an H(2)-structure on X, then the homotopy Lie algebra of X is abelian, i.e. all Whitehead products vanish.

Example 4 In the case X is a sphere S^n , the existence of an H(2) structure on S^n implies n = 1, 3 or 7, [1]. Therefore, only the spheres which are already H-spaces endow a structure of H(2) space. One can also observe that, in general, if a space X is both of category n and an H(2n)-space, then it is an H-space. The law is given by

$$X \times X \xrightarrow{\sigma} G_{2n}(X \times X) \xrightarrow{\mu_{2n}} X$$
,

where the existence of the section σ to $p_{2n}^{X\times X}$ comes from $\operatorname{cat}(X\times X)\leq 2\operatorname{cat}(X)$.

Example 5 If we restrict to spaces whose loop space is a product of spheres or of loop spaces on a sphere, the previous necessary condition becomes a criterion. For instance, it is proved in [3] that all Whitehead products are zero in the complex projective 3-space. This implies that $\mathbb{C}P^3$ is an H(2)-space. (Observe that $\mathbb{C}P^3$ is not an H-space.) From [3], we know also that the homotopy Lie algebra of $\mathbb{C}P^2$ is not abelian. Therefore $\mathbb{C}P^2$ is not an H(2)-space.

The following example shows that we can find H(n)-spaces, for any n > 1.

Example 6 Denote by $\varphi_r \colon K(\mathbb{Z},2) \to K(\mathbb{Z},2r)$ the map corresponding to the class $x^r \in H^{2r}(K(\mathbb{Z},2);\mathbb{Z})$, where x is the generator of $H^2(K(\mathbb{Z},2);\mathbb{Z})$. Let E be the homotopy fibre of φ_r . We prove below that E is an H(r-1)-space.

First we derive, from the homotopy long exact sequence associated to the map φ_r , that ΩE has the homotopy type of $S^1 \times K(\mathbb{Z}, 2r-2)$. Therefore, the only obstruction to extend $G_{r-1}(E) \vee G_{r-1}(E) \to E$ to $(G(E) \times G(E))_{r-1} = \bigcup_{i+j=r-1} G_i(E) \times G_j(E)$ lies in

$$\text{Hom}(H_{2r}((G(E)\times G(E))_{r-1};\mathbb{Z}),\pi_{2r-2}(E)).$$

If A and B are CW-complexes, we denote by $A \sim_n B$ the fact that A and B have the same n-skeleton. If we look at the Ganea total spaces and fibres, we get:

$$\Sigma \Omega E \sim_{2r} S^2 \vee S^{2r-1} \vee S^{2r}, \ F_1(E) = \Omega E * \Omega E \sim_{2r} S^3 \vee S^{2r} \vee S^{2r},$$

and more generally, $F_s(E) \sim_{2r} S^{2s+1}$, for any $s, 2 \leq s \leq r-1$. Observe also that $H_{2r}(F_2(E); \mathbb{Z}) \to H_{2r}(G_1(E); \mathbb{Z})$ is onto. (As we have only spherical classes in this degree, this comes from the homotopy long exact sequence.)

As a conclusion, we have no cell in degree 2r in $(G(E) \times G(E))_{r-1}$ and E is an H(r-1)-space.

We end this section with a reduction to a more computable invariant than the LS-category. Consider $\rho_n^X \colon X \to G_{[n]}(X)$ the homotopy cofibre of the Ganea fibration p_n^X . Recall that, by definition, $\operatorname{wcat}_G(X) \le n$ if the map ρ_n^X is homotopically trivial. Observe that we always have $\operatorname{wcat}_G(X) \le \operatorname{cat}(X)$, see [5, Section 2.6] for more details on this invariant.

Proposition 7 Let X be a CW-complex of dimension k and Y be a CW-complex (c-1)-connected with $k \leq c-1$. If Y is an H(n)-space such that $\operatorname{wcat}_{G}(X) \leq n$, then $\mathcal{F}_{*}(X,Y,*)$ is an H-space.

Proof Let f and g be elements of $\mathcal{F}_*(X,Y,*)$. Denote by $\tilde{\iota}_n^X \colon \tilde{F}_n(X) \to X$ the homotopy fibre of $\rho_n^X \colon X \to G_{[n]}(X)$. This construction is functorial and the map $(f,g) \colon X \to Y \times Y$ induces a map $\tilde{F}_n(f,g) \colon \tilde{F}_n(X) \to \tilde{F}_n(Y \times Y)$ such that $\tilde{\iota}_n^{Y \times Y} \circ \tilde{F}_n(f,g) = (f,g) \circ \tilde{\iota}_n^X$.

By hypothesis, we have a homotopy section $\tilde{\sigma} \colon X \to \tilde{F}_n(X)$ of $\tilde{\iota}_n^X$. Therefore, one gets a map $X \to \tilde{F}_n(Y \times Y)$ as $\tilde{F}_n(f,g) \circ \tilde{\sigma}$.

Recall now that, if $A \to B \to C$ is a cofibration with A (a-1)-connected and C (c-1)-connected, then the canonical map $A \to F$ in the homotopy fibre of $B \to C$ is an (a+c-2)-equivalence. We apply it in the following situation:

$$G_{n}(Y \times Y) \xrightarrow{p_{n}^{Y \times Y}} Y \times Y \xrightarrow{\rho_{n}^{Y \times Y}} G_{[n]}(Y \times Y)$$

$$\downarrow_{j_{n}^{Y \times Y}} \downarrow \qquad \qquad \downarrow_{\tilde{l}_{n}^{Y \times Y}} \downarrow \qquad \downarrow_{\tilde{l}_{n}^{Y \times Y}} \downarrow \qquad \downarrow_{\tilde{l}_{n}^{Y \times Y}} \downarrow \qquad \qquad \downarrow_{\tilde{l}_{n}^{Y \times$$

The space $G_n(Y \times Y)$ is (c-1)-connected and $G_{[n]}(Y \times Y)$ is c-connected. Therefore the map $j_n^{Y \times Y}$ is (2c-1)-connected. From the hypothesis, we get $k \leq c-1 < 2c-1$ and the map $j_n^{Y \times Y}$ induces a bijection

$$[X, G_n(Y \times Y)] \xrightarrow{\cong} [X, \tilde{F}_n(Y \times Y)].$$

Denote by $g_n: X \to G_n(Y \times Y)$ the unique lifting of $\tilde{F}_n(f,g) \circ \tilde{\sigma}$. The composition $g \bullet f$ is defined as $\mu_n \circ g_n$ where μ_n is the H(n)-structure on Y.

If we set g = *, then $\tilde{F}_n(f,g)$ is obtained as the composite of $\tilde{F}_n(f)$ with the map $\tilde{F}_n(Y) \to \tilde{F}_n(Y \times Y)$ induced by $y \mapsto (y,*)$. As before, one has an isomorphism

$$[X, G_n(Y)] \xrightarrow{\simeq} [X, \tilde{F}_n(Y)].$$

A chase in the following diagram shows that $f \bullet * = f$ as expected,

3 Rational characterisation of H(n)-spaces

Define $m_H(X)$ as the greatest integer n such that X admits an H(n)-structure and denote by X_0 the rationalisation of a nilpotent finite type CW-complex X. Recall that dl(X) is the valuation of the differential of the minimal model of X, already defined in the introduction.

Proposition 8 Let X be a nilpotent finite type CW-complex of rationalisation X_0 . Then we have:

$$m_H(X_0) + 1 = dl(X).$$

Proof Let $(\land V, d)$ be the minimal model of X. Recall from [7] that a model of the Ganea fibration p_n^X is given by the following composition,

$$(\land V, d) \to (\land V/ \land^{>n} V, \bar{d}) \hookrightarrow (\land V/ \land^{>n} V, \bar{d}) \oplus S,$$

where the first map is the natural projection and the second one the canonical injection together with $S \cdot S = S \cdot V = 0$ and d(S) = 0. As the first map is functorial and the second one admits a left inverse over $(\land V, d)$, we may use the realisation of $(\land V, d) \to (\land V/ \land^{>n} V, d)$ as substitute for the Ganea fibration.

Suppose dl(X) = r. We consider the cdga $(\wedge V', d') \otimes (\wedge V'', d'')/I_r$ where $(\wedge V', d')$ and $(\wedge V'', d'')$ are copies of $(\wedge V, d)$ and where I_r is the ideal $I_r = \bigoplus_{i+j\geq r} \wedge^i V' \otimes \wedge^j V''$. Observe that this cdga has a zero differential and that the morphism

$$\varphi: (\wedge V, d) \to (\wedge V', d') \otimes (\wedge V'', d'')/I_r$$

defined by $\varphi(v) = v' + v''$ satisfies $\varphi(dv) = 0$. Therefore φ is a morphism of cdga's and its realisation induces an H(n)-structure on the rationalisation X_0 . That shows: $m_H(X_0) + 1 \ge \mathrm{dl}(X)$.

Suppose now that $m_H(X_0) + 1 > dl(X) = r$. By hypothesis, we have a morphism of cdga's

$$\varphi: (\wedge V, d) \to (\wedge V', d') \otimes (\wedge V'', d'') / I_{r+1}$$
.

By construction, in this quotient, a cocycle of wedge degree r cannot be a coboundary. Since the composition of φ with the projection on the two factors is the natural projection, we have $\varphi(v)-v'-v''\in \wedge^+V'\otimes \wedge^+V''$. Now let $v\in V$, of lowest degree with $d_r(v)\neq 0$. From $d_r(v)=\sum_{i_1,i_2,...,i_r}c_{i_1i_2...i_r}v_{i_1}v_{i_2}...v_{i_r}$, we get

$$\varphi(dv) = \sum_{i_1, i_2, \dots, i_r} c_{i_1 i_2 \dots i_r} (v'_{i_1} + v''_{i_1}) \cdot (v'_{i_2} + v''_{i_2}) \cdots (v'_{i_r} + v''_{i_r}).$$

This expression cannot be a coboundary and the equation $d\varphi(x) = \varphi(dx)$ is impossible. We get a contradiction, therefore one has $m_H(X_0) + 1 = \text{dl}(X)$. \square

4 The Haefliger model

Let X and Y be finite type nilpotent CW-complexes with X of finite dimension. Let $(\land V, d)$ be the minimal model of Y and (A, d_A) be a finite dimensional model for X, which means that (A, d_A) is a finite dimensional cdga equipped with a quasi-isomorphism ψ from the minimal model of X into (A, d_A) . Denote by A^{\vee} the dual vector space of A, graded by

$$(A^{\vee})^{-n} = \operatorname{Hom}(A^n, \mathbb{Q}).$$

We set $A^+ = \bigoplus_{i=1}^{\infty} A^i$, and we fix an homogeneous basis (a_1, \dots, a_p) of A^+ . The dual basis $(a^s)_{1 \leq s \leq p}$ is a basis of $B = (A^+)^{\vee}$ defined by $\langle a^s; a_t \rangle = \delta_{st}$.

We construct now a morphism of algebras

$$\varphi: \land V \to A \otimes \land (B \otimes V)$$

by

$$\varphi(v) = \sum_{s=1}^{p} a_s \otimes (a^s \otimes v).$$

In [9] Haefliger proves that there is a unique differential D on $\wedge (B \otimes V)$ such that φ is a morphism of cdga's, i.e. $(d_A \otimes D) \circ \varphi = \varphi \circ d$.

In general, the cdga $(\land (B \otimes V), D)$ is not positively graded. Denote by $D_0 \colon B \otimes V \to B \otimes V$ the linear part of the differential D. We define a cdga $(\land Z, D)$ by constructing Z as the quotient of $B \otimes V$ by $\bigoplus_{j \leq 0} (B \otimes V)^j$ and their image by D_0 . Haefliger proves:

Theorem 9 [9] The commutative differential graded algebra $(\land Z, D)$ is a model of the mapping space $\mathcal{F}_*(X, Y, *)$.

5 Proof of Theorem 2

Proof We start with an explicit description of the Haefliger model, keeping the notation of Section 4. The cdga $(\land V, d)$ is a minimal model of Y and we choose for V a basis (v_k) , indexed by a well-ordered set and satisfying $d(v_k) \in \land (v_r)_{r < k}$ for all k. As homogeneous basis $(a_s)_{1 \le s \le p}$ of A, we choose elements h_i , e_j and b_j such that:

- the elements h_i are cocycles and their classes $[h_i]$ form a linear basis of the reduced cohomology of A;
- the elements e_j form a linear basis of a supplement of the vector space of cocycles in A, and $b_j = d_A(e_j)$.

We denote by h^i , e^j and b^j the corresponding elements of the basis of $B = (A^+)^{\vee}$. By developing $D_0(\sum_s a_s \otimes (a^s \otimes v)) = 0$, we get a direct description of the linear part D_0 of the differential D of the Haefliger model:

$$D_0(b^j \otimes v) = -(-1)^{|b^j|} e^j \otimes v$$
 and $D_0(h^i \otimes v) = 0$, for each $v \in V$.

A linear basis of the graded vector space Z is therefore given by the elements:

$$\begin{cases} b^{j} \otimes v_{k}, & \text{with } |b^{j} \otimes v_{k}| \geq 1, \\ e^{j} \otimes v_{k}, & \text{with } |e^{j} \otimes v_{k}| \geq 2, \\ h^{i} \otimes v_{k}, & \text{with } |h^{i} \otimes v_{k}| \geq 1. \end{cases}$$

Now, from $\varphi(dv) = (D - D_0)\varphi(v)$ and $d(v) = \sum c_{i_1i_2\cdots i_r}v_{i_1}v_{i_2}\cdots v_{i_r}$, we deduce:

$$(D - D_0)(a^s \otimes v) = \\ \pm \sum_{a_{i_1}, a_{i_2}, \dots, a_{i_r}} \langle a^s; a_{i_1} a_{i_2} \dots a_{i_r} \rangle (a_{i_1} \otimes v_{i_1}) \cdot (a_{i_2} \otimes v_{i_2}) \dots (a_{i_r} \otimes v_{i_r})$$

where, as usual, the sign \pm is entirely determined by a strict application of the Koszul rule for a permutation of graded objects.

Suppose first that $\sup_{0}(X) < \operatorname{dl}(Y)$.

We prove, by induction on k, that in $(\wedge Z, D)$ the ideal I_k generated by the elements

 $\begin{cases} b^{j} \otimes v_{s}, & s \leq k, & \text{with degree at least 1,} \\ e^{j} \otimes v_{s}, & s \leq k, & \text{with degree at least 2,} \end{cases}$

is a differential ideal and that the elements $h^i \otimes v_s$, with $s \leq k$ and $|h^i \otimes v_s| \geq 1$, are cocycles in the quotient $((\wedge Z)/I_k, \bar{D})$. Note that this ideal is acyclic as shown by the formula given for D_0 . Therefore the quotient map $\rho \colon (\wedge Z, D) \to ((\wedge Z)/I_k, D)$ is a quasi-isomorphism. The induction will prove that the differential is zero in the quotient, which is the first assertion of Theorem 2.

Begin with the induction. One has $dv_1 = 0$ which implies $(D - D_0)(a^s \otimes v_1) = 0$. Therefore, we deduce $D(b^j \otimes v_1) = -(-1)^{|b^j|} e^j \otimes v_1$ and $D(h^i \otimes v_1) = 0$. That proves the assertion for k = 1.

We suppose now that the induction step is true for the integer k. Taking the quotient by the ideal I_k gives a quasi-isomorphism

$$\rho: (\wedge Z, D) \to (\wedge T, D) := ((\wedge Z)/I_k, D)$$
.

As the elements $b^j \otimes v_s$ and $e^j \otimes v_s$, $s \leq k$, have disappeared and as $\sup_0(X) < \operatorname{dl}(Y)$, we have $\rho \circ \varphi(dv_{k+1}) = 0$. Therefore $D(b^j \otimes v_{k+1}) = -(-1)^{|b^j|} e^j \otimes v_{k+1}$ and $D(h^i \otimes v_{k+1}) = 0$. The induction is thus proved.

We consider now the case $\sup_0(X) \ge \operatorname{dl}(Y)$ in the case $\dim(X) \le \operatorname{conn}(Y)$.

We choose first in the lowest possible degree q an element $y \in V$ that satisfies $dy = d_r y + \cdots$ with $d_r(y) \neq 0$ and $r \leq \text{cup}_0(X)$. As above we can kill all the elements $e^j \otimes v$ and $b^j \otimes v$ with |v| < q and keep a quasi-isomorphism $\rho \colon (\wedge Z, D) \to (\wedge T, D) \coloneqq (\wedge Z/I_{q-1}, D)$.

Next we choose cocycles, h_1, h_2, \dots, h_m , such that the class $[\omega]$, associated to the product $\omega = h_1 \cdot h_2 \cdots h_m$, is not zero. We choose $m \geq r$ and suppose that ω is in the highest degree for such a product. Let ω' be an element in A^{\vee} such that $\langle \omega'; \omega \rangle = 1$. Then, by the Haefliger formula, the differential D is zero in $\wedge T$ in degrees strictly less than $|\omega' \otimes y|$. Observe that $|\omega' \otimes y| \geq 2$ and that the D_r part of the differential $D(\omega' \otimes y)$ is a nonzero sum. This proves that the cohomology is not free.

Example 10 Let X be a space with $\sup_0(X) = 1$, which means that all products are zero in the reduced rational cohomology of X. Then, for any nilpotent finite type CW-complex Y, the rational cohomology $H^*(\mathcal{F}_*(X,Y,*);\mathbb{Q})$ is a free commutative graded algebra. For instance, this is the case for the (nonformal) space $X = S^3 \vee S^3 \cup_{\omega} e^8$, where the cell e^8 is attached along a sum of triple Whitehead products.

Example 11 When the dimension of X is greater than the connectivity of Y, the degrees of the elements have some importance. The cohomology can be commutative free even if $\operatorname{cup}_0(X) \geq \operatorname{dl}(Y)$. For instance, consider $X = S^5 \times S^{11}$ and $Y = S^8$. One has $\operatorname{cup}_0(X) = \operatorname{dl}(Y) = 2$ and the function space $\mathcal{F}_*(X,Y,*)$ is a rational H-space with the rational homotopy type of $K(\mathbb{Q},3)\times K(\mathbb{Q},4)\times K(\mathbb{Q},10)$, as a direct computation with the Haefliger model shows.

6 Rationalisation of $\mathcal{F}_*(X, Y, *)$ when $\dim(X) \leq \operatorname{conn}(Y)$

Let X be a finite nilpotent space with rational LS-category equal to m-1 and let Y be a finite type nilpotent CW-complex whose connectivity c is greater than the dimension of X. We set r = dl(Y) and denote by s the maximal integer such that $m/r^s \ge 1$, i.e. s is the integral part of $\log_r m$.

Theorem 12 There is a sequence of rational fibrations $K_k \to F_k \to F_{k-1}$, for k = 1, ..., s, with $F_0 = *$, F_s is the rationalisation of $\mathcal{F}_*(X, Y, *)$ and each space K_k is a product of Eilenberg-MacLane spaces. In particular, the rational loop space homology of $\mathcal{F}_*(X, Y, *)$ is solvable with solvable index less than or equal to s.

Proof By a result of Cornea [4], the space X admits a finite dimensional model A such that m is the maximal length of a nonzero product of elements of positive degree. We denote by $(\land V, d)$ the minimal model of Y.

We consider the ideals $I_k = A^{>m/r^k}$, and the short exact sequences of cdga's

$$I_k/I_{k-1} \to A/I_{k-1} \to A/I_k$$
.

These short exact sequences realise into cofibrations $T_k \to T_{k-1} \to Z_k$ and the sequences

$$(\wedge((A^+/I_k)^\vee\otimes V),D)\to(\wedge((A^+/I_{k-1})^\vee\otimes V),D)\to(\wedge((I_k/I_{k-1})^\vee\otimes V),D)$$

are relative Sullivan models for the fibrations

$$\mathcal{F}_*(Z_k, Y, *) \to \mathcal{F}_*(T_{k-1}, Y, *) \to \mathcal{F}_*(T_k, Y, *).$$

Now since the cup length of the space Z_k is strictly less than r, the function spaces $\mathcal{F}_*(Z_k, Y, *)$ are rational H-spaces, and this proves Theorem 12.

References

- [1] **J Frank Adams**, On the non-existence of elements of Hopf invariant one, Ann. of Math. (2) 72 (1960) 20–104
- [2] Martin Arkowitz, The generalized Whitehead product, Pacific J. Math. 12 (1962) 7–23
- [3] Michael Barratt, Ioan James, Norman Stein, Whitehead products and projective spaces, J. Math. Mech. 9 (1960) 813–819
- [4] Octavian Cornea, Cone-length and Lusternik-Schnirelmann category, Topology 33 (1994) 95–111
- [5] Octavian Cornea, Gregory Lupton, John Oprea, Daniel Tanré, Lusternik-Schnirelmann category, volume 103 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI (2003)
- [6] Yves Félix, Stephen Halperin, Jean-Claude Thomas, Rational homotopy theory, volume 205 of Graduate Texts in Mathematics, Springer-Verlag, New York (2001)
- [7] Yves Félix, Stephen Halperin, Rational LS-category and its applications, Trans. Amer. Math. Soc. 273 (1982) 1–37
- [8] **Tudor Ganea**, Lusternik-Schnirelmann category and strong category, Illinois J. Math. 11 (1967) 417–427
- [9] André Haefliger, Rational homotopy of the space of sections of a nilpotent bundle, Trans. Amer. Math. Soc. 273 (1982) 609–620
- [10] Norio Iwase, Ganea's conjecture on Lusternik-Schnirelmann category, Bull. London Math. Soc. 30 (1998) 623–634
- [11] Yasusuke Kotani, Note on the rational cohomology of the function space of based maps, Homology Homotopy Appl. 6 (2004) 341–350
- [12] John Milnor, Construction of universal bundles. I, Ann. of Math. (2) 63 (1956) 272–284
- [13] Hans Scheerer, Daniel Tanré, Fibrations à la Ganea, Bull. Soc. Math. Belg. 4 (1997) 333–353

Département de Mathématiques, Université Catholique de Louvain 2, Chemin du Cyclotron, 1348 Louvain-La-Neuve, Belgium and

Département de Mathématiques, UMR 8524, Université de Lille 1 59655 Villeneuve d'Ascq Cedex, France

Email: felix@math.ucl.ac.be, Daniel.Tanre@univ-lille1.fr

Received: 13 February 2005