Volume 5 (2005) 713-724
Published: 5 July 2005
ATG

H-space structure on pointed mapping spaces

Yves Félix
Daniel Tanré

Abstract

We investigate the existence of an H-space structure on the function space, $\mathcal{F}_{*}(X, Y, *)$, of based maps in the component of the trivial map between two pointed connected CW-complexes X and Y. For that, we introduce the notion of $H(n)$-space and prove that we have an H-space structure on $\mathcal{F}_{*}(X, Y, *)$ if Y is an $H(n)$-space and X is of LusternikSchnirelmann category less than or equal to n. When we consider the rational homotopy type of nilpotent finite type CW-complexes, the existence of an $H(n)$-space structure can be easily detected on the minimal model and coincides with the differential length considered by Y. Kotani. When X is finite, using the Haefliger model for function spaces, we can prove that the rational cohomology of $\mathcal{F}_{*}(X, Y, *)$ is free commutative if the rational cup length of X is strictly less than the differential length of Y, generalizing a recent result of Y. Kotani.

AMS Classification 55R80, 55P62, 55T99
Keywords Mapping spaces, Haefliger model, Lusternik-Schnirelmann category

1 Introduction

Let X and Y be pointed connected CW-complexes. We study the occurrence of an H-space structure on the function space, $\mathcal{F}_{*}(X, Y, *)$, of based maps in the component of the trivial map. Of course when X is a co- H-space or Y is an H-space this mapping space is an H-space. Here, we are considering weaker conditions, both on X and Y, which guarantee the existence of an H-space structure on the function space. In Definition 3, we introduce the notion of $H(n)$-space designed for this purpose and prove:

Proposition 1 Let Y be an $H(n)$-space and X be a space of LusternikSchnirelmann category less than or equal to n. Then the space $\mathcal{F}_{*}(X, Y, *)$ is an H-space.

The existence of an $H(n)$-structure and the Lusternik-Schnirelmann category (LS-category in short) are hard to determine. We first study some properties of $H(n)$-spaces and give some examples. Concerning the second hypothesis, we are interested in replacing $\operatorname{cat}(X) \leq n$ by an upper bound on an approximation of the LS-category (see [5, Chapter 2]). We succeed in Proposition 7 with an hypothesis on the dimension of X but the most interesting replacement is obtained in the rational setting which constitutes the second part of this paper.
We use Sullivan minimal models for which we refer to [6]. We recall here that each finite type nilpotent CW-complex X has a unique minimal model $(\wedge V, d)$ that characterises all the rational homotopy type of X. We first prove that the existence of an $H(n)$-structure on a rational space X_{0} can be easily detected from its minimal model. It corresponds to a valuation of the differential of this model, introduced by Y. Kotani in [11]: The differential d of the minimal model $(\wedge V, d)$ can be written as $d=d_{1}+d_{2}+\cdots$ where d_{i} increases the word length by i. The differential length of $(\wedge V, d)$, denoted $\mathrm{dl}(X)$, is the least integer n such that d_{n-1} is non zero. As a minimal model of X is defined up to isomorphism, the differential length is a rational homotopy type invariant of X, see [11, Theorem 1.1]. Proposition 8 establishes a relation between $\mathrm{dl}(X)$ and the existence of an $H(n)$-structure on the rationalisation of X.

Finally, recall that the rational cup-length $\operatorname{cup}_{0}(X)$ of X is the maximal length of a nonzero product in $H^{>0}(X ; \mathbb{Q})$. In [11], by using this cup-length and the invariant $\mathrm{dl}(Y)$, Y. Kotani gives a necessary and sufficient condition for the rational cohomology of $\mathcal{F}_{*}(X, Y, *)$ to be free commutative when X is a rational formal space and when the dimension of X is less than the connectivity of Y. We show here that a large part of the Kotani criterium remains valid, without hypothesis of formality and dimension. We prove:

Theorem 2 Let X and Y be nilpotent finite type $C W$-complexes, with X finite.
(1) The cohomology algebra $H^{*}\left(\mathcal{F}_{*}(X, Y, *) ; \mathbb{Q}\right)$ is free commutative if $\operatorname{cup}_{0}(X)<\mathrm{dl}(Y)$.
(2) If $\operatorname{dim}(X) \leq \operatorname{conn}(Y)$, then the cohomology algebra $H^{*}\left(\mathcal{F}_{*}(X, Y, *)\right.$; $\left.\mathbb{Q}\right)$ is free commutative if, and only if, $\operatorname{cup}_{0}(X)<\mathrm{dl}(Y)$.

As an application, we describe in Theorem 12 the Postnikov tower of the rationalisation of $\mathcal{F}_{*}(X, Y, *)$ where X is a finite nilpotent space and Y a finite type CW-complex whose connectivity is greater than the dimension of X. Our description implies the solvability of the rational Pontrjagin algebra of $\Omega\left(\mathcal{F}_{*}(X, Y, *)\right)$.

Section 2 contains the topological setting and the proof of Proposition 1. The link with rational models is done in Section 3. Our proof of Theorem 2 uses the Haefliger model for mapping spaces. In order to be self-contained, we recall briefly Haefliger's construction in Section 4. The proof of Theorem 2 is contained in Section 5. Finally, Section 6 is devoted to the description of the Postnikov tower.

In this text, all spaces are supposed of the homotopy type of connected pointed CW-complexes and we will use cdga for commutative differential graded algebra. A quasi-isomorphism is a morphism of cdga's which induces an isomorphism in cohomology.

2 Structure of $H(n)$-space

First we recall the construction of Ganea fibrations, $p_{n}^{X}: G_{n}(X) \rightarrow X$.

- Let $F_{0}(X) \xrightarrow{i_{0}} G_{0}(X) \xrightarrow{p_{0}^{X}} X$ denote the path fibration on $X, \Omega X \rightarrow$ $P X \rightarrow X$.
- Suppose a fibration $F_{n}(X) \xrightarrow{i_{n}} G_{n}(X) \xrightarrow{p_{n}^{X}} X$ has been constructed. We extend p_{n}^{X} to a map $q_{n}: G_{n}(X) \cup C\left(F_{n}(X)\right) \rightarrow X$, defined on the mapping cone of i_{n}, by setting $q_{n}(x)=p_{n}^{X}(x)$ for $x \in G_{n}(X)$ and $q_{n}([y, t])=*$ for $[y, t] \in C\left(F_{n}(X)\right)$.
- Now convert q_{n} into a fibration $p_{n+1}^{X}: G_{n+1}(X) \rightarrow X$.

This construction is functorial and the space $G_{n}(X)$ has the homotopy type of the $n^{\text {th }}$-classifying space of Milnor [12]. We quote also from [8] that the direct limit $G_{\infty}(X)$ of the maps $G_{n}(X) \rightarrow G_{n+1}(X)$ has the homotopy type of X. As spaces are pointed, one has two canonical applications $\iota_{n}^{l}: G_{n}(X) \rightarrow G_{n}(X \times X)$ and $\iota_{n}^{r}: G_{n}(X) \rightarrow G_{n}(X \times X)$ obtained from maps $X \rightarrow X \times X$ defined respectively by $x \mapsto(x, *)$ and $x \mapsto(*, x)$.

Definition 3 A space X is an $H(n)$-space if there exists a map $\mu_{n}: G_{n}(X \times$ $X) \rightarrow X$ such that $\mu_{n} \circ \iota_{n}^{l}=\mu_{n} \circ \iota_{n}^{r}=p_{n}^{X}: G_{n}(X) \rightarrow X$.

Directly from the definition, we see that an $H(\infty)$-space is an H-space and that any space is a $H(1)$-space. Recall also that any co- H-space is of LS-category 1. Then, Proposition 1 contains the trivial cases of a co- H-space X and of an H-space Y.

Proof of Proposition 1 From the hypothesis, we have a section $\sigma: X \rightarrow$ $G_{n}(X)$ of the Ganea fibration p_{n}^{X} and a map $\mu_{n}: G_{n}(Y \times Y) \rightarrow Y$ extending the Ganea fibration p_{n}^{Y}, as in Definition 3. If f and g are elements of $\mathcal{F}_{*}(X, Y, *)$, we set

$$
f \bullet g=\mu_{n} \circ G_{n}(f \times g) \circ G_{n}\left(\Delta_{X}\right) \circ \sigma
$$

where Δ_{X} denotes the diagonal map of X. One checks easily that $f \bullet * \simeq$ $* \bullet f \simeq f$.

In the rest of this section, we are interested in the existence of $H(n)$-structures on a given space. For the detection of an $H(n)$-space structure, one may replace the Ganea fibrations p_{n}^{X} by any functorial construction of fibrations $\hat{p}_{n}: \hat{G}_{n}(X) \rightarrow X$ such that one has a functorial commutative diagram,

Such maps \hat{p}_{n} are called fibrations à la Ganea in [13] and substitutes to Ganea fibrations here. Moreover, as we are interested in product spaces, the following filtration of the space $G_{\infty}(X) \times G_{\infty}(Y)$ plays an important role:

$$
(G(X) \times G(Y))_{n}=\cup_{i+j=n} G_{i}(X) \times G_{j}(Y)
$$

In [10], N. Iwase proved the existence of a commutative diagram

and used it to settle a counter-example to the Ganea conjecture. Therefore, in Definition 3, we are allowed to replace the Ganea space $G_{n}(X \times X)$ by $(G(X) \times G(X))_{n}$. Moreover, if $\hat{p}_{n}: \hat{G}_{n}(X) \rightarrow X$ are substitutes to Ganea fibrations as above, we may also replace $G_{n}(X \times X)$ by

$$
(\hat{G}(X) \times \hat{G}(Y))_{n}=\cup_{i+j=n} \hat{G}_{i}(X) \times \hat{G}_{j}(Y) .
$$

We will use this possibility in the rational setting.
In the case $n=2$, we have a cofibration sequence,

$$
\Sigma\left(G_{1}(X) \wedge G_{1}(X)\right) \xrightarrow{W h} G_{1}(X) \vee G_{1}(X) \longrightarrow G_{1}(X) \times G_{1}(X)
$$

coming from the Arkowitz generalisation of a Whitehead bracket, [2]. Therefore, the existence of an $H(2)$-structure on a space X is equivalent to the triviality of $\left(p_{1}^{X} \vee p_{1}^{X}\right) \circ W h$. As the loop Ωp_{1}^{X} of the Ganea fibration $p_{1}^{X}: G_{1}(X) \rightarrow X$ admits a section, we get the following necessary condition:

- if there is an $H(2)$-structure on X, then the homotopy Lie algebra of X is abelian, i.e. all Whitehead products vanish.

Example 4 In the case X is a sphere S^{n}, the existence of an $H(2)$ structure on S^{n} implies $n=1,3$ or 7 , [1]. Therefore, only the spheres which are already H-spaces endow a structure of $H(2)$ space. One can also observe that, in general, if a space X is both of category n and an $H(2 n)$-space, then it is an H-space. The law is given by

$$
X \times X \xrightarrow{\sigma} G_{2 n}(X \times X) \xrightarrow{\mu_{2 n}} X,
$$

where the existence of the section σ to $p_{2 n}^{X \times X}$ comes from $\operatorname{cat}(X \times X) \leq$ $2 \operatorname{cat}(X)$.

Example 5 If we restrict to spaces whose loop space is a product of spheres or of loop spaces on a sphere, the previous necessary condition becomes a criterion. For instance, it is proved in [3] that all Whitehead products are zero in the complex projective 3 -space. This implies that $\mathbb{C} P^{3}$ is an $H(2)$-space. (Observe that $\mathbb{C} P^{3}$ is not an H-space.) From [3], we know also that the homotopy Lie algebra of $\mathbb{C} P^{2}$ is not abelian. Therefore $\mathbb{C} P^{2}$ is not an $H(2)$-space.

The following example shows that we can find $H(n)$-spaces, for any $n>1$.
Example 6 Denote by $\varphi_{r}: K(\mathbb{Z}, 2) \rightarrow K(\mathbb{Z}, 2 r)$ the map corresponding to the class $x^{r} \in H^{2 r}(K(\mathbb{Z}, 2) ; \mathbb{Z})$, where x is the generator of $H^{2}(K(\mathbb{Z}, 2) ; \mathbb{Z})$. Let E be the homotopy fibre of φ_{r}. We prove below that E is an $H(r-1)$-space.
First we derive, from the homotopy long exact sequence associated to the map φ_{r}, that ΩE has the homotopy type of $S^{1} \times K(\mathbb{Z}, 2 r-2)$. Therefore, the only obstruction to extend $G_{r-1}(E) \vee G_{r-1}(E) \rightarrow E$ to $(G(E) \times G(E))_{r-1}=$ $\cup_{i+j=r-1} G_{i}(E) \times G_{j}(E)$ lies in

$$
\operatorname{Hom}\left(H_{2 r}\left((G(E) \times G(E))_{r-1} ; \mathbb{Z}\right), \pi_{2 r-2}(E)\right) .
$$

If A and B are CW-complexes, we denote by $A \sim_{n} B$ the fact that A and B have the same n-skeleton. If we look at the Ganea total spaces and fibres, we get:

$$
\Sigma \Omega E \sim_{2 r} S^{2} \vee S^{2 r-1} \vee S^{2 r}, F_{1}(E)=\Omega E * \Omega E \sim_{2 r} S^{3} \vee S^{2 r} \vee S^{2 r}
$$

and more generally, $F_{s}(E) \sim_{2 r} S^{2 s+1}$, for any $s, 2 \leq s \leq r-1$. Observe also that $H_{2 r}\left(F_{2}(E) ; \mathbb{Z}\right) \rightarrow H_{2 r}\left(G_{1}(E) ; \mathbb{Z}\right)$ is onto. (As we have only spherical classes in this degree, this comes from the homotopy long exact sequence.)

As a conclusion, we have no cell in degree $2 r$ in $(G(E) \times G(E))_{r-1}$ and E is an $H(r-1)$-space.

We end this section with a reduction to a more computable invariant than the LS-category. Consider $\rho_{n}^{X}: X \rightarrow G_{[n]}(X)$ the homotopy cofibre of the Ganea fibration p_{n}^{X}. Recall that, by definition, $\operatorname{wcat}_{G}(X) \leq n$ if the map ρ_{n}^{X} is homotopically trivial. Observe that we always have $\operatorname{wcat}_{G}(X) \leq \operatorname{cat}(X)$, see [5, Section 2.6] for more details on this invariant.

Proposition 7 Let X be a $C W$-complex of dimension k and Y be a $C W$ complex $(c-1)$-connected with $k \leq c-1$. If Y is an $H(n)$-space such that $\operatorname{wcat}_{\mathrm{G}}(X) \leq n$, then $\mathcal{F}_{*}(X, Y, *)$ is an H-space.

Proof Let f and g be elements of $\mathcal{F}_{*}(X, Y, *)$. Denote by $\tilde{\iota}_{n}^{X}: \tilde{F}_{n}(X) \rightarrow X$ the homotopy fibre of $\rho_{n}^{X}: X \rightarrow G_{[n]}(X)$. This construction is functorial and the map $(f, g): X \rightarrow Y \times Y$ induces a map $\tilde{F}_{n}(f, g): \tilde{F}_{n}(X) \rightarrow \tilde{F}_{n}(Y \times Y)$ such that $\tilde{\iota}_{n}^{Y \times Y} \circ \tilde{F}_{n}(f, g)=(f, g) \circ \tilde{\iota}_{n}^{X}$.
By hypothesis, we have a homotopy section $\tilde{\sigma}: X \rightarrow \tilde{F}_{n}(X)$ of $\tilde{\iota}_{n}^{X}$. Therefore, one gets a map $X \rightarrow \tilde{F}_{n}(Y \times Y)$ as $\tilde{F}_{n}(f, g) \circ \tilde{\sigma}$.

Recall now that, if $A \rightarrow B \rightarrow C$ is a cofibration with $A(a-1)$-connected and $C(c-1)$-connected, then the canonical map $A \rightarrow F$ in the homotopy fibre of $B \rightarrow C$ is an ($a+c-2$)-equivalence. We apply it in the following situation:

The space $G_{n}(Y \times Y)$ is $(c-1)$-connected and $G_{[n]}(Y \times Y)$ is c-connected. Therefore the map $j_{n}^{Y \times Y}$ is $(2 c-1)$-connected. From the hypothesis, we get $k \leq c-1<2 c-1$ and the map $j_{n}^{Y \times Y}$ induces a bijection

$$
\left[X, G_{n}(Y \times Y)\right] \longrightarrow\left[X, \tilde{F}_{n}(Y \times Y)\right] .
$$

Denote by $g_{n}: X \rightarrow G_{n}(Y \times Y)$ the unique lifting of $\tilde{F}_{n}(f, g) \circ \tilde{\sigma}$. The composition $g \bullet f$ is defined as $\mu_{n} \circ g_{n}$ where μ_{n} is the $H(n)$-structure on Y.

If we set $g=*$, then $\tilde{F}_{n}(f, g)$ is obtained as the composite of $\tilde{F}_{n}(f)$ with the map $\tilde{F}_{n}(Y) \rightarrow \tilde{F}_{n}(Y \times Y)$ induced by $y \mapsto(y, *)$. As before, one has an isomorphism

$$
\left[X, G_{n}(Y)\right] \longrightarrow \cong\left[X, \tilde{F}_{n}(Y)\right] .
$$

A chase in the following diagram shows that $f \bullet *=f$ as expected,

3 Rational characterisation of $H(n)$-spaces

Define $m_{H}(X)$ as the greatest integer n such that X admits an $H(n)$-structure and denote by X_{0} the rationalisation of a nilpotent finite type CW-complex X. Recall that $\mathrm{dl}(X)$ is the valuation of the differential of the minimal model of X, already defined in the introduction.

Proposition 8 Let X be a nilpotent finite type $C W$-complex of rationalisation X_{0}. Then we have:

$$
m_{H}\left(X_{0}\right)+1=\operatorname{dl}(X) .
$$

Proof Let $(\wedge V, d)$ be the minimal model of X. Recall from [7] that a model of the Ganea fibration p_{n}^{X} is given by the following composition,

$$
(\wedge V, d) \rightarrow\left(\wedge V / \wedge^{>n} V, \bar{d}\right) \hookrightarrow\left(\wedge V / \wedge^{>n} V, \bar{d}\right) \oplus S
$$

where the first map is the natural projection and the second one the canonical injection together with $S \cdot S=S \cdot V=0$ and $d(S)=0$. As the first map is functorial and the second one admits a left inverse over ($\wedge V, d$), we may use the realisation of $(\wedge V, d) \rightarrow\left(\wedge V / \wedge^{>n} V, d\right)$ as substitute for the Ganea fibration.
Suppose $\operatorname{dl}(X)=r$. We consider the cdga $\left(\wedge V^{\prime}, d^{\prime}\right) \otimes\left(\wedge V^{\prime \prime}, d^{\prime \prime}\right) / I_{r}$ where $\left(\wedge V^{\prime}, d^{\prime}\right)$ and $\left(\wedge V^{\prime \prime}, d^{\prime \prime}\right)$ are copies of $(\wedge V, d)$ and where I_{r} is the ideal $I_{r}=$ $\oplus_{i+j \geq r} \wedge^{i} V^{\prime} \otimes \wedge^{j} V^{\prime \prime}$. Observe that this cdga has a zero differential and that the morphism

$$
\varphi:(\wedge V, d) \rightarrow\left(\wedge V^{\prime}, d^{\prime}\right) \otimes\left(\wedge V^{\prime \prime}, d^{\prime \prime}\right) / I_{r}
$$

defined by $\varphi(v)=v^{\prime}+v^{\prime \prime}$ satisfies $\varphi(d v)=0$. Therefore φ is a morphism of cdga's and its realisation induces an $H(n)$-structure on the rationalisation X_{0}. That shows: $m_{H}\left(X_{0}\right)+1 \geq \mathrm{dl}(X)$.

Suppose now that $m_{H}\left(X_{0}\right)+1>\mathrm{dl}(X)=r$. By hypothesis, we have a morphism of cdga's

$$
\varphi:(\wedge V, d) \rightarrow\left(\wedge V^{\prime}, d^{\prime}\right) \otimes\left(\wedge V^{\prime \prime}, d^{\prime \prime}\right) / I_{r+1}
$$

By construction, in this quotient, a cocycle of wedge degree r cannot be a coboundary. Since the composition of φ with the projection on the two factors is the natural projection, we have $\varphi(v)-v^{\prime}-v^{\prime \prime} \in \wedge^{+} V^{\prime} \otimes \wedge^{+} V^{\prime \prime}$. Now let $v \in V$, of lowest degree with $d_{r}(v) \neq 0$. From $d_{r}(v)=\sum_{i_{1}, i_{2}, \ldots, i_{r}} c_{i_{1} i_{2} \ldots i_{r}} v_{i_{1}} v_{i_{2}} \ldots v_{i_{r}}$, we get

$$
\varphi(d v)=\sum_{i_{1}, i_{2}, \ldots, i_{r}} c_{i_{1} i_{2} \ldots i_{r}}\left(v_{i_{1}}^{\prime}+v_{i_{1}}^{\prime \prime}\right) \cdot\left(v_{i_{2}}^{\prime}+v_{i_{2}}^{\prime \prime}\right) \cdots\left(v_{i_{r}}^{\prime}+v_{i_{r}}^{\prime \prime}\right)
$$

This expression cannot be a coboundary and the equation $d \varphi(x)=\varphi(d x)$ is impossible. We get a contradiction, therefore one has $m_{H}\left(X_{0}\right)+1=\mathrm{dl}(X)$.

4 The Haefliger model

Let X and Y be finite type nilpotent CW-complexes with X of finite dimension. Let $(\wedge V, d)$ be the minimal model of Y and $\left(A, d_{A}\right)$ be a finite dimensional model for X, which means that $\left(A, d_{A}\right)$ is a finite dimensional cdga equipped with a quasi-isomorphism ψ from the minimal model of X into $\left(A, d_{A}\right)$. Denote by A^{\vee} the dual vector space of A, graded by

$$
\left(A^{\vee}\right)^{-n}=\operatorname{Hom}\left(A^{n}, \mathbb{Q}\right)
$$

We set $A^{+}=\oplus_{i=1}^{\infty} A^{i}$, and we fix an homogeneous basis $\left(a_{1}, \cdots, a_{p}\right)$ of A^{+}. The dual basis $\left(a^{s}\right)_{1 \leq s \leq p}$ is a basis of $B=\left(A^{+}\right)^{\vee}$ defined by $\left\langle a^{s} ; a_{t}\right\rangle=\delta_{s t}$.

We construct now a morphism of algebras

$$
\varphi: \wedge V \rightarrow A \otimes \wedge(B \otimes V)
$$

by

$$
\varphi(v)=\sum_{s=1}^{p} a_{s} \otimes\left(a^{s} \otimes v\right)
$$

In [9] Haefliger proves that there is a unique differential D on $\wedge(B \otimes V)$ such that φ is a morphism of cdga's, i.e. $\left(d_{A} \otimes D\right) \circ \varphi=\varphi \circ d$.

In general, the cdga $(\wedge(B \otimes V), D)$ is not positively graded. Denote by $D_{0}: B \otimes$ $V \rightarrow B \otimes V$ the linear part of the differential D. We define a cdga $(\wedge Z, D)$ by constructing Z as the quotient of $B \otimes V$ by $\oplus_{j \leq 0}(B \otimes V)^{j}$ and their image by D_{0}. Haefliger proves:

Theorem 9 [9] The commutative differential graded algebra $(\wedge Z, D)$ is a model of the mapping space $\mathcal{F}_{*}(X, Y, *)$.

5 Proof of Theorem 2

Proof We start with an explicit description of the Haefliger model, keeping the notation of Section 4. The cdga $(\wedge V, d)$ is a minimal model of Y and we choose for V a basis $\left(v_{k}\right)$, indexed by a well-ordered set and satisfying $d\left(v_{k}\right) \in \wedge\left(v_{r}\right)_{r<k}$ for all k. As homogeneous basis $\left(a_{s}\right)_{1 \leq s \leq p}$ of A, we choose elements h_{i}, e_{j} and b_{j} such that:

- the elements h_{i} are cocycles and their classes $\left[h_{i}\right]$ form a linear basis of the reduced cohomology of A;
- the elements e_{j} form a linear basis of a supplement of the vector space of cocycles in A, and $b_{j}=d_{A}\left(e_{j}\right)$.

We denote by h^{i}, e^{j} and b^{j} the corresponding elements of the basis of $B=$ $\left(A^{+}\right)^{\vee}$. By developing $D_{0}\left(\sum_{s} a_{s} \otimes\left(a^{s} \otimes v\right)\right)=0$, we get a direct description of the linear part D_{0} of the differentiel D of the Haefliger model:

$$
D_{0}\left(b^{j} \otimes v\right)=-(-1)^{\left|b^{j}\right|} e^{j} \otimes v \text { and } D_{0}\left(h^{i} \otimes v\right)=0, \text { for each } v \in V .
$$

A linear basis of the graded vector space Z is therefore given by the elements:

$$
\begin{cases}b^{j} \otimes v_{k}, & \text { with }\left|b^{j} \otimes v_{k}\right| \geq 1, \\ e^{j} \otimes v_{k}, & \text { with }\left|e^{j} \otimes v_{k}\right| \geq 2, \\ h^{i} \otimes v_{k}, & \text { with }\left|h^{i} \otimes v_{k}\right| \geq 1 .\end{cases}
$$

Now, from $\varphi(d v)=\left(D-D_{0}\right) \varphi(v)$ and $d(v)=\sum c_{i_{1} i_{2} \cdots i_{r}} v_{i_{1}} v_{i_{2}} \cdots v_{i_{r}}$, we deduce:

$$
\begin{aligned}
& \left(D-D_{0}\right)\left(a^{s} \otimes v\right)= \\
& \pm \sum c_{i_{1} i_{2} \cdots i_{r}} \sum_{a_{i_{1}}, a_{i_{2}} \cdots, a_{i_{r}}}\left\langle a^{s} ; a_{i_{1}} a_{i_{2}} \cdots a_{i_{r}}\right\rangle\left(a_{i_{1}} \otimes v_{i_{1}}\right) \cdot\left(a_{i_{2}} \otimes v_{i_{2}}\right) \cdots\left(a_{i_{r}} \otimes v_{i_{r}}\right)
\end{aligned}
$$

where, as usual, the sign \pm is entirely determined by a strict application of the Koszul rule for a permutation of graded objects.

Suppose first that $\operatorname{cup}_{0}(X)<\operatorname{dl}(Y)$.

We prove, by induction on k, that in $(\wedge Z, D)$ the ideal I_{k} generated by the elements
is a differential ideal and that the elements $h^{i} \otimes v_{s}$, with $s \leq k$ and $\left|h^{i} \otimes v_{s}\right| \geq 1$, are cocycles in the quotient $\left((\wedge Z) / I_{k}, \bar{D}\right)$. Note that this ideal is acyclic as shown by the formula given for D_{0}. Therefore the quotient map $\rho:(\wedge Z, D) \rightarrow$ $\left((\wedge Z) / I_{k}, D\right)$ is a quasi-isomorphism. The induction will prove that the differential is zero in the quotient, which is the first assertion of Theorem 2.

Begin with the induction. One has $d v_{1}=0$ which implies $\left(D-D_{0}\right)\left(a^{s} \otimes v_{1}\right)=0$. Therefore, we deduce $D\left(b^{j} \otimes v_{1}\right)=-(-1)^{\left|b^{j}\right|} e^{j} \otimes v_{1}$ and $D\left(h^{i} \otimes v_{1}\right)=0$. That proves the assertion for $k=1$.
We suppose now that the induction step is true for the integer k. Taking the quotient by the ideal I_{k} gives a quasi-isomorphism

$$
\rho:(\wedge Z, D) \rightarrow(\wedge T, D):=\left((\wedge Z) / I_{k}, D\right)
$$

As the elements $b^{j} \otimes v_{s}$ and $e^{j} \otimes v_{s}, s \leq k$, have disappeared and as $\operatorname{cup}_{0}(X)<$ $\mathrm{dl}(Y)$, we have $\rho \circ \varphi\left(d v_{k+1}\right)=0$. Therefore $D\left(b^{j} \otimes v_{k+1}\right)=-(-1)^{\left|b^{j}\right|} e^{j} \otimes v_{k+1}$ and $D\left(h^{i} \otimes v_{k+1}\right)=0$. The induction is thus proved.

We consider now the case $\operatorname{cup}_{0}(X) \geq \mathrm{dl}(Y)$ in the case $\operatorname{dim}(X) \leq \operatorname{conn}(Y)$.
We choose first in the lowest possible degree q an element $y \in V$ that satisfies $d y=d_{r} y+\cdots$ with $d_{r}(y) \neq 0$ and $r \leq \operatorname{cup}_{0}(X)$. As above we can kill all the elements $e^{j} \otimes v$ and $b^{j} \otimes v$ with $|v|<q$ and keep a quasi-isomorphism $\rho:(\wedge Z, D) \rightarrow(\wedge T, D):=\left(\wedge Z / I_{q-1}, D\right)$.
Next we choose cocycles, $h_{1}, h_{2}, \cdots, h_{m}$, such that the class [ω], associated to the product $\omega=h_{1} \cdot h_{2} \cdots h_{m}$, is not zero. We choose $m \geq r$ and suppose that ω is in the highest degree for such a product. Let ω^{\prime} be an element in A^{\vee} such that $\left\langle\omega^{\prime} ; \omega\right\rangle=1$. Then, by the Haefliger formula, the differential D is zero in $\wedge T$ in degrees strictly less than $\left|\omega^{\prime} \otimes y\right|$. Observe that $\left|\omega^{\prime} \otimes y\right| \geq 2$ and that the D_{r} part of the differential $D\left(\omega^{\prime} \otimes y\right)$ is a nonzero sum. This proves that the cohomology is not free.

Example 10 Let X be a space with $\operatorname{cup}_{0}(X)=1$, which means that all products are zero in the reduced rational cohomology of X. Then, for any nilpotent finite type CW-complex Y, the rational cohomology $H^{*}\left(\mathcal{F}_{*}(X, Y, *) ; \mathbb{Q}\right)$ is a free commutative graded algebra. For instance, this is the case for the (nonformal) space $X=S^{3} \vee S^{3} \cup_{\omega} e^{8}$, where the cell e^{8} is attached along a sum of triple Whitehead products.

Example 11 When the dimension of X is greater than the connectivity of Y, the degrees of the elements have some importance. The cohomology can be commutative free even if $\operatorname{cup}_{0}(X) \geq \mathrm{dl}(Y)$. For instance, consider $X=$ $S^{5} \times S^{11}$ and $Y=S^{8}$. One has $\operatorname{cup}_{0}(X)=\operatorname{dl}(Y)=2$ and the function space $\mathcal{F}_{*}(X, Y, *)$ is a rational H-space with the rational homotopy type of $K(\mathbb{Q}, 3) \times K(\mathbb{Q}, 4) \times K(\mathbb{Q}, 10)$, as a direct computation with the Haefliger model shows.

6 Rationalisation of $\mathcal{F}_{*}(X, Y, *)$ when $\operatorname{dim}(X) \leq$ conn (Y)

Let X be a finite nilpotent space with rational LS-category equal to $m-1$ and let Y be a finite type nilpotent CW-complex whose connectivity c is greater than the dimension of X. We set $r=\operatorname{dl}(Y)$ and denote by s the maximal integer such that $m / r^{s} \geq 1$, i.e. s is the integral part of $\log _{r} m$.

Theorem 12 There is a sequence of rational fibrations $K_{k} \rightarrow F_{k} \rightarrow F_{k-1}$, for $k=1, \ldots, s$, with $F_{0}=*, F_{s}$ is the rationalisation of $\mathcal{F}_{*}(X, Y, *)$ and each space K_{k} is a product of Eilenberg-MacLane spaces. In particular, the rational loop space homology of $\mathcal{F}_{*}(X, Y, *)$ is solvable with solvable index less than or equal to s.

Proof By a result of Cornea [4], the space X admits a finite dimensional model A such that m is the maximal length of a nonzero product of elements of positive degree. We denote by $(\wedge V, d)$ the minimal model of Y.

We consider the ideals $I_{k}=A^{>m / r^{k}}$, and the short exact sequences of cdga's

$$
I_{k} / I_{k-1} \rightarrow A / I_{k-1} \rightarrow A / I_{k} .
$$

These short exact sequences realise into cofibrations $T_{k} \rightarrow T_{k-1} \rightarrow Z_{k}$ and the sequences

$$
\left(\wedge\left(\left(A^{+} / I_{k}\right)^{\vee} \otimes V\right), D\right) \rightarrow\left(\wedge\left(\left(A^{+} / I_{k-1}\right)^{\vee} \otimes V\right), D\right) \rightarrow\left(\wedge\left(\left(I_{k} / I_{k-1}\right)^{\vee} \otimes V\right), D\right)
$$

are relative Sullivan models for the fibrations

$$
\mathcal{F}_{*}\left(Z_{k}, Y, *\right) \rightarrow \mathcal{F}_{*}\left(T_{k-1}, Y, *\right) \rightarrow \mathcal{F}_{*}\left(T_{k}, Y, *\right) .
$$

Now since the cup length of the space Z_{k} is strictly less than r, the function spaces $\mathcal{F}_{*}\left(Z_{k}, Y, *\right)$ are rational H-spaces, and this proves Theorem 12.

References

[1] J Frank Adams, On the non-existence of elements of Hopf invariant one, Ann. of Math. (2) 72 (1960) 20-104
[2] Martin Arkowitz, The generalized Whitehead product, Pacific J. Math. 12 (1962) 7-23
[3] Michael Barratt, Ioan James, Norman Stein, Whitehead products and projective spaces, J. Math. Mech. 9 (1960) 813-819
[4] Octavian Cornea, Cone-length and Lusternik-Schnirelmann category, Topology 33 (1994) 95-111
[5] Octavian Cornea, Gregory Lupton, John Oprea, Daniel Tanré, Lust-ernik-Schnirelmann category, volume 103 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI (2003)
[6] Yves Félix, Stephen Halperin, Jean-Claude Thomas, Rational homotopy theory, volume 205 of Graduate Texts in Mathematics, Springer-Verlag, New York (2001)
[7] Yves Félix, Stephen Halperin, Rational LS-category and its applications, Trans. Amer. Math. Soc. 273 (1982) 1-37
[8] Tudor Ganea, Lusternik-Schnirelmann category and strong category, Illinois J. Math. 11 (1967) 417-427
[9] André Haefliger, Rational homotopy of the space of sections of a nilpotent bundle, Trans. Amer. Math. Soc. 273 (1982) 609-620
[10] Norio Iwase, Ganea's conjecture on Lusternik-Schnirelmann category, Bull. London Math. Soc. 30 (1998) 623-634
[11] Yasusuke Kotani, Note on the rational cohomology of the function space of based maps, Homology Homotopy Appl. 6 (2004) 341-350
[12] John Milnor, Construction of universal bundles. I, Ann. of Math. (2) 63 (1956) 272-284
[13] Hans Scheerer, Daniel Tanré, Fibrations à la Ganea, Bull. Soc. Math. Belg. 4 (1997) 333-353

Département de Mathématiques, Université Catholique de Louvain 2, Chemin du Cyclotron, 1348 Louvain-La-Neuve, Belgium and
Département de Mathématiques, UMR 8524, Université de Lille 1 59655 Villeneuve d'Ascq Cedex, France
Email: felix@math.ucl.ac.be, Daniel.Tanre@univ-lille1.fr
Received: 13 February 2005

