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1 Introduction

This article is a continuation of the work started in [14]. Let M be a connected,
compact, orientable, 3-manifold such that ∂M is a torus. We assume that the
first Betti number β1(M) is one, i.e. M is a rational homology circle. In
particular, M is the exterior of a knot in a rational homology sphere.

Given a homomorphism α : π1(M) → C
∗ , we define an abelian representation

ρα : π1(M)→ PSL2(C) as follows:

ρα(γ) = ±
(
α

1
2 (γ) 0

0 α−
1
2 (γ)

)
∀γ ∈ π1(M) (1)

where α
1
2 : π1(M)→ C

∗ is a map (not necessarily a homomorphism) such that

(α
1
2 (γ))2 = α(γ) for all γ ∈ π1(M). The representation ρα is reducible, i.e.

ρα(π1(M)) has global fixed points in P 1(C).

Question 1.1 When can ρα be deformed into irreducible representations (i.e.
representations whose images have no fixed points in P 1(C))?
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966 Michael Heusener and Joan Porti

Different versions of this question have been studied in [9], [11] and [12] for
SU(2) and [2], [3], [5], [14] and [23] for SL2(C).

The answer is related to a twisted Alexander invariant. We first choose an
isomorphism:

H1(M ; Z) ∼= tors(H1(M ; Z))⊕ Z, (2)

which amounts to choosing a projection onto the torsion subgroup H1(M ; Z)→
tors(H1(M ; Z)) and to fix a generator φ of H1(M ; Z) ∼= Hom(H1(M ; Z),Z).
So, α induces a homomorphism tors(H1(M ; Z)) ⊕ Z → C

∗ which will be also
denoted by α.

The composition of the projection π1(M) → tors(H1(M ; Z)) with the restric-
tion of α gives a representation σ : π1(M)→ U(1) ⊂ C

∗ :

σ : π1(M)→ tors(H1(M ; Z))
α→ C

∗.

A homomorphism φσ : π1(M) → C[t±1]∗ to the units of the ring of Laurent
polynomials C[t±1] is given by φσ(γ) = σ(γ)tφ(γ) . This allows a definition of
the twisted Alexander polynomial ∆φσ(t) ∈ C[t±1], whose construction will be
recalled in Section 2.

We say that α is a zero of the Alexander invariant if ∆φσ(α(0, 1)) = 0, where
(0, 1) ∈ tors(H1(M ; Z)) ⊕ Z. We show in Section 4 that being a zero and the
order of the zero does not depend of the choice of the isomorphism (2).

We prove in Lemma 4.8 that if ρα can be deformed into irreducible repre-
sentations, then α is a zero of the Alexander invariant. For a simple zero
this condition is also sufficient and we have stronger conclusions, as the next
theorem shows. Let R(M) = Hom(π1(M),PSL2(C)) denote the variety of rep-
resentations of π1(M) in PSL2(C).

Theorem 1.2 If α is a simple zero of the Alexander invariant, then ρα is
contained in precisely two irreducible components of R(M), one of dimension
4 containing irreducible representations and another of dimension 3 containing
only abelian ones. In addition, ρα is a smooth point of both varieties and the
intersection at the orbit of ρα is transverse.

When the representation α is trivial, then it is not a zero of the Alexander
invariant, because the Alexander invariant is the usual untwisted Alexander
polynomial ∆, and ∆(1) = ±| tors H1(M,Z)| 6= 0.

Let X(M) = R(M)//PSL2(C) denote the algebraic quotient where PSL2(C)
acts by conjugation on R(M). The character of a representation ρ ∈ R(M) is
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Deformations of reducible representations 967

a map χρ : π1(M) → C given by χρ(γ) = tr2 ρ(γ) for γ ∈ π1(M). There is a
one-to-one correspondence between X(M) and the set of characters. Hence we
call X(M) the variety of characters of π1(M) (see [13] for details).

Let χα be the character of ρα .

Theorem 1.3 If α is a simple zero of the Alexander invariant, then χα is
contained in precisely two irreducible components of X(M), which are curves
and are the quotients of the components of R(M) in Theorem 1.2. In addition
χα is a smooth point of both curves and the intersection at χα is transverse.

This paper generalizes the main results of [14] where we considered only rep-
resentations α : π1(M)→ C

∗ which factor through H1(M ; Z)/ tors(H1(M ; Z))

and for which α
1
2 can be chosen as a homomorphism. These conditions im-

ply that ρα and its deformations can be lifted to representations into SL2(C).
On the other hand, it was shown in [13, Theorem 1.4] that the representation
variety R(M) can have many components which do not lift to the SL2(C)–
representation variety. Hence Theorem 1.2 and Theorem 1.3 generalize the
main results of [14]. Moreover, we have removed the condition that ρα is not
∂ -trivial from [14]. Here a representation ρ ∈ R(M) is called ∂ -trivial if

ρ ◦ i# : π1(∂M)→ PSL2(C)

is trivial. An example will be given where the results of this paper apply but
those of [14] do not.

In [14] we considered the usual Alexander polynomial, but here we need a
twisted version. The strategy of the proof of Theorem 1.2 in this paper is simi-
lar to the one of Theorem 1.1 of [14]: we construct a metabelian representation
ρ+ : π1(M) → PSL2(C) which is not abelian and has the same character as
ρα , and we show that ρ+ is a smooth point of R(M). This involves quite
elaborate cohomology computations. More precisely, due to an observation by
André Weil, the Zariski tangent space TZar

ρ (R(M)) of R(M) at a represen-
tation ρ ∈ R(M) may be viewed as a subspace of the space of group cocy-
cles Z1(π1(M), sl2(C)ρ). Here sl2(C)ρ denotes the π1(M)-module sl2(C) via
Ad ◦ρ. The approach given here for these cohomological computations and for
the analysis of the tangent space is completely self contained and simplifies in
several aspects the computations from [14]. In particular, the new approach
permits us to remove the assumption that ρα is not ∂ -trivial.

The paper is organized as follows. In Section 2 we recall the definition of the
twisted Alexander polynomial and describe its main properties. In Section 3 we
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968 Michael Heusener and Joan Porti

recall some basic facts from group cohomology and Weil’s construction which
will be used in the sequel. Section 4 relates the vanishing of twisted Alexander
invariants to some elementary cohomology and deformations of abelian repre-
sentations. The next three sections are devoted to prove that the metabelian
representation ρ+ can be deformed into irreducible representations. The co-
homology computations are done in Section 5, with a key lemma proved in
Section 6. The smoothness of R(M) at ρ+ is proved in Section 7. Theo-
rems 1.2 and 1.3 are proved in Sections 8 and 9 respectively. Finally, Section 10
is devoted to describe the local structure of the set of real valued characters.

Acknowledgement The authors would like to thank the referee for his careful
and thorough reading of the manuscript and for providing useful suggestions for
improving the paper. The second author is partially supported by the Spanish
MCYT through grant BFM2003-03458.

2 Twisted Alexander polynomial

Let M be a manifold as in the introduction. We fix a projection p : H1(M ; Z)→
tors(H1(M ; Z)) and a generator

φ ∈ H1(M ; Z) = Hom(H1(M ; Z),Z) = Hom(π1(M),Z) ,

i.e. we fix an isomorphism as in (2)

H1(M ; Z) ∼= tors(H1(M ; Z))⊕ Z

z 7→ (p(z), φ(z)) .

For every representation σ : tors(H1(M ; Z))→ U(1) ⊂ C
∗ the composition

π1(M)→ H1(M ; Z)
p−→ tors(H1(M ; Z))

σ−→ U(1)

will be denoted by σ(p) : π1(M)→ U(1). We consider the induced representa-
tion

φσ(p) : π1(M) → C[t±1]∗

γ 7→ σ(p)(γ)tφ(γ) .

In this way C[t±1] is a π1(M)-module (or a H1(M ; Z)-module since Imφσ(p)

is abelian).

In the sequel we shall fix a projection p : H1(M ; Z) → tors(H1(M ; Z)). We
shall, by convenient abuse of notation, continue to write σ for σ(p). Let

Hφσ

∗ (M) and H∗
φσ

(M)
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denote the homology and cohomology twisted by φσ . Using singular chains,
Hφσ

∗ (M) and H∗
φσ

(M) can be defined respectively as the homology and coho-
mology of the chain and cochain complexes:

C[t±1]⊗π1(M) C∗(M̃ ; Z) and Homπ1(M)(C∗(M̃ ; Z),C[t±1]),

where M̃ denotes the universal covering of M . Alternatively, since φσ is
abelian, we could take the maximal abelian covering of M instead of the uni-
versal one.

In the sequel we shall write R := C[t±1]. Since R is a principal ideal domain

and since Hφσ

1 (M) is finitely generated, we have a canonical decomposition

Hφσ

1 (M) = R/r0R⊕ · · · ⊕R/rmR,
where ri ∈ R and ri+1 | ri .

Definition 2.1 The R-module Hφσ

1 (M) is called the Alexander module and

∆φσ

k = rk rk+1 · · · rm
the k-th twisted Alexander polynomial, for k = 0, . . . ,m. The first one is also
called the twisted Alexander polynomial: ∆φσ := ∆φσ

0 .

It is well defined up to units in R = C[t±1], i.e. up to multiplication with

elements a tn with a ∈ C
∗ and n ∈ Z. We use the natural extension ∆φσ

k = 1

for k > m. Note that if A ∈ Mm,n(R) is a presentation matrix for Hφσ

1 (M)

then ∆φσ

k ∈ R is the greatest common divisor of the minors of A of order
(n − k). Alexander module can be done in a more general context using only
an U.F.D. (see [24, IV.3]).

Changing the isomorphism Note that Hφσ

1 (M) and hence ∆φσ

k are not
invariants of the pair (M,σ), they depend on the isomorphism (2); equivalently,
they depend on the choice of the projection p : H1(M,Z) → tors(H1(M ; Z))
and the generator φ : H1(M,Z)→ Z.

Let p1, p2 : H1(M ; Z) → tors(H1(M ; Z)) be two projections. They differ by a
morphism ψ : Z→ tors(H1(M ; Z)). Namely, for all z ∈ H1(M ; Z),

p2(z) = p1(z) + ψ(φ(z)). (3)

Therefore, given σ : tors(H1(M ;Z)→ U(1), the induced representations σi :=
σ(pi) : π1(M)→ U(1) satisfy:

σ2(γ) = σ1(γ)σ(ψ(φ(γ))) ∀γ ∈ π1(M) . (4)
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Hence,

φσ2
(γ) = σ2(γ)t

φ(γ) = σ1(γ)σ(ψ(φ(γ)))tφ(γ) = σ1(γ)(a t)
φ(γ)

and φσ1
(γ) = σ1(γ)t

φ(γ) differ by replacing t by a t, where a = σ(ψ(1)) ∈ U(1)
and 1 denotes the generator of Z. Therefore

∆
φσ2

k (t) = ∆
φσ1

k (a t) . (5)

The generator φ : H1(M ; Z)→ Z is unique up to sign, and replacing φ by −φ
implies replacing t by t−1 in the twisted polynomial.

Symmetry Consider the following involution on C[t±1]:

∑

i

ai ti =
∑

i

ait
−i,

where ai denotes the complex conjugate of ai ∈ C. An ideal I ⊂ C[t±1] is
called symmetric if I = Ī and an element η ∈ C[t±1] is called symmetric if
it generates a symmetric ideal. Hence an element η ∈ C[t±1] is symmetric if
and only if there exists a unit ǫ ∈ C[t±1]∗ such that η̄ = ǫη . Notice that some
authors use the expression weakly symmetric [24].

Proposition 2.2 Let M be a 3-manifold such that β1(M) = 1 and that ∂M
is a torus. For each homomorphism σ : tors(H1(M ; Z)) → U(1) and for each

splitting of (2) we have that ∆φσ

k is symmetric i.e., ∆φσ

k and ∆φσ

k are equal up
to multiplication by a unit of C[t±1].

Proof Given a R = C[t±1]-module N , N denotes the R-module with the
opposite R-action, i.e. rn̄ := r̄n̄, for r ∈ R and n̄ ∈ N . Using the Blanchfield
duality pairing we obtain an isomorphism of R-modules D : Hφσ

3−p(M,∂M) →
Hp

φσ
(M). Since R is a P.I.D., we obtain

D : tors(Hφσ

n−p(M,∂M)) ∼= tors(Hφσ

p−1(M)) (6)

and

rkRH
φσ

n−p(M,∂M) = rkRH
φσ

p (M)

(see [6], [19], [17, Sec. 2] and [10, Sect. 7]).

The proposition follows from the duality formula (6) (see the proof of Theo-
rem 7.7.1 in [16, p. 97] for the details).
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Remark 2.3 In contrast to the untwisted situation, the Alexander module
Hφσ

1 (M) can have nonzero rank. Examples are easily obtained as follows: let
M1 be the complement of knot in a homology sphere and let M2 be a rational
homology sphere. Then π1(M1#M2) ∼= π1(M1)∗π1(M2) and H1(M1#M2; Z) ∼=
H1(M1; Z)⊕H1(M2; Z) comes with a canonical splitting.

Since H1(M1; Z) is torsion free, we can choose φ : π1(M1#M2)→ Z to be the
composition

φ : π1(M1#M2)→ H1(M1#M2; Z)→ H1(M1; Z) ∼= Z .

For each nontrivial representation σ : H1(M2; Z) → U(1) we obtain φσ(h1 +
h2) = σ(h2)t

φ(h1) ∈ C[t±1]∗ for hi ∈ H1(Mi; Z) and hence σ = φσ |H1(M2;Z) .

Since σ is nontrivial it follows that Hφσ

0 (M2) = Hφσ

0 (M1#M2) = 0. Moreover,

we obtain that Hφσ

0 (S2) ∼= C[t±1] and hence the Mayer-Vietoris sequence gives
a short exact sequence:

0→ Hφσ

1 (M1)⊕Hφσ

1 (M2)→ Hφσ

1 (M1#M2)→ Ker j → 0

where j : Hφσ

0 (S2) → Hφσ

0 (M1) is surjective. Since Hφσ

0 (M1) is torsion it

follows that Ker j is a free C[t±1]-module of rank one and hence, Hφσ

1 (M1#M2)
has nonzero rank.

3 Group cohomology: Fox calculus and products

Fox calculus will be used to compute the twisted Alexander polynomial. Since
this is a tool in group cohomology, we first need the following lemma, that will
also be used later. Details and conventions in group cohomology can be found
in [7] and [25].

Lemma 3.1 Let A be a π1(M)-module and let X be any CW-complex with
π1(X) ∼= π1(M). Then there are natural morphisms Hi(X;A)→ Hi(π1(M);A)
which are isomorphisms for i = 0, 1 and a surjection for i = 2. In cohomology
there are natural morphisms H i(π1(M);A) → H i(X;A) which are isomor-
phisms for i = 0, 1 and an injection for i = 2.

Proof It is possible to construct an Eilenberg-MacLane space K of type
(π1(M), 1) from X by attaching k -cells, k ≥ 3. In this way we obtain a
CW-pair (K,X) and it follows that Hj(K,X;A) = 0 and Hj(K,X;A) = 0 for
j = 1, 2 (this a direct application of Theorems (4.4) and (4.4*) of [27, VI.4]).
Hence the exact sequences of the pair (K,X) give the result.
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Fox calculus Let σ : tors(H1(M ; Z) → U(1) be a representation and fix a

splitting of H1(M ; Z) as in (2). We can use Fox calculus to compute ∆φσ

k :
choose a cell decomposition of M with only one zero cell x0 . Since every
presentation of π1(M) obtained from a cell decomposition of M has deficiency
one, we have:

π1(M) = 〈S1, . . . , Sn | R1, . . . , Rn−1〉 .
Denote by π : Fn → π1(M) the canonical projection where Fn = F (S1, . . . , Sn)
is the free group generated by n elements and by ∂/∂Si : ZFn → ZFn the
partial derivations of the group ring of the free group.

The Jacobian Jφσ := (Jφσ

ji ) ∈ Mn−1,n(C[t±1]) is defined by Jφσ

ji := φσ ◦
π(∂Rj/∂Si) ∈ C[t±1]. Analogous to [8, Chapter 9], one can show that Jφσ

is a presentation matrix for Hφσ

1 (M,x0). The exact sequence for the pair

(M,x0) yields Hφσ

1 (M,x0) ∼= Hφσ

1 (M) ⊕ C[t±1] (see [24, pp. 61-62]). Hence,

∆φσ

k (M) = ∆φσ

k+1(M,x0) and ∆φσ

k (M) is the greatest common divisor of the

(n− k − 1)-minors of the Jacobian Jφσ ∈Mn−1,n(C[t±1]).

Example 3.2 Let M be the punctured torus bundle over S1 whose action of
the monodromy on H1(Ṫ

2,Z) is given by the matrix
(

1 2
2 5

)
. The fundamental

group π1(Ṫ
2) is a free group of rank 2 generated by α and β . A presentation

of π1(M) ∼= Z ⋉ π1(Ṫ
2) is given by

π1(M) = 〈α, β, µ | µαµ−1 = αβ2, µβµ−1 = β(αβ2)2〉 .
Moreover, H1(M ;Z) ∼= (Z/2⊕Z/2)⊕Z comes with a canonical splitting s(1) =
µ i.e., p(µ) = 0, p(α) = α and p(β) = β . A generator φ ∈ H1(M ; Z) ∼=
Hom(π1(M); Z) is given by φ(µ) = 1 and φ(α) = φ(β) = 0.

There are exactly four representations σi : (Z/2⊕Z/2)→ U(1) which give rise
to the following homomorphisms φσi

: π1(M)→ C[t±1]∗ :

φσ1
:





µ 7→ t
α 7→ 1
β 7→ 1

, φσ2
:





µ 7→ t
α 7→ 1
β 7→ −1

,

φσ3
:





µ 7→ t
α 7→ −1
β 7→ 1

, φσ4
:





µ 7→ t
α 7→ −1
β 7→ −1

.

Now, a direct calculation gives:

Jφσ1 =

(
0 t− 1 −2
0 −2 t− 5

)
, Jφσ2 =

(
0 t− 1 0
2 2 t− 1

)

Jφσ3 =

(
2 t− 1 2
0 0 t− 1

)
, Jφσ4 =

(
2 t− 1 0
2 0 t− 1

)
.
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Hence, ∆φσ1 = t2 − 6t+ 1 and ∆φσi = t− 1 for i = 2, 3, 4.

Products in cohomology Let Γ be a group and let A be a Γ-module. We
denote by (C∗(Γ;A), d) the normalized cochain complex. The coboundaries
(respectively cocycles, cohomology) of Γ with coefficients in A are denoted by
B∗(Γ;A) (respectively Z∗(Γ;A), H∗(Γ;A)).

Let A1 , A2 and A3 be Γ-modules. The cup product of two cochains u ∈
Cp(Γ;A1) and v ∈ Cq(Γ;A2) is the cochain u ∪ v ∈ Cp+q(Γ;A1 ⊗ A2) defined
by

u ∪ v(γ1, . . . , γp+q) := u(γ1, . . . , γp)⊗ γ1 · · · γp ◦ v(γp+1, . . . , γp+q) . (7)

Here A1 ⊗A2 is a Γ-module via the diagonal action.

It is possible to combine the cup product with any bilinear map (compatible
with the Γ action) b : A1 ⊗A2 → A3 . So we obtain a cup product

b
∪ : Cp(Γ;A1)⊗ Cq(Γ;A2)→ Cp+q(Γ;A3) .

For details see [7, V.3]. If A = g is a Lie algebra, then we obtain the cup-bracket

of two cochains, which will be denoted by [u∪ v]. Note that the cup-bracket is
not associative on the cochain level. If A is an algebra then the cup product
will be simply denoted by

.
∪. This cup product is associative on the cochain

level if the multiplication in A is associative.

Let b : A1 ⊗ A2 → A3 be bilinear and let zi ∈ Z1(Γ;Ai), i = 1, 2, be cocycles.
We define f : Γ→ A3 by f(γ) := b(z1(γ)⊗ z2(γ)). A direct calculation gives:
d f(γ1, γ2) + b(z1(γ1) ⊗ γ1 ◦ z2(γ2)) + b(γ1 ◦ z1(γ2) ⊗ z2(γ1)) = 0. This shows
that:

d f + z1
b
∪ z2 + z2

b◦τ
∪ z1 = 0 (8)

where τ : A1 ⊗A2 → A2 ⊗A1 is the twist operator.

Group cohomology and representation varieties Let Γ be a group and
let ρ : Γ → PSL2(C) be a representation. The Lie algebra sl2(C) turns into
a Γ-module via Ad ◦ρ. We shall denote this Γ-module by sl2(C)ρ . A cocycle
d ∈ Z1(Γ; sl2(C)ρ) is a map d : Γ→ sl2(C)ρ satisfying

d(γ1γ2) = d(γ1) + Adρ(γ1) d(γ2), ∀γ1, γ2 ∈ π1(M) .

It was observed by André Weil [26] that there is a natural inclusion of the
Zariski tangent space TZar

ρ (R(Γ)) →֒ Z1(Γ; sl2(C)ρ). Informally speaking, given

Algebraic & Geometric Topology, Volume 5 (2005)



974 Michael Heusener and Joan Porti

a smooth curve ρǫ of representations through ρ0 = ρ one gets a 1-cocycle
d : Γ→ sl2(C)ρ by defining

d(γ) :=
d ρǫ(γ)

d ǫ

∣∣∣∣
ǫ=0

ρ(γ)−1, ∀γ ∈ Γ .

It is easy to see that the tangent space to the orbit by conjugation corresponds to
the space of 1-coboundaries B1(Γ; sl2(C)ρ) (see for instance [15, Section 4.5]).
Here, b : Γ → SL2(C)ρ is a coboundary if there exists x ∈ sl2(C) such that
b(γ) = Adρ(γ) x− x. A detailed account can be found in [18, Thm. 2.6] or [21,
Ch. VI].

Let dimρR(Γ) be the local dimension of R(Γ) at ρ (i.e. the maximal dimension
of the irreducible components of R(Γ) containing ρ, cf. [22, Ch. II, §1.4]). In
the sequel we shall use the following lemma:

Lemma 3.3 Let ρ ∈ R(Γ) be given. If dimρR(Γ) = dimZ1(Γ; sl2(C)ρ) then
ρ is a smooth point of the representation variety R(Γ) and ρ is contained in a
unique component of R(Γ) of dimension dimZ1(Γ; sl2(C)ρ).

Proof For every ρ ∈ R(Γ) we have

dimρR(Γ) ≤ dimTZar
ρ (R(Γ)) ≤ dimZ1(Γ; sl2(C)ρ) .

The lemma follows from the fact that the equality dimρR(Γ) = dimTZar
ρ (R(Γ))

is the condition in algebraic geometry that guarantees that ρ belongs to a single
irreducible component of R(Γ) and it is a smooth point (for more details see
[22, Ch. II]).

4 Abelian representations and the twisted Alexan-

der invariant

Let α : π1(M)→ C
∗ be a homomorphism. In what follows, the induced homo-

morphism H1(M ;Z)→ C
∗ will be also denoted by α and we denote by σ the

restriction of α to the torsion subgroup, i.e.

σ := α |tors(H1(M ;Z)) : tors(H1(M ; Z))→ U(1) .

Let us fix an isomorphism H1(M ; Z) ∼= tors(H1(M ; Z))⊕Z as in (2), i.e. we fix
an projection p : H1(M ; Z)→ tors(H1(M ; Z)) and a generator φ ∈ H1(M ; Z).
The induced section sp : Z→ H1(M ; Z) satisfies

sp ◦ φ = Id−p.
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Definition 4.1 We say that α is a zero of the k-th Alexander invariant of

order r if a := α(sp(1)) ∈ C
∗ is a zero of ∆φσ

k (t) of order r .

Lemma 4.2 This definition does not depend on the isomorphism (2).

Proof The independence of the generator φ ∈ H1(M ; Z) is clear: if we replace
φ by −φ we have to replace sp(1) by sp(−1) = −sp(1); hence, a = α(sp(1))

has to be replaced by a−1 . Moreover, we have to replace ∆φσ

k (t) by ∆φσ

k (t−1)
and the claim follows.

Suppose now that we have two projections p1, p2 : H1(M ; Z)→ tors(H1(M ; Z)).
Then there is morphism ψ : Z→ tors(H1(M ; Z)) as in (3) such that

ψ ◦ φ = p2 − p1 = s1 ◦ φ− s2 ◦ φ,
because si ◦ φ = Id−pi . In particular

ψ = s1 − s2.
Let σi : π1(M) → U(1), i = 1, 2, be given by σi := σ ◦ pi and denote ai :=
α(spi

(1)), so that α(ψ(1)) = a1a
−1
2 . By (5) we get:

∆
φσ2

k (t) = ∆
φσ1

k (α(ψ(1)) t) = ∆
φσ1

k (a1a
−1
2 t),

Putting t = a2 s, we get ∆
φσ2

k (a2 s) = ∆
φσ1

k (a1 s) Hence the order of vanishing

of ∆
φσi

k at ai is independent of i.

Definition 4.3 Following 4.1, we define βα : C[t±1]→ C to be the evaluation
map at α(sp(1)) ∈ C, i.e. βα(η(t)) = η(sp(1)) ∈ C ∀η(t) ∈ C[t±1].

The previous lemma says that the evaluation and the order of vanishing of ∆φσ

k

at βα is independent of the splitting of the first homology group. In addition,
we have

α = βα ◦ φσ , (9)

i.e. α(γ) = βα(σ(γ)tφ(γ)) = σ(γ)α(sp(1))
φ(γ) ∀γ ∈ π1(M).

Example 4.4 Let M be the torus bundle given in Example 3.2. For every
λ ∈ C

∗ there are representations αi : π1(M) → C
∗ , i = 1, . . . , 4, given by

αi(µ) = λ and αi

∣∣
Z/2⊕Z/2

= σi . Now, αi is a root of the Alexander invariant if

and only if ∆φσi (λ) = 0. More precisely, α1 is a root of the Alexander invariant
if and only if λ = 3 ±

√
8 and, for i = 2, 3, 4, αi is a root of the Alexander

invariant if and only if λ = 1. Note that in each case the root is a simple root.
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Definition 4.5 We define Cα to be the π1(M)-module C with the action
induced by α, i.e. γ · x = α(γ)x ∀x ∈ C and ∀γ ∈ π1(M).

We explain the motivation of this definition. Let ρα : π1(M)→ PSL2(C) be the
representation in (1). The Lie algebra sl2(C) turns into a π1(M)-module via
Ad ◦ρα which will simply be denoted by sl2(C)α . The π1(M)-module sl2(C)α
decomposes as sl2(C)α = C+ ⊕C0 ⊕ C− , where

C+ = C

(
0 1
0 0

)
, C0 = C

(
1 0
0 −1

)
and C− = C

(
0 0
1 0

)
. (10)

Here C0 is a trivial π1(M)-module and C± := Cα± , where α+ = α and α− is
the morphism that maps every element γ ∈ π1(M) to α(γ−1).

Computing H1(Γ; Cα) Let Γ = 〈S1, . . . , Sn|R1, . . . , Rm〉 be a finitely pre-
sented group and let α : Γ → C

∗ be a representation. In order to com-
pute H1(Γ; Cα) we can use the canonical 2-complex with one 0-cell associ-
ated to the presentation of Γ (see Lemma 3.1). More precisely, we can identify
Z1(Γ; Cα) with the kernel of the linear map C

n → C
m given by a 7→ Aa where

A = (aji) ∈Mm,n(C) is given by aji = α(∂Rj/∂Si).

For the remainder of this section we shall fix a projection p : H1(M ; Z) →
tors(H1(M ; Z)) and a generator φ ∈ H1(M ; Z). Moreover, let σ denote the
restriction of α to the torsion subgroup tors(H1(M ; Z)). Using (9) we ob-

tain aji = βα(Jφσ

ji ) where Jφσ = (Jφσ

ji ) ∈ Mn−1,n(C[t±1]) is the Jacobian, i.e.

Jφσ

ji := φσ ◦ π(∂Rj/∂Si). We have dimB1(Γ; Cα) = 1 if α is nontrivial, and

dimB1(Γ; Cα) = 0 if α is trivial. Hence for any nontrivial α : Γ→ C
∗ , we have

dimH1(Γ; Cα) = n− rkA− 1 . (11)

Lemma 4.6 Let α : π1(M) → C
∗ be a nontrivial homomorphism. Then

dimH1(π1(M); Cα) = k if and only if α is a zero of the k -th Alexander invari-
ant and not a zero of the (k + 1)-th Alexander invariant.

Proof By (11) we have k = dimH1(π1(M); Cα) = n − rkA − 1, where A =

(α(∂Rj/∂Si)). Now α = βα ◦ φσ and hence βα(∆φσ

l (M)) = 0 if l < k and

βα(∆φσ

l (M)) 6= 0 if l ≥ k .

Recall that α± : π1(M)→ C
∗ denotes the homomorphisms given by

α±(γ) := (α(γ))±1 ∀γ ∈ π1(M). (12)
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It follows from the symmetry of the Alexander invariants that α+ and α− are
zeros of the same order of the k -th Alexander invariant. More precisely, we
have:

Proposition 4.7 Let α : π1(M)→ C
∗ be a nontrivial homomorphism. Then

α+ and α− are zeros of the same order of the k -th Alexander invariant. In
particular, we have

dimH1(π1(M); Cα+) = dimH1(π1(M); Cα−) .

Proof Since α−(sp(1)) is the inverse of α(sp(1)), it suffices to check that

∆
φ

σ−1

k (t−1) = ǫ∆φσ

k (t) where ǫ is a unit in C[t±1]. To verify this, notice that

the image of σ is contained in U(1), so σ−1(γ) = σ(γ), ∀γ ∈ π1(M). Hence, if

∆φσ

k (t) =
∑

i ait
i , then ∆

φ
σ−1

k (t) =
∑

i ait
i . By Proposition 2.2,

∑
i ait

i differs
from

∑
i ait

−i by a unit, hence the proposition follows.

The space of abelian representations Let α : π1(M) → C
∗ be a repre-

sentation and let ϕ : Z → C
∗ be a homomorphism. Using multiplication, we

obtain a homomorphism αϕ : π1(M)→ C
∗ given by αϕ(γ) = α(γ)ϕ(φ(γ)) for

γ ∈ π1(M), where φ ∈ H1(M ; Z) is a generator. There is a one dimensional
irreducible algebraic set Vα ⊂ R(M) given by

Vα := {ραϕ | ϕ ∈ Hom(Z,C∗)} ⊂ R(M) .

Moreover, the PSL2(C) orbit of ραϕ is two dimensional if αϕ is nontrivial
and hence Vα is contained in an at least three dimensional component. We
denote by Sα(M) ⊂ R(M) the closure of the PSL2(C)–orbit of Vα . Notice
that ρα ∈ Sα(M) and dimC Sα(M) ≥ 3.

Lemma 4.8 Let α : π1(M)→ C
∗ be a representation. If α is not a zero of the

Alexander invariant then there exists a neighborhood of ρα in R(M) consisting
entirely of points of the component Sα(M). Moreover, ρα ∈ Sα(M) is a smooth
point and Sα(M) is the unique component through ρα and dimSα(M) = 3.

Proof We have 3 ≤ dimSα(M) ≤ dimρα
R(M) ≤ dimZ1(π1(M); sl2(C)α).

Therefore Lemma 3.3 implies the result if we can show that

dimZ1(π1(M); sl2(C)α) = 3 .

If α is trivial then Z1(π1(M); sl2(C)α) = H1(π1(M); sl2(C)α) ∼= H1(M ; C) ⊗
sl2(C) and dimZ1(π1(M); sl2(C)α) = 3 follows.
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If α is nontrivial, then the π1(M)-module sl2(C)ρα
splits as sl2(C)α = C+ ⊕

C− ⊕ C0 . Hence H1(π1(M); sl2(C)α) ∼= H1(π1(M); C+) ⊕ H1(π1(M); C0) ⊕
H1(π1(M); C−) and by Lemma 4.6 and Proposition 4.7 we get

dimH1(π1(M); sl2(C)α) = 1 .

This implies that dimZ1(π1(M); sl2(C)α) = 3 and ρα ∈ Sα(M) ⊂ R(M) is a
smooth point.

5 Cohomology of metabelian representations

The aim of the following three sections is to prove that, when α is a simple
zero of the Alexander invariant, certain reducible metabelian representations
are smooth points of the representation variety R(M). First we construct
these reducible representations and then, before proving their smoothness in
Section 7, we shall do some cohomological computations in this section and the
following one.

Let α : π1(M) → C
∗ be a homomorphism and let d : π1(M) → C be a map.

The map ρd
α : π1(M)→ PSL2(C) given by

ρd
α(γ) =

(
1 d(γ)
0 1

)
ρα(γ) = ±

(
α

1
2 (γ) α−

1
2 (γ)d(γ)

0 α−
1
2 (γ)

)

is a homomorphism if and only if d ∈ Z1(π1(M); Cα). Moreover, ρd
α is non-

abelian if and only if d is not a coboundary.

Corollary 5.1 (Burde, de Rham) Let α : π1(M) → C
∗ be a representation

and define ρα : π1(M) → PSL2(C) as in (1). Then there exists a reducible,
non-abelian representation ρ : π1(M) → PSL2(C) such that χρ = χρα

if and
only if α is a zero of the Alexander invariant.

Proof By Lemma 4.6 we have that dimH1(π1(M); Cα) > 0 if and only if α
is a zero of the Alexander invariant of M .

If α is a simple zero of the Alexander invariant, then α± defined by (12) is
a zero of the first Alexander invariant, but it is not a zero of the second. By
Lemma 4.6 we have H1(π1(M); C±) ∼= C.

Let d± ∈ Z1(π1(M); C±) be a cocycle which represents a generator of the
first cohomology group H1(π1(M); C±). We denote by ρ± the metabelian
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representations into the upper/lower triangular group given by Corollary 5.1,
i.e.

ρ+(γ) =

(
1 d+(γ)
0 1

)
ρα(γ) and ρ−(γ) =

(
1 0

d−(γ) 1

)
ρα(γ).

If we replace d± by d′± = c d± + b± where c ∈ C
∗ and b± ∈ B1(π1(M); C±)

then ρ± changes by conjugation by an upper/lower triangular matrix. Let
b+ ⊂ sl2(C) denote the Borel subalgebra of upper triangular matrices. It is a
π1(M)-module via Ad ◦ρ+ . The short exact sequence of π1(M)-modules

0→ C+ → b+ → C0 → 0

gives a long exact sequence in cohomology:

0→ H0(M ; C0)
δ1

−→ H1(M ; C+)→ H1(M ; b+)→

H1(M ; C0)
δ2

−→ H2(M ; C+)→ H2(M ; b+)→ 0 (13)

Lemma 5.2 We have that H1(M ; b+) = 0 if and only if δ2 : H1(M ; C0) →
H2(M ; C+) is an isomorphism.

Proof The Euler characteristic χ(M) vanishes. Hence, H1(M ; b+) = 0 im-
plies H2(M ; b+) = 0 and the sequence (13) gives that δ2 : H1(M ; C0) →
H2(M ; C+) is an isomorphism.

Suppose that δ2 : H1(M ; C0) → H2(M ; C+) is an isomorphism. Then the
sequence (13) gives H2(M ; b+) = 0 and the vanishing of the Euler characteristic
implies H1(M ; b+) = 0.

A cocycle d0 : π1(M) → C0 is nothing but a homomorphism d0 : π1(M) →
(C,+). A direct calculation gives

δ2(d0)(γ1, γ2) = −2d+(γ1)d0(γ2).

The 2-cocycle δ2(d0) is a cup product. In our situation we have the multipli-
cation C0 ⊗ C+ → C+ . This gives us a cup product

.
∪ : H1(π1(M); C0)⊗H1(π1(M); C+)→ H2(π1(M); C+)

and
δ2(d0) = −2(d+

.∪ d0) (14)

(see Equation (7)). Hence we have that δ2 is an isomorphism if and only if, for
each nontrivial homomorphism d0 : Γ → C, the cocycle d+

.∪ d0 represents a
nontrivial cohomology class.

The next lemma will be proved in Section 6:
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Lemma 5.3 Let d0 : π1(M) → C0 be a nontrivial homomorphism and let
d+ : π1(M) → C+ be a cocycle representing a nontrivial cohomology class. If
α is a simple zero of the Alexander invariant, then the 2-cocycle d+

.∪ d0 ∈
Z2(π1(M); C+) represents a nontrivial cohomology class.

Corollary 5.4 Let α : π1(M) → C
∗ be a nontrivial homomorphism. If α is

a simple zero of the Alexander invariant then H1(π1(M); b+) = 0 and the pro-
jection to the quotient sl2(C)ρ+ → sl2(C)ρ+/b+

∼= C− induces an isomorphism

H1(π1(M); sl2(C)ρ+) ∼= H1(π1(M); C−) ∼= C.

Proof Lemmas 5.3 and 5.2 and equation (14) imply that H1(π1(M); b+) = 0.
The isomorphism follows then from the long exact sequence in cohomology
corresponding to

0→ b+ → sl2(C)ρ+ → C− → 0 .

6 Fox calculus and 2-cocycles

The aim of this section is to prove Lemma 5.3. Let Γ be a finitely presented
group and let A be a CΓ-module. In the sequel we have to decide when a given
2-cocycle c : Γ× Γ→ A is a coboundary.

A normalized 2-cochain is a map c : Γ× Γ → A where the normalization con-
dition is c(1, γ) = c(γ, 1) = 0 for all γ ∈ Γ. We shall extend c linearly on the
first component, i.e. for η =

∑
γ∈Γ nγγ ∈ CΓ, nγ ∈ C, we define

c(η, γ0) :=
∑

γ∈Γ

nγ c(γ, γ0) .

Proposition 6.1 Let Γ = 〈S1, . . . , Sn|R1, . . . , Rm〉 be a finitely presented
group and let c : Γ× Γ→ A be normalized 2-cocycle.

Then c : Γ × Γ → A is a coboundary if and only if there exists ai ∈ A, i =
1, . . . , n, such that for all j = 1, . . . ,m the equation

n∑

i=1

π
(∂Rj

∂Si

)
◦ ai +

n∑

i=1

c(π(
∂Rj

∂Si
), π(Si)) = 0 (15)

holds.

Here π : 〈S1, . . . , Sn〉 → Γ denotes the natural projection from the free group
to Γ.
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Proof We start by recalling some well known constructions used in the proof
(cf. [7]). Let X be the canonical 2-complex with one 0-cell associated to the
presentation of Γ = 〈S1, . . . , Sn|R1, . . . , Rm〉 i.e. X = X0 ∪ X1 ∪ X2 where
X0 = {e0}, X1 = {e11, . . . , e1n} and X2 = {e21, . . . , e2m}. The universal covering
p : X̃ → X gives us a free chain complex Ck := Ck(X̃) of Γ-modules. A basis
for Ck is given by choosing exactly one cell ẽkj ∈ p−1(ekj ). With respect to this
basis, ∂2 is given by the Fox calculus, i.e.

∂2(ẽ
2
j ) =

n∑

i=1

∂Rj

∂Si
ẽ1i and ∂1(ẽ

1
i ) = (Si − 1)ẽ0 . (16)

Notice that ∂1 ◦ ∂2 = 0 corresponds to the fundamental formula of the Fox
calculus (see [8]).

The normalized bar resolution for Γ is denoted by B∗ := B∗(Γ). More precisely,
let Bn := Bn(Γ) be the free Γ-module with generators [x1| . . . |xn], where xi ∈
Γ\{1}. In order to give meaning to every symbol [x1| . . . |xn] set [x1| . . . |xn] = 0
if xi = 1 for any i. This is called the normalization condition. Note that B0

∼=
ZΓ is the free Γ-module on one generator and the augmentation ε : B0 → Z

maps [ ] to 1. In low dimensions the boundary operators are given by

∂[x|y] = x[y]− [xy] + [x], ∂[x] = (x− 1)[ ] .

Moreover, homomorphisms s−1 : Z → B0 , sn : Bn → Bn+1 of abelian groups
are defined by

s−1(1) = [ ] and sn(x[x1| . . . |xn]) = [x|x1| . . . |xn] .

It turns out that (sn) is a contracting homotopy for the underlying augmented
chain complex B∗

ε→ Z of abelian groups.

0 −−−−→ C2(X̃)
∂2−−−−→ C1(X̃)

∂0−−−−→ C0(X̃)
ǫ−−−−→ Z

yf2

yf1

yf0

y=

· · · −−−−→ B2(Γ)
∂−−−−→
←−
s1

B1(Γ)
∂−−−−→
←−
s0

B0(Γ)
ǫ−−−−→
←−
s−1

Z

By using the fact that C∗ is a free Γ-complex and that B∗ is contractile we
obtain a chain map f∗ : C∗ → B∗ which is augmentation preserving i.e. ε◦f0 =
ε. Moreover, f is unique up to chain homotopy (see [7, I.7.4]). The contracting
homotopy sn : Bn → Bn+1 and the basis of C∗ determine f∗ inductively (see
[7, p.24] for details). Hence the maps fi : Ci → Bi , i = 0, 1, 2, are given by

f0(ẽ
0) = [ ], f1(ẽ

1
i ) = [Si] and f2(ẽ

2
j ) =

n∑

i=1

[
∂Rj

∂Si

∣∣Si] . (17)
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Here we have used the following convention: if η =
∑

γ∈Γ nγγ ∈ ZΓ, then
[η, γ0] :=

∑
γ∈Γ nγ [γ, γ0] ∈ B2 .

It follows that the induced cochain map f∗2 : HomΓ(B2;A) → HomΓ(C2;A) is
given by

f∗2 (c)(ẽ2j ) =
n∑

i=1

c
(∂Rj

∂Si
, Si

)
, where c ∈ HomΓ(B2;A). (18)

By Lemma 3.1, the map f∗2 induces an injection f∗ : H2(Γ;A) → H2(X;A).
Hence, f∗2 (c) is a coboundary if and only if there exists a cochain

b ∈ HomΓ(B1;A) such that f∗2 (c)(ẽ2j ) + b(f1(∂2ẽ
2
j )) = 0 (19)

for all j = 1, . . . ,m. The proposition follows from Equation (19) by using (16),
(17) and (18).

Let α : π1(M) → C
∗ be a nontrivial representation. Note that α induces a

homomorphism α : tors(H1(M ; Z))⊕Z→ C
∗ , and let σ denote the restriction

of α to the torsion subgroup tors(H1(M ; Z)). As before we denote by C+ the
π1(M)-module Cα , i.e. γ · z = α(γ)z . For the remainder of the section, fix a
projection p : H1(M ; Z)→ tors(H1(M ; Z)) and a generator φ ∈ H1(M ; Z).

Let h : π1(M) → (C,+) be a homomorphism and let d+ : π1(M) → C+ be
a cocycle. Since φ is a generator of the first cohomology group, there exists
a ∈ C such that h = aφ.

By Proposition 6.1 we have that h
.
∪ d+ is a coboundary if and only if there

exist x1, . . . , xn ∈ C+ such that
n∑

i=1

α(
∂Rj

∂Si
)xi + h

.
∪ d+(

∂Rj

∂Si
, Si) = 0 (20)

for all j = 1, . . . , n− 1.

We have h
.
∪d+(γ1, γ2) = h(γ1)α(γ1)d+(γ2) and hence for η =

∑
cγγ ∈ Cπ1(M)

we get from (9):

h
.
∪ d+(η, γ0) =

∑
cγ (h

.
∪ d+)(γ, γ0)

=
∑

cγ h(γ)α(γ)d+(γ0)

= a
∑

cγ φ(γ)σ(γ)α(sp(1))
φ(γ)d+(γ0) . (21)

Let D : C[t±1]→ C[t±1] be the following differential operator:

D(
∑

i∈Z

cit
i) =

∑

i∈Z

ciit
i .
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The operator D satisfies the following rules:

D(c1η1 + c2η2) = c1D(η1) + c2D(η2) for ci ∈ C and ηi ∈ C[t±1],

D(η1η2) = D(η1)η2 + η1D(η2) for ηi ∈ C[t±1].

It follows from these rules that D(c) = 0 for c ∈ C.

For given z ∈ C
∗ we define ordz : C[t±1]→ N ∪ {∞} to be the order of η(t) ∈

C[t±1] at z , i.e. ordz(η) =∞⇔ η(t) ≡ 0 and

ordz(η) = k ∈ N⇔ ∃η′ ∈ C[t±1] : η′(z) 6= 0 and η(t) = (t− z)kη′(t) .
It is easy to see that if η(z) = 0, then ordz(η) = ordz(D(η)) + 1.

For a fixed z ∈ C
∗ the evaluation map C[t±1] → C which maps η(t) to η(z)

turns C into a C[t±1]-module which will be denoted by Cz . The kernel of the
evaluation map C[t±1]→ C is exactly the maximal ideal generated by (t− z).
We choose a splitting of H1(M ; Z) as in (2) and we write α = βα ◦ φσ as in
(9). Recall that βα is nothing but the evaluation map at z := α(sp(1)). Hence
(21) gives:

h
.
∪ d+(η, γ0) = a βα(D(φσ(η)))d+(γ0), (22)

where η ∈ Cπ1(M), φσ(η) ∈ C[t±1] and γ0 ∈ π1(M).

A C[t±1]-module homomorphism f : (C[t±1])n → (C[t±1])m induces a C[t±1]-
morphism f z : Cn

z → Cm
z . This follows simply from f(Ker (βα)n) ⊂ Ker (βα)m .

(C[t±1])n
f−−−−→ (C[t±1])m

yβn
α

yβm
α

C
n
z

fz

−−−−→ C
m
z .

It is easy to see that D(f) : (C[t±1])n → (C[t±1])m given by D(f) := Dm ◦ f −
f ◦Dn is a C[t±1]-module morphism. If A is the matrix of f with respect to the
canonical basis, then βα(A) is the matrix of f z with respect to the canonical
basis and DA is the matrix of D(f) with respect to the canonical basis. Here,
βα and D applied to a matrix means simply applying it to each entry.

Proof of Lemma 5.3 Recall that we made the assumption that α is a simple
zero of the Alexander invariant of M .

Let h ∈ Z1(π1(M); C0) and d+ ∈ Z1(π1(M); C+) be cocycles representing
nontrivial cohomology classes. It follows from Equation (8) that

h
.∪ d+ + d+

.∪ h ∼ 0,
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and hence h
.
∪ d+ is a coboundary if and only if d+

.
∪ h is a coboundary.

Let a ∈ C
∗ such that h = aφ and set z := α(sp(1)). Then βα(η(t)) is simply

η(z). By writing equations (20) in matrix form, we obtain from (22) that h
.∪d+

is a coboundary if and only if the system

Jφσ(z)x + a (DJφσ)(z)



d+(S1)

...
d+(Sn)


 = 0 (23)

has a solution x ∈ C
n . Here, for each matrix A ∈ Mm,n(C[t±1]) we denote by

A(z) ∈ Mm,n(C) the matrix obtained by applying the evaluation map to its
entries.

From the canonical 2-complex associated to the presentation we obtain the
following resolutions:

0 ←−−−− (C[t±1])n−1 d2←−−−− (C[t±1])n
d1←−−−− C[t±1] ←−−−− 0

yβα

yβα

yβα

0 ←−−−− C
n−1
z

dz

2←−−−− C
n
z

dz

1←−−−− Cz ←−−−− 0 .

The matrix of d2 (respectively dz
2 ) with respect to the canonical basis is Jφσ

(respectively Jφσ(z)) and the matrix of D(d2) with respect to the canonical
basis is DJφσ .

It follows that h
.
∪ d+ is a coboundary if and only if

(DJφσ)(z)



d+(S1)

...
d+(Sn)


 ∈ Im(dz

2) .

Note that Jφσ is a presentation matrix of Hφσ

1 (M,x0) ∼= Hφσ

1 (M) ⊕ C[t±1].
The assumption that α is a simple zero of the Alexander invariant implies that
Hφσ

1 (M) is torsion. Hence, there exist a basis B = (b0, . . . , bn−1) of (C[t±1])n

and a basis C = (c1, . . . , cn−1) of (C[t±1])n−1 such that d2(b0) = 0 and d2(bi) =
ri(t)ci , 1 ≤ i ≤ n − 1, where ri(t) ∈ C[t±1] are nonzero and ri+1(t) | ri(t).
Moreover, we have that ordz(∆

φσ) = 1 and hence r1(z) = 0 and (Dr1)(z) 6= 0.
In particular, rj(z) 6= 0 for j ≥ 2.

Now, d2 ◦ d1 = 0 gives that Im d1 ⊂ C[t±1] · b0 . Therefore, there exists a
r(t) ∈ C[t±1] such that d1(1) = r(t)b0 . Since H0(M,C+) = 0 we obtain
r(z) 6= 0.
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We define a basis (bz0, . . . , b
z
n−1) of C

n
z by bz0 = r(z)βα(b0) = r(z)b0(z) and

bzi = βα(bi) = bi(z), 1 ≤ i ≤ n− 1. Analogously, a basis (cz1, . . . , c
z
n−1) of C

n−1

is given by czi = βα(ci) = ci(z), 1 ≤ i ≤ n− 1.

We have

Im dz
2 = span(cz2, . . . , c

z
n−1) and Ker dz

2 = span(bz0, b
z
1) .

Note that Ker dz
2 = span(bz0, b

z
1) can be identified with Z1(M ; C+) and that the

coboundaries correspond to the multiples of bz0 .

Now a direct calculation gives

(Dd2)(z) (bz0) = βα(D(d2) (r(t)b0)) ∈ Im dz
2, (using d2(b0) = 0),

and (Dd2)(z) (bz1) = βα(D(d2)(b1)) ∈ (Dr1)(z) c
z
1 + Im dz

2, (using r1(z) = 0).

Moreover, (Dr1)(z) 6= 0 and each element of Ker dz
2 representing a nonzero

cohomology class does not map into Im dz
2 under (Dd2)(z). Hence, for each

cocycle d+ : π1(M) → C+ which represents a generator of H1(M ; C+) and
each nontrivial homomorphism h : π1(M) → (C,+) the system (23) has no
solution, i.e. h

.∪ d+ is not a coboundary.

7 Deforming metabelian representations

We suppose in the sequel that α is a simple zero of the Alexander invariant of
M . Let ρ+ ∈ R(M) denote the metabelian representation defined in Section 5.
In this section we use the results of the previous two sections in order to show
that ρ+ is a smooth point of R(M) with local dimension 4.

Let i : ∂M →M be the inclusion.

Lemma 7.1 The representation ρ+ ◦ i# : π1(∂M)→ PSL2(C) is nontrivial.

Proof By Corollary 5.4, H1(M ; sl2(C)ρ+) ∼= H1(π1(M); sl2(C)ρ+) ∼= C and
by duality, H2(M ; ∂M ; sl2(C)ρ+) ∼= H1(M ; sl2(C)ρ+) ∼= C. Thus, by the exact
sequence of the pair

H1(M ; sl2(C)ρ+)→ H1(∂M ; sl2(C)ρ+)→ H2(M ; ∂M ; sl2(C)ρ+),

we obtain dimH1(∂M ; sl2(C)ρ+) ≤ 2.

We prove the lemma by contradiction: if ρ+ restricted to i#(π1(∂M)) was
trivial, then sl2(C)ρ+ would be a trivial π1(∂M)-module, and therefore

H1(∂M ; sl2(C)ρ+) ∼= H1(∂M ; C) ⊗C sl2(C) ∼= sl2(C)⊕ sl2(C)
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would have dimension six, contradicting the previous upper bound for the di-
mension.

Definition 7.2 A non-cyclic abelian subgroup of PSL2(C) with four elements
is called Klein’s 4-group. Such a group is realized by rotations about three
orthogonal geodesics and it is conjugate to the one generated by ±

(
0 1
−1 0

)
and

±
(

i 0
0 −i

)
.

Remark 7.3 The image ρ+(i#(π1(∂M))) cannot be the Klein group, because
the image of ρ+ is reducible (i.e. the action on P 1(C) = C ∪ {∞} has a fixed
point, ∞), but the Klein group has no fixed point in P 1(C).

Recall that by Weil’s construction Z1(π1(M); sl2(C)ρ+) contains the Zariski

tangent space of R(M) at ρ+ (cf. Section 3). To prove the smoothness, we
show that all cocycles in Z1(π1(M); sl2(C)ρ+) ∼= C are integrable. To do this,
we prove that all obstructions vanish, by using the fact that the obstructions
vanish on the boundary.

Lemma 7.4 The variety R(Z ⊕ Z) has exactly two irreducible components.
One is four dimensional and smooth except at the trivial representation. The
other component is three dimensional and smooth; it is exactly the orbit of a
representation onto the Klein group.

Proof Let Z ⊕ Z = 〈x, y|[x, y] = 1〉 and let ρ : Z ⊕ Z → PSL2(C) be a
representation given by ρ(x) = ±Ax and ρ(y) = ±Ay . Then tr[Ax, Ay] ∈
{±2} and ρ lifts to SL2(C) if and only if tr[Ax, Ay] = 2. Moreover, ρ is a
representation onto a Klein group if and only if tr[Ax, Ay] = −2.

Thus R(Z⊕Z) has two components, one of dimension four and one of dimension
three, which is the orbit of a representation onto the Klein group.

Given a representation ̺ ∈ R(Z⊕Z) which is nontrivial and different from the

Klein group, then H0(Z ⊕ Z; sl2(C)̺)
∼= sl2(C)̺(Z⊕Z) ∼= C. Thus, by duality

and Euler characteristic, H1(Z⊕Z; sl2(C)̺)
∼= C

2 and Z1(Z⊕Z; sl2(C)̺)
∼= C

4 .
This computation shows that the dimension of the Zariski tangent space at this
representation is at most four. Since the representation lies in a four dimensional
component, it is a smooth point of R(Z⊕Z). Note that it follows from the proof
of Lemma 7.1 that the trivial representation is a singular point of R(Z⊕ Z).

If ̺ is a representation onto the Klein group then H0(Z ⊕ Z; sl2(C)̺) = 0

and hence H1(Z ⊕ Z; sl2(C)̺) = 0 by the same Euler characteristic argument.

Hence dimZ1(Z⊕Z; sl2(C)̺) = 3. Since the orbit of the representation is three
dimensional and closed, the lemma is proved.
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Given a cocycle Z1(π1(M); sl2(C)ρ+) the first obstruction to integration is the
cup product with itself. In general when the n-th obstruction vanishes, the
obstruction of order n+ 1 is defined, it lives in H2(π1(M); sl2(C)ρ+).

Let Γ be a finitely presented group and let ρ : Γ→ PSL2(C) be a representa-
tion. A formal deformation of ρ is a homomorphism ρ∞ : Γ→ PSL2(C[[t]])

ρ∞(γ) = ± exp(

∞∑

i=1

tiui(γ))ρ(γ)

where ui : Γ → sl2(C) are elements of C1(Γ, sl2(C)ρ) such that p0 ◦ ρ∞ = ρ.
Here p0 : PSL2(C[[t]]) → PSL2(C) is the evaluation homomorphism at t = 0
and C[[t]] denotes the ring of formal power series. We shall say that ρ∞ is a
formal deformation up to order k of ρ if ρ∞ is a homomorphism modulo tk+1 .

An easy calculation gives that ρ∞ is a homomorphism up to first order if and
only if u1 ∈ Z1(Γ, sl2(C)ρ) is a cocycle. We call a cocycle u1 ∈ Z1(Γ, sl2(C)ρ)
formally integrable if there is a formal deformation of ρ with leading term u1 .

Let u1, . . . , uk ∈ C1(Γ, sl2(C)ρ) such that

ρk(γ) = exp(

k∑

i=1

tiui(γ))ρ(γ)

is a homomorphism into PSL2(C[[t]]) modulo tk+1 . Then there exists an ob-

struction class ζk+1 := ζ
(u1,...,uk)
k+1 ∈ H2(Γ; sl2(C)ρ) with the following properties

(see [14, Sec. 3]):

(i) There is a cochain uk+1 : Γ→ sl2(C) such that

ρk+1(γ) = exp(

k+1∑

i=1

tiui(γ))ρ(γ)

is a homomorphism modulo tk+2 if and only if ζk+1 = 0.

(ii) The obstruction ζk+1 is natural, i.e. if f : Γ′ → Γ is a homomorphism then

f∗ρk := ρk ◦f is also a homomorphism modulo tk+1 and f∗(ζ
(u1,...,uk)
k+1 ) =

ζ
(f∗u1,...,f∗uk)
k+1 .

Lemma 7.5 Let ρ : π1(M) → PSL2(C) be a reducible, nonabelian represen-
tation such that dimZ1(π1(M); sl2(C)ρ) = 4.

If ρ ◦ i# : π1(∂M) → PSL2(C) is neither trivial nor a representation onto a
Klein group, then every cocycle in Z1(π1(M); sl2(C)ρ) is integrable.
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Proof We first show that i∗ : H2(π1(M); sl2(C)ρ) → H2(π1(∂M); sl2(C)ρ) is
injective. To that extent we use the following commutative diagram:

H2(M ; sl2(C)ρ)
∼=−−−−→ H2(∂M ; sl2(C)ρ)x

x∼=

H2(π1(M); sl2(C)ρ) −−−−→ H2(π1(∂M); sl2(C)ρ)

The horizontal isomorphism on the top of the diagram comes from the exact
sequence of the pair (M,∂M) and the dimension computation in the proof
of Lemma 7.1. The vertical isomorphism on the right is a consequence of
asphericity of ∂M . In addition, the vertical map on the left is an injection (see
Lemma 3.1).

We shall now prove that every element of Z1(π1(M); sl2(C)ρ) is integrable. Let

u1, . . . , uk : π1(M)→ sl2(C) be given such that ρk(γ) = exp(
∑k

i=1 t
iui(γ))ρ(γ)

is a homomorphism modulo tk+1 . Then the restriction ρk ◦ i# : π1(∂M) →
SL2(C[[t]]) is also a formal deformation of order k . On the other hand, it fol-
lows from Lemma 7.4 that the restriction ρk ◦ i# is a smooth point of the rep-
resentation variety R(∂M). Hence, the formal implicit function theorem gives
that i∗ρk extends to a formal deformation of order k+1 (see [14, Lemma 3.7]).
Therefore, we have that

0 = ζ
(i∗u1,...,i∗uk)
k+1 = i∗ζ

(u1,...,uk)
k+1 .

Now, i∗ is injective and the obstruction vanishes.

Proposition 7.6 The representation ρ+ is a smooth point of R(M) with local
dimension four.

Proof It follows from Corollary 5.4 that dimH1(π1(M); sl2(C)ρ+) = 1. Thus

dimZ1(π1(M); sl2(C)ρ+) = 1 + dim sl2(C) = 4. Moreover, it follows from

Lemma 7.1 and Remark 7.3 that the representation ρ+ verifies the hypoth-
esis of Lemma 7.5. Hence all cocycles in Z1(π1(M); sl2(C)ρ+) are integrable.
By applying Artin’s theorem [1] we obtain from a formal deformation of ρ+ a
convergent deformation (see [14, Lemma 3.3]). Thus ρ+ is a smooth point of
R(M) with local dimension equal to 4 = dimZ1(π1(M); sl2(C)ρ+).

8 The quadratic cone at the representation ρα

Let α : π1(M) → C
∗ be a nontrivial representation. We shall suppose in the

sequel that α is a simple zero of the Alexander invariant.
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We want to show that ρα is contained in precisely two components and that
their intersection at the orbit of ρα is transverse. For this we study the
quadratic cone. The Zariski tangent space can be viewed as the space of germs
of analytic paths which are contained in R(M) at the first order. The quadratic
cone is the analogue at the second order. Since the defining polynomials for the
union of two varieties are the products of defining polynomials for each compo-
nent, the Zariski tangent space of each component (at points of the intersection)
can only be detected by the quadratic cone.

Let ρ : π1(M) → PSL2(C) be a representation. The quadratic cone Q(ρ) is
defined by

Q(ρ) := {u ∈ Z1(π1(M); sl2(C)ρ) | [u ∪ u] ∼ 0} .
Recall that given two cocycles u, v ∈ Z1(π1(M); sl2(C)ρα

) the cup product
[u ∪ v] ∈ Z2(π1(M); sl2(C)ρα

) is the cocycle given by

[u ∪ v](γ1, γ2) = [u(γ1),Adρα(γ1)(u(γ2))] ∈ sl2(C), ∀γ1γ2 ∈ π1(M);

where [ , ] denotes the Lie bracket (see (7)). Since the Lie bracket is antisym-
metric, one easily checks that the cup product is symmetric, i.e. the cocycles
[u ∪ v] and [v ∪ u] represent the same cohomology class, by (8).

To compute the quadratic cone Q(ρα) we use the decomposition sl2(C)α =
C0 ⊕ C+ ⊕ C− of π1(M)-modules, see (10). Let pr0 and pr± denote the
projections of sl2(C)α to the respective one dimensional modules. We can
easily check the relation

pr±([u ∪ v]) = pr0(u)
.
∪ pr±(v)− pr±(u)

.
∪ pr0(v). (24)

Here we use the products of π1(M)-modules C×C± → C± , and C±×C→ C± ,
which are nothing but the usual product of complex numbers. Notice that
these cup products of cohomology classes of cocycles valued in C± and C are
antisymmetric (for the same reason that the cup product valued in sl2(C) is
symmetric). Therefore (24) in induces ∀z ∈ Z1(π1(M); sl2(C)α):

pr±([z ∪ z]) = 2pr0(z)
.
∪ pr±(z) up to coboundary. (25)

The splitting (10) induces a splitting in cohomology. We recall that

dimH1(π1(M); C±) = dimH1(π1(M); C) = 1

and we have chosen cocycles d± and d0 whose cohomology classes generate
H1(π1(M); C±) and H1(π1(M); C) respectively (see Section 5). Thus, the co-
cycle z ∈ Z1(π1(M); sl2(C)α) is cohomologous to

z ∼ a0 d0 + a− d− + a+ d+ with a0, a+, a− ∈ C. (26)
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Therefore (25) becomes

pr±([z ∪ z]) = 2a0a± d0
.
∪ d± ∈ Z1(π1(M); C±) up to coboundary. (27)

Lemma 8.1 The quadratic cone Q(ρα) ⊂ Z1(π1(M); sl2(C)α) is the union
of two subspaces, one of dimension 4 and another one of dimension 3. These
subspaces are precisely the kernels of the projections

pr0 : Z1(π1(M); sl2(C)α)→ Z1(π1(M); C) = H1(π1(M); C)

and

Z1(π1(M); sl2(C)α)
pr+ ⊕pr−−→ Z1(π1(M); C+ ⊕ C−)→ H1(π1(M); C+ ⊕ C−)

respectively. In particular, the intersection of these subspaces is the space of
coboundaries B1(π1(M); sl2(C)α).

Proof Notice that the space

Z1(π1(M); sl2(C)α) = Z1(π1(M); C0)⊕ Z1(π1(M); C+ ⊕ C−)

is five dimensional and that

B1(π1(M); sl2(C)α) = B1(π1(M); C+ ⊕ C−).

Every cocycle z ∈ Z1(π1(M); sl2(C)α) can be uniquely written as z = a0d0 +
a+d+ + a−d− + b where b ∈ B1(π1(M); C+ ⊕ C−). Combining Lemma 5.3,
Equations (26) and (27), the condition for the quadratic cone [z ∪ z] ∼ 0
reduces to:

a0 a+ = a0 a− = 0 .

This is of course a necessary condition for integrability. In particular we deduce
that z ∈ Q(ρα) if and only if z ∈ Z1(π1(M); C+⊕C−) or z ∈ Z1(π1(M); C0)⊕
B1(π1(M); C+ ⊕C−) and the lemma follows.

Proof of Theorem 1.2 By Lemma 8.1 it suffices to show that ρα is contained
in two irreducible components, one of dimension four containing irreducible
representations and another of dimension three containing only abelian ones.
This will show that the Zariski tangent space of each component has the right
dimension which implies that the point of the intersection is a smooth point of
each component. Moreover, the intersection is transverse.

The component of dimension 4 is provided by Proposition 7.6. In fact ρα is
the adherence of the orbit of ρ+ , thus it is contained in the same irreducible
component. For the other component, notice that ρα is contained in a subvari-
ety of abelian representations Sα(M), with dimSα(M) ≥ 3 (see Lemma 4.8).
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Representations in Sα(M) are conjugate to diagonal representations, thus the
tangent space to this deformation is clearly contained in the kernel of the pro-
jection to H1(π1(M); C+ ⊕ C−), and this gives an irreducible component of
dimension at most three. Thus ρα it is a smooth point of the three-dimensional
component Sα(M) ⊂ R(M). In addition, the orbits by conjugation in this
component must be two-dimensional and therefore all representations must be
abelian.

Example 8.2 Let M be the torus bundle given in Example 3.2. Following
Example 4.4 we choose λi ∈ C

∗ such that αi : π1(M)→ C
∗ , i = 1, . . . , 4, given

by αi(µ) = λi and αi

∣∣
Z/2⊕Z/2

= σi is a simple root of the Alexander invariant,

i.e. λ1 = 3 ±
√

8 and λi = 1 for i = 2, 3, 4. Therefore, in each case the
representation ραi

is the limit of irreducible representations. The deformation
for ρα4

was already observed in [13, Section 4.2]. This deformation was simply
obtained as a pullback of a component of the representation variety R(Z/2∗Z/2)
under the surjection:

π1(M)→ π1(M)/〈µ = 1〉 ∼= 〈α, β|α2, β2〉 .

Note that ραi
is ∂ -trivial for i = 2, 3, 4. On the other hand, ρ+

αi
◦i# : π1(∂M)→

PSL2(C) is parabolic but nontrivial (cf. Lemma 7.1) and Lemma 7.5 applies.
The results of [14] do not apply.

9 The variety of characters near χα

Let α : π1(M) → C
∗ a representation such that α is a simple zero of the

Alexander invariant. Let χα ∈ X(M) denote the character of ρα .

Proof of Theorem 1.3 Notice that there are at least two components of
X(M) containing χα , which are precisely the quotients of the components
of R(M) containing ρα .

To study the geometry of X(M) near χα we construct a slice as in [4]. Let
γ0 ∈ Γ be an element such that ρα(γ0) 6= ±I . We define the slice as:

S = {ρ ∈ R(M) | ρ(γ0) is a diagonal matrix }.

By [4], S is a slice étale and we shall give here some of its properties: firstly,
S is transverse to the orbit by conjugation at ρα . More precisely, if for
some neighborhood U of ρα , F : U ⊂ R(M) → C

2 maps a representation
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ρ to the non-diagonal entries of ρ(γ0), then S ∩ U = F−1(0, 0). The tan-
gent map of F restricted to the coboundary space defines an isomorphism
B1(π1(M); sl2(C)α) ∼= C

2 . Thus

TZar
ρα

(S)⊕B1(π1(M); sl2(C)α) = Z1(π1(M); sl2(C)α),

and H1(π1(M); sl2(C)α) can be viewed as the Zariski tangent space to S at
ρα . Secondly, the projection S → X(M) is surjective at least for characters χ
with χ(γ0) 6= 4. It is therefore sufficient for our purpose to study the slice S
and its quotient by the stabilizer of ρα .

Let d0 ∈ Z1(π1(M); C0) and d± ∈ Z1(π1(M); C±) denote the cocycles of the
previous section. Up to adding a coboundary, we may assume that d±(γ0) = 0.
Thus the tangent space to S at ρα is three dimensional and generated by d0 ,
d+ and d− . The analysis of Section 8 allows to say that S has two components
around ρα : one curve tangent to d0 consisting of diagonal representation and
a surface tangent to the space generated by d+ and d− , containing irreducible
representations. Notice that since S is transverse to the boundary space, it
intersects the orbit of ρα by conjugation in a single point.

To analyze X(M), we take the quotient of S by the stabilizer of ρα , which is
precisely the group of diagonal matrices:

D =

{
±
(
λ 0
0 λ−1

)
| λ ∈ C

∗

}
⊂ PSL2(C).

Since the curve in S of diagonal representations commutes with D , it projects
to a curve of abelian characters in X(M). To understand the action on the
other component, we analyze the action on the Zariski tangent space: a matrix(

λ 0
0 λ−1

)
acts by mapping d± to λ±2d± . In other words, we must understand

the algebraic quotient C
2//C∗ where t ∈ C

∗ maps (x, y) ∈ C
2 to (t x, t−1 y).

The quotient C
2//C∗ is the line C, where the algebra of invariant functions

is generated by xy . Thus the quotient of the four dimensional component
containing ρα is also a smooth curve.

To show that the intersection is transverse, notice that the Zariski tangent space
to X(M) at χα is H1(π1(M); C) ⊕H1(π1(M); C+ ⊕ C−)//C∗ ∼= C

2 . The first
factor H1(π1(M); C) ⊕ 0 ∼= C is tangent to the curve of abelian characters,
and 0⊕H1(π1(M); C+ ⊕ C−)//C∗ ∼= C is tangent to the other curve, thus the
intersection is transverse.
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10 Real valued characters

Let α : π1(M) → C
∗ be a representation such that α is a simple zero of the

Alexander invariant. Moreover, we shall suppose in this section that the char-
acter χα : π1(M)→ R is real valued.

We recall from [13] that the character χρ of a representation ρ ∈ R(M) maps
γ ∈ π1(M) to χρ(γ) = trace2(ρ(γ)).

Lemma 10.1 Let Γ be a finitely generated group. If χ ∈ X(Γ) is real valued,
then there exists a representation ρ ∈ R(Γ) with character χρ = χ and such
that the image of ρ is contained either in PSU(2) or in PGL2(R).

Notice that PGL2(R) ⊂ PGL2(C) ∼= PSL2(C) has two components, the identity
component is PSL2(R), the other component consists of matrices with deter-
minant −1 (which in PSL2(C) are represented by matrices with entries in C

with zero real part).

Looking at the action of PSL2(C) on hyperbolic space H
3 by orientation pre-

serving isometries, the group PGL2(R) is the stabilizer of a totally geodesic
plane in H

3 , and the two components of the group are determined by whether
their elements preserve or reverse the orientation of the plane. The group
PSU(2) is the stabilizer of a point and it is connected (isomorphic to SO(3)).

Proof Let Fn be a free group with a surjection Fn ։ Γ. Following [13], we
consider F 2

n , the subgroup of Fn generated by all squared elements γ2 , with
γ ∈ Fn . This group is a normal subgroup of Fn and gives the following exact
sequence

1→ F 2
n → Fn → H1(Fn, C2)→ 1,

where C2 is the cyclic group with two elements.

Let ρ ∈ R(M) be a representation with real valued character χρ = χ. If ρ
is reducible, we may assume that it is diagonal. Therefore we have two cases,
either ρ is irreducible or ρ is diagonal.

The composition of ρ with Fn ։ Γ lifts to a representation ρ′ : Fn → SL2(C).
By Propositions 2.2 and 2.4 of [13] the restriction of ρ′ to F 2

n has real trace.
Hence, we can apply the known results about these representations.

If the restriction ρ′|F 2
n

is irreducible, then the image of ρ′|F 2
n

is contained in
either SL2(R) or SU(2) [20, Prop. III.1.1]. Looking at the action on H

3 , this
means that ρ′|F 2

n
preserves either a totally geodesic plane or a point in H

3 . In
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particular ρ′|F 2
n

has either a unique invariant circle in ∂H
3 ∼= P 1(C) or a unique

fixed point in H
3 (uniqueness follows from irreducibility). Since F 2

n is normal
in Fn , ρ′(Fn) leaves invariant the same circle or the same point, respectively.
This proves the lemma in this case.

If the restriction ρ′|F 2
n

is trivial, then the image of ρ is abelian and finite,
and therefore it fixes a point in H

3 . This means that, up to conjugation,
ρ(Γ) ⊂ PSU(2).

If the restriction ρ′|F 2
n

is reducible but non-trivial, then it fixes either a single
point or two in ∂H

3 . When it fixes two points, using normality, these points
must be fixed or permuted by every element of ρ′(Fn), and therefore ρ is either
diagonal or the Klein group and the lemma is shown in this case. Finally, if
ρ′|F 2

n
fixes a single point, it is also fixed by ρ, but this contradicts the fact that

ρ is diagonal.

As χα is real valued, α(γ) + 1
α(γ) ∈ R ∀γ ∈ π1(M). Thus the image of α is

either contained in the reals R
∗ or in the unit circle S1 = {z ∈ C | |z| = 1}.

Since we already know which cocycles of Z1(π1(M); sl2(C)α) are integrable,
we can easily describe the subsets of representations into these groups. We
distinguish two cases:

Case 1 Assume that there is γ ∈ π1(M) such that |α(γ)| 6= 1.

In this case the image of α is contained in R
∗ = R \ {0} but not in {±1}.

Hence, Im(ρα) is contained in PGL2(R). Since sl2(C) is the complexification
of sl2(R), we have the corresponding isomorphism of cohomology groups:

H∗(π1(M); sl2(C)α) = H∗(π1(M); sl2(R)α)⊗R C.

In particular, we may assume that the cocycles d± and d0 are valued in R.
Using the complexification of the second cohomology group, we realize that the
computation of obstructions can be carried out in the real setting, thus we get:

Proposition 10.2 Assume that the image of α is contained in R
∗ but not

in {±1}. Then the character χα is contained in precisely two real curves of
characters in PGL2(R), one of them with abelian representations and the other
one with irreducible ones. In addition χα is a smooth point of both curves that
intersect transversely at χα .
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When the image of α is contained in the positive reals, then the representations
in Proposition 10.2 are contained in PSL2(R), by connectedness. The case when
the image of α is contained in {±1}, is treated in next case.

Case 2 Assume that the image of α is contained in S1 = {z ∈ C | |z| = 1}.

Now Im(ρα) is contained in the intersection PSU(2) ∩ PSU(1, 1), where

PSU(2) = ±
{(

a b

−b a

)
| |a|2 + |b|2 = 1

}

and

PSU(1, 1) = ±
{(

a b

b a

)
| |a|2 − |b|2 = 1

}
.

Geometrically, PSU(2) is the stabilizer of a point in hyperbolic space and
PSU(1, 1) is the connected component of the stabilizer of the unit circle in
C. Thus PSU(1, 1) is the connected component of the stabilizer of a plane in
hyperbolic space, and therefore it is conjugate to PSL2(R).

In this case, the Lie algebra sl2(C) is the complexification of both su(2) and
su(1, 1). Thus an argument similar to the previous case will apply. Note that
the cocycles d+ and d− are not valuated in those Lie algebras. However, since
ρα = ρ1/α we can assume that d− is the complex conjugate transpose to d+ ,
thus d+ − d− is valuated in su(2) and d+ + d− is valuated in su(1, 1).

The tangent directions d+ − d− and d+ + d− are different in the slice of the
variety of representations, but they project to the same direction (with opposite
sense) in the variety of characters (see the description of the quotient in the
previous section). Notice that this gives a curve of real valued characters. In
addition, the set of real valued characters in a smooth complex curve can be at
most one dimensional.

Proposition 10.3 Assume that the image of α is contained in S1 ⊂ C
∗ .

Then the character χα is contained in precisely two real curves of characters,
one of them abelian (contained in S1 ) and the other one with irreducible rep-
resentations, contained in PSU(2) in one side and in PSU(1, 1) ∼= PSL2(R) on
the other side. In addition, χα is a smooth point of both curves that intersect
transversely at χα .
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