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Abstract Given a finite dimensional representation of a semisimple Lie al-
gebra there are two ways of constructing link invariants: 1) quantum group
invariants using the R-matrix, 2) the Kontsevich universal link invariant
followed by the Lie algebra based weight system. Le and Murakami showed
that these two link invariants are the same. These constructions can be gen-
eralized to some classes of Lie superalgebras. In this paper we show that
constructions 1) and 2) give the same invariants for the Lie superalgebras of
type A-G. We use this result to investigate the Links-Gould invariant. We
also give a positive answer to a conjecture of Patureau-Mirand’s concerning
invariants arising from the Lie superalgebra D(2, 1; α).
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1 Introduction

Given a finite dimensional representation V of a finite dimensional semisimple
Lie algebra g one can construct the following two link invariants:

(1) the Reshetikhin-Turaev C[[h]]-valued quantum group invariant Qg,V which
arises from V and the Drinfeld-Jimbo quantization associated to g [18,
14],

(2) Wg,V ◦Z where Wg,V is a weight system, constructed by Bar-Natan, and
where Z is the Kontsevich integral.

These constructions are essentially the same in the following sense. Lin [14]
showed that the mth coefficient of Qg,V is a Vassiliev of type m. Moreover,
there is a weight system corresponding to Qg,V which can be shown to be equal
to Wg,V . Conversely, Le and Murakami [13] showed the invariant Wg,V ◦ Z is
equal (up to a change of variable and normalization) to Qg,V .
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1112 Nathan Geer

For certain classes of Lie superalgebras, there are analogous constructions of
the link invariants given in (1) and (2). However, in general it is not known
that they are essentially the same because, the proof of Le and Murakami uses
results, due to Drinfeld, whose proofs are based on properties of Lie algebras
which fail for Lie superalgebras. It was known only for the Lie superalgebra
gl(1|1). In this paper we will show that the invariants given in (1) and (2) are
essentially the same for Lie superalgebras of type A-G. In particular, we will
show that

Qg,V = Wg,V ◦ Z, (1.1)

where g is a Lie superalgebra of type A-G and V is a finite dimensional g-
module. Our proof is based on new quantum group theory results. In [5] the
author extends the Etingof-Kazhdan theory [3] of quantization of Lie bialge-
bras to Lie superbialgebras and shows that Drinfeld’s results hold for the Lie
superalgebras of type A-G.

Invariants arising from Lie superalgebras have been studied by many math-
ematicans. For example, Vogel [23] proved (at the weight system level) that
invariants arising from Lie superalgebras are more powerful than invariants aris-
ing from Lie algebras. From the general linear Lie superalgebra gl(1|1) one can
recover the Alexander-Conway polynomial (see [4]). In [15] Links and Gould
defined a quantum group invariant LG of (1,1)-tangles arising from quantum
superalgebra Uq(gl(2|1)) and a family of four dimensional simple modules Vα ,
(α ∈ C). This invariant is a two variables polynomial. In [2] De Wit, Links
and Kauffman gave an effective way of computing LG using a computer. Using
these calculations they showed it is independent from Jones, HOMFLY and
Kauffman polynomials (detecting chirality of some links where these invariants
fail). Recent work on the Links-Gould invariant has been done by Ishii and Ka-
nenobu [7, 8]. In [7] Ishii proved that after a variable reduction, the Links-Gould
invariant is the Alexander-Conway polynomial. Finally, Patureau-Mirand [17]
modifies the normal construction of quantum invariants to construct a non-zero
link invariant from the Lie superalgebra D(2, 1;α).

To demonstrate the usefulness of equality (1.1) we will investigate both the
Links-Gould invariant and the invariants defined by Patureau-Mirand. As men-
tioned above LG is defined as an invariant of (1, 1)-tangles. In §6.2, we will use
equality (1.1) to show that LG is an invariants of knots. Then, in §6.4, we will
show that LG is contained in the colored HOMFLY (that is, every two knots
distinguishable by LG can be distinguished by the usual HOMFLY applied to
some cabling of these knots).

Let V be any finite dimensional representation of gl(2|1). As another appli-
cation of equality (1.1), we will prove by computation in the Grothendieck
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The Kontsevich integral and quantized Lie superalgebras 1113

ring of representations that Qgl(2|1),V is contained in the cablings of LG and
Qgl(2|1),U , where U is the defining representation of gl(2|1) (see 6.3). Finally,
we use equality (1.1) to give a positive answer to Conjecture 4.12 of [17]. This
implies that the modified quantum invariant defined by Patureau-Mirand is an
invariant which is symmetric in three variables. This symmetry is not evident
from the definition of the quantum invariant.
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2 Preliminaries

Throughout this paper the ground field is always C. In this section we review
well known background material and notation that will be used in the following
sections.

2.1 Superspaces and Lie superalgebras

A superspace is a Z2 -graded vector space V = V0̄ ⊕ V1̄ over C. We denote the
parity of a homogeneous element x ∈ V by x̄ ∈ Z2 . We say x is even (odd) if
x ∈ V0̄ (resp. x ∈ V1̄ ). Let V and W be superspaces. Let τV,W : V ⊗ W →
W ⊗ V be the linear map given by

τV,W (v ⊗ w) = (−1)v̄w̄w ⊗ v (2.1)

for homogeneous v ∈ V and w ∈ W .

A Lie superalgebra is a superspace g = g0̄⊕g1̄ with a superbracket [, ] : g⊗2 → g

that preserves the Z2 -grading, is super-antisymmetric ([x, y] = −(−1)x̄ȳ[y, x]),
and satisfies the super-Jacobi identity (see [9]). Throughout, all modules will
be Z2 -graded modules (module structures which preserve the Z2 -grading, see
[9]).

For the purpose of this paper when we say a Lie superalgebras of type A-G
we will included D(2, 1;α). All of these Lie superalgebras can be given by
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generators and relations coming from a Cartan matrix (see [5, 24]). From
Proposition 2.5.3 and 2.5.5 of [10] there exists a unique (up to constant factor)
non-degenerate supersymmetric invariant bilinear form on each Lie superalge-
bra of type A-G.

2.2 (k ,l)-tangles

A (k,l)-tangle T is a oriented tangles in R2 × [0, 1] such that the boundary ∂T
of T satisfies the condition

∂T = T ∩ (R2 × {0, 1}) = ([k] × {0} × {0}) ∪ ([l] × {0} × {1})

where [n] = {1, 2, . . . , n}. To each (k ,l)-tangle T we assign two sequences
s(T ) and b(T ) of + and − as follows. If k = 0 (l = 0) let s(T ) = ∅ (resp.
b(T ) = ∅). Otherwise, let s(T ) = (ǫ1, . . . , ǫk) where ǫi = + if the point
(i, 0, 0) is an endpoint or ǫi = − if the point (i, 0, 0) is an origin. Similarly, let
b(T ) = (ǫ′1, . . . , ǫ

′
l) where ǫ′i = + if the point (i, 0, 1) is an origin or ǫ′i = − if

the point (i, 0, 0) is an endpoint.

Throughout this paper when we say T is a tangle we will mean that T is a
(k ,l)-tangle for some k and l .

2.3 Vassiliev invariants and weight systems

In this subsection we recall the notions of Vassiliev invariants and weight sys-
tems [1, 10, 11]. To make a consistent theory of Vassiliev invariants of framed
links we restrict to framed links with even framings (see [11]).

Any numerical link invariant f can be inductively extended to an invariant of
singular link according to the rule

f
(

f
( )

.
)

= f
( )

By a singular link we mean a link with a finite number of self-intersections,
each having distinct tangents. A Vassiliev invariant [22] of type m is a framed
link invariant whose extension vanishes on any framed singular link with more
than m double points. Let Vm be the vector space of all C-valued Vassiliev
invariants of type m. The vector space V of all C-valued Vassiliev invariants
is filtered,

V0 ⊂ V1 ⊂ . . . ⊂ Vm ⊂ . . . ⊂ V,

where Vm is the vector space of Vassiliev invariants of type m.
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Let O⊗n be a disjoint union of n oriented circles. A chord diagram on O⊗n

of degree m is a distinguished set of m unordered pairs of points (chords),
regarded up to homeomorphism preserving each connected component and the
orientation. Let Dc

m(O⊗n) be the collection of chord diagram on O⊗n of degree
m, Dc

m =
⋃

n D
c
m(O⊗n) and Dc =

⋃
m Dc

m .

A weight system of degree m is a function W : Dc
m → C satisfying the four-term

relation [1, Definition 1.5]. Let Wm be the vector space of all weight systems
of degree m. Let W be the set of all weight systems, then W = ⊕mWm .

Let A(O⊗n) be the vector space with basis of all chord diagrams O⊗n modulo
the four-term relation [1, Definition 1.7]. Let Am(O⊗n) be the vector space of
chord diagrams of degree m on O⊗n , modulo the four-term relation. We also
let A =

⋃
n A(O⊗n) and Am =

⋃
n Am(O⊗n). Then A is a graded vector space

A = ⊕Am . The space Wm can be represented as the linear dual of Am .

2.4 Kontsevich-Bar-Natan’s theorem

In this subsection we state the fundamental theorem of complex-valued Vassiliev
invariants.

Let L : ⊔nS1 → R3 be a framed singular link. The chord diagram on O⊗n of
the singular link L is the disjoint union of n oriented circles ⊔nS1 such that
the preimages of every double point are connected by a chord. For any Vassiliev
invariant f of type m one can define a linear functional [f ] on Dc

m by

D 7→ f(LD)

where LD is any framed singular link with even framing, whose chord diagram
is D . Since f is an invariant of type m it follows that [f ] is well defined. The
function [f ] also satisfies the four-term relation allowing us to regard [f ] as a
weight system. Thus, we have a linear map Vm → Wm (f 7→ [f ]), whose kernel
is Vm−1 .

Theorem 2.1 [1, 12] The map ζ : Vm/Vm−1 → Wm is an isomorphism.

This theorem gives a purely combinatorial description of the space V0⊕V1/V0⊕
V2/V1 ⊕ . . . in terms of weight systems. There are various proofs of this impor-
tant theorem which can be found in several places including: [1, 10, 12].

The main tool Kontsevich used to prove this theorem is the construction of
a family of A-valued link invariant Zi (i = 0, 1 . . .) where Zm is a Am -valued
invariant of type m. The function Wm → Vm given by W 7→ W ◦Zm , composed
with the projection Vm → Vm/Vm−1 , is the inverse ζ .
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3 Quantum group invariants arising from Lie super-
algebras of type A-G

In this section we will define a C[[h]]-valued quantum group invariant arising
from a quantization of a Lie superalgebra of type A-G. We will do this by
showing that there is a functor from the category of ribbons to a category of
modules over the quantization such that the restriction to links is the desired
invariant. We will also use this functor to define a (1,1)-tangle invariant.

3.1 Ribbon categories

We describe the concept of a ribbon category (for more details see [10, XIV]). A
tensor category C is a category equipped with a covariant bifunctor ⊗ : C×C →
C called the tensor product, a unit object I, an associativity constraint a, and
left and right unit constraints such that the Triangle and Pentagon Axioms are
satisfied (see [10, XI.2]).

When the associativity constraint and the left and right unit constraints are
all identities we say the category C is a strict tensor category. By Mac Lane’s
coherence theorem any tensor category C is equivalent to a strict tensor category
Cstr (see [10, XI.5]). The objects of Cstr are finite sequences of objects of C
including the empty set. Let v = (V1, V2, . . . , Vk) and v′ = (V ′

1 , V
′
2 , . . . , V ′

k′)
be such sequences. A morphism from v to v′ in Cstr is a morphism from
((· · · (V1 ⊗ V2)⊗ · · · )⊗ Vk−1)⊗ Vk to ((· · · (V ′

1 ⊗ V ′
2) ⊗ · · · )⊗ V ′

k′−1)⊗ V ′
k′ in C

where all parentheses are placed on the left-hand side of V1 and V ′
1 . The tensor

product in Cstr is given by concatenation.

A braiding on a tensor category C consists of a family of isomorphisms cV,W :
V ⊗W → W⊗V , defined for each pair (V,W ) which satisfy the Hexagon Axiom
[10, XIII.1 (1.3-1.4)] as well as the commutative diagram [10, (XIII.1.2)]. We
say a tensor category is braided if it has a braiding.

A tensor category C has duality if for each object V in C there exits an object
V ∗ and morphisms

bV : I → V ⊗ V ∗ and dV : V ∗ ⊗ V → I

satisfying relation [10, (XIV.2.1)]. A twist in a braided tensor category C with
duality is a family θV : V → V of natural isomorphism, defined for each object
V of C satisfying relations [10, (XIV.3.1-3.2)].

Definition 3.1 A (strict) ribbon category is a (strict) braided tensor category
with duality and a twist.
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3.2 The category of ribbons R

We now define the category of ribbons R. The objects of R are finite sequences
ǫ = (ǫ1, ǫ2, . . . , ǫn) of ± signs. The morphism of R are isotopy classes of framed
tangles. A morphism from ǫ to ǫ′ is an isotopy class of a framed tangle such
that for any representitive T of this class we have s(T ) = ǫ and b(T ) = ǫ′ where
s and b are the sequences defined in §2.2. The composition of two morphisms
T and T ′ is obtained by placing T ′ on top of T . The tensor product on objects
is given by concatenation of sequences. The tensor product of two morphisms
L and L′ is the isotopy class of the oriented framed tangle obtained by placing
T ′ to the right of T . The category R is a strict ribbon category where braiding
cǫ,ǫ′ , duality bǫ and dǫ , and twist θǫ are represented by the following framed
tangles, with the blackboard framing,

respectively. For example, the

is the ribbon (c−1
(−,+),(+) ⊗ Id(−) ⊗ Id(+))(θ(+) ⊗ b(−,+)) with the blackboard

framing.

We end this subsection with the following important theorem whose proof can
be found in [18] (also see [10]).

Theorem 3.2 Let C be a strict ribbon category and V be an object of C .
Then there exists a unique functor FV : R → C which preserves the tensor
product, the braiding, the duality and the twist, such that FV (+) = V .

3.3 The quantum group invariant Qg,V

Let g be Lie superalgebra of type A-G. In this subsection we will give the
definition of the quantum group invariant associated to every finite dimensional
g-module. The main idea is to associate g with a Hopf superalgebra whose
category of modules is a ribbon category and then apply Theorem 3.2.
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Let Uh(g) be the Drinfeld-Jimbo type quantization g given by Yamane [24].
It should be noted that different Dynkin diagram give different relations for
Uh(g). For this reason we use the standard Dynkin diagram (see Table VI of
[9]) to construct Uh(g). One can also see [5] for a definition of Uh(g).

As a vector space Uh(g) is isomorphic to U(g)[[h]]. Moreover, (Uh(g), R) is a
braided Hopf superalgebra, i.e. a Hopf superalgebra with a universal R-matrix
R. Let Uh(g)-Modfr be the category of topologically free Uh(g)-modules of
finite rank (i.e. modules of the form V [[h]] where V is a U(g)-module). This
category is braided where the braiding cV,W for V,W ∈ Uh(g)-Modfr is defined
to be

cV,W (v ⊗ w) = τV,W (R(v ⊗ w))

where v ∈ V , w ∈ W and τ is given in (2.1). We want Uh(g)-Modfr to be
a ribbon category. The duality is defined by the evaluation and coevaluation
morphisms. Next we define an element in Uh(g) which we use to define a twist
in Uh(g)-Modfr .

Let R =
∑

αi ⊗ βi be the R-matrix in Uh(g). We define the elements u, θ2 ∈
Uh(g) by

u =
∑

(−1)ᾱiβ̄iS(βi)αi and θ2 = S(u)u.

Since R ≡ 1 ⊗ 1 mod h we have that u ≡ θ2 ≡ 1 mod h. Therefore, θ2 has a
square root which we denote by θ . For V ∈ Uh(g)-Modfr define θV : V → V
by

θV (v) = θ−1v

for v ∈ V . The family (θV )V is a twist in Uh(g)-Modfr (for details see §4.1 of
[16]).

Therefore, Uh(g)-Modfr is a ribbon category and so for each finite dimensional
g-module V , Theorem 3.2 implies the existence of a functor

FeV : R → (Uh(g)-Modfr)
str

such that FeV (+) = (Ṽ ) where Ṽ := V [[h]]. The endomorphism ring of the
identity element in (Uh(g)-Modfr)

str is (C[[h]]) which is isomorphic to C[[h]].
Using this isomorphism, we define the C[[h]]-valued framed tangle invariant
Qg,V to be the restriction of FeV to tangles. We call Qg,V the C[[h]]-valued
Reshetikhin-Turaev quantum group invariant of framed tangles arising from
Uh(g) and V .

When g is a semisimple Lie algebra and Uh(g) is the D-J algebra, Lin [14]
showed that the mth coefficient of Qg,V is a Vassiliev invariant of type m.
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Lin’s techniques also show that the mth coefficient of Qg,V is an invariant of
type m, in the case when g is a Lie superalgebra of type A-G. This fact is also
a direct consequence of Theorem 2.1 and Theorem 5.2 which we prove in §5.2.
We summarize in this subsection with the following theorem.

Theorem 3.3 Let g be Lie superalgebra of type A-G and let V be a finite
dimensional g-module. Then there exists a C[[h]]-valued R-T quantum group
invariant Qg,V such that the mth coefficient of Qg,V is a Vassiliev invariant of
type m.

3.4 The (1,1)-tangle quantum group invariant Q̂
g,bV

When the dimensions of the even and odd subspace of a g-module V are equal
the invariant Qg,V is zero. In such a situation the standard technique is to con-
sider (1,1)-tangles. In which case then the Reshetikhin-Turaev quantum group
construction associates each (1,1)-tangle with an endomorphism of Ṽ . When
V is simple weight module or more generally when the g-invariant endomor-
phisms of V are one dimensional the R-T construction can be interpreted as
a C[[h]]-valued (1,1)-tangle invariant. In this subsection we will explain this
construction.

First, we need a technical observation. Let V [[h]] and W [[h]] be topologically
free U(g)[[h]]-modules. It is well known that any morphism f : V [[h]] → W [[h]]
is determined by f |V : V → W [[h]]. This implies that

EndU(g)[[h]](V [[h]]) ∼= EndU(g)(V )[[h]].

In the rest of this paper we will use this isomorphism to identify these spaces.

Let V̂ be a finite dimensional module of a Lie superalgebra g of type A-G such
that g-invariant endomorphisms of V̂ are one dimensional, i.e. EndU(g)(V̂ )g ∼=

C. Note that if V̂ is a highest weight module by Schur’s Lemma we have
EndU(g)(V̂ )g ∼= C. Let T be a framed (1, 1)-tangle. Since all the building
blocks of FbV [[h]] are g-invariant we have

FbV [[h]](T ) ∈ (EndU(g)(V̂ )g)[[h]].

Since EndU(g)(V̂ )g ∼= C we can identify FbV [[h]](T ) with a scalar in C[[h]]. We

define Q̂
g,bV (T ) to be this power series.
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4 Weight systems arising from Lie superalgebras

Let g be finite dimensional Lie superalgebra with a non-degenerate supersym-
metric invariant even 2-tensor t ∈ g ⊗ g. Let V and V̂ be finite dimensional
g-modules such that End(V̂ )g ∼= C. In this section, we will define a family of
weight systems Wg,V associated to the pair (g, V ). We will also define a family

of weight systems Ŵ
g,bV on (1, 1)-tangles (see Definition 4.2).

We construct Wg,V in two steps: 1) show that the category of finite dimensional
g-modules U(g)-Modf is a infinitesimal symmetric category, 2) show that the
category of chord diagrams on tangles A is the universal infinitesimal symmetric
category and so there exists a functor A → U(g)-Modf which gives the desired
weight system when restricted to chord diagrams on links.

4.1 Infinitesimal symmetric categories

A braided tensor category S is symmetric if the braiding (σV,W )V,W satisfies

σV,W ◦ σW,V = idV ⊗W

for all pairs (V,W ) of object in S . Let S be a strict symmetric C-linear tensor
category. An infinitesimal braiding on S is a family (tV,W )V,W of functorial
endomorphisms of V ⊗ W , defined for all pairs (V,W ) of objects of S such
that

σV,W ◦ tV,W = tW,V ◦ σV,W , (4.1)

tU,V ⊗W = tU,V ⊗ idW + (σU,V ⊗ idW )−1 ◦ (idV ⊗ tU,W ) ◦ (σU,V ⊗ idW ) (4.2)

for all objects U, V,W is S . A category S as above is an infinitesimal symmetric
category if it has an infinitesimal braiding.

Proposition 4.1 The category U(g)-Modf of finite dimensional g-modules
is a infinitesimal symmetric category where the symmetric braiding and infini-
tesimal braiding are given by

σV,W = τV,W

tV,W (v ⊗ w) = t(v ⊗ w) (4.3)

for V,W ∈ U(g)-Modf , v ∈ V and w ∈ W . Recall the τ is defined in §2.1.
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The Kontsevich integral and quantized Lie superalgebras 1121

Proof The invariance of t implies that tV,W is an endomorphism of V ⊗ W .
A straight forward calculation shows that tV,W is functorial. Since t is super-
symmetric we have σ(t) = t. This implies relation (4.1). Finally, let us show
that relation (4.2) holds. Let t =

∑
mi ⊗ pi . For u ∈ U , v ∈ V and w ∈ W

we have

tU,V ⊗W (u ⊗ v ⊗ w) = ((1 ⊗ ∆)(t))(u ⊗ v ⊗ w)

= (
∑

mi ⊗ (pi ⊗ 1 + 1 ⊗ pi))(u ⊗ v ⊗ w)

=
∑(

(−1)ūp̄imiu ⊗ piv ⊗ w + (−1)ūp̄i+v̄p̄imiu ⊗ v ⊗ piw
)

and
(
tU,V ⊗ idW + (σU,V ⊗ idW )−1 ◦ (idV ⊗ tU,W ) ◦ (σU,V ⊗ idW )

)
(u ⊗ v ⊗ w)

= (tU,V (u ⊗ v)) ⊗ w + (σU,V ⊗ idW )−1 ◦ (idV ⊗ tU,W )((−1)ūv̄v ⊗ u ⊗ w)

=
∑

(−1)ūp̄imiu ⊗ piv ⊗ w + (σU,V ⊗ idW )−1
(∑

(−1)ūv̄+p̄iūv ⊗ miu ⊗ piw
)

=
∑(

(−1)ūp̄imiu ⊗ piv ⊗ w + (−1)ūv̄+p̄iū+v̄m̄i+v̄ūmiu ⊗ v ⊗ piw
)

where ūv̄ + v̄ū = 0̄ and m̄i = p̄i (since t is even). Therefore, relation (4.2)
follows.

4.2 The category A

Definition 4.2 Let T be a framed tangle. A chord diagram on T of degree m
is the tangle T with a distinguished set of m unordered pairs of points of T\∂T ,
considered up to homeomorphisms preserving each connected component and
the orientation.

Let E(T ) be the vector space with basis given by all chord diagrams on T .
If f : T → T ′ is a homeomorphism of tangles, then f induces a isomorphism
E(T ) ∼= E(T ′). Since any tangle is isomorphic to the “unknotted” tangle, the
isomorphism class of E(T ) only depends on the number of line segments and
circles which make up T .

Let A(T ) be the vector space defined as the quotient of E(T ) by the four term
relation. The vector space A(T ) has a natural grading, A(T ) = ⊕m≥0Am(T ),
where Am(T ) is all chord diagram on T of degree m.

Next we describe the category of chord diagrams A. As in the category of
ribbons R the objects of A are finite sequences of + and −, along with ∅.
The morphisms of A are elements of A(T ) for some framed tangle T . The
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tensor structure is defined as in the category R. Moreover, the braiding of the
category R induces a braiding in A. Since chord diagrams are considered up
to homeomorphism this braiding is symmetric, i.e.

We will now describe the infinitesimal braiding on A. Let ǫ and ǫ′ be objects
of A, i.e. ǫ = (ǫ1, . . . , ǫn) where ǫi = ±. Let Idǫ be the identity of ǫ. In other
words, Idǫ is the oriented (n,n)-tangle given by n vertical (parallel) strings
whose orientations are given by ǫ (see §2.2). Define tǫ,ǫ′ to be the sum of all
chord diagrams with exactly one chord on Idǫ ⊗ Idǫ′ such that the one of the
end points of the chord is on Idǫ and the other is on Idǫ′ .

The following theorem can be found in [10, XX].

Theorem 4.3 With the above symmetric braiding and infinitesimal braiding
the category A is a strict infinitesimal symmetric category with duality.

The category A is the universal infinitesimal symmetric category. This state-
ment is made precise by the following theorem whose proof can be found in [10,
XX.8].

Theorem 4.4 Let S be an infinitesimal symmetric category with duality and
let V be an object of S . Then there exists a unique functor FV : A → S
preserving the tensor product, symmetry, infinitesimal braiding and the duality
such that FV (+) = V .

Recall that from Proposition 4.1 we have that U(g)-Modf is a infinitesimal
symmetric category. Therefore, for each finite dimensional g-module V , Theo-
rem 4.4 implies there exists a functor

Gg,V : A → U(g)-Modf (4.4)

which preserving the tensor product, symmetry, infinitesimal braiding and the
duality such that Gg,V (+) = V .

Next we will make two observation and then we will give the definition of the
weight system Wg,V . First, if D is a chord diagram on a link then Gg,V (D) is
an endomorphism of the identity I = C[[h]], where End(I) ∼= C[[h]]. We use
this isomorphism to identify Gg,V (D) with a scalar. Second, let A(↓) be the
vector space of chord diagrams on (1,1)-tangles modulo the four term relation.
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Let D ∈ A(↓) then Gg,V (D) is a endomorphism of V . Moreover, since all of
the morphims used to define a infinitesimal symmetric category are functorial
we have that Gg,V (D) is a g-invariant endomorphism.

Definition 4.5 Let g be finite dimensional Lie superalgebra with a non-
degenerate supersymmetric invariant even 2-tensor t ∈ g ⊗ g and let V, V̂ be
finite dimensional g-modules such that End(V̂ )g ∼= C. Define Wg,V to be the
linear functional on A given by the restriction of Gg,V to A. (Recall A is the

space of chord diagrams on links modulo the four-term relation.) Define Ŵ
g,bV to

be the linear functional on A(↓) given by Ŵ
g,bV (D) = G

g,bV (D) ∈ End(V̂ )g ∼= C

for D in A(↓).

Remark 4.6 (1) In the case when g is a finite dimensional Lie algebra the
family of weight systems Wg,V becomes Bar-Natan’s construction [1].

(2) The linear functional Ŵ
g,bV restricted to one component (1,1)-tangles be-

comes the family of weight systems defined by Vaintrob [21].

5 The Kontsevich integral and invariants arising from

Lie superalgebras

In this section we will define the Kontsevich integral and then state and prove
the main results of this paper.

5.1 The Kontsevich integral

Here using algebraic techniques we will define an invariant whose restriction
to links is the Kontsevich integral. For this reason we call the invariant the
Kontsevich integral.

Let S be an infinitesimal symmetric category with duality. Let S[[h]] be the
category whose objects are the same as the objects of S and morphisms are
given by

HomS[[h]](V,W ) := HomS(V,W )[[h]].

By the following theorem one can extend S to a strict ribbon category S[[h]]str .
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Theorem 5.1 Let S be a infinitesimal symmetric category with symmetry
(σV,W )V,W and infinitesimal braiding (tV,W )V,W . The tensor structure of S
extends to a braided tensor category on S[[h]] such that the associativity con-
straint a and the braiding c are given by

aU,V,W = Φ(tU,V , tV,W ) and cV,W = σV,W ◦ ehtV,W /2 (5.1)

where U, V,W are any objects in S and Φ is the Drinfeld associator. Moreover,
if the category S has a duality then S[[h]]str is a strict ribbon category.

Proof See [10] theorem XX.6.1 and theorem XX.7.1.

From Theorems 4.3 and 5.1 we have that A[[h]]str is a strict ribbon category.
Applying Theorem 3.2 to the category A[[h]]str and the object (+) we have a
framed tangle invariant

Z : R → A[[h]]str

where Z(+) = (+). We set Z(L) =
∑

i≥0 Zi(L)hi .

We will now derive an important property of Z . Let T : D → R3 be a singular
tangle (with m double points) where D is a one dimensional smooth compact
manifold. The chord diagram associated to the singular tangle T is D such
that the preimage of every double point is connected by a chord.

When evaluating Z each double point of a singular link locally contributes
cǫ,ǫ′ − c−1

ǫ′,ǫ . From the definition of Z the braiding is given by (5.1) and so for
every singular point Z has a local contribution of

ehtǫ,ǫ′/2 − e−htǫ,ǫ′/2 = htǫ,ǫ′ + higher order terms.

From the last equality it follows that

Z(T ) ≡ Dhm mod hm+1. (5.2)

In particular, when D is a chord diagram of a link with m chords and LD is a
singular link whose chord diagram is D we have

Zm(LD) = D. (5.3)

From equality (5.3) it follows that

[w ◦ Zm](D) = (w ◦ Zm)(LD) = w(D)

where [·] is the linear map defined is §2.4. Thus, the linear map Wm → Vm

given by w 7→ w ◦Zm composed with the projection Vm → Vm/Vm−1 is inverse
of ζ , the linear map given in Theorem 2.1. For this reason we call Z the
Kontsevich integral.
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5.2 Main Theorem

Theorem 5.2 Let g be a Lie superalgebra of type A-G. Let V, V̂ be finite
dimensional g-modules such that End(V̂ )g ∼= C. Then

Qg,V = Wg,V ◦ Z : {framed links} → C[[h]] (5.4)

and

Q̂
g,bV (T ) = Ŵ

g,bV ◦ Z : {framed (1,1)-tangles} → C[[h]]. (5.5)

Proof Recall that Qg,V is the restriction of FeV to framed links. To prove the
theorem we will define two functors

E : (U(g)-Modf )[[h]]str → Uh(g)-Modfr,

Gg,V [[h]] : A[[h]]str → (U(g)-Modf )[[h]]str ,

such that the restriction of E ◦Gg,V [[h]] ◦Z to framed links is the right side of
equation (5.4).

We will now define two functors which we will use to define the functor E .
Let t ∈ g ⊗ g be the 2-tensor associated to the unique non-degenerate super-
symmetric g-invariant bilinear form on g (see §2.1). Let Ag,t be the braided
quasi-Hopf superalgebra constructed in [5]. As a vector space Ag,t is isomorphic
to U(g)[[h]]. The definition of Ag,t is based on the theory of the Knizhnik-
Zamolodchikov differential equations. In particular, the associator of the quasi-
Hopf superalgebra is Drinfeld associator. The standard categorical argument
(see [10, Prop. XV.1.2]) shows that Ag,t -Modfr is a ribbon category where the
associativity constraint a and the braiding c are given by

aU,V,W = Φ(t12, t23) and cV,W = τV,W ◦eht/2

where U, V,W are any objects in Ag,t -Modfr , Φ is the Drinfeld associator and
τV,W is the linear map given in (2.1).

In [5] the author constructs a functor D : Ag,t-Modfr → Uh(g)-Modfr which
is an equivalence of categories which preserves the ribbon structures such that
D(V [[h]]) = V [[h]]. Such a functor was first constructed by Drinfeld in the
case when g is a semi-simple Lie algebra. The techniques used by Drinfeld do
not work for Lie superalgeras. The construction given in [5] is based on the
Etingof-Kazhdan quantization of Lie superbialgebras.

From Proposition 4.1 we have U(g)-Modf is a infinitesimal symmetric category.
By Theorem 5.1, (U(g)-Modf )[[h]] is a ribbon category where the associativity
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constraint and the braiding are given by (5.1). By construction the tensor cate-
gories (U(g)-Modf )[[h]] and Ag,t-Modfr have the same associativity constraint
and braiding. Therefore the functor

(U(g)-Modf )[[h]] → Ag,t-Modfr

mapping V 7→ V [[h]] is an equivalence of categories which preserves the ribbon
structure.

We define the functor E by the composition of the following equivalences:

(U(g)-Modf )[[h]]str → (Ag,t-Modfr)
str −→ Ag,t-Modfr

D
−→ Uh(g)-Modfr.

The tensor functor E preserves the ribbon structure since D does.

Now we define Gg,V [[h]]. Recall the definition of the functor Gg,V given in §4.4.
From Theorem 5.1 the functor Gg,V extends to a functor

Gg,V [[h]] : A[[h]]str → (U(g)-Modf )[[h]]str

such that Gg,V [[h]](+) = V [[h]] = Ṽ and Gg,V [[h]] preserves the ribbon struc-
ture. Let

∑
Dih

i ∈ A[[h]]. Then by definition

Gg,V [[h]](
∑

i≥0

Dih
i) =

∑

i≥0

Gg,V (Di)h
i (5.6)

The functor E ◦ Gg,V [[h]] ◦ Z : R → Uh(g)-Modfr

preserves the ribbon structure maps the object (+) to Ṽ := V [[h]]. Therefore,
from the uniqueness of Theorem 3.2 we have

FeV = E ◦ Gg,V [[h]] ◦ Z. (5.7)

We now prove the first assertion of the theorem. Let L be a link with n
components. Then Z(L) =

∑
i≥0 Dih

i where Di is a chord diagram on L. We
have

(E ◦ Gg,V [[h]] ◦ Z)(L) = (E ◦ Gg,V [[h]])(
∑

i≥0

Dih
i)

= E(
∑

i≥0

Gg,V (Di)h
i)

=
∑

i≥0

Wg,V (Di)h
i

= (Wg,V ◦ Z)(L) (5.8)
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where the first and forth equalities are definitions, the second equality follows
from (5.6), and the third equality follows from definition of the weight system
and the fact that E preserves the ribbon structure. The first assertion of the
theorem follows from (5.8) and the uniqueness of equality (5.7).

Similarly, for a (1,1)-tangle T we have

(E ◦ G
g,bV [[h]] ◦ Z)(T ) = (Ŵ

g,bV ◦ Z)(T ).

This equality combined with the uniqueness of equality (5.7) imply the second
assertion of the theorem.

Corollary 5.3 Let Qg,V =
∑

Qg,V,mhm and Wg,V = (Wg,V,m)m . For all m,
we have the weight system corresponding to Qg,V,m is Wg,V,m , i.e.

[Qg,V,m] =Wg,V,m

where [·] is the map defined in §2.4.

Proof Let D be a chord diagram of a link with m chords and let LD be a
framed singular link with even framing, whose chord diagram is D . We have

[Qg,V,m](D) = Qg,V,m(LD)

= Wg,V,m(Zm(LD))

= Wg,V,m(D)

where the first equality is by definition, the second follows from Theorem 5.2
and the third follows from equity (5.3).

Let W = (Wm)m∈Z be a family of weight systems and Q =
∑

Qmhm be a
quantum group invariant. If [Qm] = Wm , for all m, we say the weight systems
corresponding to Q are equal to the family W . We summarize this subsection
with the following theorem:

Theorem 5.4 Let V be a finite dimensional module of a Lie superalgebra
g of type A-G. Let Qg,V be the quantum group invariant of Theorem 3.3,
let Wg,V be the family of weight system of Definition 4.5 and let Z be the
Kontsevich integral Z . Then Qg,V = Wg,V ◦ Z . Moreover, the weight systems
corresponding to Qg,V are equal to the family Wg,V . In summary the following
diagram commutes

{g, V }
Definition 4.5

{{xxxxxxxx
Theorem 3.3

""EE
EE

EE
EE

E

W
Z∗

// V
[·]

oo

(5.9)

where [·] is the map defined in subsection 2.4.
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5.3 The Kontsevich integral and (1,1)-tangle invariants

Not surprisingly the theory of Vassiliev invariants can be formulated in the
case of (1,1)-tangles. In this subsection we do this and then prove a theorem
analogous to Theorem 5.4 for (1,1)-tangles.

A Vassiliev invariant of (1,1)-tangle of type m is a framed (1,1)-tangle invariant
whose extension vanishes on any framed singular (1,1)-tangle with more than
m double points. Let V̂m be the vector space of all C-valued Vassiliev (1,1)-
tangle invariants of type m. A (1,1)-tangle weight system of degree m is a
linear functional on the space Am(↓) of all chord diagrams on ↓ modulo the

four-term relation. Let Ŵm be the vector space of all (1,1)-tangle weight system
of degree m. When it is clear we will omit the word (1,1)-tangle when referring
to Vassiliev invariants and weight systems.

For a Vassiliev invariant f of type m we define [f ] to be the weight system given
by [f ](D) = f(TD) where TD is a (1,1)-tangle with even framing, whose chord

diagram is D . The assignment f 7→ [f ] defines a linear map [·] : V̂m → Ŵm

whose kernel is V̂m−1 . Therefore, [·] induces a linear map

V̂m/V̂m−1 → Ŵm.

As in the case of links, the inverse of this map is the linear map Ŵm → V̂m

given by W 7→ W ◦ Zm , composed with the projection V̂m → V̂m/V̂m−1 .

Theorem 5.5 Let Q̂
g,bV be the (1,1)-tangle quantum group invariant defined

in §3.4. Let Ŵ
g,bV be the weight system given in Definition 4.5. Then we have

(1) the mth coefficient of Q̂
g,bV is a Vassiliev invariant of type m,

(2) Ŵ
g,bV = Q̂

g,bV ◦ Z ,

(3) the weight systems corresponding to Q̂
g,bV are the equal to the family

Ŵ
g,bV .

Proof Assertion (2) is a restatement of equality (5.5). Assertion (1) is a direct
consequence of (2). The final assertion as follows. By definition the weight
system corresponding to Q̂

g,bV ,m is [Q̂
g,bV ,m]. Let D be a chord diagram of a

(1,1)-tangle with m chords and let TD be a singular (1,1)-tangle whose chord
diagram is D . We have

[Q̂
g,bV ,m

](D) = Q̂
g,bV ,m

(TD) = Ŵ
g,bV ,m

(Zm(TD)) = Ŵ
g,bV ,m

(D)

where the first equality is by definition, the second follows from Theorem 5.2
and the third follows from equivalence (5.2).

Algebraic & Geometric Topology, Volume 5 (2005)



The Kontsevich integral and quantized Lie superalgebras 1129

5.4 General theorem

In this subsection we list the data need to prove a theorem analogous to Theo-
rem 5.4 for a general Lie superalgebras.

Let g be finite dimensional Lie superalgebra with an even element r ∈ g⊗g such
that t := r + τg,g(r) is a non-degenerate supersymmetric g-invariant element.
Let Ag,t be the braided quasi-Hopf superalgebra constructed in [5]. Let Uh(g)
be a superalgebra with the following properties:

(1) as a vector space Uh(g) is isomorphic to U(g)[[h]],

(2) Uh(g) is a topological Hopf superalgebra,

(3) Uh(g) has a universal R-matrix, i.e. a homogeneous element R ∈ Uh(g)⊗2

satisfying relations (2.1), (2.3) and (2.4) of [10, VIII.2],

(4) the R-matrix is of the form R ≡ 1 ⊗ 1 + rh mod h2 ,

(5) Uh(g) has a invertible homogeneous element θ satisfying relations [10,
(XIV.6.5)],

(6) for each finite dimensional module V of g we can associate a topologically
free Uh(g)-module Ṽ ∼= V [[h]],

(7) there exists a functor D : Ag,t-Modfr → Uh(g)-Modfr which is an
equivalence of categories which preserves the ribbon structures such that
D(Ṽ ) = Ṽ for all Ṽ ∈ Ag,t-Modfr .

Let V and V̂ be finite dimensional g-modules such that End(V̂ )g ∼= C. Let
Qg,V (Q̂

g,bV ) be the C[[h]]-valued Reshetikhin-Turaev quantum group invariant

of framed tangles arising from Uh(g) and V (resp. V̂ ). Let Wg,V and Ŵ
g,bV

be the families of weight systems defined in §4. The following theorem follows
exactly as in the proofs of Theorem 5.2, Corollary 5.3 and Theorem 5.5.

Theorem 5.6 Let g be a finite dimensional Lie superalgebra with an even
element r ∈ g⊗g such that t := r+τg,g(r) is a non-degenerate supersymmetric
g-invariant element. Suppose that there exists a superalgebra Uh(g) and a
functor D satisfying assumptions (1)-(7). Then the mth coefficients of Qg,V

and Q̂
g,bV are Vassiliev invariant of type m such that

Qg,V =Wg,V ◦ Z, Q̂
g,bV =Ŵ

g,bV ◦ Z. (5.10)

Moreover, the weight systems corresponding to Qg,V (Q̂
g,bV ) are equal to the

family Wg,V (resp. Ŵ
g,bV ).
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6 The Links-Gould invariant

In this section we will use the results of section 5 to investigate the Links-
Gould invariant. First we show that invariants arising from the general linear
Lie superalgebra gl(m|n) can be viewed via weight systems and the Kontsevich
integral.

6.1 Invariants arising from gl(m|n)

In this subsection we show that for the general linear Lie superalgebra gl(m|n)
there exists a superalgebra Uh(gl(m|n)) and functor D that satisfy assumptions
(1)-(7). Then we will conclude from Theorem 5.6 that Qgl(m|n),V = Wgl(m|n),V ◦
Z .

The general linear Lie superalgebra gl(m|n) is a not a Lie superalgebra of type
A-G. However, for m 6= n, gl(m|n) is a one-dimensional central extension of
sl(m|n) which is the Lie superalgebra of type A(m − 1, n − 1). Now sl(n|n)
has a one-dimensional ideal consisting of the scalar matrices and is not the Lie
superalgebra of type A(n − 1, n − 1). For this reason in this section we will
assume n 6= m.

We now show that Qgl(m|n),V and Wgl(m|n),V exist and correspond via the Kont-
sevich integral. Let t be the 2-tensor associated to the unique non-degenerate
supersymmetric invariant bilinear form on sl(m|n). Let s ∈ gl(m|n) ⊗ gl(m|n)
be an extension of t of the form

s = a(I ⊗ I) + t (6.1)

where a is a non-zero complex number and I is the identity element of gl(m|n).
Using s one can still construct a Drinfeld-Jimbo type superalgebra Uh(gl(m|n))
[6]. This superalgebra is almost identical to Uh(sl(m|n)) with the following two
modifications: (1) Uh(gl(m|n)) has an additional generator E0 such that E0

is central and the classical limit of E0 is the identity element of gl(m|n), (2)
the R-matrix of Uh(gl(m|n)) is slightly modified to account for E0 and the
complex number a.

Let Agl(m|n),s be the braided quasi-Hopf superalgebra constructed in [5]. As
shown in [6], there is a braided tensor functor

D : Agl(m|n),s-Modfr → Uh(gl(m|n))-Modfr.

After straight forward adjustments accounting for the central element E0 , the
construction of this functor is almost identical to the construction for sl(m|n)
given in [5].
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Let V and V̂ be finite dimensional gl(m|n)-modules such that End(V̂ )gl(m|n) ∼=
C. Using Uh(gl(m|n)) we can define the C[[h]]-valued Reshetikhin-Turaev

quantum group invariant Qgl(m|n),V and Q̂
gl(m|n),bV . Let Wgl(m|n),V and Ŵ

gl(m|n),bV
be the weight systems given in Definition 4.5 where we use the 2-tensor s. The
following theorem is a special case of Theorem 5.6.

Theorem 6.1 The mth coefficients of Qgl(m|n),V and Q̂
gl(m|n),bV are Vassiliev

invariants of type m such that Qgl(m|n),V = Wgl(m|n),V ◦ Z and Q̂
gl(m|n),bV =

Ŵ
gl(m|n),bV ◦ Z . Moreover, the weight systems corresponding to Qgl(m|n),V

(Q̂
gl(m|n),bV ) are equal to Wgl(m|n),V (resp. Ŵ

gl(m|n),bV ).

6.2 The Links-Gould invariant as a power series in h

In this subsection we will give a reinterpretation of the Links-Gould invari-
ant with q = eh/2 . First we will show that the invariant Qgl(2|1),Vα

is zero.
Throughout this subsection we set g = gl(2|1).

Recall that the Links-Gould invariant [15] is a quantum group invariant of un-
framed (1,1)-tangles arising from Uq(g) and a family of 2|2-dimensional simple
modules Vα , (α ∈ C). Thinking of α as a variable we have this invariant is a
polynomial in two variables q and qα .

For each α ∈ C the module Vα has a two dimensional even and two dimensional
odd decomposition. This implies that the supertrace of any scalar endomor-
phism of Vα is zero. Let T be a framed (1, 1)-tangle and let T be the link that is
the closure of T . Recall from §3.4 that FeVα

(T ) is an element of Endg(Vα)g[[h]].
By Schur’s Lemma FeVα

(T ) is a scalar matrix and so has zero supertrace. Taking
the closure of a (1, 1)-tangle under FeVα

corresponds to taking the supertrace of

the endomorphism associated to the tangle, in other words FeVα
(T ) is the super-

trace of FeVα
(T ). Thus, Qg,Vα = FeVα

|Links = 0. For this reason the Links-Gould
invariant is defined on framed (1, 1)-tangles.

Let s be the 2-tensor defined in equation (6.1) with a = 2 + 2α. Define LG
to be the (1,1)-tangle invariant Q̂g,Vα arising from s, Uh(g) and V . Let σ
be the matrix that represents the action of the R-matrix on Vα[[h]] ⊗ Vα[[h]].
The entries of σ take values in C[α][[h]] (see [2, §4.1]). Therefore, LG is an
C[α][[h]]-valued invariant. LG is the Links-Gould invariant with q = eh/2 .

Define the weight system WLG to be Ŵ
g,bV arising from s, g and V̂ .

The following theorem is a special case of Theorem 6.1.
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Theorem 6.2 The Links-Gould invariant LG is equal to the weight system
WLG composed with the Kontsevich integral Z . In other words,

LG = WLG ◦ Z : {framed (1,1)-tangles} → C[[h]]. (6.2)

Conversely, the weight systems corresponding to LG are equal to the family
WLG .

We will now show that LG defines an invariant of knots. It should be noted this
fact also follows from the observation that isotopy classes of knots are in one to
one correspondence with isotopy classes of long knots [19]. Let B(↓) (B(O))
be the space of chord diagrams on the “unknoted” one component (1,1)-tangle
(resp. on the circle) modulo the four term relation. It is well known that the
map B(O) → B(↓) given by slitting the circle at a point (which is not an
endpoint of a chord) is a well defined isomorphism (see [1, 10]). In other words,
if D and D′ are two chord diagram coming from slitting a chord diagram on
the circle, then D = D′ in B(↓).

Let K be a knot. By slitting K at some point p we get a (1,1)-tangle T . Let T ′

be another (1,1)-tangle gotten from slitting K at some point, possibly different
than p. From the discussion above (or more precisely [10, Lemma XX.3.1]) we
have Z(T ) = Z(T ′). Thus, we are led to the following definition.

Definition 6.3 Let K be a knot and T a (1,1)-tangle created from slitting
K at some point. Define

LG(K) = WLG ◦ Z(T ).

From Theorem 6.2 we have that LG(T ) = WLG◦Z(T ). Therefore, the definition
of LG(K) is natural.

Remark 6.4 (1) From Theorem 6.2 it follows that for each (1,1)-tangle chord
diagram D we have WLG(D) is a polynomial in α.

(2) As stated above LG is a (1,1)-tangle invariant, so it is framing independent.
By direct calculation one can show that WLG satisfies the one term relation
meaning that it is zero on diagrams with an isolated chord. It follows that
the invariant WLG ◦ Z is framing independent. Thus, equality (6.2) is framing
independent. Note the framing independence of both sides of equality (6.2)
follows from the choice of the scalar a in s.
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6.3 Cablings of the Links-Gould invariant

We recall some facts about cablings for details see [1, §6.3.3]. Let L be a framed
link. For a non-zero integer q let L⊗q be the qth disconnected cabling of L.
If f ∈ Vk is a framed Vassiliev invariant of type k then f ◦ (L → L⊗q) is a
framed Vassiliev invariant of type k . Let V be a finite dimensional module of
a Lie superalgebra g of type A-G. Cablings of the invariant Qg,V correspond
to tensor powers of the module V , i.e.

Wg,V ⊗q,k = [Qg,V,k ◦ (L → L⊗q)] (6.3)

where [·] is the map defined in subsection 2.4.

Now we consider cablings of the Links-Gould invariant. Let Vα be the four
dimensional simple module used to define LG. Let U be any finite dimensional
gl(2|1)-module. Let QVα,U be the invariant defined as follows. If T is a framed
(1, 1)-tangle then T⊗2 is a (2,2)-tangle. By closing the new parallel of T⊗2

we have a framed (1, 1)-tangle which we denote by (T⊗2)′ . Label the original
tangle of (T⊗2)′ with Ṽα = Vα[[h]] and the new parallel with U [[h]]. With this
labeling on the (1, 1)-tangle (T⊗2)′ apply the R-T quantum group construction
to obtain an element of End(Ṽα)gl(2|1) ∼= C[[h]]. We take this power series to
be QVα,U (T ). We call QVα,U(T ) the cabling of LG and Qgl(2|1),U .

Proposition 6.5 Let M is the standard gl(2|1)-module of column vectors
and let Nβ be the 1-dimensional gl(2|1) weight module with weight (β, β|−β).
Let U be any finite dimensional simple module of gl(2|1). Then the invariant
Qgl(2|1),V is contained in the cablings of LG, Qgl(2|1),M and Qgl(2|1),Nβ

. In other
words, any two knots distinguished by Qgl(2|1),V are also distinguished by the
cablings of LG, Qgl(2|1),M and QNβ

.

Proof Throughout this proof we set g = gl(2|1). We will show that Wg,U can
be constructed from cablings of the weight systems WLG , Wg,M and Wg,Nβ

.
Then Theorem 5.4 and Theorem 6.2 imply the desired result about invariants.

First we define the weight system corresponding to QVα,U . Let T is a framed
(1, 1)-tangle and let D be a chord diagram on T . By definition of the action
of gl(2|1) on the tensor product we have

(6.4)
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It follows that the Gg,Vα⊗U (D) can be constructed from a chord diagram on
T⊗2 . By closing the second parallel of T⊗2 or equivalently contracting U and
U∗ we can associate Gg,Vα⊗U (D) with an g-invariant endomorphism of Vα and
thus a scalar. Let W Vα⊗U(D) be this scalar.

We have the following extension of equality (6.3) which holds for all k ∈ N:

W Vα⊗U
k = [QVα,U

k ]

where QVα,U =
∑

QVα,U
k hk and W Vα⊗U = (W Vα⊗U

k )k . Therefore, W Vα,U is the
weight system corresponding to the cabling of LG and Qgl(2|1),U .

Next we will show that W Vα⊗U is determined by weight systems coming from
modules in a composition series of Vα ⊗ U . Denote the equivalence class of a
module L in the Grothendieck group by [L]. Let [U ] =

∑
λ∈I [Lλ] where Lλ

is the simple module of weight λ and I is an index set. Recall that closing a
colored (1, 1)-tangle is the same as taking the supertrace of the corresponding
endomorphism. Also, taking the supertrace of an endomorphism only depends
on the diagonal. Therefore, we have

W Vα⊗U(D) =

(
∑

λ∈I

supertrace(fLλ
)

)
cVα (6.5)

where fM ∈ End(M)g and cVα is a scalar corresponding to an endomorphism
of Vα . Equality (6.5) says that W Vα⊗U is determined by the cablings of weight
systems arising from the simple modules Lλ and the module Vα . In other
words, from (6.4) it follows that

W Vα⊗U = W
Vα

N
⊗

λ∈I
Lλ

. (6.6)

Since V0 is the trivial module we have W V0⊗U = Wgl(2|1),U . This implies that

the weight system Wg,U is contained in W Vα⊗U and that it is determined by
the set {Lλ : λ ∈ I}. To finish the proof it suffices to show that the any simple
module L(λ) can be obtained in the Grothendieck group from a sum of the
modules Vα ⊗Mk ⊗Nβ . The last statement follows from the following lemma:

Lemma 6.6 The Grothendieck group of finite dimensional gl(2|1)-modules is
generated by the set of modules A = {Vα ⊗ M⊗k ⊗ Nβ | k ∈ N, α, β ∈ C}.

Proof We give a sketch of the proof of the lemma. For a complete proof see
Appendix of [6].
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It suffices to show that every finite dimensional irreducible weight module
L(γ1, γ2|δ) of weight (γ1, γ2|δ) is a linear combination of elements in A. We
will say a module is in the set B if it is a linear combination of modules in A.

The proof follows from the observations:

(1) for any module V in B we have V ⊗ Nβ is in B for all β ∈ C,

(2) for any k ∈ N and α ∈ C the finite dimensional irreducible weight module
of weight (k, 0|α) is in B .

Observation (1) allows us to shift the weight of a module. In other words, if
V is a module of weight (γ1, γ2|δ) then V ⊗ Nβ is a module of weight (γ1 +
β, γ2 +β|δ−β). Therefore, if B contains all the modules of weight (k, 0|α) the
theorem follows.

Observation (2) follows from strong induction on k . Note that Vα has highest
weight (0, 0|α) and so M⊗k ⊗ Vα has a highest weight (k, 0|α). Using the
induction hypothesis one shows that

[L(k, 0|α)] = [M⊗k ⊗ Vα] −
∑

λ∈I

[L(λ)]

where [V ] is the equivalence class of a module V in the Grothendieck group, I
is a particular index set and [L(λ)] ∈ B for all λ ∈ I .

In summary, Lemma 6.6 and equality (6.6) imply that for every finite dimen-
sional simple g-module L the weight system Wg,L is contained in the cablings
of WLG , Wg,M and Wg,Nβ

. Thus, Theorem 5.4 and Theorem 6.2 imply the
desired result on the level of invariants.

6.4 The Links-Gould invariant and the colored HOMFLY

It is known that the HOMFLY polynomial is built from gl(n) and the standard
module of column vectors (see [18]). At the level of weight systems all knot
invariants arising from finite dimensional gl(n)-modules are contained in the
cablings of the HOMFLY polynomial. Similarly, it is well known by experts
[20] that at the level of weight systems all the knot invariants arising from finite
dimensional gl(m|n)-modules are contained in the cablings of the HOMFLY
polynomial. The following corollary is a direct consequence of Theorems 5.4
and 6.2.
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Corollary 6.7 Let V be a finite dimensional gl(m|n)-module. The invariant
of knots Qgl(m|n),V is contained in the colored HOMFLY. In particular, every
two knots distinguishable by LG can be distinguished by the usual HOMFLY
applied to some cabling of these knots.

7 Two invariants arising from D(2, 1; α)

Vogel [23] defined a Lie superalgebra D(2, 1) over R = Q[a±, b±, c±]/(a+ b+ c)
which can be regarded as a generic version of the complex Lie superalge-
bra D(2, 1;α) (by a change of of coefficients, one can recover D(2, 1;α)). In
[17] Patureau-Mirand constructs to two link invariants Q and Z̃ arising from
D(2, 1). These invariants are closely related to quantum invariants and weight
systems composed with the Kontsevich integral, respectively. We will show
that the results of §5.2 imply that these invariants are the essentially the same.
This gives a positive answer to Conjecture 4.12 part 1 of [17]. Moreover, the
invariant Z̃ is an invariant in three symmetric variables. Our results imply that
Q is an invariant which is symmetric in three variables. This symmetry is not
apparent at the level of the quantum group.

We will now summarize Patureau-Mirand [17] construction of the invariants Q
and Z̃ . These construction are closely related to the constructions of QD(2,1;α),M

and GD(2,1;α),M ◦ Z , where M is the adjoint module of D(2, 1;α). To define

Q and Z̃ the normal constructions of the quantum group invariant and the
weight systems arising from a module of a Lie superalgebra must be extended
to the setting of 3-tangle (immersions of 1-3-valent graphs in S3 ). This involves
accounting for trivalent vertices of the graph.

Let Uh(D(2, 1)) be the reparametrization of the quantization Uh(D(2, 1;α))

given in Appendix of [17]. Let Q3−tangles
D(2,1),N be the Q[eh, eαh, e−h−αh]-valued

quantum group invariant of 3-tangles invariant arising from Uh(D(2, 1)) and a
irreducible Uh(D(2, 1))-module N whose classical limit is the adjoint module
M of D(2, 1;α) (see §3.2 of [17]). In [23] Vogel define a functor ΦD(2,1) from the
category of chord diagrams on 3-tangles to the category of finite dimensional
D(2, 1)-modules (also see [17, §3.3]). Both Q3−tangles

D(2,1),N and ΦD(2,1) account for

the trivalent vertices by mapping the diagram to the bilinear map N⊗N → N
(whose classical limit is the Lie bracket M ⊗ M → M ).

Let Zad be the so-called Kontsevich-adjoint functor defined in §3.3.2 of [17].
The domain (range) of Zad is the category of 3-tangle (resp. category of chord
diagrams on 3-tangles). Define ZD(2,1),N = ΦD(2,1) ◦ Zad . The restriction of
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ZD(2,1),N to 3-nets (closed 3-tangles) is an invariant of 3-nets with values in

the ring of symmetric series in three variables Q[[a1, a2, a3]]
S3 modulo the ideal

the ideal generated by a1 + a2 + a3 . By specializing a1 = h, a2 = αh and
a3 = −h − αh we have ZD(2,1),N is equal to ΦD(2,1;α) ◦ Zad where ΦD(2,1;α) is
a extension of GD(2,1;α),M to 3-tangles.

We will now show that Q3−tangles
D(2,1),N is equal to ZD(2,1),N . After observing that

trivalent vertices are preserved, this is essentially a restatement of Theorem
5.2 in the special case when the module V is the adjoint module. Setting
g = D(2, 1;α) and V = M , let E be the functor constructed in Theorem 5.2.
By definition the functor E preserves the morphism M ⊗ M → M given by
the bracket. It follows that

ΦD(2,1;α) ◦ Zad = Q3−tangles
D(2,1;α),M . (7.1)

The invariant ZD(2,1),N is determined by ΦD(2,1;α) ◦ Zad . This is true because
ΦD(2,1;α)◦Zad is a specialization of ZD(2,1),N such that each degree of the power
series ZD(2,1),N (T ) is determined by infinitely many values of α. Thus, from

(7.1) we have that Q3−tangles
D(2,1),N is equal to ZD(2,1),N .

We will now give the definition of two 3-net invariants and use the last equality
to show that the 3-net invariants are equal. In [17, §4] Patureau-Mirand showed
that there exists two 3-net invariants Q̃ and Z̃ such that for any 3-net L with
L = ∋ ◦ T where T is some 3-tangle we have

)

)

Q
3−tangles
D(2,1),N (T ) = Q̃(L).Q3−tangles

D(2,1),N (

ZD(2,1),N(T ) = Z̃(L).ΦD(2,1)( (7.2)

Since Q3−tangles
D(2,1),N

and ZD(2,1),N are equal it follows from equations (7.2) that

Q̃(L) = Z̃(L) for all 3-nets L. This gives a positive answer to Part 1 of
Conjecture 4.12 [17].

We end this subsection by defining Patureau-Mirand’s two link invariants and
using the above results to show that they are related. Patureau-Mirand [17, §4]
shows that Z̃ can be evaluated on links by the following equality:

Z̃
( )

= 1
2
Z̃
( ))

1
2

(

Similarly for Q̃ he defines a link invariant Q by assigning a double point the
following value: ))

1
2

(
Q̃
(
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Since Q̃ = Z̃ it follows that for any link L with n components we have

Q(L) = 2Z̃(L) − nZ̃(O)

where O is the unknot. This gives a partial answer to Part 2 of Conjecture
4.12.
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