Algebraic & Geometric Topology Volume 5 (2005) 1711–1718 Published: 7 December 2005

aTg

Extensions of maps to the projective plane

Jerzy Dydak Michael Levin

Abstract It is proved that for a 3-dimensional compact metrizable space X the infinite real projective space $\mathbb{R}P^{\infty}$ is an absolute extensor of X if and only if the real projective plane $\mathbb{R}P^2$ is an absolute extensor of X (see Theorems 1.2 and 1.5).

AMS Classification 55M10; 54F45

Keywords Cohomological and extensional dimensions, projective spaces

1 Introduction

Let X be a compactum (= separable metric space) and let K be a CW complex. $K \in AE(X)$ (read: K is an absolute extensor of X) or $X\tau K$ means that every map $f: A \longrightarrow K$, A closed in X, extends over X. The extensional dimension edimX of X is said to be dominated by a CW-complex K, written edim $X \leq K$, if $X\tau K$. Thus for the covering dimension dim X of X the condition dim $X \leq n$ is equivalent to edim $X \leq S^n$ where S^n is an n-dimensional sphere and for the cohomological dimension dim_GX of X with respect to an abelian group G, the condition dim_G X $\leq n$ is equivalent to edim $X \leq K(G, n)$ where K(G, n)is an Eilenberg-Mac Lane complex of type (G, n).

Every time the coefficient group in homology is not explicitly stated, we mean it to be integers.

In case of CW complexes K one can often reduce the relation $\operatorname{edim} X \leq K$ to $\operatorname{edim} X \leq K^{(n)}$, where $K^{(n)}$ is the *n*-skeleton of K.

Proposition 1.1 Suppose X is a compactum and K is a CW complex. If $\dim X \leq n$, then $\dim X \leq K$ is equivalent to $\dim X \leq K^{(n)}$.

The proof follows easily using $\operatorname{edim} X \leq n$ to push maps off higher cells.

Dranishnikov [4] proved the following important theorems connecting extensional and cohomological dimensions.

© Geometry & Topology Publications

Theorem 1.2 Let K be a CW-complex and let a compactum X be such that $\operatorname{edim} X \leq K$. Then $\operatorname{dim}_{H_n(K)} X \leq n$ for every n > 0.

Theorem 1.3 Let K be a simply connected CW-complex and let a compactum X be finite dimensional. If $\dim_{H_n(K)} X \leq n$ for every n > 0, then $\operatorname{edim} X \leq K$.

The requirement in Theorem 1.3 that X is finite dimensional cannot be omitted. To show that take the famous infinite-dimensional compactum X of Dranishnikov with dim_Z X = 3 as in [3]. Then the conclusion of Theorem 1.3 does not hold for $K = S^3$. Let us mention in this connection another result [6]: there is a compactum X satisfying the following conditions:

- (a) edim X > K for every finite CW-complex K with $H_*(K) \neq 0$,
- (b) $\dim_G X \leq 2$ for every abelian group G,
- (c) $\dim_G X \leq 1$ for every finite abelian group G.

Here $\operatorname{edim} X > K$ means that $\operatorname{edim} X \leq K$ is false.

With no restriction on K, Theorem 1.3 does not hold. Indeed, the conclusion of Theorem 1.3 is not satisfied if K is a non-contractible acyclic CW-complex and X is the 2-dimensional disk. Cencelj and Dranishnikov [2] generalized Theorem 1.3 for nilpotent CW-complexes K (see [1] for the case of K with fundamental group being finitely generated).

The real projective plane $\mathbb{R}P^2$ is the simplest CW-complex not covered by Cencelj-Dranishnikov's result. Thus we arrive at the following well-known open problem in Extension Theory.

Problem 1.4 Let X be a finite dimensional compactum. Does $\dim_{\mathbb{Z}_2} X \leq 1$ imply $\operatorname{edim} X \leq \mathbb{R}P^2$? More generally, does $\dim_{\mathbb{Z}_p} X \leq 1$ imply $\operatorname{edim} X \leq M(\mathbb{Z}_p, 1)$, where $M(\mathbb{Z}_p, 1)$ is a Moore complex of type $(\mathbb{Z}_p, 1)$?

It is not difficult to see that this problem can be answered affirmatively if $\dim X \leq 2$ (use 1.1). Sharing a belief that Problem 1.4 has a negative answer in higher dimensions the authors made a few unsuccessful attempts to construct a counterexample in the first non-trivial case dim X = 3 and were surprised to discover the following result.

Theorem 1.5 Let X be a compactum of dimension at most three. If $\dim_{\mathbb{Z}_2} X \leq 1$, then $\operatorname{edim} X \leq \mathbb{R}P^2$.

Notice (see [5]) that there exist compacta X of dimension 3 such that $\dim_{\mathbb{Z}_2} X \leq 1$, so Theorem 1.5 is not vacuous.

This paper is devoted to proving of Theorem 1.5. Theorem 1.5 can be formulated in a slightly different form. Let X be a compactum. Take $\mathbb{R}P^{\infty}$ as an Eilenberg-Mac Lane complex $K(\mathbb{Z}_2, 1)$. Then dim $X \leq 3$ and dim $\mathbb{Z}_2 X \leq 1$ imply edim $X \leq \mathbb{R}P^3$. On the other hand by Theorem 1.2 the condition edim $X \leq \mathbb{R}P^3$ implies that dim $\mathbb{Z}_2 X = \dim_{H_1(\mathbb{R}P^3)} X \leq 1$, dim $\mathbb{Z} X = \dim_{H_3(\mathbb{R}P^3)} X \leq 3$ and by Alexandroff's theorem dim $X \leq 3$ if X is finite dimensional (note that $H_k(\mathbb{R}P^n) = \mathbb{Z}_2$ if $1 \leq k < n$ is odd, $H_k(\mathbb{R}P^n) = 0$ if $1 < k \leq n$ is even, and $H_n(\mathbb{R}P^n) = \mathbb{Z}$ if n is odd - see p.89 of [7]). Thus Theorem 1.5 is equivalent to the following, more general result.

Theorem 1.6 Let X be a compactum of finite dimension. If $\operatorname{edim} X \leq \mathbb{R}P^3$, then $\operatorname{edim} X \leq \mathbb{R}P^2$.

We end this section with two questions related to Theorems 1.5 and 1.6.

Question 1.7 Let X be a compactum of dimension at most three. Does $\dim_{\mathbb{Z}_p} X \leq 1$ imply $\dim X \leq M(\mathbb{Z}_p, 1)$?

Question 1.8 Does $\operatorname{edim} X \leq \mathbb{R}P^3$ imply $\operatorname{edim} X \leq \mathbb{R}P^2$ for all, perhaps infinite-dimensional, compacta X?

2 Preliminaries

Maps on projective spaces

Recall that the real projective *n*-space $\mathbb{R}P^n$ is obtained from the *n*-sphere S^n by identifying points x and -x. The resulting map $p_n : S^n \longrightarrow \mathbb{R}P^n$ is a covering projection and $\mathbb{R}P^1$ is homeomorphic to S^1 . By $q_n : B^n \longrightarrow \mathbb{R}P^n$ we denote the quotient map of the unit *n*-ball B^n obtained by identifying B^n with the upper hemisphere of S^n . We consider all spheres to be subsets of the infinite-dimensional sphere S^{∞} . Similarly, we consider all projective spaces $\mathbb{R}P^n$ to be subsets of the infinite projective space $\mathbb{R}P^{\infty}$. Clearly, there is a universal covering projection $p: S^{\infty} \longrightarrow \mathbb{R}P^{\infty}$. It is known that $\mathbb{R}P^{\infty}$ has a structure of a CW complex making it an Eilenberg-MacLane complex of type $K(\mathbb{Z}_2, 1)$ as S^{∞} is contractible.

Proposition 2.1 Any map $f : \mathbb{R}P^1 \longrightarrow \mathbb{R}P^2$ extends to a map $f' : \mathbb{R}P^2 \longrightarrow \mathbb{R}P^2$.

Proof It is obvious if f is null-homotopic. Assume that f is not homotopic to a constant map. Since $\pi_1(\mathbb{R}P^2) = \mathbb{Z}_2$ and $\mathbb{R}P^1$ generates $\pi_1(\mathbb{R}P^2)$, f is homotopic to the inclusion map of $\mathbb{R}P^1$ to $\mathbb{R}P^2$. Obviously, that inclusion extends to the identity map of $\mathbb{R}P^2$, so f extends over $\mathbb{R}P^2$.

Proposition 2.2 If $f : \mathbb{R}P^2 \longrightarrow \mathbb{R}P^2$ induces the zero homomorphism of the fundamental groups, then f extends to a map $f' : \mathbb{R}P^3 \longrightarrow \mathbb{R}P^2$.

Proof Since f induces the zero homomorphism of the fundamental group, f can be lifted to $\beta : \mathbb{R}P^2 \longrightarrow S^2$. Since $H_2(\mathbb{R}P^2) = 0$, the map $\gamma = \beta \circ q_3|_{\partial B^3} : \partial B^3 \longrightarrow S^2$ induces the zero homomorphism $\gamma_* : H_2(\partial B^3) \longrightarrow H_2(S^2)$ and hence γ is null-homotopic. Thus γ can be extended over B^3 and this extension induces the corresponding extension of f over $\mathbb{R}P^3$.

Proposition 2.3 Let Y be a topological space. A map $f: S^1 \times \mathbb{R}P^1 \longrightarrow Y$ extends over $S^1 \times \mathbb{R}P^2$ if and only if the composition $S^1 \times S^1 \xrightarrow{id \times p_1} S^1 \times \mathbb{R}P^1 \xrightarrow{f} Y$ extends over the solid torus $S^1 \times B^2$.

Proof Consider the induced map $f' : \mathbb{R}P^1 \longrightarrow Map(S^1, Y)$ to the mapping space defined by f'(x)(z) = f(z, x) for $x \in \mathbb{R}P^1$ and $z \in S^1$. f extends over $S^1 \times \mathbb{R}P^2$ if and only if f' extends over $\mathbb{R}P^2$. Notice that f' extends over $\mathbb{R}P^2$ if and only if $S^1 \xrightarrow{p_1} \mathbb{R}P^1 \xrightarrow{f'} Map(S^1, Y)$ extends over B^2 which is the same as to say that $S^1 \times S^1 \xrightarrow{id \times p_1} S^1 \times \mathbb{R}P^1 \xrightarrow{f} Y$ extends over the solid torus $S^1 \times B^2$.

Proposition 2.4 Suppose $(a,b) \in S^1 \times \mathbb{R}P^1$. If $f: S^1 \times \mathbb{R}P^1 \longrightarrow \mathbb{R}P^2$ is a map such that $f|\{a\} \times \mathbb{R}P^1$ is null-homotopic and $f|S^1 \times \{b\}$ is not nullhomotopic, then f extends over $S^1 \times \mathbb{R}P^2$.

Proof Assume $f|\{a\} \times \mathbb{R}P^1$ is constant. In view of 2.3 we need to show that the composition $S^1 \times S^1 \xrightarrow{id \times p_1} S^1 \times \mathbb{R}P^1 \xrightarrow{f} \mathbb{R}P^2$ extends over the solid torus $S^1 \times B^2$. Let D be a disk with boundary equal to $\mathbb{R}P^1$. Pick $e: I \longrightarrow S^1$ identifying 0 and 1 with $a \in S^1$. The homotopy $f \circ (e \times id) : I \times \mathbb{R}P^1 \longrightarrow \mathbb{R}P^2$ has a lift $H: I \times \mathbb{R}P^1 \longrightarrow S^2$ such that $\{0\} \times \mathbb{R}P^1$ and $\{1\} \times \mathbb{R}P^1$ are each mapped to a point and those points are antipodal as $f|S^1 \times \{b\}$ is not nullhomotopic. Therefore H can be extended to $G: \partial(I \times D) \longrightarrow S^2$ so that

 $G|\{0\} \times D$ and $G|\{1\} \times D$ are constant. Fix the orientation of $\partial(I \times D)$ and let c be the degree of G. Define F on $I \times S^1$ as the composition $G \circ (id \times p_1)$ and use the orientation on $\partial(I \times B^2)$ induced by that on $\partial(I \times D)$. Define F on $D_1 = \{1\} \times B^2$ as a map with the same value on ∂D_1 as $G(\partial(\{1\} \times D))$ so that the induced map from $D_1/(\partial D_1) \longrightarrow S^2$ is of degree -c (the orientation on $D_1/(\partial D_1)$ is induced by the orientation of $\partial(I \times B^2)$). The new map is called F. Define F on $D_0 = \{0\} \times B^2$ as the map with the same value on ∂D_0 as $G(\partial(\{0\} \times D))$ so that F(0, x) = -F(1, x) for all $x \in B^2$. The cumulative map $F : \partial(I \times B^2) \longrightarrow S^2$ is of degree 0, so it extends to $F' : I \times B^2 \longrightarrow S^2$. Notice that $J = p_2 \circ F' : I \times B^2 \longrightarrow \mathbb{R}P^2$ has the property that J(0, x) = J(1, x) for all $x \in B^2$. Therefore it induces an extension $S^1 \times B^2 \longrightarrow \mathbb{R}P^2$ of the composition $S^1 \times S^1 \stackrel{id \times p_1}{\longrightarrow} S^1 \times \mathbb{R}P^1 \stackrel{f}{\longrightarrow} \mathbb{R}P^2$.

The first modification M_1 of $\mathbb{R}P^3$

Let $B^3 \subset \mathbb{R}^3$ be the unit ball and let D be the 2-dimensional disk of radius 1/3 lying in the *yz*-coordinate plane and centered at the point (0, 1/2, 0). Denote by L the solid torus obtained by rotating D about the *z*-axis. We consider Lwith the structure of cartesian product $L = S^1 \times D$ such that the rotations of L about the *z*-axis correspond to the rotations of S^1 . Think of S^1 as the circle $x^2 + y^2 = 1/4, z = 0$ (the circle traced by the center of D). Since L is untouched under the quotient map $q_3 : B^3 \longrightarrow \mathbb{R}P^3$, we may assume $L \subset \mathbb{R}P^3$. The first modification M_1 of $\mathbb{R}P^3$ is obtained by removing the interior of L from $\mathbb{R}P^3$ and attaching $S^1 \times \mathbb{R}P^2$ via the map $S^1 \times \mathbb{R}P^1 \to \partial L$, where $\mathbb{R}P^1$ is identified with ∂D . Notice that $\mathbb{R}P^2 = q_3(\partial B^3) \subset M_1$.

Proposition 2.5 There is a retraction $r: M_1 \longrightarrow \mathbb{R}P^2$ of the first modification M_1 of $\mathbb{R}P^3$ to the projective plane.

Proof We use the notation that we introduced above defining the first modification of $\mathbb{R}P^3$. Let I be the interval of the points of B^3 lying on the z-axis and let $M = \partial B^3 \cup I \subset B^3$. Denote $K = B^3 \setminus (L \setminus \partial L)$. Consider the group Γ of rotations of \mathbb{R}^3 around the z-axis. Note that L, M and K are invariant under rotations in Γ and every such rotation induces the corresponding homeomorphism of $\mathbb{R}P^2$ which will be called the corresponding rotation of $\mathbb{R}P^2$. Recall that L is represented as the product $L = S^1 \times D$ in such a way that the rotations of L are induced by the rotations of S^1 . Let $\alpha : K \longrightarrow M$ be a retraction which commutes with the rotations in Γ (this means that for every rotation $\rho \in \Gamma$ of \mathbb{R}^3 and $x \in K$, $\alpha(\rho(x)) = \rho(\alpha(x))$). Let $\beta : M \longrightarrow \mathbb{R}P^2$ be the extension of q_3 restricted to ∂B^3 sending the interval I to the point

 $q_3(\partial I)$. Then β also commutes with the rotations in Γ (this means that for every $x \in M$, every rotation $\rho \in \Gamma$ of \mathbb{R}^3 and the corresponding rotation ρ' of $\mathbb{R}P^2$, $\beta(\rho(x)) = \rho'(\beta(x))$). Denote $\gamma = \beta \circ \alpha : K \longrightarrow \mathbb{R}P^2$. It is easy to see that γ commutes with the rotations. Consider ∂D as a subspace $\partial D = \mathbb{R}P^1 \subset \mathbb{R}P^2$ of a projective plane, and consider $\partial L = S^1 \times \partial D$ as the subset of $T = S^1 \times \mathbb{R}P^2$ induced by the inclusion $\partial D \subset \mathbb{R}P^2$. Fix a in S^1 . By Proposition 2.1 extend γ restricted to $\{a\} \times \partial D$ to a map $\mu : \{a\} \times RP^2 \longrightarrow RP^2$ and by the rotations of S^1 and $\mathbb{R}P^2$ extend the map μ to the map $\kappa : T = S^1 \times \mathbb{R}P^2 \longrightarrow \mathbb{R}P^2$. Note that κ agrees with γ on $\partial L = S^1 \times \partial D$ and therefore the maps γ and κ define the map $\nu : M_1 \longrightarrow \mathbb{R}P^2$ from the first modification of $\mathbb{R}P^3$. This map ν induces the required retraction $r: M_1 \longrightarrow \mathbb{R}P^2$.

The second modification M_2 of $\mathbb{R}P^3$

Let B^3 be the unit ball in \mathbb{R}^3 and let $L \subset B^3$ be the subset of B^3 consisting of the points lying in the cylinder $x^2 + y^2 \leq 1/4$. Notice that $R = q_3(L)$ is a solid torus in $\mathbb{R}P^3$ as the map $B^2 \longrightarrow B^2$ sending z to -z is isotopic to the identity. Set $D = R \cap \mathbb{R}P^2$. Represent R as $S^1 \times D$ such that $\{a\} \times D$ is identified with D. The second modification M_2 of $\mathbb{R}P^3$ is obtained by removing the interior of R and attaching $S^1 \times \mathbb{R}P^2 \cup \{a\} \times \mathbb{R}P^3$ via the inclusion $S^1 \times \partial D \longrightarrow$ $S^1 \times \mathbb{R}P^2 \cup \{a\} \times \mathbb{R}P^3$, where ∂D is identified with $\mathbb{R}P^1$.

Proposition 2.6 Let M_2 be the second modification of $\mathbb{R}P^3$. The inclusion $i: \mathbb{R}P^2 \cap M_2 \hookrightarrow \mathbb{R}P^2$ extends to a map $g: M_2 \longrightarrow \mathbb{R}P^2$.

Proof We use the notation that we introduced above defining the notion of the second modification of $\mathbb{R}P^3$. Denote $H = \mathbb{R}P^3 \setminus (R \setminus \partial R)$. Since the center of B^3 does not belong to $q_3^{-1}(H)$, the radial projection sends $q_3^{-1}(H)$ to ∂B^3 and hence the radial projection induces the corresponding map α : $H \longrightarrow \mathbb{R}P^2$ which extends the map *i*. Recall that *R* is represented as $S^1 \times D$. Then $\partial R = S^1 \times \partial D$. Fix $a \in S^1$ and $b \in \partial D$. Notice that $\alpha | \{a\} \times \partial D$ is null-homotopic and $\alpha | S^1 \times \{b\}$ is not null-homotopic. By 2.4 one can extend $\alpha | \partial R$ over $S^1 \times \mathbb{R}P^2$. Any such extension is null-homotopic when restricted to $\{a\} \times \mathbb{R}P^1$, so it can be extended over $\{a\} \times \mathbb{R}P^3$ (see 2.2). Pasting all those extensions gives the desired map $g: M_2 \longrightarrow \mathbb{R}P^2$.

3 Proof of Theorem 1.5

Lemma 3.1 Suppose X is a compactum of dimension at most three and mod 2 dimension $\dim_{\mathbb{Z}_2} X$ of X equals 1. A map $f: A \longrightarrow S^1 \times \mathbb{R}P^2 \cup \{a\} \times \mathbb{R}P^3$

extends over X if and only if $\pi \circ f$ extends over X, where $\pi : S^1 \times \mathbb{R}P^2 \cup \{a\} \times \mathbb{R}P^3 \longrightarrow S^1$ is the projection onto the first coordinate.

Proof Only one direction is of interest. Pick an extension $g: X \to S^1$ of $\pi \circ f$. Let $\pi_2: S^1 \times \mathbb{R}P^3 \longrightarrow \mathbb{R}P^3$ be the projection. Since $\operatorname{edim} X \leq \mathbb{R}P^\infty$ implies $\operatorname{edim} X \leq \mathbb{R}P^3$ (see 1.1), the composition $\pi_2 \circ f$ extends over X to $h: X \longrightarrow \mathbb{R}P^3$. The diagonal $G: X \longrightarrow S^1 \times \mathbb{R}P^3$ of g and h can be pushed rel. A to the 3-skeleton of $S^1 \times \mathbb{R}P^3$ which is exactly $S^1 \times \mathbb{R}P^2 \cup \{a\} \times \mathbb{R}P^3$ under standard CW structures of S^1 and $\mathbb{R}P^3$. The resulting map $X \longrightarrow S^1 \times \mathbb{R}P^2 \cup \{a\} \times \mathbb{R}P^3$ is an extension of f.

Corollary 3.2 Suppose X is a compactum of dimension at most three and A is a closed subset of X. If mod 2 dimension $\dim_{\mathbb{Z}_2} X$ of X equals 1, then any map $f: A \longrightarrow \mathbb{R}P^1$ followed by the inclusion $\mathbb{R}P^1 \longrightarrow \mathbb{R}P^2$ extends over X.

Proof Let $i : \mathbb{R}P^1 \longrightarrow \mathbb{R}P^3$ be the inclusion. Extend $i \circ f : A \longrightarrow \mathbb{R}P^3$ to $G : X \longrightarrow \mathbb{R}P^3$. Let R be the solid torus as in the definition of the second modification of $\mathbb{R}P^3$. Put $Y = G^{-1}(R)$ and $B = G^{-1}(\partial R)$. The map $g : B \to \partial R = S^1 \times \mathbb{R}P^1$ induced by G extends to $H : Y \longrightarrow S^1 \times \mathbb{R}P^2 \cup \{a\} \times \mathbb{R}P^3$ in view of 3.1. Pasting $G|(X \setminus G^{-1}(int(R)))$ and H results in an extension $F : X \to M_2$ of f. By 2.6 the inclusion $\mathbb{R}P^2 \cap M_2 \hookrightarrow \mathbb{R}P^2$ extends to a map $g : M_2 \longrightarrow \mathbb{R}P^2$. Notice that $g \circ F$ is an extension of $i \circ f$.

Corollary 3.3 Suppose X is a compactum of dimension at most three. If mod 2 dimension $\dim_{\mathbb{Z}_2} X$ of X equals 1, then any map $f: A \longrightarrow \mathbb{R}P^2$ followed by the inclusion $\mathbb{R}P^2 \longrightarrow M_1$ from the projective plane to the first modification of $\mathbb{R}P^3$ extends over X.

Proof Let $i : \mathbb{R}P^2 \longrightarrow \mathbb{R}P^3$ be the inclusion. Extend $i \circ f : A \longrightarrow \mathbb{R}P^3$ to $G : X \longrightarrow \mathbb{R}P^3$. Let L be the solid torus as in the definition of the first modification of $\mathbb{R}P^3$. Put $Y = G^{-1}(L)$ and $B = G^{-1}(\partial L)$. The map $g : B \to \partial L = S^1 \times \mathbb{R}P^1$ induced by G extends to $H : Y \longrightarrow S^1 \times \mathbb{R}P^2$ in view of 3.2. Pasting $G|(X \setminus G^{-1}(int(L)))$ and H results in an extension $F : X \to M_1$ of f.

Since $\mathbb{R}P^2$ is a retract of M_1 (see 2.5), Corollary 3.3 does indeed imply Theorem 1.5.

Acknowledgement This research was supported by Grant No. 2004047 from the United States-Israel Binational Science Foundation (BSF), Jerusalem, Israel.

References

- M Cencelj, A N Dranishnikov, Extension of maps to nilpotent spaces. II, Topology Appl. 124 (2002) 77–83
- M Cencelj, A N Dranishnikov, Extension of maps to nilpotent spaces. III, Topology Appl. 153 (2005) 208–212
- [3] A N Dranishnikov, On a problem of P S Aleksandrov, Mat. Sb. (N.S.) 135(177) (1988) 551–557, 560
- [4] A N Dranishnikov, Extension of mappings into CW-complexes, Mat. Sb. 182 (1991) 1300–1310
- [5] A N Dranishnikov, Basic elements of the cohomological dimension theory of compact metric spaces, Topology Atlas (1999)
- [6] M Levin, Some examples in cohomological dimension theory, Pacific J. Math. 202 (2002) 371–378
- [7] GW Whitehead, Elements of homotopy theory, Graduate Texts in Mathematics 61, Springer-Verlag, New York (1978)

Department of Mathematics, University of Tennessee Knoxville, TN 37996-1300, USA and Department of Mathematics, Ben Gurion University of the Negev P.O.B. 653, Be'er Sheva 84105, ISRAEL

Email: dydak@math.utk.edu and mlevine@math.bgu.ac.il

URL: http://www.math.utk.edu/~dydak

Received: 1 June 2005