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Abstract The periodic Floer homology of a surface symplectomorphism,
defined by the first author and M. Thaddeus, is the homology of a chain
complex which is generated by certain unions of periodic orbits, and whose
differential counts certain embedded pseudoholomorphic curves in R cross
the mapping torus. It is conjectured to recover the Seiberg-Witten Floer
homology of the mapping torus for most spin-c structures, and is related
to a variant of contact homology. In this paper we compute the periodic
Floer homology of some Dehn twists.
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1 Introduction

Let Σ be a compact surface, possibly with boundary, with a symplectic form
ω , and let φ be a symplectomorphism of Σ. Consider the mapping torus

Yφ :=
[0, 1] × Σ

(1, x) ∼ (0, φ(x))
. (1)

Projection onto the [0, 1] factor defines a fibration Yφ → R/Z with fiber Σ.
There is a natural flow R on Yφ which increases the [0, 1] coordinate, and we
identify periodic orbits of φ with closed orbits of this flow in Yφ . We fix a ho-
mology class h ∈ H1(Yφ), and define the degree d to be the intersection number
of h with a fiber of Yφ → R/Z. Under “monotonicity” and “d-regularity” as-
sumptions on φ, we can define the periodic Floer homology (PFH), denoted by
HP∗(φ, h); see [12], the background in [9], and the review in Section 2. Roughly
speaking, this is the homology of a chain complex which is generated by certain
unions of periodic orbits of φ with total homology class h, and whose differen-
tial counts certain embedded pseudoholomorphic curves in R×Yφ for a suitable
almost complex structure J . It is expected that the PFH is independent of J
and invariant under appropriate isotopy of φ fixing φ|∂Σ .
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302 Michael Hutchings and Michael Sullivan

When d = 1, PFH reverts to the ordinary symplectic Floer homology of φ,
which is the homology of a chain complex generated by fixed points of φ and
whose differential counts pseudoholomorphic sections of R×Yφ → R×S1 . The
symplectic Floer homology has been computed for a Dehn twist by Seidel [21],
more examples have been computed by Eftekhary [4] and Gautschi [8], and a
conjecture for a product of positive Dehn twists on a surface with boundary is
given in [22].

Results In this paper we compute the periodic Floer homology of some Dehn
twists. We begin, in Theorem 3.1, by computing the PFH of a perturbation of
the “positive” twist on the cylinder

φ0 : [X1,X2]× S
1 −→ [X1,X2]× S

1,

(x, y) 7−→ (x, y − x)
(2)

for any J . Here, as elsewhere in this paper, we identify S1 = R/Z. In fact, in
Theorem 3.5 we obtain a combinatorial formula for most of the differential in
the chain complex, in terms of “rounding corners” of convex polygonal paths
connecting lattice points in the plane. In the terminology of Section 2, this part
of the differential counts genus zero pseudoholomorphic curves with two “in-
coming ends”, any number of “outgoing ends”, possibly together with “trivial
cylinders”. We prove these theorems in Section 3.

In Theorem 4.1, proved in Section 4, we compute the PFH of an n-fold positive
Dehn twist on the torus (for any J ), namely a perturbation of

φT
0 : (R/nZ)× (R/Z) −→ (R/nZ)× (R/Z),

(x, y) 7−→ (x, y − x).
(3)

In Section 5, we consider a composition φΣ of Dehn twists along disjoint circles
γi on a higher genus (connected) surface Σ, perturbed so that it is close to
the identity away from the circles γi . To ensure monotonicity of the standard
representative of the composition of Dehn twists, we assume:

(∗) If ξ ∈ H1(Σ) has nonzero intersection number with some [γi], then φΣ
∗ ξ 6=

ξ in H1(Σ). Also, d 6= g(Σ)− 1 when ∂Σ = ∅.

If we further assume that

(∗∗) each component of Σ\
⋃

i γi contains a component of ∂Σ or has sufficiently
large genus with respect to d,

then the PFH can be computed in terms of the cylinder complex described
above and Morse theory on Σ \

⋃
i γi . This is complicated in general, but we

work out the cases when Σ is closed and there is one circle γi , nonseparating
or separating, in Theorems 5.3 and 5.4 respectively.
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Motivation There are three basic motivations for this paper. First, it is
conjectured in [12] that if Σ is closed and connected and d < g(Σ) − 1, then
HP∗(φ, h) is isomorphic to the Seiberg-Witten Floer (SWF) homology of Yφ

for a spin-c structure corresponding to h. This conjecture is an analogue of
Taubes’s “SW=Gr” theorem [24], relating Seiberg-Witten solutions to embed-
ded pseudoholomorphic curves on closed symplectic 4-manifolds, for the non-
compact symplectic 4-manifold R × Yφ . This conjecture is known to hold at
the level of Euler characteristics as a consequence of Taubes’s theorem applied
to S1 × Yφ , see [10]. It also fits nicely with a conjecture of Salamon [19] relat-
ing SWF homology of mapping tori to symplectic Floer homology of induced
maps on symmetric products. Thus our results conjecturally give some new
examples of SWF homology. The version of SWF homology considered here is
conjectured to agree with the invariant HF+ of Ozsváth-Szabó [16, 17].

Second, one should be able to define a “quantum product” relating the PFH
of three surface diffeomorphisms f , g , and f ◦ g , cf. [3], and then in principle
recover the Seiberg-Witten invariants of a 4-dimensional symplectic Lefschetz
pencil by taking the quantum products of certain elements in the PFH of a Dehn
twist. Thus the PFH of a Dehn twist appears to be a fundamental building
block in invariants of symplectic 4-manifolds.

Third, one can define an analogue of PFH for a contact 3-manifold, thus ob-
taining an interesting variant of the symplectic field theory of [5], which we
call “embedded contact homology”. Some basic contact 3-manifolds, such as
S1 × S2 with the overtwisted contact structure considered in [25], or the unit
cotangent bundle of T 2 , contain pieces whose Reeb flow is diffeomorphic to the
mapping torus flow R for the inverse of the cylinder twist (2). Thus we expect
the techniques developed in this paper to be useful in computing more examples
of various flavors of contact homology.

Remarks on the proofs We organize the computations in this paper using
some spectral sequences, most of which are variations on the following theme.
Suppose that our symplectomorphism φ has an invariant curve ξ ⊂ Σ, on which
φ is an irrational rotation, and which divides Σ into pieces Σ1 and Σ2 . Then
in some cases, there is a spectral sequence E∗∗,∗ which converges to HP∗(φ, h),
with

E1 ≃
⊕

h1+h2=h

HP∗ (φ|Σ1
, h1)⊗HP∗ (φ|Σ2

, h2) . (4)

One such spectral sequence is used in Section 3.9 to compute the PFH of a
twist on a cylinder, by studying how the PFH changes as one twists the sym-
plectomorphism on the boundary. Other such spectral sequences are used for
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the torus in Section 4.1 and for higher genus surfaces in Section 5.3 and Section
5.4 to cut out the cylinders in which twisting takes place.

In some cases a spectral sequence satisfying (4) exists but might not converge
to HP∗(φ, h), roughly speaking due to higher genus pseudoholomorphic curves
which “wrap around” large parts of Σ. This failure to converge is measured
by the “wrapping spectral sequence” introduced in Section 4.1. We make the
hypothesis (∗∗) in order to avoid dealing with these higher genus curves by
ensuring that the wrapping spectral sequence degenerates.

An simple but important trick used in several places is the “local energy inequal-
ity” of Section 3.4, inspired by Gautschi [8], which gives homological constraints
on slices of pseudoholomorphic curves, roughly from the fact that neighborhoods
of these slices have positive energy.

In this paper we use a number of general results about pseudohomolomorphic
curves in R× Y which are proved in [9], so it may be helpful to have a copy of
the latter paper on hand.

Update Since the first version of this paper was distributed, the following
related developments have occurred.

In [11], we used the techniques of this paper to calculate the embedded con-
tact homology of T 3 in terms of more general combinatorial chain complexes
involving rounding corners of polygons. Also, [11] explains how to do such cal-
culations over Z, instead of over Z/2 as in the present paper. It follows easily
from [11] that all homology calculations in the present paper hold over Z, with
all Z/2 summands replaced by Z.

Jabuka and Mark [13], using results of Ozsváth and Szabó [18], computed the
Ozsváth-Szabó Floer homology HF+ of the mapping tori of some Dehn twists
and compositions thereof on closed surfaces Σ. If d < g(Σ)−1, then the PFH
agrees with HF+ of the mapping torus in those cases where both have been
calculated. This provides some nontrivial evidence for the conjectured relation
between PFH and Seiberg-Witten Floer homology.
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2 Review of periodic Floer homology

Let Σ be a compact surface, possibly with boundary, and let ω be a symplectic
form on Σ. Let φ be a symplectomorphism of (Σ, ω). Let Y = Yφ denote
the mapping torus of φ as in (1), and pick a “sector” h ∈ H1(Y ). Under the
“monotonicity” and “regularity” assumptions below, we now define the periodic
Floer homology HP∗(φ, h). This is the homology of a chain complex which is
generated by “admissible orbit sets” and graded by the relative index I , and
whose differential counts “flow lines”, all defined below.

We use the following notation. Let V → Y denote the vertical tangent bundle
of Y → S1 . Let [Σ] ∈ H2(Y ) denote the homology class of a fiber, and define
the degree d := h · [Σ] ∈ Z. Define the “index ambiguity class”

c(h) := c1(V ) + 2h× ∈ H2(Y ; Z),

where h× denotes the image of h under H1(Y )→ H1(Y, ∂Y ) ≃ H2(Y ; Z). Let
R denote the flow on Y that increases the [0, 1] coordinate in (1).

Orbit sets An orbit set is a finite set of pairs {(αi,mi)} where the αi ’s are
distinct (nondegenerate) irreducible periodic orbits of φ, regarded as embedded
oriented circles in Y tangent to R, and the mi ’s are positive integers, which
can be thought of as “multiplicities”. The orbit set {(αi,mi)} is admissible if
mi = 1 whenever αi is hyperbolic, i.e. the linearized return map of φ along αi

has real eigenvalues. We define the homology class [α] :=
∑

imi[αi] ∈ H1(Y ),
and we let A(h) denote the set of admissible orbit sets α with [α] = h. We
often denote an orbit set by a commutative product αm1

1 · · ·α
mk
k , although the

index and differential defined below are not well-behaved with respect to this
sort of multiplication.

The relative index Let α = {(αi,mi)} and β = {(βj , nj)} be orbit sets
with [α] = [β]. Let H2(Y ;α, β) denote the set of relative homology classes of
2-chains W in Y with

∂W =
∑

i

miαi −
∑

j

njβj ;

this is an affine space over H2(Y ). If Z ∈ H2(Y ;α, β), define the relative index

I(α, β;Z) := cτ (Z) +Qτ (Z) + µτ (α, β) ∈ Z. (5)
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Here τ is a homotopy class of symplectic trivialization of V over the αi ’s
and βj ’s; cτ (Z) denotes the relative first Chern class of the bundle V over
the relative homology class Z with respect to the boundary trivialization τ ;
Qτ (Z) = Qτ (Z,Z) denotes the relative intersection pairing in [0, 1] × Y ; and

µτ (α, β) :=
∑

i

mi∑

k=1

µτ (α
k
i )−

∑

j

nj∑

k=1

µτ (β
k
j ),

where µτ (γ
k) is the Conley-Zehnder index of the kth iterate of γ . These notions

are explained in detail in [9, Section 2].

The relative index has the following basic properties [9, Prop. 1.6]. First, the
definition does not depend on τ . Second, if γ is another homologous orbit set
and W ∈ H2(Y ;β, γ), then we have the additivity property

I(α, β;Z) + I(β, γ;W ) = I(α, γ;Z +W ).

Third, if α and β are admissible, then

I(α, β;Z) ≡
∑

i

ǫ(αi)−
∑

j

ǫ(βj) mod 2, (6)

where (−1)ǫ denotes the Lefschetz sign, which is −1 for hyperbolic orbits with
positive eigenvalues and +1 otherwise. Fourth, we have the “index ambiguity
formula”

I(α, β;Z) − I(α, β;W ) = 〈Z −W, c(h)〉. (7)

Monotonicity The symplectic form ω on Σ induces a symplectic structure
on V which canonically extends to a closed 2-form on Y , which we still denote
by ω , with R−p ω = 0. We say that (φ, h) is monotone if

[ω] = λc(h) ∈ H2(Y ; R), (8)

where λ ∈ R. An elementary calculation in [12] shows that for any given h, if
Σ is connected and ∂Σ 6= ∅ or d 6= g(Σ)−1, then one can achieve monotonicity
by a symplectic isotopy of φ fixing φ|∂Σ .

Almost complex structure An almost complex structure J on R × Y is
admissible if:

• J(∂s) = R, where s denotes the R coordinate.

• J is invariant under the obvious R-action on R× Y .

• J is tamed by Ω := ω + ds ∧ dt, that is Ω(v, Jv) > 0 for v 6= 0.
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We say that (φ, J) is d-regular if J is admissible and:

• Each periodic orbit of period p ≤ d is nondegenerate.

• (Local linearity) For each periodic orbit of period p ≤ d, there are local
coordinates on Σ near γ for which φp is linear; and there is a tubular
neighborhood N of γ on which J sends V to V , by a constant matrix on
each fiber of the projection N → γ induced by the projection Y → S1 .
If γ is elliptic, then J is invariant under the flow R in N .

• Near each component of ∂Σ there are local coordinates x ∈ (−ǫ, 0], y ∈
R/Z with J(∂x) = ∂y and φ(x, y) = (x, y + θ), where qθ /∈ Z for all
integers 1 ≤ q ≤ d.

• J is sufficiently close to sending V to V .

The local linearity condition might not be necessary but is used in [9, 12] to
simplify the analysis. The next condition ensures that flow lines (defined below)
do not approach the boundary, by the maximum principle. The last condition
is used in [9] to rule out bubbling of closed pseudoholomorphic curves in moduli
spaces of flow lines.

Flow lines We now consider J -holomorphic curves in R × Y , where J is
admissible. The simplest example of a J -holomorphic curve in R×Y is R× γ ,
where γ is a periodic orbit; we call this a trivial cylinder . More generally, if C
is a J -holomorphic curve, an outgoing end at γ of multiplicity m is an end of
C asymptotic to R

+ × γm as s→ +∞, where γm denotes a connected m-fold
cover of γ . Incoming ends are defined analogously with s→ −∞.

Let α = {(αi,mi)} and β = {(βj , nj)} be orbit sets with [α] = [β]. A flow line

from α to β is a J -holomorphic curve C ⊂ R× Y such that:

• C is embedded, except that trivial cylinders may be repeated, although
these are not allowed to intersect the rest of C .

• C is a punctured compact Riemann surface and has outgoing ends at αi

of multiplicity qi,k with
∑

k qi,k = mi , incoming ends at βj of multiplicity
q′j,k with

∑
k q

′
j,k = nj , and no other ends.

LetM(α, β;Z) denote the moduli space of flow lines from α to β in the relative
homology class Z , and M(α, β) :=

⋃
Z∈H2(Y ;α,β)M(α, β;Z). Note that R acts

on these moduli spaces by translation in R×Y . If C ∈M(α, β), letMC denote
the component of the moduli space containing C .
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If C ∈ M(α, β), we define I(C) := I([C]) := I(α, β; [C]). It is shown in [9,
Thm. 1.7], see also Proposition 2.1 below, that if J is generic and (φ, J) is
d-regular, where d is the degree of α and β , then MC is a manifold and

dim(MC) ≤ I(C). (9)

Moreover, equality holds only if C is “admissible”, see [9, Section 4]. If C has
no trivial cylinders, then “admissible” means that {qi,1, qi,2, . . .} = pout(αi,mi)
and {q′j,1, q

′
j,2, . . .} = pin(βj , nj), where to any periodic orbit γ and positive

integer m there are a priori associated an “outgoing partition” pout(γ,m) and
an “incoming partition” pin(γ,m) of m. A simple example which we will need
later is that if γ is elliptic, i.e. the linearized return map has eigenvalues e±2πiθ ,
and if the linearized return map is a small (with respect to d) clockwise rotation,
then for m ≤ d,

pout(γ,m) = {m}, pin(γ,m) = {1, . . . , 1}. (10)

So if C is admissible and has no trivial cylinders, then C can have at most one
outgoing end at γ , while every incoming end of C at γ has multiplicity one.

The chain complex Assume that (φ, h) is monotone, and that (φ, J) is d-
regular and J is generic. We now define a chain complex (CP∗(φ, h), δ), whose
differential may depend on J . It is possible to define this over Z, but for
simplicity we will work over Z/2 in the present paper. The generators of the
chain complex are admissible orbit sets:

CP∗(φ, h) := (Z/2){A(h)}.

The differential is defined as follows: if α ∈ A(h), then

δα :=
∑

β∈A(h)


 ∑

I(α,β;Z)=1

#
M(α, β;Z)

R


 β,

where ‘#’ denotes the mod 2 count. By equations (7) and (8), all flow lines on
the right hand side have the same integral of ω , so by the compactness theorem
of [9, Thm. 1.8], this is a finite sum. It will be shown in [12] that δ2 = 0. The
homology of this chain complex is the periodic Floer homology HP∗(φ, h).

By equation (6), HP∗(φ, h) has a canonical Z/2 grading, which by (7) lifts non-
canonically to a Z/N grading, where N is the divisibility of c(h) in H2(Y ; Z).

We expect that HP∗(φ, h) is independent of J and invariant under symplectic
isotopy of φ fixing φ|∂Σ and preserving monotonicity. Moreover if Σ is closed
and connected and d < g(Σ) − 1, then it is conjectured in [12] that HP∗(φ, h)
agrees with the Seiberg-Witten Floer homology of Y for a spin-c structure
determined by h.
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Duality In this paper we mainly discuss positive Dehn twists, but one can
easily deduce corresponding results for negative Dehn twists as follows. For any
symplectomorphism φ of Σ, the self-diffeomorphism of R × [0, 1] × Σ sending
(s, t, x) 7→ (−s, 1− t, x) induces a symplectomorphism ı : R × Yφ → R× Yφ−1 ,
which sends a d-regular almost complex structure for φ to one for φ−1 . Since in-
coming and outgoing ends of flow lines are switched, we obtain HP∗(φ

−1, ı∗h) ≃
HP−∗(φ, h), where the right hand side is the “periodic Floer cohomology” de-
fined using the dual differential.

Generalized flow lines In some technical arguments we need to consider
generalized flow lines (GFL’s), which are defined like flow lines except that
we drop the embeddedness condition, see [9, Section 9.3]. We collect here the
definitions and facts about GFL’s that we will need.

If C is a GFL, then in the notation from the paragraph on flow lines, we define

µ0
τ (C) :=

∑

i

∑

k

µτ (α
qi,k

i )−
∑

j

∑

k

µτ (β
q′j,k

j ),

Ivir(C) := − χ(C) + 2cτ ([C]) + µ0
τ (C). (11)

If C is a GFL from α to β , let deg(C) denote the degree of α and β .

We say that a GFL is a quasi-embedding if it is embedded except possibly
at finitely many points. A connected GFL is either a quasi-embedding or a
multiple cover. If J is generic, then it follows from the index formula of [20]
and a transversality argument in [9] that if C is a quasi-embedding, then Ivir(C)
equals the dimension of the component of the moduli space of quasi-embedded
GFL’s containing C . If C is a flow line, and if J is generic and (φ, J) is
deg(C)-regular, then

dim(MC) ≤ Ivir(C). (12)

This is an inequality, because a moduli space of embedded flow lines can appear
as a stratum in a moduli space of GFL’s, see [9, Section 5].

If C is a quasi-embedded GFL, then by [9, Section 3], we have the relative
adjunction formula

cτ ([C]) = χ(C) +Qτ ([C]) + wτ (C)− 2δ(C). (13)

Here the integer δ(C) is a weighted count of the singularities of C , which
satisfies δ(C) ≥ 0 with equality if and only if C is embedded. Also, wτ (C) is
the signed sum of the writhes of the asymptotic braids of C , see [9, Section
3.1].
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It is shown in [9, Section 6] that if C ′ is a quasi-embedded GFL without trivial
cylinders, and if (φ, J) is deg(C ′)-regular, then

wτ (C
′) ≤ µτ (α, β) − µ0

τ (C
′). (14)

Equations (5), (11), (13), and (14) imply that

Ivir(C ′) ≤ I(C ′)− 2δ(C ′). (15)

It is also shown in [9, Section 7] that if C ′ is a quasi-embedded GFL without
trivial cylinders and if T is a union of trivial cylinders, then

I(C ′) ≤ I(C ′ ∪ T )− 2#(C ′ ∩ T ). (16)

Here ‘#’ denotes the algebraic intersection number. Moreover, by intersection
positivity [15],

#(C ′ ∩ T ) ≥ 0

with equality if and only if C ′ ∩ T = ∅.

Observe that the inequalities (12), (15), and (16) imply the index inequality
(9). The latter has the following generalization for multiply covered GFL’s.
This is proved in [9], but the proof below is much simpler.

Proposition 2.1 Let C1, . . . , Ck be distinct, connected, quasi-embedded
GFL’s, and let d1, . . . , dk be positive integers. Suppose that (φ, J) is d-regular,
where d =

∑
i di deg(Ci). Then

k∑

i=1

diI
vir(Ci) ≤ I

(
k∑

i=1

di[Ci]

)
− 2∆, (17)

where

∆ =

k∑

i=1

d2
i δ(Ci) +

∑

i<j

didj#(Ci ∩ Cj).

Note that by intersection positivity, ∆ ≥ 0, with equality if and only if the Ci ’s
are embedded and disjoint.

Proof Suppose first that none of the Ci ’s is a trivial cylinder, so that R acts
freely on the Ci ’s. Let Ĉi be a union of di distinct translates of Ci , and let
C ′ =

⋃
i Ĉi . Then C ′ is a quasi-embedded GFL. Now the three terms in the

inequality (15) are precisely the three terms in (17).

If some of the Ci ’s are trivial cylinders, then use the inequality (16), where C ′

is defined as above for the nontrivial components.
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Corollary 2.2 Let C be a GFL with I(C) = 1. Assume that J is generic and
(φ, J) is deg(C)-regular. Then C has one nontrivial embedded component C ′ ;
all other components are covers of trivial cylinders which do not intersect C ′ .

That is, C is a flow line, except that trivial cylinder components may be non-
trivially covered instead of just repeated.

Proof We know that C is a union of di -fold covers of distinct, connected,
quasi-embedded GFL’s Ci . Since J is generic, Ivir(Ci) ≥ 0, with equality if
and only if Ci is trivial. So by the inequality (17), there is only one nontrivial
Ci , and this has di = 1 and does not intersect the trivial components.

A (k times) broken GFL is a sequence (C0, . . . , Ck) of nontrivial GFL’s such
that for each i = 1, . . . , k , the outgoing ends of Ci are identified with the
incoming ends of Ci−1 , such that two ends that are identified are at the same
periodic orbit and with the same multiplicity. The broken GFL (C0, . . . , Ck)
is connected if the graph with one vertex for each component of each Ci , and
an edge between two vertices when the corresponding components have ends
identified, is connected. A component of the broken GFL (C0, . . . , Ck) is a
maximal connected broken GFL (C ′

0, . . . , C
′
k) such that each C ′

i is a union of
components of Ci . By Gromov compactness as in [9, Lem. 9.8], any sequence
of nontrivial GFL’s of the same topological type with bounded integral of ω
has a subsequence which converges in an appropriate sense to a broken GFL.

3 PFH of a twist on a cylinder

Fix an integer P and a positive integer Q. Fix real numbers X1 ≤ X2 , and
assume that neither is a rational number with denominator ≤ Q. Let φ0 be
the cylinder twist from equation (2). We identify the mapping torus

Yφ0
≃ S1 × [X1,X2]× S

1,
[t, (x, y)] 7→ (t, x, y − xt).

(18)

We now study the periodic Floer homology HP∗(φ, h), where φ is a perturba-
tion of φ0 described below, and the homology class

h := Q[S1]× [pt]× [pt]− P [pt]× [pt]× [S1]. (19)

Note that (φ, h) is automatically monotone, with λ = 0 in equation (8). We
denote this periodic Floer homology by HP∗(X1,X2;P,Q).
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3.1 Introduction and statement of results

The perturbation We always write rational numbers in reduced form p/q
with gcd(p, q) = 1 and q > 0. For each rational number p/q ∈ [X1,X2], the
map φ0 has a circle of period q periodic orbits at x = p/q . As is familiar from
KAM theory, we can perform a Hamiltonian perturbation of φ0 away from the
boundary of [X1,X2]×S

1 to obtain a map φ so that whenever q ≤ Q, the above
circle splits into two periodic orbits ep/q and hp/q . The orbit ep/q is elliptic,
and the orbit hp/q is hyperbolic with positive eigenvalues. For p/q = 0/1 for
example, φ0 and φ are the time-one maps of flows looking like this:

.
h

e

x

y
0/1

0/1

Throughout Section 3, we assume unless otherwise stated that:

• φ as above is chosen so that the ep/q ’s and hp/q ’s are the only irreducible
periodic orbits of period ≤ Q; these are nondegenerate; and the linearized
return map of the elliptic orbit ep/q has eigenvalues e±2πiθ with 0 < θ <
1/Q.

• φ agrees with φ0 whenever x is not within distance ε of a rational number
of denominator ≤ Q, where ε is sufficiently small with respect to Q.

• J is a generic admissible almost complex structure on R× Yφ , such that
the pair (φ, J) satisfies the local linearity condition in Section 2 with
d = Q.

(In this example the last two conditions in the definition of d-regular are not
needed to define PFH: bubbling of closed pseudoholomorphic curves in R× Y
cannot happen here because Ω is zero on H2(R × Yφ), and flow lines cannot
approach the boundary by Lemma 3.11 below. In some arguments we will also
drop the local linearity assumption.)

We denote the corresponding chain complex by CP∗(X1,X2;P,Q). We will see
below that the homology of this chain complex, as well as most of the differential
on it, does not depend on the choice of φ and J as above.

The generators By (19), our chain complex is generated by admissible prod-
ucts of ep/q ’s and hp/q ’s with total numerator P and total denominator Q.
Recall that “admissible” means that no hp/q factor may be repeated.
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To each generator α we associate a left-turning convex polygonal path P(α) in
the plane as follows. Write α = γ1 · · · γk where γi = epi/qi

or γi = hpi/qi
, and∑k

i=1(pi, qi) = (P,Q). We order the factors so that pi/qi ≥ pj/qj for i < j .

For j = 0, . . . , k , let wj =
∑j

i=0(pi, qi), and define P(α) to be the convex path
in the plane consisting of straight line segments between the points wj−1 and
wj for j = 1, . . . , k , oriented so that the origin is the initial endpoint.

The homology Suppose P/Q ∈ [X1,X2]. We can uniquely write (P,Q) =
v1 + v2 , where the vector vi is in the upper half plane and has slope X−1

i . Let
Z = Z(X1,X2;P,Q) ⊂ R

2 denote the parallelogram with vertices 0, v1 , v2 ,
and (P,Q). We define

E(X1,X2;P,Q) ∈ CP∗(X1,X2;P,Q)

to be the unique generator E such that E is a product of elliptic factors, and
the path P(E) traverses the right half of the boundary of the convex hull of the
set of lattice points in the parallelogram Z . For example, if −1/4 < X1 < −1/5
and 4/3 < X2 < 3/2, then

E (X1,X2; 4, 11) = e4/3e1e
2
0e−1/5,

as shown by the following picture:

(0,0)

(4,3)
(4,3)+(1,1)

(4,3)+(1,1)+2(0,1)

(4,3)+(1,1)+2(0,1)+(−1,5) = (4,11)

p

q
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Theorem 3.1 (PFH of a twist on a cylinder)

HP∗(X1,X2;P,Q) ≃

{
H∗(S

1; Z/2) if P/Q ∈ [X1,X2],
0 if P/Q /∈ [X1,X2].

If P/Q ∈ [X1,X2], then HP∗(X1,X2;P,Q) is generated by:

• E(X1,X2;P,Q), and

• any generator obtained from E(X1,X2;P,Q) by replacing one of the ep/q

factors by hp/q ; all such generators are all homologous.

Combinatorial formulas Theorem 3.1 is proved in Section 3.9. First, in
Section 3.2–Section 3.8, we derive combinatorial formulas for the relative index
and most of the differential δ in the chain complex CP∗(X1,X2;P,Q). To state
these, let α and β be generators. We will see in Section 3.2 that the relative
index I(α, β;Z) ∈ Z does not depend on Z , so we write it as I(α, β), thus
obtaining a relative Z-grading on CP∗(X1,X2;P,Q). We then have:

Proposition 3.2 (Index formula) If there are a elliptic factors in α and b
elliptic factors in β , then

I(α, β) = b− a+ 2

∫

P(β)−P(α)
p dq.

Remark 3.3 Here
∫
P(β)−P(α) p dq denotes the signed area enclosed by the

paths −P(α) and P(β). Pick’s theorem confirms that this is a half-integer. If
P(α) never crosses to the right of P(β) and if α and β contain no hyperbolic
factors, then I(α, β) equals twice the number of lattice points in the region
enclosed by P(α) and P(β), not including the lattice points in P(α).

If P1 and P2 are paths in the (p, q)-plane, let P1P2 denote the concatenation
of P1 with the appropriate translate of P2 .

Definition 3.4 We say that α is obtained from β by rounding a corner if
there exist orbit sets γ1, γ2, α

′, β′ such that:

(a) α = γ1α
′γ2 and β = γ1β

′γ2 , where P(α) = P(γ1)P(α′)P(γ2) and P(β) =
P(γ1)P(β′)P(γ2).

(b) The path P(α′) does not cross to the right of P(β′), and only intersects
it at the two endpoints.

(c) There are no lattice points in between P(α′) and P(β′).
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(d) β′ has two factors; either β′ has one hyperbolic factor and α′ has none,
or β′ has two hyperbolic factors and α′ has one.

We say that α is obtained from β by double rounding if (a), (b), and (c) above
hold, together with:

(d′ ) β′ has three factors, all hyperbolic, and α′ has no hyperbolic factors.

Theorem 3.5 (The differential) Let α, β be generators of CP∗(X1,X2;P,Q).
Then for any φ and J as in Section 3.1:

(a) If 〈δα, β〉 = 1, then α is obtained from β by rounding a corner or by
double rounding.

(b) If α is obtained from β by rounding a corner, then 〈δα, β〉 = 1.

Here 〈δα, β〉 ∈ Z/2 denotes the coefficient of β in δα.

Remark 3.6 If we drop the local linearity requirement (in which case more
analytic work would be needed to show that PFH is well-defined) and consider
(φ, J) close in an appropriate norm to (φ0, J0), where J0 is a certain S1 -
invariant almost complex structure on Yφ0

, then we can arrange that there are
no flow lines from α to β when α is obtained from β by double rounding, see
Appendix A. In any case, we will see in Section 3.9 that differential coefficients
involving double rounding have no effect on the homology.

3.2 Calculating the relative index

Let α and β be generators of CP∗(X1,X2;P,Q) and let Z ∈ H2(Y ;α, β). We
now prove Proposition 3.2, computing the relative index I(α, β;Z).

The bundle V ≃ T ([X1,X2]×S
1) over Yφ ≃ S

1× [X1,X2]×S
1 has a canonical

trivialization up to homotopy, giving rise to a natural trivialization τ over each
periodic orbit, which we use for the rest of Section 3.2.

Because the trivialization τ comes from a global trivialization of V ,

cτ (Z) = 0. (20)

We now compute the Conley-Zehnder indices as in [9, Section 2.3]. The elliptic
orbit ep/q has slightly negative monodromy angle θ with respect to τ , so

µτ (e
k
p/q) = 2⌊k · θ⌋+ 1 = −1 (21)
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for kq ≤ Q. The hyperbolic orbit hp/q has positive eigenvalues, and the
eigenspaces do not rotate with respect to τ , so

µτ (hp/q) = 0. (22)

We next observe that Qτ (Z) depends only on α and β , by [9, Lem. 2.5], since
H2(Y ) is generated by a (y, t)-torus, which has algebraic intersection number
zero with every periodic orbit. So denote the integer Qτ (Z) by Qτ (α, β); by
(20), we can likewise write I(α, β) := I(α, β;Z).

Lemma 3.7 If α and β are generators of CP∗(X1,X2;P,Q) then

Qτ (α, β) = 2

∫

P(β)−P(α)
p dq. (23)

Proof Write α = γ1 · · · γk and β = γ′1 · · · γ
′
l , where γi = epi/qi

or γi = hpi/qi
,

and γ′i = ep′i/q′i
or γ′i = hp′i/q′i

. We order the factors so that pi/qi ≥ pj/qj and
p′i/q

′
i ≥ p

′
j/q

′
j for i < j . We claim that

Qτ (α, β) = −
∑

i<j

det

(
pi pj

qi qj

)
+
∑

i<j

det

(
p′i p′j
q′i q′j

)
. (24)

By [9, Eq. (13)], if S ⊂ [0, 1] × Y is an embedded (except at the boundary)
representative of a relative homology class Z ∈ H2(Y ;α, β), then

Qτ (α, β) = c1(N, τ)− wτ (S), (25)

where N denotes the normal bundle to S and c1(N, τ) its relative first Chern
class. To prove (24), we apply (25) to the following surface S . We regard S
as a movie of curves in Y parametrized by s ∈ [0, 1]. For s close to 1, the
slice S ∩ ({s} × Y ) consists of one circle in the x = p/q torus for each factor
γp/q in α, parallel to the periodic orbits ep/q and hp/q . As s decreases to
2/3, we translate all of the circles in the x direction into a single (y, t)-torus.
Around s = 2/3, we perform “negative surgeries” so that at s = 1/2, we have
an embedded union of circles in a single (y, t)-torus. Near a negative surgery,
the s > 2/3 and s < 2/3 slices look like the left and right sides of the following
picture:

x

y

t
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For s between 1/2 and 0 we perform an opposite process, doing “positive
surgeries” at s = 1/3, thereby obtaining, for s close to zero, one circle in the
x = p/q torus for each factor γp/q in β . We can assume that on the complement
of the surgery points, our circles never point in the y direction.

By construction, wτ (S) = 0. To compute c1(N, τ), let ψ := πN∂y ∈ Γ(N).
Since ψ has winding number zero with respect to τ on ∂S , the integer c1(N, τ)
equals the algebraic count of zeroes of ψ . The section ψ vanishes only at
the surgery points. The number of negative surgeries equals the first sum of
determinants (without the minus sign) on the right side of equation (24), and
the number of positive surgeries equals the second sum. It is an exercise to
check that ψ has −1 zero at each negative surgery point and +1 zero at each
positive surgery point. This proves (24).

To deduce (23), observe that the right hand sides of (23) and (24) change by
the same amount if we replace two consecutive edges in P(α) or P(β) by their
sum. This inductively reduces to the trivial case where P(α) and P(β) are
both straight lines.

Proof of Proposition 3.2 This follows immediately from equations (20),
(21), (22) and (23).

3.3 Some constraints on index 1 flow lines

Lemma 3.8 (Complexity) Let α, β ∈ CP∗(X1,X2;P,Q) be generators with
I(α, β) = 1, let C ∈M(α, β), and C ′ := C \ {trivial cylinders}. Then:

(a) C ′ is connected and has genus zero.

(b) If e−(C ′) denotes the number of incoming elliptic ends of C ′ , and h(C ′)
denotes the number of hyperbolic ends of C ′ , then

2e−(C ′) + h(C ′) = 3.

(c) Any incoming elliptic end of C ′ has multiplicity one. By contrast, C ′ has
only one outgoing end at any given elliptic orbit.

Proof We have 1 ≤ dim(MC′) ≤ Ivir(C ′) ≤ I(C ′) ≤ I(C) = 1, since R acts
nontrivially on MC′ by translation in R × Y , and using the inequalities (12),
(15) and (16). Then C ′ is connected, since otherwise dim(MC′) ≥ 2.

Let e+(C ′) denote the number of outgoing elliptic ends of C ′ . By (11), (20),
(21), and (22),

Ivir(C ′) = −χ(C ′)− e+(C ′) + e−(C ′).
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Putting in Ivir = 1 and χ = 2− 2g − e− − e+ − h, we obtain

2g(C ′) + 2e−(C ′) + h(C ′) = 3. (26)

If g(C ′) > 0, then (26) implies that C ′ ∈ M(α′, β′) where α′ is a product of
elliptic factors and β′ = hp/q for some p/q . Then by Proposition 3.2, I(α′, β′) <
0, because the area term is ≤ 0 by convexity. This contradicts I(C ′) = 1.

The above proves parts (a) and (b) of the lemma. Part (c) follows from the
discussion of incoming and outgoing partitions in Section 2, see equation (10).

Lemma 3.9 (Trivial cylinders) Let αγ, βγ ∈ CP∗(X1,X2;P,Q) be genera-
tors, where α and β have no periodic orbits in common. Assume I(α, β) =
I(αγ, βγ) = 1. Then attaching trivial cylinders over γ gives a bijection

M(α, β) ≃M(αγ, βγ).

Proof By (16) and intersection positivity, if I(C ′) = I(C ′∪T ) then C ′∩T = ∅.
So since I(α, β) = I(αγ, βγ), it follows that attaching trivial cylinders gives a
well defined map M(α, β)→M(αγ, βγ), and this is clearly injective.

Now this map must be surjective. For suppose there exists C ∈ M(αγ, βγ)
which does not contain trivial cylinders over all of γ . Let C ′ denote the non-
trivial component of C . Then C ′ has both an incoming end and an outgoing
end at some orbit ρ in γ . If ρ is hyperbolic, then ρ is not in the generators
α and β (since αγ and βγ are admissible orbit sets). If ρ is elliptic, then by
Lemma 3.8(c), C ′ has an incoming end of multiplicity one there. Either way,
ends of C ′ at γ alone contribute at least 2 to the left hand side of equation (26).
Hence Lemma 3.8(b) implies that β = hp/q for some p/q , and α is a product of
elliptic factors. By Proposition 3.2, I(α, β) < 0, which is a contradiction.

Remark 3.10 The analogue of Lemma 3.9 for a single Dehn twist on a torus
is false. We will see in Section 4.4 that in the notation of that section, there
exists C ∈M(e2, eh;Z) with no trivial cylinders even though

I(e2, eh;Z) = I(e, h;Z) = 1.

3.4 The local energy inequality

The general case Let φ be a general symplectomorphism of Σ. Suppose
ξ ⊂ Σ is an invariant circle, i.e. φ(ξ) = ξ , such that φ|ξ is smoothly conjugate
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to a rotation. Let T := Yφ|ξ and let N ⊂ Σ be a tubular neighborhood of
ξ . We choose local coordinates x ∈ (−ǫ, ǫ) and y, t ∈ R/Z on Yφ|N such that
T = {x = 0}, the mapping torus flow at x = 0 is R = ∂t − θ∂y with θ ∈ R

fixed, and ω(∂x, ∂y) > 0. Let J be an admissible almost complex structure on
R× Yφ .

Let C be a generalized flow line transverse to R×T . Orient C∩(R×T ) so that
if p ∈ C∩(R×T ) and {v,w} is an oriented basis of TpC with v ∈ Tp(C∩(R×T ))
positively oriented, then w has negative ∂x component.

Lemma 3.11 The homology class of the slice

(p, q) := [C ∩ (R× T )] ∈ H1(S
1
y × S

1
t )

satisfies p+ θq ≥ 0, with equality iff C ∩ (R× T ) = ∅.

Proof Each component of C ∩ (R× T ) can be described by an oriented para-
metrized curve γ(τ). Let a(y, t) denote the component of ∂x in J∂y at x = 0.
Since J is Ω-tame, a(y, t) < 0. At x = 0, since J(∂t − θ∂y) = −∂s , the com-
ponent of ∂x in J∂s is zero, and the component of ∂x in J∂t is θa(y, t). Since
C is J -holomorphic, J(γ′(τ)) ∈ TC , and by transversality and our sign con-
ventions, this has negative ∂x component. That is, if γ(τ) = (s(τ), y(τ), t(τ)),
then

dy

dτ
+ θ

dt

dτ
> 0.

This inequality can also be understood as intersection positivity of C with the
J -holomorphic foliation of R×T by R cross the mapping torus flow. Integrating
this inequality over τ , we conclude that the homology class (p′, q′) of γ satisfies
p′ + θq′ > 0.

The cylinder twist case For a Dehn twist on a cylinder, the local energy
inequality of Lemma 3.11 has the following interpretation.

Proposition 3.12 Let α and β be generators of CP∗(X1,X2;P,Q). Suppose
that the path P(α) crosses to the right of P(β). Then for any φ as in Section
3.1 and any admissible J , there are no flow lines from α to β .

Proof Suppose there exist flow lines from α to β for arbitrarily small values
of the constant ε in Section 3.1. Let pi, qi, p

′
j , q

′
j be defined as in the proof of

Lemma 3.7. We first claim that for each x0 ∈ R, if ε is sufficiently small then

0 ≤
∑

pi/qi>x0

(qix0 − pi)−
∑

p′j/q′j>x0

(q′jx0 − p
′
j). (27)
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To prove (27), by continuity we may assume that x0 is not a rational number
of denominator ≤ Q. We can then assume that ε is sufficiently small that φ
agrees with φ0 for x near x0 . By continuity again, we may assume that C
intersects the locus {x = x0} transversely. Then (27) follows from Lemma 3.11
since

[C ∩ {x = x0}] =
∑

pi/qi>x0

(−pi, qi)−
∑

p′j/q′j>x0

(−p′j , q
′
j) ∈ H1(S

1
y × S

1
t ). (28)

Now suppose (a, b) and (c, d) are two intersections of the paths P(α) and
P(β), between which P(α) is to the right of P(β). Since both paths move in
the positive q direction we may assume that b < d. Let (p, q) and (p′, q′) be
points on P(α) and P(β) respectively between (a, b) and (c, d) which are as
far as possible from the line through (a, b) and (c, d). Then (p, q) is farther
from this line than (p′, q′), so

det

(
p− p′ c− a
q − q′ d− b

)
> 0. (29)

If we let x0 := (c− a)/(d − b) then by equation (27) we have

0 ≤ (qx0 − p)− (q′x0 − p
′).

This inequality contradicts b < d and (29).

Lemma 3.13 If [X1,X2] ⊂ [X ′
1,X

′
2], then for compatible choices of J and φ

as in Section 3.1, the differential δ commutes with the inclusion

CP∗(X1,X2;P,Q) −→ CP∗(X
′
1,X

′
2;P,Q).

Proof If α, β ∈ CP∗(X1,X2;P,Q), then any flow line from α to β in S1 ×
[X ′

1,X
′
2]× S

1 is supported in S1 × [X1,X2]× S
1 , by Lemma 3.11.

3.5 Vanishing of some differential coefficients

Lemma 3.14 If λq ≤ Q, then for any J and φ as in Section 3.1,
〈
δ
(
eλ−1
p/q hp/q

)
, eλp/q

〉
= 0.

Proof The trivial cylinder lemma 3.9 shows that
〈
δ
(
eλ−1
p/q hp/q

)
, eλp/q

〉
=
〈
δhp/q, ep/q

〉
.
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By Lemma 3.8(a), any flow line from hp/q to ep/q is a cylinder. Now for the un-
perturbed map φ0 with an almost complex structure such as J0 in Appendix A,
any pseudoholomorphic cylinder with incoming and outgoing ends at x = p/q
is trivial, as in [9, Prop. 9.1]. Then a standard argument in Morse-Bott theory
shows that for (φ′, J ′) close to (φ0, J0), there are two cylinders from hp/q to
ep/q . These cylinders are both embedded by the adjunction formula (13), be-
cause all terms in (13) other than 2δ(C) are automatically zero. As we deform
(φ′, J ′) to (φ, J), no broken GFL’s from hp/q to ep/q appear during the defor-
mation by Lemma 3.11. It follows by Gromov compactness as in [9, Lem. 9.8]
that the mod 2 count of such cylinders remains zero.

Proof of Theorem 3.5(a) Suppose 〈δα, β〉 6= 0.

Without loss of generality, P(α) and P(β) have no initial edges in common.
To see this, suppose that α and β both contain factors of ep/q or hp/q but
do not contain factors ep′/q′ or hp′/q′ with p′/q′ > p/q . We claim that α and
β have a common factor of ep/q or hp/q , so that we can remove it from both
by the trivial cylinder lemma 3.9. Otherwise, either: (1) α contains an hp/q

factor and β contains an eλp/q factor, or (2) α contains an eλp/q factor and β

contains an hp/q factor. In case (1), we must have λ = 1 by Lemma 3.8(b). By
Lemma 3.11, if C ∈M(α, β), then C ∩ {x = p/q − ε} = ∅, so

M(α, β) =M(α/hp/q , β/ep/q)×M(hp/q, ep/q),

so 〈δα, β〉 = 0 by Lemma 3.14. In case (2), we have λ = 1 by Proposition 3.12.
Then as in case (1),

M(α, β) =M(α/ep/q , β/hp/q)×M(ep/q, hp/q).

But M(ep/q, hp/q) = ∅, since I(ep/q, hp/q) = −1, so 〈δα, β〉 = 0.

Likewise, WLOG the paths P(α) and P(β) have no final edges in common.

By Proposition 3.12, P(α) does not cross to the right of P(β). Moreover,
the paths P(α) and P(β) do not intersect except at their endpoints. For if
the paths intersect elsewhere, then the intersections must be lattice points or
segments bounded by lattice points. These intersections cut P(β) into at least
two pieces. By convexity, each piece has at least two edges, and the initial and
final edges of each piece do not have parallel edges in P(α). It follows that,
aside from possible trivial cylinders, flow lines from α to β have at least four
incoming ends, contradicting Lemma 3.8(b).

Thus conditions (a) and (b) in Definition 3.4 hold. Since I(α, β) = 1, conditions
(c) and either (d) or (d ′) in Definition 3.4 follow from the index formula of
Proposition 3.2 and Remark 3.3.

Algebraic & Geometric Topology, Volume 5 (2005)



322 Michael Hutchings and Michael Sullivan

3.6 Invariance of rounding coefficients

Suppose that α is obtained from β by rounding a corner, and that α and β
have no periodic orbits in common. By Lemma 3.8, the flow lines C ∈M(α, β)
counted by the differential coefficient 〈δα, β〉 satisfy the following conditions:

(i) C is connected and has genus zero.

(ii) For each p/q , the flow line C has at most one outgoing end of any mul-
tiplicity at ep/q .

Now suppose that φ is as in Section 3.1 and that J is admissible and generic,
but not necessarily local linear. In this case we define 〈δα, β〉 to be the mod
2 count of flow lines C ∈ M(α, β)/R satisfying conditions (i) and (ii) above.
Note that such C are isolated by the index calculation in Section 3.3.

Lemma 3.15 Let α and β be generators of C∗(X1,X2;P
′, Q′) with no pe-

riodic orbits in common, where α is obtained from β by rounding a corner.
Suppose φ is as in Section 3.1 with Q ≥ Q′ and J is admissible and generic.
Then:

(a) 〈δα, β〉 as above is well defined, i.e. the set of C ∈M(α, β)/R satisfying
(i) and (ii) is finite.

(b) 〈δα, β〉 does not depend on φ, J , or Q as above.

Proof (a) By Gromov compactness as in [9, Lem. 9.8], it is enough to show
that there does not exist a k -times broken GFL from α to β with k ≥ 1
satisfying conditions (i) and (ii).

Suppose that C = (C0, . . . , Ck) is such a broken GFL. Let Ci,j denote the
components of Ci . We have Ivir(Ci,j) = −χ(Ci,j) + µ0

τ (Ci,j), which together
with the genus zero condition from (i) and equations (21) and (22) implies that

2e−(Ci,j) + h(Ci,j) = 2 + Ivir(Ci,j). (30)

Also
∑

i,j I
vir(Ci,j) = 1.

Each Ci,j must satisfy Ivir(Ci,j) ≥ 0. Otherwise (30) implies that Ci,j has only
one incoming end at some hp/q , and all outgoing ends elliptic. In particular
the quasi-embedded curve underlying Ci,j lives in a moduli space of expected
dimension ≤ −1 (even before modding out by the R action), which is impossible
for generic J (or even during a generic one-parameter deformation).

Therefore one of the Ci,j ’s has Ivir = 1, while all other Ci,j ’s have Ivir = 0.
Also, by Proposition 3.12, all but one of the Ci,j ’s goes between orbit sets with
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the same polygonal path, and hence by Lemma 3.11 maps to a neighborhood
of θ = p/q for some p/q depending on the Ci,j . Let Ĉ denote the remaining
Ci,j ; this has two incoming ends corresponding to the edges of the corner being
rounded.

We claim that Ivir(Ĉ) = 0. Suppose not, so that all Ci,j 6= Ĉ have Ivir = 0.

Then Ĉ = Ck . (If Ĉ = Cl with l < k , then each Ci,j with i > l is a cylinder.
By [9, Prop. 9.1], any cylinder with the same ends is trivial. Thus one of these
cylinders must have distinct ends and hence Ivir 6= 0.) Since C has genus
zero, downward induction on i shows that each Ci,j with i < k has only one
incoming end. It follows by equation (30) that each nontrivial Ci,j with i < k
has more than one outgoing end. Since k > 1, this leads to a contradiction of
condition (ii).

So Ivir(Ĉ) = 0, and since Ĉ has incoming ends of multiplicity one, Ĉ is not
multiply covered and hence does not exist for generic J .

(b) Consider a generic one-parameter deformation of φ and J . By Gromov
compactness as in [9, Lem. 9.8], 〈δα, β〉 can change during the deformation only
at those times when there exists a broken GFL C from α to β satisfying (i) and
(ii). The classification of such broken GFL’s from part (a) is still valid, except
that now Ĉ as above may exist at isolated times in a generic one-parameter
family. By equation (30), the two incoming ends of Ĉ are hyperbolic, while
all incoming ends of Ĉ are elliptic. We claim that k = 1, that Ĉ = C0 or
Ĉ = C1 , and that all components of C1 or C0 respectively are trivial except
for one cylinder whose incoming end is at ep/q and whose outgoing end is at
hp/q for some p/q . This follows from (i), (ii), and (30) using induction over the
components of C . As in Lemma 3.14, there are two cancelling cylinders from
ep/q to hp/q . Therefore standard gluing arguments as in [6, 14, 23] show that
the mod 2 count 〈δα, β〉 does not change in this bifurcation.

Finally, 〈δα, β〉 is independent of Q ≥ Q′ , because if φ satisfies the conditions
in Section 3.1 for a given value of Q, then it also does for any smaller value of
Q.

3.7 SL2Z symmetry

We now observe a useful symmetry of our chain complex. Let A =
�

a b

c d

�
∈

SL2Z. Define IA := {x ∈ R | cx + d > 0}. If (p, q) is in the upper half plane
and p/q ∈ IA , then A(p, q) is also in the upper half plane. So if [X1,X2] ⊂ IA ,
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then there is a well-defined linear map

ΨA : CP∗(X1,X2;P,Q) −→ CP∗

(
aX1 + b

cX1 + d
,
aX2 + b

cX2 + d
; aP + bQ, cP + dQ

)

that replaces every occurrence of ep/q with eap+bq
cp+dq

and hp/q with hap+bq
cp+dq

. If α

is obtained from β by rounding a corner, then ΨA(α) is obtained from ΨA(β)
by rounding a corner.

Lemma 3.16 Under the assumptions of Lemma 3.15, let A ∈ SL2Z, suppose
[X1,X2] ⊂ IA , and suppose cP ′ + dQ′ ≤ Q. Then

〈δΨA(α),ΨA(β)〉 = 〈δα, β〉.

Proof Using the coordinates (18), we define an orientation-preserving diffeo-
morphism of mapping tori

ψA : S1 × [X1,X2]× S
1 −→ S1 × [cX1 + d, cX2 + d]× S1,

(t, x, y) 7−→

(
−cy + dt,

ax+ b

cx+ d
, ay − bt

)
.

Then ψA sends the mapping torus flow R = ∂t − x∂y for φ0 to a positive
multiple of itself, namely

(ψA)∗R =
R

a− cx
.

In particular, ψA sends the circle of periodic orbits at x = p/q to the circle
of periodic orbits at x = (ap + bq)/(cp + dq). Thus ψA pulls back a pair
(φ′, J ′) for X1,X2, Q from an admissible pair (φ, J) for (aX1 + b)/(cX1 + d),
(aX2 + b)/(cX2 + d), and cP + dQ. But J ′ is not admissible, because J ′∂s is
only a positive multiple of R, and J ′ is Ψ∗

AΩ-tame but not necessarily Ω-tame.

In the coordinates (18) we have

Ω = ds ∧ dt+ dx ∧ dy + xdx ∧ dt,

from which we compute that

Ω ∧Ψ∗
AΩ =

(cx+ d)4 + 1

(cx+ d)3
ds ∧ dt ∧ dx ∧ dy > 0.

Therefore linear interpolation defines a path of symplectic forms from Ω to
Ψ∗

AΩ. Let J ′′ be an admissible almost complex structure for X1,X2, Q. With
respect to this path of symplectic forms, we can find a path of tame almost com-
plex structures from J ′′ to J ′ that are R-invariant and that send the Reeb flow
to a positive multiple of itself. Then a compactness argument as in Lemma 3.15
shows that the differential coefficient 〈δα, β〉 stays well defined and does not
change during the deformation, and hence equals 〈δΨA(α),ΨA(β)〉 .
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3.8 Nonvanishing of some differential coefficients

Lemma 3.17 Let Q′ ≤ Q, and let α and β be generators of C∗(X1,X2;P
′, Q′)

with no periodic orbits in common, where α is obtained from β by rounding a
corner. Then for any φ and J as in Section 3.1, we have 〈δα, β〉 = 1.

Proof More explicitly, we can write β = ec/dha/b or β = hc/dea/b or β =
hc/dha/b , where (a, b), (c, d) are lattice points in the upper half plane with
gcd(a, b) = gcd(c, d) = 1 and a/b < c/d and b+ d = Q′ . Let

E := E
(a
b

+ ǫ,
c

d
− ǫ; a+ c, b+ d

)

where 0 < ǫ < 1/Q2 , and let H be the sum of all generators obtained by
replacing an ep/q factor in E with hp/q . In the first two cases for β we have
α = E , while in the third case α is a summand of H .

To simplify notation, let δ∗ be the dual differential defined by

〈α, δ∗β〉 := 〈δα, β〉.

Then to prove the lemma it is enough to show that

δ∗(ec/dha/b) = δ∗(hc/dea/b) = E, (31)

δ∗(hc/dha/b) = H. (32)

We first observe that there can be no other terms in δ∗(ec/dha/b), δ
∗(hc/dea/b),

and δ∗(hc/dha/b) by Theorem 3.5(a). Now write

E = eλ1

p1/q1
· · · eλk

pk/qk

with pi/qi > pj/qj for i < j . We prove equations (31) and (32) in three steps.

Step 1 Suppose k = 1. Then we show that (31) holds, and if also λ1 = 1, or
equivalently bc− ad = 1, then (32) holds.

To do so, we reduce to the paper by Taubes [25] which studies pseudoholomor-
phic thrice-punctured spheres on R × S1 × S2 for a certain almost complex
structure. By an appropriate identification of [X1,X2] × S

1 with a subset of
S2 contained between two latitude lines, we deduce from [25, Thm. A.2] that
there is an almost complex structure JT on R× Yφ0

≃ R× S1 × [X1,X2]× S
1

such that:

(i) JT is R× S1 × S1 invariant.

(ii) If s denotes the R coordinate, then JT sends ∂s to a positive multiple of
the mapping torus flow R.
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(iii) JT is tamed by Ω.

(iv) The moduli space MT of JT -holomorphic thrice-punctured spheres with
an outgoing end at x = (a+c)/(b+d) and with incoming ends at x = a/b
and x = c/d consists of a single orbit of the R× S1 × S1 action.

Let γp/q denote the circle of periodic orbits of φ0 at x = p/q . Let

ξ :MT /R −→ γp1/q1
× γc/d × γa/b ≃ (S1)3

denote the “endpoint map” sending a flow line to the periodic orbits at its
ends. The S1 actions on ξ(MT /R) by rotation in the −t and y directions
have weights (p1, c, a) and (q1, d, b) respectively. It follows by (iv) that

±[ξ(MT /R)] = (dp1−cq1)[γp1/q1
γc/d]+(bp1−aq1)[γp1/q1

γa/b]+(bc−ad)[γc/dγa/b]

in H2(γp1/q1
× γc/d × γa/b). Since the triangle with vertices (0, 0), (c, d), and

(a+ c, b + d) contains no lattice points other than the vertices and the λ1 − 1
lattice points on the edge in between (0, 0) and (a+ c, b+ d), we get

±[ξ(MT /R)] = −[γp1/q1
γc/d] + [γp1/q1

γa/b] + λ1[γc/dγa/b]. (33)

We now perturb the setup so that γp/q splits into an elliptic orbit ep/q and a
hyperbolic orbit hp/q for (p, q) = (a, b), (c, d), (p1 , q1). By Morse-Bott theory,

cf. [1], it follows from (33) that there will be one flow line from eλ1

p1/q1
with one

outgoing end to each of hc/dea/b and ec/dha/b ; and when λ1 = 1, there will be
one flow line from h(a+c)/(b+d) to hc/dha/b . (These flow lines are constructed by
a gluing argument, using the fact that MT is cut out transversely by [25, 26].
There is only one flow line in each case by a compactness argument as in in
Appendix A. These flow lines are embedded by the adjunction formula (13).)

To complete the proof of Step 1, we can deform this perturbation of (φ0, JT )
to (φ, J) while preserving R-invariance and conditions (ii) and (iii) above. As
in Lemma 3.15, the mod 2 count of flow lines as above does not change during
the deformation.

Step 2 We now prove equation (31) when k > 1, assuming it holds whenever
the positive integer bc−ad is smaller, using Step 1 and (δ∗)2 = 0 (which follows
from δ2 = 0).

To set up the application of (δ∗)2 = 0, we need to introduce several vectors in
the (p, q)-plane. We begin with

(v,w) := λk(pk, qk)− (pk−1, qk−1).
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We claim that (v,w) points to the left of (c, d), that is cw − dv > 0, i.e.

det

(
c λkpk

d λkqk

)
> det

(
c pk−1

d qk−1

)
.

Otherwise the lattice point (c, d) + (a, b)− 2λk(pk, qk) would lie between P(E)
and P(ec/dea/b) or (if equality holds and k = 2 and λ1 = 1) on the line segment
between (0, 0) and (c, d), contradicting the definition of E or the assumption
gcd(c, d) = 1. Similarly, (v,w) points to the left of (a, b), as otherwise the
lattice point (c, d) + (a, b) − (v,w) would lie between P(E) and P(ec/dea/b)
or on the line segment between (c, d) and (c, d) + (a, b). Hence there exists
A ∈ SL2 Z sending (v,w) to the upper half plane while keeping (a, b) and
(c, d) in the upper half plane. So by Lemma 3.16 we may assume that w > 0.
(By Lemma 3.15, we may assume that Q is large enough that Lemma 3.16 is
applicable.)

Consider now the triangle with vertices (c, d), (c, d)+(a, b), and (c, d)+(a, b)−
(v,w). Choose a lattice point (f, g) in this triangle with minimal positive
distance to the line through (c, d) and (c, d) + (a, b). Define

(a′, b′) := (f, g)− (c, d),

(a′′, b′′) := (a, b)− (a′, b′),

(p′, q′) := λk(pk, qk)− (a′′, b′′).

The relevant vectors look something like this:

(a, b)

(a′, b′)

(a′′, b′′)

(f, g)

(v, w)

(c, d)

(p′, q′)

(pk−1, qk−1)

(pk−1, qk−1)λk(pk, qk)
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Note that (p′, q′) points to the left of or in the same direction as (pk−1, qk−1),
because the triangle with vertices (c, d), (c, d) + (a, b) − (v,w), and (c, d) +
(a, b)−λk(pk, qk) contains no lattice points other than the vertices, because the
same is true for the triangle with vertices (c, d), (c, d) + (a, b)− λk(pk, qk), and
(c, d) + (a, b)− λk(pk, qk)− (pk−1, qk−1), by definition of E .

Also (p′, q′) points to the right of (pk, qk), so q′ > 0.

The vector (a′, b′) points to the right of (a, b) and to the left of (c, d); in
particular b′ > 0.

The vector (a′′, b′′) points to the left of (a, b) and to the right of or in the same
direction as (v,w); hence b′′ > 0. Also, since (a, b) and (v,w) both point to
the left of (c, d), it follows that (a′′, b′′) does as well; hence

b′c− a′d < bc− ad. (34)

Now let E0 :=
∏k−1

i=1 e
λi

pi/qi
. Since there are no lattice points between the paths

P(E) and P(ec/dea′/b′ea′′/b′′), it follows that

E

(
a′

b′
+ ǫ,

c

d
− ǫ; a′ + c, b′ + d

)
= E0ep′/q′ ,

E

(
a′′

b′′
+ ǫ,

a′

b′
− ǫ; a, b

)
= ea/b,

E

(
a′′

b′′
+ ǫ,

p′

q′
− ǫ; a′′ + p′, b′′ + q′

)
= eλk

pk/qk
.

By Lemma 3.13, we may assume that X1 is small enough so that a′′/b′′ ∈
[X1,X2]. Then by inductive hypothesis using (34), and Step 1, we deduce

δ∗(ec/dha′/b′) = E0ep′/q′ , (35)

δ∗(ha′/b′ha′′/b′′) = ha/b, (36)

δ∗(ep′/q′ha′′/b′′) = eλk

pk/qk
. (37)

By equations (35) and (36) and the trivial cylinder lemma 3.9,

δ∗(ec/dha′/b′ha′′/b′′) = E0ep′/q′ha′′/b′′ + ec/dha/b. (38)

No other terms are possible on the right hand side of (38) by Theorem 3.5(a).

It follows from (37) and the trivial cylinder lemma 3.9 that
〈
E, δ∗(E0ep′/q′ha′′/b′′)

〉
= 1. (39)

Since (δ∗)2 = 0, equations (38) and (39) imply that
〈
E, δ∗(ec/dha/b)

〉
= 1,
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so δ∗(ec/dha/b) = E .

By a symmetric argument, δ∗(hc/dea/b) = E .

Step 3 We now prove (32). Suppose first that k = 1. By Step 1 we may
assume that λ1 > 1. By (31), Theorem 3.5(a) and the trivial cylinder lemma 3.9
we have

δ∗(hc/dea/bha/b) = eλ1

p1/q1
ha/b + xeλ1−1

p1/q1
hp1/q1

ea/b, (40)

where x is an unknown coefficient, and

δ∗
(
eλ1

p1/q1
ha/b

)
= δ∗

(
eλ1−1
p1/q1

hp1/q1
ea/b

)
= eλ1−1

p1/q1
e(a+p1)/(b+q1).

By (δ∗)2 = 0 we get x = 1, and by the trivial cylinder lemma 3.9 and Theo-
rem 3.5(a) we get δ∗(hc/dha/b) = eλ1−1

p1/q1
hp1/q1

, so (32) holds.

Strictly speaking, equation (40) above makes sense only if Q is sufficiently
large, e.g. if Q ≥ 2Q′ . But we can assume this without loss of generality by
Lemma 3.15.

If k > 1, we obtain (32) similarly to Step 2, using (δ∗)2(hc/dha′/b′ha′′/b′′) = 0
and induction on bc− ad.

Remark 3.18 If we knew the expected isotopy invariance of PFH, cf. Sec-
tion 2, then we could give a conceptually simpler proof of steps 1 and 2 above,
without using [25], by considering a Dehn twist on a disc. There we can easily
calculate the PFH using isotopy invariance, and together with a spectral se-
quence similar to the one in Section 3.9, this gives sufficient information about
the differential.

Proof of Theorem 3.5(b) This follows immediately from Lemma 3.17 and
the trivial cylinder lemma 3.9.

3.9 Computing the homology of the cylinder complex

Proof of Theorem 3.1 We compute the homology combinatorially using
Theorem 3.5. We use induction. The base case of the induction is when
P/Q /∈ [X1,X2]; here the theorem is obvious because the chain complex has
no generators. For the inductive step, suppose P/Q ∈ [X1,X2]. We will prove
the theorem assuming that it is true for (X1,X

′
2;P

′, Q′) whenever X ′
2 < X2 ,

Q′ ≤ Q, and the interval [X1,X
′
2] contains fewer rational numbers of denomi-

nator ≤ Q than the interval [X1,X2].
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To carry out the inductive step, define a filtration F0 ⊃ F−1 ⊃ · · · of our chain
complex as follows. We say that the “p/q exponent” of a generator is the total
exponent of ep/q and hp/q . Write

E = E(X1,X2;P,Q) = eλ1

p1/q1
· · · eλk

pk/qk
(41)

with p1/q1 > · · · > pk/qk . Let c = p1 and d = q1 . Define F−i to be the
span of all generators with c/d exponent at least i. We have δ(F−i) ⊂ F−i

by Theorem 3.5(a), because if p/q > c/d, then no generators have positive
p/q exponent; so rounding a corner or double rounding never increases the c/d
exponent.

From this filtered complex we obtain a spectral sequence E∗∗,∗ which converges
to HP∗(X1,X2;P,Q). The E1 term is the homology of the associated graded
complex G−i = F−i/F−i−1 . By Theorem 3.5(a), if α and β are generators
with the same c/d exponent, then 〈δα, β〉 = 1 only if α is obtained from β by
rounding a corner or double rounding not involving c/d, so

H∗(G0) = HP∗(X1, c/d− ǫ;P,Q),

H∗(G−i) = span
{
eic/d, e

i−1
c/d hc/d

}
⊗HP∗

(
X1,

c

d
− ǫ;P − ic,Q− id

)
, i > 0.

We now use the inductive hypothesis to make this more explicit. Let l =
λ1 above. Then H∗(G−i) = 0 for i > l , while for i ≤ l , the homology
HP∗ (X1, c/d − ǫ;P − ic,Q− id) is generated by the homology class of

Ei := E
(
X1,

c

d
− ǫ;P − ic,Q − id

)
,

together with the homology class [Hi], where Hi denotes a generator obtained
by replacing one of the ep/q factors in Ei by hp/q .

We now relate Ei to Ei−1 . Suppose 0 < i ≤ l , and write

Ei = eλ1

p1/q1
· · · eλk

pk/qk
=: ep1/q1

E′
i.

with p1/q1 > · · · > pk/qk . (Here we are recycling the notation so that pj , qj ,
λj , k are different from (41).) Now (p1, q1) is on the boundary of the convex
hull of the set of lattice points in the parallelogram Z(X1, c/d−ǫ;P−ic,Q−id).
It follows that (p1 + c, q1 + d) is on the boundary of the convex hull of the set
of lattice points in Z(X1, c/d− ǫ;P − (i− 1)c,Q− (i− 1)d). For example, the
case k = 4 and λ1 = 1 looks like this:
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We deduce that

Ei−1 = E

(
p1

q1
+ ǫ,

c

d
− ǫ; p1 + c, q1 + d

)
E′

i.

By Theorem 3.5(b), it follows that if we choose Hi = hp1/q1
E′

i , then
〈
δ
(
ei−1
c/dEi−1

)
, ei−1

c/d hc/dEi

〉
=
〈
δ
(
ei−1
c/dEi−1

)
, eic/dHi

〉
= 1,

〈
δ
(
ei−2
c/d hc/dEi−1

)
, ei−1

c/d hc/dHi

〉
= 1.

Also, if we choose a representative Hi−1 of the class [Hi−1] by replacing one of
the ep/q factors in E (p1/q1 + ǫ, c/d− ǫ; p1 + c, q1 + d) by hp/q , then

〈
δ
(
ei−1
c/dHi−1

)
, ei−1

c/d hc/dHi

〉
= 1.

Finally, by Theorem 3.5(a), replacing Hi with another generator would change
the corresponding differential coefficients above to zero.

It follows that the first differential in the spectral sequence, which we denote
by ∂1 , satisfies

∂1

(
ei−1
c/d [Ei−1]

)
= ei−1

c/dhc/d[Ei] + eic/d[Hi],

∂1

(
ei−2
c/dhc/d[Ei−1]

)
= ∂1

(
ei−1
c/d [Hi−1]

)
= ei−1

c/d hc/d[Hi].
(42)
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The differential ∂1 cannot contain any other terms due to the bigrading, as we
see by laying out the E1 term:

[H0]

[E0]

hc/d[H1]

ec/d[H1]

hc/d[E1]

ec/d[E1]

ec/dhc/d[H2]

e2c/d[H2]

ec/dhc/d[E2]

e2c/d[E2]

el−1
c/dhc/d[Hl]

elc/d[Hl]

el−1
c/dhc/d[El]

elc/d[El]

�

XXXy
���9

��9
XXy

XXy
��9

��9
XXy

XXy
��9···

��9
XXy

XXy
��9

From this picture we see that everything is killed in the spectral sequence,
except for

elc/d[El] = [E (X1,X2;P,Q)],

and two generators which become homologous in E2 , namely

elc/d[Hl], el−1
c/dhc/d[El].

Thus HP∗(X1,X2;P,Q) is exactly as described in Theorem 3.1.

Remark 3.19 The above algebraic calculation can be simplified after intro-
ducing some more general combinatorial chain complexes involving rounding
corners of polygonal paths. Compare [11, Prop. 5.5].
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4 PFH of a Dehn twist on a torus

Let n be a positive integer. We now consider the composition φT
0 of n parallel

positive Dehn twists on the torus from equation (3). We can identify

H1

(
YφT

0

)
≃ Z⊕ Z⊕ Z/n

such that the circle of periodic orbits at x = p/q is sent to (q, 0,−pmodn).
Thus for each degree d > 0, there are n sectors h ∈ H1(Y ) containing homology
classes of orbit sets, classified by the mod n total numerator [P ] ∈ Z/n. In
this section we compute HP∗(φ

T , h), where φT is a modification of φT
0 as in

Section 3.1 with Q = d, and J is any generic almost complex structure such
that (φT , J) is d-regular. We denote this PFH by HP∗(φ

T ; [P ], d); this is
noncanonically Z/2d-graded, see Section 2. Since the isotopy from φT

0 to φT

is Hamiltonian, (φT , h) is monotone, see Lemma 5.1.

Theorem 4.1 For every [P ] ∈ Z/n and d ∈ Z
>0 , the periodic Floer homology

HPi

(
φT ; [P ], d

)
≃ Z/2

for each value of the Z/2d-grading i.

In the proof we use the following notation. As with the cylinder, for 0 < p/q < n
and q ≤ d there are periodic orbits ep/q and hp/q at x = p/q of period q . We
denote the two fixed points at x = 0 mod n simply by e and h. By symmetry,
we may assume without loss of generality that P ≡ 0 mod n.

4.1 The wrapping spectral sequence

The map φT
0 has a circle of fixed points at x ≡ 0 mod n, each of which

corresponds to a circle in YφT
0
. The isotopy from φT

0 to φT induces a piecewise
smooth homeomorphism YφT

0
→ YφT . Let ρ ⊂ YφT be the image of one of

the circles in YφT
0

coming from a fixed point which does not survive under the
perturbation.

Definition 4.2 If C is a flow line for (φT , J), define the wrapping number

η(C) := #(C ∩ (R× ρ)) ∈ Z.
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Note that η(C) depends only on the relative homology class of C , and does
not depend on ρ since all such circles are homotopic in the complement of the
set of periodic orbits of period ≤ d. We remark that η is reminiscent of the
quantity nz considered in [17].

Choose 0 < ǫ < 1/d so that φT agrees with φT
0 near x = ±ǫmodn. If α is an

orbit set, let d0(α) denote the total exponent of e and h in α.

Lemma 4.3 If C ∈M(α, β), then η(C) ≥ 0. If η(C) = 0, then:

d0(β)− d0(α) ≥

{
1 if C ∩ {x = ǫ} 6= ∅
0 otherwise

+

{
1 if C ∩ {x = −ǫ} 6= ∅
0 otherwise.

Proof Perturb ǫ so that C is transverse to {x = ±ǫ}. Let

(p±, q±) := [C ∩ {x = ±ǫ}] ∈ H1(S
1
y × S

1
t ),

with the sign conventions of Section 3.4. Evidently

p± = η(C), (43)

q+ − q− = d0(β)− d0(α). (44)

By Lemma 3.11, we have p±± ǫq± ≥ 0 with equality only if C ∩{x = ±ǫ} = ∅.
The lemma follows.

Since all flow lines have nonnegative wrapping number, we can write

δ = δ0 + δ1 + δ2 + · · ·

where δi counts the contributions from flow lines C with η(C) = i. Since
δ2 = 0 and η is additive under gluing of flow lines, it follows that δ20 = 0,
δ0δ1 = δ1δ0 , and so forth.

By the index ambiguity formula (7), if C ∈M(α, β), we can write

I(C) = I0(α, β) + 2d · η(C). (45)

In other words, our chain module has a relative Z-grading I0 , and δη shifts this
grading by 2dη − 1. We choose an absolute Z-grading by declaring the index
of ed to be 0. In particular, we have a Z-graded δ0 -homology H∗(δ0), and δ1
induces a map (δ1)∗ on it of degree 2d− 1.

By applying the following general algebraic lemma we obtain a spectral sequence
whose E1 term is H∗(δ0), whose first differential is (δ1)∗ , and which converges
to the PFH. We call this the wrapping spectral sequence.
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Lemma 4.4 Let C∗ be a bounded Z-graded vector space, and let

δ = δ0 + δ1 + δ2 + · · · : C∗ → C∗

satisfy δ2 = 0 and deg(δi) = Ni − 1 with N 6= 0. Then there is a spectral
sequence (E∗, δ̂∗) such that:

• Er is Z-graded and deg(δ̂r) = Nr − 1.

• E1
∗ = H∗(δ0), and δ̂1 = (δ1)∗ : H∗(δ0)→ H∗+N−1(δ0).

• For m ∈ Z/N we have Hm(δ) ≃
⊕

i≡m mod N E
∞
i .

Proof If k is an integer, let C∗[k] denote C∗ with the grading shifted by k .
Define a complex C̃∗ :=

⊕
i∈Z

C∗[Ni], with a filtration

FiC̃∗ :=
⊕

j≤i

C∗[Nj],

where the component of the differential from C∗[Ni] to C∗−1[Nj] is induced
by δi−j . The filtration gives rise to a spectral sequence (Ẽ∗∗,∗, δ̃∗) with Ẽr

p,q ≃

Ẽr
p−1,q−N+1 . We then take Er

q := Ẽr
0,q , with δ̂r induced from δ̃r . Clearly (E∗, δ̂∗)

satisfies the first two properties; since C∗ is bounded and N 6= 0, this spectral
sequence converges, giving the third property.

4.2 Lifting from the torus to the cylinder

To compute the differentials δη , we need to relate flow lines for a Dehn twist
on a torus to flow lines for a Dehn twist on a cylinder. Under the covering

R× S1 −→ (R/nZ)× S1

of the torus by the infinite cylinder, the symplectomorphism φT of (R/nZ)×S1

lifts to a perturbation φ of the cylinder twist φ0 on R × S1 . There is then a
covering of mapping tori

π : R× Yφ −→ R× YφT ,

and the almost complex structure J for φT pulls back to an almost complex
structure π∗J for φ, such that (φ, π∗J) satisfy the conditions in Section 3.1.

The following lemma shows that to compute the PFH of (φT , J) on the torus, we
need only consider flow lines that lift to flow lines for (φ, π∗J) on the cylinder.
(This lemma is actually used only for a small part of the calculation in Section
4.4.)
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Lemma 4.5 Let δ′ denote the contribution to the PFH differential for the
torus coming from flow lines that do not lift via π to flow lines for the cylinder.
Then δ′ = 0.

Proof Let C be an I = 1 flow line for the torus. As in Section 3.2, since
I(C) = 1 we can write C = C ′ ∪ T where C ′ is nontrivial and connected and
T is a union of trivial cylinders. As in equation (26) we have

2g(C ′) + 2e−(C ′) + h(C ′) = 3. (46)

In particular g(C ′) ∈ {0, 1}. Now C lifts to the cylinder if and only if g(C ′) = 1.
For if g(C ′) = 0, then C ′ lifts to the cylinder since each periodic orbit lifts.
Conversely, if g(C ′) = 1, then equation (46) implies that C ′ is a flow line from
α to β , where α contains only elliptic factors and β = hp/q for some p, q . Such
a C ′ cannot lift to the cylinder, since a lift would have I < 0 by Proposition 3.2,
and hence does not exist for generic J .

By Lemma A.1, for a certain (not locally linear) pair (φ′, J ′) where φ′ is close
to φT

0 , there are no genus 1 flow lines from α to β as above. Similarly to
Lemma 3.15, during a generic deformation of (φ′, J ′) to (φT , J), there are never
any genus 1 broken GFL’s from α to β respecting the outgoing partitions at α,
so the mod 2 count of I = 1 genus 1 flow lines from α to β remains zero.

Going in the other direction, if C is a flow line for the cylinder, then it projects
to a generalized flow line π(C) for the torus.

Lemma 4.6 If C is a flow line for the cylinder and if I(π(C)) = 1, then π(C)
is a flow line for the torus.

Proof This follows immediately from Corollary 2.2.

We now compute the wrapping number η(π(C)). If α = γ1 · · · γk is an orbit
set for the cylinder where γi = epi/qi

or γi = hpi/qi
, define

η̃(α) :=
k∑

i=1

⌊
pi

nqi

⌋(
−pi +

nqi
2

(⌊
pi

nqi

⌋
+ 1

))
. (47)

Lemma 4.7 Let C ∈ M(α, β) be a flow line for the cylinder. Then its pro-
jection to the torus has wrapping number

η(π(C)) = η̃(α) − η̃(β).
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Proof By equations (43) and (28), using the notation pi , qi , p
′
j , q

′
j , and q−

from those equations, we have

(η(π(C)), q−) = [π(C) ∩ {x = −ǫ}]

=
∑

m∈Z

π∗[C ∩ {x = mn− ǫ}]

=
∑

m∈Z

π∗


 ∑

pi/qi>mn−ǫ

(−pi, qi)−
∑

p′j/q′j>mn−ǫ

(−p′j, q
′
j)




=
∑

m∈Z


 ∑

pi/qi≥mn

(−pi +mnqi, qi)−
∑

p′j/q′j≥mn

(−p′j +mnq′j, q
′
j)


 .

Note that the sum over m has only finitely many nonzero terms. The lemma
follows by a straightforward evaluation of this sum.

The following lemma makes it easy to compute the differential δ0 in the wrap-
ping spectral sequence.

Lemma 4.8 Lifting and projecting give a correspondence

{I = 1, η = 0 torus flow lines} ←→
{
I = 1 flow lines for (−ǫ, n + ǫ)× S1

}
.

This is a bijection, except that components of flow lines for the torus in a
neighborhood of {x = 0} can be lifted in two ways, to a neighborhood of
{x = 0} or to a neighborhood of {x = n}.

Proof (→) Let C be a flow line for the torus with I(C) = 1 and η(C) = 0.
We need to show that C lifts to an I = 1 GFL for (−ǫ, n + ǫ) × S1 . Clearly
any GFL lifting C is a flow line, and unique modulo the proviso in the lemma.
Write C = C ′ ∪ T where C ′ is a nontrivial, connected flow line from α to β ,
and T is a union of trivial cylinders.

We first show that C ′ lifts to a flow line for (−ǫ, n + ǫ) × S1 . If C ′ does not
intersect both of {x = ǫmodn} and {x = −ǫmodn}, then C ′ trivially lifts to
(−ǫ, n + ǫ) × S1 . If C ′ intersects both these regions, then Lemma 4.3 implies
that d0(β) ≥ 2. As in Lemma 3.8(c), any incoming elliptic end of C ′ has
multiplicity one, so it follows from equation (46) that β = eh and g(C ′) = 0,
so C ′ lifts to R × S1 . After translation we can choose the lift of C ′ so that β
is lifted to hnke0 or enkh0 with k a positive integer. By Propositions 3.2 and
3.12, α is lifted to e1/2 if nk = 1, and enk−1e1 otherwise. Lemma 4.7 implies
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that η(C) = η(C ′) = k − 1. Therefore k = 1. By Lemma 3.11, the lift is
supported over (−ǫ, n+ ǫ)× S1 .

We can also lift T to obtain a lift of C . The calculations in the proof of
Lemma 3.7 show that the lifted flow line C̃ satisfies Qτ

([
C̃
])

= Qτ ([C]). To-

gether with equations (20), (21) and (22), this implies that I
(
C̃
)

= I(C).

(←) Let C be an I = 1 flow line for (−ǫ, n+ǫ)×S1 ; we need to show that the
projection π(C) is a flow line for the torus with I = 1 and η = 0. As above,
I(π(C)) = I(C). By Lemma 4.6, π(C) is a flow line. Lemma 4.7 implies that
η(π(C)) = 0, because if α is an orbit set for (−ǫ, n + ǫ) × S1 , then η̃(α) = 0
by equation (47) since 0 ≤ pi/nqi ≤ 1 for each i.

4.3 The η = 0 homology

We now compute the first term of the wrapping spectral sequence from Section
4.1.

Lemma 4.9 For d > 0 and P ≡ 0modn, the η = 0 homology of a Dehn twist
on a torus is given by

H∗(δ0) =

{
Z/2 if 0 ≤ ∗ ≤ 2d− 1,
0 otherwise.

Proof We define a filtration on our chain complex by setting Fi to be the span
of those generators in which the total exponent of e and h is at least d− i. By
Lemma 4.3 we have δ0(Fi) ⊂ Fi . Hence we obtain a spectral sequence which
converges to the η = 0 homology.

The E1 term is given as follows. Lemma 4.8 implies that the homology of the
associated graded complex is given in terms of the cylinder complex by

H∗(G0) = span{ed, ed−1h},

H∗(Gi) = span{ed−i, ed−i−1h} ⊗
i−1⊕

k=1

HP∗(ǫ, n− ǫ;nk, i), 2 ≤ i ≤ d− 1,

H∗(Gd) =
d−1⊕

k=1

HP∗(ǫ, n − ǫ;nk, d),

and H∗(Gi) = 0 for all other i. By Theorem 3.1, if 0 < k < i, then the
homology HP∗(ǫ, n− ǫ;nk, i) is generated by the class

Ek,i := [E(ǫ, n − ǫ;nk, i)],
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together with the homology class Hk,i of those generators obtained from the
generator E(ǫ, n − ǫ;nk, i) by replacing an ep/q factor with hp/q .

We now compute the first differential of the spectral sequence, which we denote
here by ∂1 . By Lemma 4.8, all contributions to ∂1 come from projections to
the torus of differential coefficients in the cylinder complex CP∗(−ǫ, n+ ǫ; ∗, d)
which increase the total of the 0-exponent and the n-exponent by 1. When
the n-exponent increases by one, the differential coefficients are described by
(42) with X1 = ǫ,X2 = n + ǫ, c/d = n/1. When the 0-exponent increases by
one the differential coefficients have a similar form by symmetry. We conclude
that

∂1(e
d−iEk,i) = ed−ih(Ek,i−1 + Ek−1,i−1)

+ ed−i+1(Hk,i−1 +Hk−1,i−1),

∂1(e
d−i−1hEk,i) = ∂1(e

d−iHk,i)

= ed−ih(Hk,i−1 +Hk−1,i−1),

∂1(e
d−i−1hHk,i) = 0.

(48)

In this equation, when k = 1 we interpret Ek−1,i−1 := Hk−1,i−1 := 0, and when
k = i− 1 we interpret Ek,i−1 := Hk,i−1 := 0.

For example, if n = 2 and d = 4, then (E1, ∂1) is as follows:

[e3/2h3/2]

[e1/2h3/2 = h1/2e3/2]

[e1/2h1/2]

h[e1h3/2 = h1e3/2]

h[e1/2h1 = h1/2e1]

[e23/2]

[e1/2e3/2]

[e21/2]

e[e1h3/2 = h1e3/2]

h[e1e3/2]

e[e1/2h1 = h1/2e1]

h[e1/2e1]

eh[e1h1]

e[e1e3/2]

e[e1/2e1]
e2[e1h1]
eh[e21]

e3h

e2[e21]e4

����9XXy��9
XXX

Xy

hhh�
((((�

hhh�
((((�

Q
QQ

�

hhh�
   � ����

�
�=��9
XXy

Z
ZZ}

� �����9� XXX
XXy

Here the notation [a = b] means that one can choose a or b, and one will obtain
the same homology class either way.
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Equation (48) implies that the E2 term is given by

E2
0,0 = span{ed},

E2
0,1 = span{ed−1h},

E2
i,i−2 = span

{
ed−i

i−1∑

k=1

Ek,i

}
, 2 ≤ i ≤ d,

E2
i,i−1 = span

{
i−1∑

k=1

ed−i−1 [hEk,i = eHk,i]

}
, 2 ≤ i ≤ d− 1,

E2
d,d−1 = span

{
d−1∑

k=1

Hk,d

}
,

(49)

and all other E2
i,j ’s are zero. In equation (49), strictly speaking there should

be square brackets around each generator to indicate that it is a homology
class in E2 . Here we have inferred the bigrading from the various nonvanishing
differential coefficients; this can also be computed directly.

Equation (49) shows that E2 has one generator in each degree from 0 to 2d−1;
so to complete the proof, we must show that our spectral sequence degenerates
at E2 . Because of the bigrading, the only possible nonzero higher differential
coefficient is

〈
∂2

(
ed−2E1,2

)
, ed−1h

〉
, which by the trivial cylinder lemma 3.9

equals the d = 2 differential coefficient 〈∂2 (E1,2) , eh〉 . But this differential
coefficient vanishes, because in the cylinder complex CP∗(−ǫ, n+ǫ;n, 2) we have
δ(E1,2) = enh0 +hne0 , which in the torus complex projects to eh+he = 0.

4.4 Degeneration of the wrapping spectral sequence

We will now see that although there do exist index 1 flow lines with η > 0,
these do not contribute in the wrapping spectral sequence.

Proof of Theorem 4.1 We compute H∗(δ) using Lemma 4.4. Lemma 4.9
tells us that H∗(δ0) has one generator in each index 0, . . . , 2d− 1, and we saw
in the proof that [ed] is the generator of index 0. Since δη shifts the grading
by 2dη − 1, it will suffice to show that

(δ1)∗[e
d] = 0 ∈ H∗(δ0).

By Lemma 4.5, to compute δ1 , it suffices to consider flow lines that lift to the
cylinder R× S1 . As in Lemma 3.8(c), the nontrivial component of C has only
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one outgoing end at e, so we can choose the lifted flow line C to be from ed0 to
some β .

If C is an I = 1 flow line for the cylinder from ed0 to β , then by Lemma 4.6, π(C)
contributes to δ1(e

d) if and only if η(π(C)) = I(π(C)) = 1. By equation (45)
and Lemma 4.7, this holds if and only if η̃(β) = −1 and I0(e

d, π(β)) = 1− 2d.
Therefore

δ1(e
d) =

∑

−eη(β)=I0(ed,π(β))+2d=1

〈δed0, β〉π(β)

where β is a generator for the cylinder and π(β) denotes its projection to the
torus.

In the cylinder, by Theorem 3.5, we have

δ
(
ed0

)
=

d−1∑

k=1

(
h 1

d−k
e−1

k
+ e 1

d−k
h−1

k

)
+

d−2∑

k=1

xkh1/kh0h−1/(d−k−1)

where x1, . . . , xd−2 ∈ Z/2 are unknown coefficients. The summands in the first
sum on the right side all contribute to δ1(e

d). To see this, we compute from
equation (47) that

η̃
(
h 1

d−k
e−1

k

)
= −1.

On the other hand, by Lemma 4.8 and Proposition 3.2,

I0

(
ed, h 1

d−k
enk−1

k

)
= I

(
ed−k
0 ekn, h 1

d−k
enk−1

k

)

= 1− 2d,

where the right hand side denotes the index for the cylinder. Likewise for
e 1

d−k
hnk−1

k
. Thus

δ1(e
d) =

d−1∑

k=1

(
h 1

d−k
enk−1

k
+ e 1

d−k
hnk−1

k

)
+ h (· · · ) .

Unless n = 1 and k = 1, d− 1, we have

E(ǫ, n − ǫ;nk, d) = e 1

d−k
enk−1

k
.

Then it follows by Theorem 3.1 that h1/(d−k)e(nk−1)/k and e1/(d−k)h(nk−1)/k

are homologous in CP∗(ǫ, n − ǫ;nk, d). Hence, for all n and k , δ1(e
d) is δ0 -

homologous to a sum of generators each containing an e or an h. So in terms
of the filtration in the proof of Lemma 4.9, we have (δ1)∗[e

d] ∈ H2d−1(Fd−1),
but by (49), H2d−1(Fd−1) = 0.
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5 PFH of Dehn twists on higher genus surfaces

Let Σ be a compact connected symplectic surface, possibly with boundary.
Choose a decomposition ∂Σ = ∂+Σ ⊔ ∂−Σ. Choose a finite number of disjoint

embedded circles γi ⊂ Σ, and to each circle γi associate a nonzero integer ni .
In this section we study the PFH in degree d of the composition of ni positive
Dehn twists along γi for each i, for a perturbation which is a small positive
rotation on ∂+Σ and a small negative rotation on ∂−Σ.

5.1 The setup

To be more precise, we define φΣ : Σ→ Σ as follows.

First, let Ni be disjoint tubular neighborhoods of the circles γi with coordinates
xi ∈ [−ǫ, |ni|+ǫ] and yi ∈ R/Z. Here 0 < ǫ < 1/d. On the cylinder Ni , consider
the twist

φ0
i : Ni −→ Ni,

(xi, yi) 7−→ (xi, yi − xi).

If ni > 0, let φi be a perturbation of φ0
i as in Section 3.1 with Q = d. If

ni < 0, let φi be the inverse of this perturbation.

Second, let Ti := (ǫ, |ni| − ǫ) × R/Z ⊂ Ni , and let Σ′ := Σ \
⋃

i Ti . Choose a
Morse function f : Σ′ −→ [0, 1] such that

f−1(1) = ∂+Σ ∪
⋃

ni>0

∂Ti,

f−1(0) = ∂−Σ ∪
⋃

ni<0

∂Ti,

and |∇f | = 1 near the boundary. Let φf : Σ′ −→ Σ′ be the time-1 Hamiltonian
flow of f . Choose a Riemannian metric on Σ′ which is large with respect to d.
We assume that f and the metric are Morse-Smale, and we let ∂Morse denote
the mod 2 differential in the Morse complex.

We can make the above choices such that φi agrees with φf on Ni \ Ti , so the
φi ’s and φf patch together to give a symplectomorphism φΣ : Σ→ Σ.

The period ≤ d periodic orbits of φΣ consist of fixed points at the critical
points of f in Σ′ , as well as, in each Ti , one elliptic and one hyperbolic orbit
of period q for each rational number p/q ∈ (0, |ni|) with q ≤ d.
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We choose a generic almost complex structure J on YφΣ , such that (φΣ, J) is d-
regular. For convenience, we assume that over Σ′ , the almost complex structure
J is close to the almost complex structure J0 induced by the metric and ω via
the identification Yφf

≃ S1 × Σ′ coming from the Hamiltonian isotopy. (One
can drop this assumption by a modification of Section 5.2.)

Lemma 5.1 Under the assumption (∗) of Section 1, if α is a degree d orbit
set, then (φΣ, [α]) is monotone as in (8).

Proof We have a short exact sequence

0 −→ H2(Σ) −→ H2

(
YφΣ

)
−→ Ker

(
1−H1

(
φΣ
))
−→ 0.

Assumption (∗) implies that Ker
(
1−H1

(
φΣ
))

is the image of the inclusion-
induced map H1(Σ

′) → H1(Σ). The short exact sequence then has a splitting
Ker

(
1−H1

(
φΣ
))
→ H2(YφΣ), sending a loop ξ ⊂ Σ′ to S1×ξ ⊂ S1×Σ′ ≃ Yφf .

Since φf is Hamiltonian isotopic to the identity on Σ′ , [ω] vanishes on the image
of this splitting, as does c([α]). So we just have to check that if ∂Σ = ∅ then

∫

Σ
ω = λ〈[Σ], c([α])〉.

This holds if d 6= g(Σ)− 1, because 〈[Σ], c([α])〉 = 2(d− g(Σ) + 1).

Thus under assumption (∗), we have a well defined Z/2(d − g(Σ) + 1)-graded
chain complex

(CP∗(φ
Σ, d), δ) :=

⊕

h·[Σ]=d

(CP∗(φ
Σ, h), δ)

whose differential δ may depend on J .

5.2 The η = (0, . . . , 0) complex

Continue to assume (∗). We now describe a differential δ0 on CP∗(φ
Σ, d), which

is given explicitly in terms of Morse theory on Σ′ and the cylinder complex for
the Ni ’s, and which in some cases has the same homology as δ .

Label the components of Σ′ by {Σj | j = 1, . . . ,#π0Σ
′}. For each j , let

ρj ⊂ YφΣ be a circle obtained from S1×{zj} ⊂ S
1×Σj , where zj is not a fixed

point of φΣ . If C is a flow line, define the wrapping number

ηj(C) := #(C ∩ (R× ρj)) ∈ Z.
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This does not depend on the choice of zj . Define η(C) := (η1(C), η2(C), . . .).

We remark that if Σj contains a component of ∂Σ, then any flow line C auto-
matically has ηj(C) = 0, since one can choose zj near ∂Σ.

As in Lemma 4.3, we have ηj(C) ≥ 0. Let δ0 denote the sum of the contribu-
tions to δ from flow lines C with η(C) = (0, . . . , 0). Since ηj(C) ≥ 0 and η is
additive under gluing of flow lines, δ2 = 0 implies δ20 = 0.

Lemma 5.2 Let α and β be generators of CP∗(φ
Σ, d). Then 〈δ0α, β〉 = 1 if

and only if either:

(a) α = pγ and β = qγ , where p, q ∈ Crit(f) and 〈∂Morsep, q〉 = 1, or:

(b) α = α′γ and β = β′γ , where α′, β′ are products of orbits in some Ni ,
〈δα′, β′〉 = 1 in CP∗(φi), and γ is a product of orbits outside Ni .

Proof We proceed in two steps.

Step 1 Let C be an index one flow line with η(C) = (0, . . . , 0) and without
trivial cylinders. We claim that C is a flow line for φf or for some φi .

There is a canonical trivialization τ of V over the Ni ’s, and also over the
circle corresponding to each critical point of f . There is no obstruction to
extending this trivialization over Σ \ {z1, z2, . . .}, so η(C) = (0, . . . , 0) implies
that cτ ([C]) = 0. It then follows as in (26) that

2g(C) + 2e−(C) + h(C) = 3. (50)

Here h(C) denotes the total number of ends of C at hyperbolic orbits; and
e−(C) denotes the number of incoming ends at elliptic orbits in Ti ’s with ni > 0
or at minima of f , plus the number of outgoing ends at elliptic orbits in Ti ’s
with ni < 0 or at maxima of f .

If our claim fails, then since C is connected, WLOG there exists i with ni > 0
such that C intersects Ni in both the regions {xi = −ǫ/2} and {xi = +ǫ/2}.
As in Lemma 4.3, C must have incoming hyperbolic and elliptic ends at xi = 0.
Then C cannot intersect the region {xi = ni − ǫ/2}, or else as in Lemma 4.3
again, C would have an incoming end at xi = ni , violating (50). In the
notation of equation (28), [C ∩ {x = ǫ/2}] = (0, 1), so by equation (28), C has
an outgoing end inside Ti . Since this outgoing end is at xi > 0, equation (28)
again implies that there is another incoming end inside Ti , contradicting (50).
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Step 2 We claim now that in CP∗(φf ), if α and β are generators then
〈δα, β〉 = 1 if and only if (a) holds. This follows from standard arguments
in Floer theory, cf. [12]. Namely, if γ : R→ Σ′ is a gradient flow line of f , then

S1 × graph(γ) ⊂ S1 × R× Σ′ ≃ R× Yφf

is an embedded J0 -holomorphic cylinder cut out transversely, whose PFH index
agrees with the Morse index. Index 1 flow lines not of this form may exist for
(φf , J0), but S1 acts nontrivially on their moduli spaces, so by virtual cycle
machinery as developed e.g. in [2, 7], the mod 2 count of such bad flow lines is
zero after perturbing J0 to our generic almost complex structure J .

5.3 A single nonseparating Dehn twist on a closed surface

Now let Σ be a closed surface of genus g . We consider a single (n = 1) positive
Dehn twist along a nonseparating circle γ ⊂ Σ, with neighborhoods T ⊂ N
and Σ′ = Σ \ T as before.

Theorem 5.3 If φΣ is a nonseparating positive Dehn twist on a closed surface
Σ as above, and if g ≥ 2d+ 1, then as Z/2(d − g + 1)-graded modules,

HP∗(φ
Σ, d) ≃ ΛdK ⊕

d⊕

d′=1

Λd−d′K ⊗ {Z/2 in index 0, . . . , 2d′ − 1}, (51)

where K := Ker(H1(Σ
′, ∂Σ′)→ H0(∂Σ′))⊗ Z/2.

Proof We proceed in 2 steps.

Step 1 We first show that H∗(δ0) agrees with the right hand side of (51).

Let e0, e1, h0, h1 denote the elliptic and hyperbolic fixed points at x = 0, 1 in
N . Our Morse function f on Σ′ will have minima at e0 and e1 and saddle
points at h0 and h1 . We choose f to have no other minima, a unique maximum
m with ∂Morse(m) = h0 + h1 , one saddle point s with ∂Morse(s) = e0 + e1 , and
2(g − 1) other saddle points in the kernel of ∂Morse .

We define a filtration on the η = 0 chain complex by setting Fi to be the span
of those generators containing at least d − i factors corresponding to critical
points of f in Σ′ . This gives rise to a spectral sequence with

E1 ≃
d⊕

p=0

HP∗ (φf , d− p)⊗HP∗

(
φΣ|T , p

)
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by Lemma 5.2. In the Morse complex of f , e0 and e1 represent the same
homology class e, and h0 and h1 represent the same homology class h, so

HP∗ (φf , d− p) ≃ Λd−pK ⊕

d−p⊕

l=1

Λd−p−lK ⊗ span
{
el, el−1h

}

by Lemma 5.2. It follows from the above two equations that

E1 ≃ ΛdK ⊕
d⊕

d′=1

Λd−d′K ⊗ Ê1(d′),

where Ê(d′) denotes the η = 0 spectral sequence for the torus from Lemma 4.9
with n = 1, in degree d′ .

By Lemma 5.2, the higher differentials on E are determined by flow lines in N ,
and hence they are given by the differentials on Ê , tensored with the identity
on the Λ∗K factors. Together with Lemma 4.9, this proves our claim.

Step 2 The theorem is trivial if d = 0, so assume d > 0. We now relate H∗(δ)
to H∗(δ0) using the wrapping spectral sequence from Lemma 4.4. If C is a flow
line from α to β , we can write

I(C) = I0(α, β) + 2(d − g + 1)η(C).

Therefore H∗(δ0) is Z-graded, and if δi denotes the contribution to δ from flow
lines C with η(C) = i, then δi shifts the grading by 2(d − g + 1)i − 1. Thus
Lemma 4.4 is applicable as d − g + 1 6= 0. Since the η = 0 homology is sup-
ported in index 0, . . . , 2d−1, the wrapping spectral sequence will automatically
degenerate at E1 , giving H∗(δ) ≃ H∗(δ0), provided that

|2(d− g + 1)i− 1| > 2d− 1

for all i > 0, i.e. if g ≥ 2d+ 1.

5.4 A single separating Dehn twist on a closed surface

Now let Σ be a closed surface, and consider a single (n = 1) positive Dehn
twist along a separating circle γ ⊂ Σ. Departing slightly from the previous
notation, denote the components of Σ′ by Σ0 and Σ1 , and let gj := g(Σj).

Theorem 5.4 If φΣ is a separating positive Dehn twist on a surface as above,
and if g0, g1 ≥ 2d, then as Z/2(d− g0 − g1 + 1)-graded modules,

HP∗(φ
Σ, d) ≃

d⊕

q=0

Λd−qH1(Σ
′)⊗

q⊕

p=0

Cp,q[p
2 − p(1− 2g0 + 2d)]. (52)
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Here, if p ≤ q/2, then Cp,q has one generator in each degree 0, 2, . . . , 2p, and
also 2q − 1, 2q − 3, . . . , 2(q − p) + 1 if p > 1; and Cp,q = Cq−p,q .

Proof We proceed in three steps.

Step 1 We first compute the η = (0, 0) homology.

Our Morse function f on Σ will have saddle points at h0 and h1 and minima at
e0 and e1 . We choose our labeling so that ej , hj ∈ Σj . We can assume that the
only other critical points of f are a maximum mj ∈ Σj with ∂Morsemj = hj ,
and 2(g0 + g1) saddle points with δMorse = 0.

Note that if there exists an η = (0, 0) flow line from α to β , then for homological
reasons, α and β have the same total numerator, where we regard critical
points in Σj as having numerator j . Let us redefine the saddle points to have
numerator zero; then since the saddle points are in the kernel of δMorse , it is
still true by Lemma 5.2 that if 〈δ0α, β〉 = 1 then α and β have the same
total numerator. Thus we have a well-defined, relatively Z-graded subcomplex
spanned by generators with total numerator p. We denote its homology by
H∗(δ0)(p), and we choose an absolute Z-grading I0 by declaring I0(e

d−p
0 ep1) = 0.

We claim then that, whether or not g0, g1 ≥ 2d, we have

H∗(δ0)(p) ≃
d⊕

q=p

Λd−qH1(Σ
′)⊗ Cp,q. (53)

To prove (53), it is enough to do the case when g0 = g1 = 0; the general case is
obtained by including the 2(g0 + g1) saddle points with ∂Morse = 0, which give
rise to the Λ∗H1(Σ

′) factors.

As in Section 5.3, we compute H∗(δ0)(p) using the spectral sequence E(p)
coming from the filtration by the total degree in Σ′ . We have

E1(p) =
d⊕

q=p

⊕

0≤r≤p,d−q

HP∗(ǫ, 1− ǫ; p− r, q)⊗ span{ed−q−r
0 er1}.

A somewhat lengthy calculation as in Lemma 4.9 then establishes (53).

Step 2 The theorem is trivial if d = 0, so assume that d > 0. We claim now
that if g0, g1 ≥ 2d, and if Z ∈ H2(Y ;α, β) is a relative homology class with
η(Z) = (η0, η1) 6= (0, 0) and ηi ≥ 0, then

I0(α)− I0(β) ≥ I(α, β;Z) + 2d− 1.
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To prove the claim, WLOG we can take α = ed−p
0 ep1 and β = ed−p−k

0 ep+k
1 ,

with 0 ≤ k ≤ d − p ≤ d. We must show that I(α, β;Z) ≤ −2d + 1. For the
trivialization τ in Section 5.2, we have

cτ (Z) = η0(1− 2g0) + η1(1− 2g1).

A calculation as in equation (24) shows that

Qτ (Z) = k(d− 2p − k) + d(η0 + η1).

Of course, µτ (α, β) = 0. For homological reasons, we have η0−η1 = k . Putting
this all together, we get

I(α, β;Z) = k(1− 2g0 + 2d− 2p − k) + η1(2− 2g0 − 2g1 + 2d). (54)

If k = 0, then η1 > 0, so g0, g1 ≥ 2d implies that I(α, β;Z) ≤ −6d+2. If k ≥ 1,
then using g0 ≥ 2d, p ≥ 0, η1 ≥ 0, and g1 ≥ 2d > 0, we get I(α, β;Z) ≤ −2d.
Either way, our claim holds.

Step 3 By Step 2, we can write δ = δ0 + δ1 + · · · where δi shifts the Z-
grading I0 on the η = (0, 0) complex by −2i − 1, and δ1 = · · · = δd−1 = 0.
It follows from Lemma 4.4 that the wrapping spectral sequence is well defined
with N = −2; and it automatically degenerates at E1 , since the η = (0, 0)
homology is supported in degree 0, . . . , 2d − 1 by Step 1. Thus, by (53), we
have

HP∗(φ
Σ, d) ≃

d⊕

q=0

Λd−qH1(Σ
′)⊗

q⊕

p=0

Cp,q (55)

as Z/2-graded modules. Now every differential in the wrapping spectral se-
quence has degree −1 with respect to the Z/2(d − g0 − g1 + 1)-grading. By
(54), we can refine (55) to an isomorphism of Z/2(d − g0 − g1 + 1)-graded
modules by inserting grading shifts as in (52).

5.5 The general case

For a composition of several Dehn twists along disjoint circles, as considered
in Section 5.1, arguments like the above show that the wrapping spectral se-
quence will exist and automatically degenerate at E1 , provided that condition
(∗∗) from Section 1 holds. Then in principle the homology can be computed
combinatorially using Lemma 5.2, as illustrated in the specific cases above.

Without condition (∗∗), one would need to understand the contribution from
flow lines with η 6= (0, . . . , 0). For all we know these might never contribute
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to the differential, except when some Σj has genus 0 and does not contain a
component of ∂Σ.

Without condition (∗), monotonicity often fails. (Our composition of Dehn
twists will still have a monotone representative of its symplectic isotopy class
for each homology class h as long as ∂Σ 6= ∅ or d 6= g−1; however there might
be no such representative which is in standard form, i.e. equal to the identity
away from the twisting circles.) Without monotonicity one can still define a
version of PFH with coefficients in an appropriate Novikov ring over H2(Y ),
which can be computed using the above methods.

It is an interesting problem to attempt to extend these results to compositions
of Dehn twists along intersecting circles. It would also be interesting to try to
compute PFH of pseudo-Anosov maps in terms of hyperbolic geometry.

A An argument from Morse-Bott theory

Recall from (18) that we can identify

R× Yφ0
≃ R× S1 × [X1,X2]× S

1.

We denote the coordinates on the right hand side by s, t, x, y . There is a natural
almost complex structure J0 on the right hand side defined by

J0(∂s) := R,

J0(∂x) := ∂y.
(56)

Here R = ∂t − x∂y denotes the mapping torus flow. Also J0 is invariant under
the map (s, t, x, y) 7→ (s, t, x+ n, y − nt), and hence descends to R× YφT

0
.

We can perform a perturbation of (φ0, J0) or (φT
0 , J0) to obtain a pair (φ, J)

such that φ satisfies the conditions in Section 3.1, and J is admissible (but
(φ, J) is not necessarily locally linear). In this appendix, we use Morse-Bott
theory for the unperturbed setup to prove the following lemma. This explains
Remark 3.6 and is used in the proof of Lemma 4.5.

Lemma A.1

(a) There is a generic perturbation (φ, J) of (φ0, J0) as above such that if α
and β are generators of CP∗(X1,X2;P,Q), and if α is obtained from β
by double rounding, then genus 0 flow lines in M(α, β) do not exist.
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(b) For every positive integer q , there is a generic perturbation (φ, J) of
(φT

0 , J0) as above, for which there do not exist any genus 1 flow lines with
all outgoing ends elliptic and with a single incoming end at a hyperbolic
orbit hp/q of multiplicity one.

Proof (a) For the unperturbed map φ0 , let γp/q denote the circle of periodic
orbits at x = p/q . It will be convenient for Lemma A.2 below to define an
explicit diffeomorphism θ : γp/q → S1 by sending an orbit γ ∈ γp/q to

θ(γ) := qy + pt+
pq

2
∈ R/Z (57)

for any point (t, x = p/q, y) ∈ γ . This is well-defined since y + xt is constant
on γ .

Suppose we are given rational numbers p1/q1, . . . , pk/qk (not necessarily dis-
tinct), positive integers λ1, . . . , λk , and also p′1/q

′
1, . . . , p

′
l/q

′
l and λ′1, . . . , λ

′
l . Let

M̃ denote the moduli space of generalized flow lines for the unperturbed setup
with ordered ends, consisting of an outgoing end of multiplicity λi at some
periodic orbit in the circle γpi/qi

, an incoming end of multiplicity λ′j at some
periodic orbit in the circle γp′j/q′j

, and no other ends. There is an “endpoint

map”

ξ : M̃/R −→
k∏

i=1

γpi/qi
×

l∏

j=1

γp′j/q′j

which sends a flow line to the periodic orbits at its ends. Given C ∈ M̃, write

θ ◦ ξ(C) = (θ1, . . . , θk, θ
′
1, . . . , θ

′
l) ∈ (S1)k+l.

Lemma A.2 The endpoints of any C ∈ M̃ satisfy the linear relation

k∑

i=1

λiθi =

l∑

j=1

λ′jθ
′
j ∈ R/Z.

Proof It follows from (56) that the 2-form dt dy−ds dx on R×Yφ0
annihilates

any pair of tangent vectors of the form (v, J0v). Therefore
∫

C
dt dy =

∫

C
ds dx.

Now
∫
C ds dx = 0 by Stokes theorem, because the 1-form s dx vanishes along

the periodic orbits. Therefore
∫
C dt dy = 0. But

∫
C dt dy is just the area of the
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projection of C to the (t, y)-torus, and so under the identification (57),

∫

C
dt dy ≡

k∑

i=1

λiθi −
l∑

j=1

λ′jθ
′
j mod Z.

The reason is that modulo Z, the area of a homology in the (t, y)-torus between
a periodic orbit and a linear combination of the curves y = 0 and t = 0 is equal
to the right hand side of (57).

We now relate the perturbed setup to the unperturbed setup. As in [1], we can
perturb by choosing a Morse function fp/q on γp/q with one index 1 critical

point at h̃p/q and one index 0 critical point at ẽp/q . Then ẽp/q and h̃p/q get
perturbed into ep/q and hp/q . Under the identification (57), it will be convenient

below to choose θ
(
ẽp/q

)
= 0 for all p, q , and set θ

(
h̃p/q

)
equal to some fixed

irrational number ζ between 2/3 and 1.

Suppose (φn, Jn) is a sequence of generic such perturbations converging to the
unperturbed setup, for which genus 0 flow lines Cn exist from α to β . We
can pass to a subsequence such that all the Cn ’s have the same partitions at
the ends. Then a compactness argument as in [1] shows that there exist GFL’s
C ′

0, . . . , C
′
k for the unperturbed setup such that:

(i) There is a bijection between the outgoing ends of C ′
0 and the outgoing

ends of each Cn . If an outgoing end of each Cn is at ep/q , then the
corresponding end of C ′

0 is at ẽp/q .

(ii) For 0 ≤ i < k , there is a bijection between the incoming ends of C ′
i and

the outgoing ends of C ′
i+1 . For each such pair, both such ends are on

the same γp/q . Moreover, there is a downward flow line of fp/q from the
incoming end to the outgoing end.

(iii) There is a bijection between the incoming ends of C ′
k and the incoming

ends of each Cn . If an incoming end of each Cn is at hp/q , then the

corresponding end of C ′
k is at h̃p/q .

(iv) The surface obtained by gluing the C ′
i ’s together along their paired ends

from (ii) has the same topological type as the Cn ’s.

As in Proposition 3.12, the polygonal path determined by the outgoing ends of a
GFL cannot cross to the right of the polygonal path determined by the incoming
ends. This allows us to classify the possibilities for the curves C ′

0, . . . , C
′
k as

follows. Without loss of generality, β = hp′
1
/q′

1
hp′

2
/q′

2
hp′

3
/q′

3
, and α is a product

of ep/q ’s. Furthermore the curves C ′
0, . . . , C

′
k contain a total of at most two

Algebraic & Geometric Topology, Volume 5 (2005)



352 Michael Hutchings and Michael Sullivan

components that are not trivial cylinders or branched covers thereof. There
cannot be just one such component, because then that component would have
all outgoing ends at ẽp/q ’s and all incoming ends at h̃p/q ’s, which contradicts
Lemma A.2 since ζ is irrational. So there are two such components, call them
C+ and C− . We can order the factors in β so that C+ has outgoing ends
at some ẽp/q ’s and incoming ends at h̃p′

1
/q′

1
and some orbit xp0/q0

∈ γp0/q0
;

while C− has outgoing ends at some ẽp/q ’s and some orbit yp0/q0
∈ γp0/q0

, and

incoming ends at h̃p′
2
/q′

2
and h̃p′

3
/q′

3
. By Lemma A.2,

θ
(
xp0/q0

)
= −ζ ∈ (0, 1/3),

θ
(
yp0/q0

)
= 2ζ ∈ (1/3, ζ).

(58)

But by condition (ii) above, there is a downward flow line of fp0/q0
from

θ
(
xp0/q0

)
to θ

(
yp0/q0

)
. This contradicts (58), since fp0/q0

takes its maximum
at ζ and its minimum at 0.

(b) For φT
0 , the map (57) is not quite well-defined, but it does give a well-

defined two-to-one map γp/q → R/1
2Z. Then Lemma A.2 still holds in R/1

2Z.

In particular, if we choose θ
(
ẽp/q

)
= 0 and set θ

(
h̃p/q

)
equal to some fixed

irrational number, then there do not exist any GFL’s for (φT
0 , J0) with all

outgoing ends at ẽp/q ’s and all incoming ends at h̃p/q ’s.

Suppose (φn, Jn) is a sequence of generic perturbations as above converging
to the unperturbed setup, for which genus 1 flow lines Cn exist with a single
incoming end at a hyperbolic orbit hp/q of multiplicity one, and all outgoing
ends ellipitic. Since q is assumed fixed, there are only finitely many possibilities
for the ends of Cn , so we can pass to a subsequence such that the Cn ’s have
outgoing ends at the same elliptic orbits with the same multiplicities, and an
incoming end at the same hyperbolic orbit hp−/q− . Then as before, there exist
GFL’s C ′

0, . . . , C
′
k for the unperturbed setup satisfying conditions (i)–(iv) above.

Some component of some C ′
i must have genus 1. Otherwise all the C ′

i ’s lift to
the cylinder. As in Proposition 3.12, if a GFL for the cylinder has one incoming
end, then the outgoing ends have the same underlying polygonal path. So by
condition (iii) and downward induction on i, each C ′

i is a trivial cylinder on
h̃p−/q− . This leads to multiple contradictions.

Since the Cn ’s also have genus 1, it follows from condition (iv) that each com-
ponent of each C ′

i has only one incoming end. The genus zero components are
then branched covers of trivial cylinders as above. This means that the genus
1 component has an incoming end at h̃p−/q− and all outgoing ends at ẽp/q ’s.

This contradicts our choices of θ
(
ẽp/q

)
and θ

(
h̃p/q

)
.

Algebraic & Geometric Topology, Volume 5 (2005)



The periodic Floer homology of a Dehn twist 353

References

[1] F. Bourgeois, A Morse-Bott approach to contact homology, Symplectic and
contact topology: interactions and perspectives (Toronto, ON/Montreal, QC,
2001), 55–77, Fields Inst. Commun., 35, Amer. Math. Soc., Providence, RI,
2003. MathReview

[2] K. Cieliebak, I. Mundet i Riera, and D. A. Salamon, Equivariant moduli prob-

lems, branched manifolds, and the Euler class, Topology 42 (2003), 641–700.
MathReview

[3] S. K. Donaldson, Floer homology and algebraic geometry, Vector bundles in
algebraic geometry (Durham, 1993), 119–138, London Math. Soc. Lecture Note
Ser., 208, Cambridge Univ Press, 1995. MathReview

[4] E. Eftekhary, Floer cohomology of certain pseudo-Anosov maps on surfaces.
arXiv:math.SG/0205029

[5] Ya. Eliashberg, A. Givental, and H. Hofer, Ya. Eliashberg, A. Givental, and H.
Hofer, Introduction to symplectic field theory, Geom. Funct. Anal. 2000, Special
Volume, Part II, 560–673. MathReview

[6] A. Floer, Morse theory for Lagrangian intersections, J. Differential Geom. 28
(1988), no. 3, 513–547. MathReview

[7] K. Fukaya and K. Ono, Arnold conjecture and Gromov-Witten invariant , Topol-
ogy 38 (1999), no. 5, 933–1048. MathReview

[8] R. Gautschi, Floer homology of algebraically finite mapping classes, J. Symplec-
tic Geom. 1 (2003), 715–765. MathReview

[9] M. Hutchings, An index inequality for embedded pseudoholomorphic curves in

symplectizations, J. Eur. Math. Soc. 4 (2002), 313–361. MathReview

[10] M. Hutchings and Y-J. Lee, Circle-valued Morse theory, Reidemeister torsion,

and Seiberg-Witten invariants of 3-manifolds, Topology 38 (1999), no. 4, 861–
888. MathReview

[11] M. Hutchings and M. Sullivan, Rounding corners of polygons and the embedded

contact homology of T 3 . arXiv:math.SG/0410061

[12] M. Hutchings and M. Thaddeus, Periodic Floer homology, in preparation.

[13] S. Jabuka and T. Mark, Heegard Floer homology of certain mapping tori ,
Algebraic and Geometric Topology 4 (2004), 685–719. MathReview

[14] Y-J. Lee, Reidemeister torsion in symplectic Floer theory and counting pseudo-

holomorphic tori . arXiv:math.DG/0111313

[15] D. McDuff, Singularities and positivity of intersections of J -holomorphic curves,
pp. 191–216 in Holomorphic curves in symplectic geometry (M. Audin and F.
Lafontaine, ed.), Progress in Mathematics 117, Birkhäuser, 1994. MathReview
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