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1 Introduction

A contact structure on a 3–manifold M is a tangent 2–plane field ξ which is
the kernel of a differentiable 1–form α such that α∧ dα is a nowhere vanishing
3–form. Contact structures on 3–manifolds split into two families. A contact
structure ξ is overtwisted if there exists an embedded disc D ⊂ M such that
TD|∂D ≡ ξ|∂D . A contact structure is tight if it is not overtwisted. The disc D
is called, with an abuse of terminology, an overtwisted disc.

Overtwisted contact structures are much more common and flexible objects than
the tight ones, in fact any 3–manifold admits an overtwisted contact structure
and on a closed 3–manifold two overtwisted contact structures are isotopic if
and only if they are homotopic as plane fields (Eliashberg [7]). On the contrary,
the classification of tight contact structures is still at its beginning. For a survey
of contact structures, see [1, 8, 10, 16].

In the last decade there has been a dramatic growth of the three–dimensional
methods in contact topology starting from the definition of convex surfaces
in Giroux’s paper [15]. Convex surfaces are the main tool to perform cut-
and-paste operations on contact manifolds. Applying this technique, Kanda
[28] and, independently, Giroux, classified the tight contact structures on the
three–torus T 3 . Later, Honda [22] and Giroux [18] classified the tight contact
structures on lens spaces, the solid torus D2 × S1 and the thickened torus
T 2 × I . In [22], Honda introduced the notion of bypass, a tool which allows one
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to handle contact topological problems in a combinatorial way (see [22], Section
3.4). In this paper we will assume that the reader is familiar with the material
in [15] and [22].

The solid torus and the thickened torus can be thought of as basic building
blocks for a number of other three dimensional manifolds. In fact, shortly
after, Honda [23] gave a complete classification of tight contact structures on
T 2–bundles over S1 and S1–bundles over surfaces. At the same time Giroux
[19] obtained almost complete results on the same manifolds.

Other classification results are partial or sporadic. The most important of
them are the non existence of tight contact structures on the Poincaré homol-
ogy sphere with opposite orientation −Σ(2, 3, 5) in [11] and the coarse clas-
sification which characterises the three–manifolds which carry infinitely many
tight contact structures, [2, 3, 4, 26]. A complete classification is also known
for the Seifert manifolds over S2 with three singular fibres ±Σ(2, 3, 11), [13].
Moreover, there are partial results on fibred hyperbolic three–manifolds [27],
which are the only non Seifert manifolds in the list so far. During the prepara-
tion of this article tight contact structures have been classified on small Seifert
manifolds with integer Euler class e0 6= −2,−1, [14, 32].

Our aim is to give a complete isotopy classification of tight contact structures
on Seifert manifolds over the torus T 2 with one singular fibre. Fix e0 ∈ Z and
r ∈ (0, 1)∩Q, and let T (e0) be the circle bundle over T 2 with Euler class e0 . We
denote by M(e0, r) the Seifert manifold obtained by (−1

r )–surgery along a fibre
of T (e0). The tight contact structures on M(e0, r) and T (e0) split into two fam-
ilies, according to their behaviour with respect to the finite coverings induced by
a finite covering of T 2 . We will call generic those tight contact structures which
remain tight after pulling back to such coverings, and exceptional those ones
which become overtwisted. The set of isotopy classes of generic tight contact
structures on M(e0, r) splits into infinitely many sub-families parametrised by
the isotopy classes of the generic tight contact structures on T (e0). Each sub-
family contains finitely many isotopy classes of tight contact structures which
are obtained by Legendrian surgery on the generic tight contact structure on
T (e0) labelling the sub-family.

The isotopy classes of exceptional tight contact structures on M(e0, r) form
a finite family, whose cardinality depends on e0 and r . If e0 ≤ 0 there are
no exceptional tight contact structures on M(e0, r). If e0 ≥ 2, all exceptional
tight contact structures on M(e0, r) are obtained by Legendrian surgery on the
exceptional tight contact structures on T (e0) which, however, are not fillable
by [30]. If e0 = 1, the exceptional tight contact structures on M(e0, r) have
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no tight analogue on T (e0). They are obtained by Legendrian surgery on
overtwisted contact structures and there seems to be no natural way to express
them as Legendrian surgery on a tight contact structure. When e0 = 1, 2 the
exceptional tight contact structures show an unexpected interplay between the
corresponding contact structure on T (e0) and the surgery data. See Theorem
6.10.
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2 Statement of results

Let M be an oriented 3–manifold. The set of isotopy classes of tight contact
structures on M will be denoted by Tight(M). If ∂M 6= ∅, and F is a singular
foliation on ∂M , Tight(M,F) will denote the set of tight contact structures on
M which induce the characteristic foliation F on ∂M , modulo isotopies fixed
on the boundary. If F and G are two singular foliations on ∂M adapted to
the same dividing set Γ∂M , then Tight(M,F) and Tight(M,G) are canonically
identified, therefore we will write Tight(M,Γ∂M ) in place of Tight(M,F) for
any F adapted to Γ∂M .

Recall that we denote by T (e0), for e0 ∈ Z, the S1–bundle over T 2 with
Euler class e0 , and by M(e0, r), for r ∈ Q ∩ (0, 1), the Seifert manifold over
T 2 obtained by (−1

r )–surgery along a fibre R of T (e0). Here the surgery
coefficient is calculated with respect to the standard framing on R. More
explicitly, consider a tubular neighbourhood νR ⊂ T (e0) of R, and identify

−∂(T (e0) \ νR) to R2/Z2 so that

(
1
0

)
is the direction of the meridian of
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νR and

(
0
1

)
is the direction of the fibres. Then M(e0, r) is the manifold

obtained by gluing a solid torus D2 × S1 to T (e0) \ νR by the map

A(r) : ∂D2 × S1 → −∂(T (e0) \ νR)

represented by the matrix

A(r) =

(
α α′

−β −β′

)
∈ SL(2,Z)

where r = β
α and 0 ≤ α′ < α. The image of {0} × S1 ⊂ D2 × S1 in M(e0, r)

is called the singular fibre. The images of the fibres of T (e0) are called regular
fibres. See [12, 21, 31] for more about Seifert manifolds.

Let M be a Seifert manifold, possibly without singular fibres, with non simply
connected base. Let R ⊂ M be a curve isotopic to a regular fibre. In the
following such curve will be called a vertical curve. Following Kanda [28], we
define the canonical framing of R as the framing induced by any incompressible
torus T ⊂ M containing R. Unless stated otherwise, the twisting number
of Legendrian vertical curves will be calculated with respect to the canonical
framing.

Definition 2.1 Let M be a Seifert fibred manifold over an oriented non simply
connected surface. Given a regular fibre R ⊂ M and a contact structure ξ on
M , we define the maximal twisting number of ξ as

t(ξ) = max
L∈S

min{tb(L), 0}

where S is the set of all Legendrian curves L ⊂M isotopic to R.

It is clear that the number t(ξ) does not depend on the choice of R, and is an
isotopy invariant of ξ , therefore it defines a function

t : Tight(M) → Z≤0.

Seifert fibred manifolds over a surface of genus g > 0 have a distinguished
family of coverings: namely, the coverings induced by a covering of the base.

Definition 2.2 A tight contact structure on a Seifert fibred manifold M is
of generic type if it remains tight after pull-back with respect to any covering
of M induced by a finite covering of the base. A tight contact structure on
M is exceptional if it becomes overtwisted after pull-back with respect to any
covering of M induced by a finite covering of the base.
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We denote the set of the isotopy classes of the generic tight contact structures
on M by Tight0(M).

In the following theorem Γs will be a dividing set on T 2 with #Γs = 2 and
slope s. Every rational number −p

q < −1 has a unique finite continued fraction
expansion

−
p

q
= d0 −

1

d1 −
1

. . .− 1
dn

with di ≤ −2 for i > 0. We denote this expansion by −p
q = [d0, . . . , dn].

Theorem 2.3 All tight contact structures on M(e0, r) are either of generic
type or exceptional. There exists a map

bg : Tight0(M(e0, r)) −→ Tight0(T (e0))

such that, given ξ0 ∈ Tight0(T (e0)),

• bg−1(ξ0) = ∅ if t(ξ0) ≤ −1
r ,

• bg−1(ξ0) is in natural bijection with Tight(D2 × S1, A(r)−1Γ 1
t(ξ0)

) and

has cardinality |(d0 − t(ξ0))(d1 + 1) . . . (dn + 1)|, where [d0, . . . , dn] is the
continued fraction expansion of −1

r , if t(ξ0) > −1
r .

The exceptional tight contact structures exist only when e0 > 0 and all have
maximal twisting number t = 0. Their number is always finite and is

• 2|(d0 + 1) . . . (dk + 1)| if e0 > 2,

• |(d0 − 1)(d1 + 1) . . . (dk + 1))| if e0 = 2,

• |d1(d2 + 1) . . . (dk + 1)| if e0 = 1.

The last expression has to be interpreted as 2 when −1
r = d0 ∈ Z.

The map bg is constructed by removing a tubular neighbourhood of the singu-
lar fibre V such that −∂(M(e0, r) \ V ) is convex with slope 1

t(ξ) and glu-

ing D2 × S1 with the unique tight contact structure with boundary slope
1

t(ξ) to −∂(M(e0, r) \ V ) via the identity map. The identification of bg−1(ξ0)

with Tight(D2 × S1, A(r)−1Γ 1
t(ξ0)

) is given by the restriction (M(e0, r), ξ) 7→

(V, ξ|V ). The fact that the map bg and the restriction (M(e0, r), ξ) 7→ (V, ξ|V )
are well defined up to isotopy is part of the statement. Theorem 2.3 exhibits
each generic tight contact structure on M(e0, r) as a contact surgery in the
sense of [6] on a generic tight contact structure on T (e0). Moreover, the con-
dition t(ξ0) > −1

r implies that it is a negative contact surgery, which means
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that the surgery coefficient, calculated with respect to the contact framing, is
negative. The expression for the cardinality of bg−1(ξ0) is a consequence of the
following lemma, which is simply the classification of tight contact structures
on solid tori [22], Theorem 2.3 applied to ξ|V after a change of coordinates. For
benefit of the reader we sketch here how to deduce this lemma from Honda’s
Theorem.

Lemma 2.4 Tight(D2 × S1, A(r)−1Γ 1
t(ξ0)

) is a nonempty finite set with car-

dinality

|Tight(D2 × S1, A(r)−1Γ 1
t(ξ0)

)| = |(d0 − t(ξ0))(d1 + 1) . . . (dn + 1)|,

where [d0, . . . , dn] is the continued fraction expansion of −1
r .

Proof Let r′ = 1
1
r
+t(ξ)+1

so, by a direct check, A(r)−1Γ 1
t(ξ0)

and A(r′)−1Γ−1

have the same slope s′ . By [6], proof of Proposition 3, if − 1
r′ has the contin-

ued fraction expansion − 1
r′ = [d′0, . . . , d

′
n], then s′ has the continued fraction

expansion s′ = [r′n, . . . , r
′
0 + 1]. By [22], Theorem 2.3,

|Tight(D2 × S1, A(r)−1Γ 1
t(ξ0)

)| = |(d′0 + 1)(d′1 + 1) . . . (d′n + 1)|

provided that s′ < −1. As d′0 = d0 − (t(ξ) + 1) and d′i = di for i > 0, we have
s′ < dn + 1 ≤ −1 and |d′0(d

′
1 + 1) . . . (d′n + 1)| = |(d0 − t(ξ0))(d1 + 1) . . . (dn +

1)|.

3 Tight contact structures on T (e0)

The tight contact structures on T (e0) have been classified in [23] and in [18].
The material in this section is taken primarily from [23], adapting statements
and notation to our purposes. In order to fix terminology and notations, we
start with a digression about characteristic foliations on tori in tight contact
manifold before focusing on the classification of tight contact structures on
T (e0).

3.1 Characteristic foliation on tori

If T is a convex torus in a tight contact manifold (M, ξ), by Giroux’s Tight-
ness Criterion [22] Lemma 4.2, its dividing set ΓT contains no dividing curve
bounding a disc in T , therefore it consists of an even number of closed, parallel,
homotopically non trivial curves.
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Definition 3.1 If γ is a dividing curve of T , we call the quantity s(T ) = [γ] ∈
P(H1(T,Q)) the slope of the convex torus T .

The choice of an identification T ∼= R2/Z2 gives an identification P(H1(T,Q)) ∼=
Q ∪ {∞}, hence we will more often see the slope as a rational number.

Definition 3.2 We call the division number of T the number div(T ) = 1
2#ΓT .

If div(T ) = 1 we say that T is minimal.

Given a dividing set ΓT on a torus T in a tight contact manifold, there is a
canonical family of characteristic foliations adapted to ΓT . Fix a slope r 6= s(T )
and consider on T the singular foliation consisting of a 1-parameter family
of closed curves with slope r , called Legendrian rulings, and a closed curve
of singularities with slope s(T ) called Legendrian divide in each component of
T \ΓT . See Figure 3.1 for an illustration. A torus with a characteristic foliation
of this type is called a convex torus in standard form, or a standard torus.

Figure 3.1: Characteristic foliation on a convex torus in standard form with vertical
Legendrian ruling and two horizontal Legendrian divides

As an immediate consequence of Giroux’s Flexibility theorem, any convex torus
T with slope s(T ) in a tight contact manifold can be put in standard form with
ruling slope r by a C0 -small perturbation, provided that r 6= s(T ).

Sometimes we will need to consider non convex tori of a particular kind.

Definition 3.3 A pre-Lagrangian torus is a torus embedded in a contact man-
ifold, whose characteristic foliation after a change of coordinates is isotopic to
a linear foliation with closed leaves.

Suppose we have chosen coordinates on a neighbourhood of a pre-Lagrangian
torus T so that T = {y = 0}, and the characteristic foliation of T has slope
0. Then the contact form in a neighbourhood of T is given by dz − y dx. Pre-
Lagrangian tori can be perturbed into convex tori, as explained in the following
lemma.
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Lemma 3.4 Let T be a pre-Lagrangian torus whose characteristic foliation
has closed leaves with slope s. Then, for any natural number n > 0, T can
be put in standard form with 2n dividing curves with slope s by a C∞ -small
perturbation.

Proof Let T be the given pre-Lagrangian torus. Put coordinates (x, y, z) ∈
R/Z× I×R/Z in a tubular neighbourhood N of T such that T = {y = 0} and
the contact form is α = dz − y dx, then consider the embedding i : T 2 → N
given by i : (u, v) 7→ (u, ǫ sin(2πnv), v). After identifying T 2 with the image of
i, the characteristic foliation is given by the form i∗α = dv − ǫ sin(2πnv)du.

Fix the area form ω = du ∧ dv on T 2 , then the characteristic foliation is
directed by a vector field X such that ιX(ω) = i∗α. Since LXω = di∗α =
2πnǫ cos(2πnv)du ∧ dv , the set Γ = {LXω = 0} consists of 2n parallel simple
closed curves with slope 0. The vector field X expands ω where LXω is a
positive multiple of ω , and −X expands ω where LXω is a negative multiple
of ω , therefore, by [15] Proposition II.2.1, Γ is dividing set for the characteristic
foliation of T .

3.2 Tight contact structures with t < 0

Theorem 3.5 ([23], Lemma 2.7) If e0 < 0, then on T (e0) there are |e0 − 1|
distinct tight contact structures with t < 0.

By a direct check of the definition of such tight contact structures, see [23],
Case 9, it follows that only 2 of the |e0−1| are universally tight, but all remain
tight if lifted to a covering of T (e0) induced by a finite covering of the base T 2 .

Theorem 3.6 The tight contact structures with t < 0 on T (e0), when e0 < 0,
are Stein fillable.

Proof In [20] Gompf constructed |e0 − 1| Stein fillings of T (e0) when e0 ≤ 0:
see [20], Figure 36 (c) for a surgery presentation of the Stein filling of T (0) = T 3 .
When e0 ≤ −1, the Stein fillings of T (e0) are obtained by Legendrian surgery
on a stabilisation of the knot in [20], Figure 36(c). All the Stein fillings obtained
in such way are diffeomorphic to the disc bundle over T 2 with Euler class e0 ,
but their complex structures have different first Chern classes determined by
the rotation number of the Legendrian knot, as shown in [20], Proposition 2.3.
The tight contact structures induced on the boundary are pairwise non isotopic
by [29], Corollary 4.2.
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To prove Theorem 3.6, we need to show that the |e0−1| tight contact structures
on T (e0) induced by the different Stein structures described above have t < 0.
Let W be the disk bundle over T 2 with Euler class e0 , and D ⊂ W a fibre
with Legendrian boundary ∂D = K . The slice Thurston–Bennequin invariant
tbD(K) ∈ Z is defined in [29], Definition 3.1 as the obstruction to extending the
positively oriented normal of the contact structure restricted to K to a nowhere
vanishing section of the normal bundle of D . It can be defined equivalently as
the twisting number of K computed with respect to the framing induced on K
by the restriction of a nowhere vanishing section of the normal bundle of D .
The framing on the normal bundle of D induced by the disc bundle structure
over W restricts to the framing on the normal bundle of ∂D = K ⊂ T (e0)
induced by the circle bundle structure on T (e0).

The bundle framing of K coincides with the canonical framing, therefore the
Thurston–Bennequin number tbD(K) and the twisting number tb(K) defined
by the canonical framing coincide. By the slice Thurston–Bennequin inequality
[29], Theorem 3.4 tbD(K) ≤ −1 for any Legendrian knot K in (T (e0), ξ)
smoothly isotopic to a fibre of T (e0), therefore t(ξ) < 0. On the other hand
there are exactly |e0 − 1| tight contact structures on T (e0) with t < 0, so any
tight contact structure on T (e0) with t < 0 must be Stein fillable for cardinality
reasons.

For n ∈ N+ , let ζn be the tight contact structures on T 3 defined as

ζn = ker(sin(2πnz)dx + cos(2πnz)dy).

Theorem 3.7 (Giroux, [17]) For any n ∈ N+ , the contact structure ζn is
universally tight and weakly symplectically fillable. Moreover (T 3, ζn) is con-
tactomorphic to (T 3, ζm) if and only if n = m.

Theorem 3.8 ([28], Theorem 0.1) Any tight contact structure ξ on T 3 is
contactomorphic to ζn for some n.

Corollary 3.9 All tight contact structures on T 3 are universally tight and
weakly symplectically fillable.

Take a primitive vector (c1, c2, c3) ∈ Z3 with c3 6= 0 and complete it as the third
row of a matrix Φ ∈ SL(3,Z). The isotopy class of Φ−1

∗ ζn does not depend
on the choice of the first and second rows of Φ because the stabiliser of ζn in
SL(3,Z) acts transitively on them: see [28] Theorem 0.2.
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Definition 3.10 Let (c1, c2, c3) ∈ Z3 be a primitive vector and let n be a
positive natural number. We set ξ(n,c1,c2,c3) = Φ∗ζn .

By [28], Theorem 7.6, t(ξ(n,c1,c2,c3)) = −|nc3|.

Theorem 3.11 ([23], Lemma 2.6) The tight contact structures ξ(n,c1,c2,c3)

and ξ(n′,c′1,c′2,c′3)
are isotopic if and only if n = n′ and (c1, c2, c3) = ±(c′1, c

′
2, c

′
3).

Moreover, any tight contact structure ξ on T 3 with t(ξ) < 0 is isotopic to
ξ(n,c1,c2,c3) for some (n, c1, c2, c3) with c3 6= 0.

Theorem 3.12 ([23], Section 2.5 Case 5) If e0 > 0 there is no tight contact
structure ξ on T (e0) with t(ξ) < 0.

3.3 Tight contact structures with t = 0

Theorem 3.13 ([23], Section 2.2 and Lemma 2.5) The universally tight con-
tact structures on T (e0) with maximal twisting number t = 0 are in bijection
with the set N+ × P(H1(T

2; Q)).

The bijection in the theorem is given in the following way. T (e0) is also a
T 2–bundle over S1 . Consider a convex T 2–fibre with infinite slope (i.e. whose
dividing curves are isotopic in T (e0) to S1–fibres) and cut T (e0) along it obtain-
ing a T 2 × I with infinite boundary slopes. Make the boundary of T 2 × I stan-
dard with horizontal ruling, and take a convex horizontal annulus A ⊂ T 2 × I .
Gluing the boundary components of A together, we obtain a torus T with a
multicurve ΓT . Let n = div(T ) ∈ N+ , and s ∈ P(H1(T

2; Q)) the class of a
connected component of ΓT , then (n, s) is the element in N+ × P(H1(T

2; Q))
associated to the tight contact structure on T (e0).

Theorem 3.14 ([5], Proposition 16) The universally tight contact structures
on T (e0) with maximal twisting number t = 0 are all weakly symplectically
fillable.

Remark When e0 = 0, i. e. when T (e0) = T 3 , the maximal twisting number
t reflects no geometric property of the tight contact structure, but depends only
on the choice of a bundle structure T 3 → T 2 .

For T 3 we have
Tight(T 3) ∼= N+ × P(H2(T

3; Q)).
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A tight (T 3, ξ) corresponds to (n, [T ]) such that ξ is contactomorphic to ζn
and [T ] is the unique homology class represented by a pre-Lagrangian torus
in (T 3, ξ). The set N+ × P(H1(T

2; Q)) of the isotopy classes of the tight
contact structures on T 3 with maximal twisting number t = 0 embeds into
N+ × P(H2(T

3; Q)) as N+ ×H , where H ⊂ P(H2(T
3; Q)) is the hyperplane of

the homology classes represented by the fibred tori.

Theorem 3.15 ([23], Proposition 2.3) There exist virtually overtwisted con-
tact structures with t = 0 on T (e0) only when e0 > 1. There is one if e0 = 2
and two if e0 > 2.

The virtually overtwisted contact structures with maximal twisting number
t = 0 become overtwisted when pulled back to any covering of T (e0) induced
by a covering of the base T 2 and, by [30], are not weakly symplectically fillable.

4 Construction of the tight contact structures on

M(e0, r)

4.1 Thickening the singular fibre

Lemma 4.1 If ξ is a tight contact structure on M(e0, r) with maximal twist-
ing number t(ξ), then there exists a neighbourhood V of the singular fibre F
such that −∂(M(e0, r) \ V ) is convex with slope 1

t(ξ) . Moreover:

(1) If e0 < 0, then t(ξ) ≥ −1.

(2) If e0 = 0, then t(ξ) > −1
r .

(3) If e0 > 0, then t(ξ) = 0.

U

V

Figure 4.1: How to cut M \ (V ∪ U)
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Proof In the following, we will call M = M(e0, r). After an isotopy, we can
find a Legendrian regular fibre R with twisting number t(ξ). The singular fibre
F can be made Legendrian with a very low twisting number n. We choose a
standard neighbourhood V of F such that −∂(M \ V ) has slope

sV =
−nβ − β′

nα+ α′
= −

β

α
+

1

α(nα+ α′)
< −

β

α

where β
α = r and α′ , β′ are defined by 0 ≤ α′ < α and α′β − αβ′ = 1.

If t(ξ) = 0, choose a convex annulus A so that one boundary component is a
Legendrian ruling curve of ∂(M \ V ) and the other one is the Legendrian fibre
R with twisting number t(ξ). By the imbalance principle [22] Proposition 3.17,
we can perturb A so that it contains a bypass attached to ∂V . By using this
bypass we can thicken V as far as there are singular points on ∂A, therefore
we eventually get a solid torus V with infinite boundary slope.

When t(ξ) < 0, we choose a standard neighbourhood U of R such that −∂(M \
U) has boundary slope sU = −e0 + 1

t(ξ) . In the convex annuli in figure 4.1,

whose boundary components are Legendrian ruling curves of ∂(M \U), all the
dividing curves go from one boundary component to the other one, otherwise
there would be a bypass attached vertically to U which would increase the
twisting number of R by the twisting number lemma. When we cut M \(U∪V )
open along these two annuli, we obtain a thickened torus with corners as shown
in figure 4.2.

From slope e0 −
1

t(ξ) on ∂(M \ U) by [22], Lemma 3.11 we get, after rounding

the edges, slope e0+ 1
t(ξ) , so the thickened torus we have obtained has boundary

slopes s0 = sV < −r and s1 = e0 + 1
t(ξ) . If e0 + 1

t(ξ) > −r , we have s1 > s0 and

there is an intermediate torus with infinite slope by [22], Proposition 4.16. This
torus would contradict the assumption about the maximality of the twisting
number t(ξ) of R, therefore e0 + 1

t(ξ) ≤ −r . This implies that if e0 > 0

than t(ξ) = 0. If e0 + 1
t(ξ) = −r , there is an overtwisted disc in a tubular

neighbourhood of the singular fibre with boundary on a Legendrian divide with
slope −r . We now divide into cases according to the sign of e0 .

(1) If e0 < 0, then e0 + 1
t(ξ) < −1 < −r , therefore there is always an inter-

mediate torus with slope −1 which forces the maximal twisting number
t(ξ) to be greater than or equal to −1.

(2) If e0 = 0, then 1
t(ξ) < −r .
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In cases 1 and 2 we can find an intermediate convex torus with slope 1
t(ξ)

because 1
t(ξ) ∈ [e0 + 1

t(ξ) ,−r), and this torus bounds a neighbourhood V of the

singular fibre F such that −∂(M \ V ) has slope 1
t(ξ) .

V

Figure 4.2: The thickened torus with corners

Definition 4.2 Let (M(e0, r), ξ) be a tight contact manifold with maximal
twisting number t(ξ), and let V be a tubular neighbourhood of the singular
fibre F as in Lemma 4.1 such that −∂(M \V ) has slope 1

t(ξ) . Then the contact

manifold (M(e0, r)\V, ξ|M(e0,r)\V ) will be called a background of (M(e0, r), ξ).

Definition 4.3 If ξ0 is a contact structure on M \ V and η is a contact
structure on V which match along the boundary, we will denote the glued
contact structure on M by ξ0(η).

Generally, on a manifold with nonempty boundary we consider tight contact
structures up to isotopies fixed on the boundary. On the contrary, in the classifi-
cation of the backgrounds we will allow isotopies to move the boundary because
of the following lemma.

Lemma 4.4 Suppose that ξ1 and ξ2 are tight contact structures on M and
V ⊂ M is a solid torus with convex boundary with respect to both ξ1 and
ξ2 . If ξ1|M\V is isotopic to ξ2|M\V by an isotopy not necessarily fixed at the
boundary, and ξ1|V is isotopic to ξ2|V , then the contact structures ξ1 and ξ2
are isotopic.

Proof Let φs be the isotopy of M \ V such that φ0 is the identity and
(φ1)∗(ξ1|M\V ) = ξ2|M\V . We can extend φs to φ̃s on all of M so that φ̃0

is the identity on M and consider (φ̃1)∗(ξ1). By construction, (φ̃1)∗(ξ1|M\V ) =

ξ2|M\V , and by the classification of tight contact structures in [22], (φ̃1)∗(ξ1|V )
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is isotopic relative to the boundary to ξ2|V because they have the same bound-
ary slope and the same relative Euler class. Let ψs be an isotopy between
them, and ψ̃s its extension to M by putting it constantly equal to the identity
outside V , then φ̃s ◦ ψ̃s is an isotopy between ξ1 and ξ2 .

4.2 Tight contact structures with t < 0

In this section we present all tight contact structures ξ on M(e0, r) with t(ξ) <
0 as negative contact surgery on fillable contact structures on T (e0). This result
is obtained by showing that the background of (M(e0, r), ξ) is contactomorphic
to the complement of a standard neighbourhood of a vertical Legendrian curve
in T (e0). For conciseness of notation, in the following we will often write M
instead of M(e0, r).

Proposition 4.5 The background (M \ V, ξ|M\V ) of (M, ξ) with maximal
twisting number t(ξ) < 0 and integer Euler number e0 = 0 is contactomor-
phic to the complement of a standard neighbourhood of a vertical Legendrian
curve with twisting number t(ξ) in (T 3, ξ(n,c1,c2,c3)) for some (n, c1, c2, c3) ∈
N+ × P(H2(T

3,Q)). Moreover, (n, c1, c2, c3) is uniquely determined by the di-
viding sets of two non-isotopic, incompressible standard tori intersecting along
a common vertical Legendrian ruling curve with twisting number t(ξ).

Proof We choose a vertical Legendrian curve R with twisting number t(ξ)
in M \ V , and two standard tori T1 and T2 intersecting along R as in the
statement. Let ni be the division numbers and let pi

qi
be the slope of Ti .

These numbers satisfy the relations −niqi = t(ξ) for i = 1, 2 because tb(R) =
−1

2 |R ∩ ΓTi
|.

Take a small standard neighbourhood U of R such that Ti ∩∂U is Legendrian.
After cutting (M \V ∪U) along the two annuli Ti\U and rounding the edges as
shown in Figures 4.1 and 4.2, by [22], Lemma 3.11 we obtain a thickened torus
T 2 × I with minimal boundary and boundary slopes 1

t(ξ) . This thickened torus
is nonrotative, otherwise an intermediate standard torus with slope −r would
produce an overtwisted disc. By [22], Lemma 5.7, up to an isotopy which fixes
one boundary component, there is a unique nonrotative tight contact structure
on T 2 × I with minimal boundary and boundary slopes 1

t(ξ) , therefore there is

at most one tight contact structure on M \ V which induces on Ti a dividing
set with division number ni and slope pi

qi
for i = 1, 2.

Algebraic & Geometric Topology, Volume 5 (2005)



Tight contact structures on Seifert manifolds over T 2 799

Let n = (n1, n2) be the greatest common divisor and set c1 = −n1p1

n , c2 =

−n2p2

n and c3 = − t(ξ)
n . As their greatest common divisor is (c1, c2, c3) = 1, we

can complete
(
c1 c2 c3

)
to a matrix

Φ =



a1 a2 a3

b1 b2 b3
c1 c2 c3


 ∈ SL(3,Z)

Fix coordinates (x, y, z) on T 3 , and consider the contact structure ξ(n,c1,c2,c3) =
Φ−1
∗ ζn . We claim that (M \ V, ξ|M\V ) is contactomorphic to the complement

of a standard neighbourhood of a vertical Legendrian curve in (T 3, ξ(n,c1,c2,c3)).
In order to prove the claim, it is enough to show that the linear torus T1 ⊂

(T 3, ξ(n,c1,c2,c3)) generated by




1
0
0


 and




0
0
1


 has division number n1 and

slope p1

q1
, and the linear torus T2 ⊂ (T 3, ξ(n,c1,c2,c3)) generated by




0
1
0


 and




0
0
1


 has division number n2 and slope p2

q2
. Equivalently, we can work with

the tori A(Ti) ⊂ (T 3, ζn) generated by




ai

bi
ci


 and




a3

b3
c3


 for i = 1, 2. Since

ci 6= 0 for i = 1, 2, 3, there is a linear combination X of ∂
∂x and ∂

∂y transverse

to both A(T1) and A(T2). X is a contact vector field of (T 3, ζn) for each n,
and the set Σ = {p ∈ T 3 | X(p) ∈ ζn(p)} consists of 2n parallel copies of a
horizontal torus of the form {z ∈ Z}.

The embeddings ιi : T
2 → T 3 induced by the embeddings ι̃i : R2 → R3 given

by

ι̃i(u, v) =




ua3 + vai

ub3 + vbi
uc3 + vci




are parametrisations of A(Ti), for i = 1, 2. The dividing set ΓA(Ti) = Σ∩A(Ti)
is the image of 2n parallel copies of the set

{vci + uc3 ∈ Z} =

ni/n⋃

j=0

{−vpi + uqi ∈
jn

ni
Z},

which in turn consists of ni

n parallel copies of a curves with slope pi

qi
, therefore

the dividing set ΓA(Ti) is the same dividing set induced by ξ|M\V on Ti .
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Theorem 4.6 Any tight contact structure ξ on M(0, r) with t(ξ) ∈ (−1
r , 0)

is a negative contact surgery on a vertical Legendrian curve with twisting num-
ber t(ξ) in (T 3, ξ(n,c1,c2,c3)) for some (n, c1, c2, c3). Conversely, any contact
structure ξ(n,c1,c2,c3)(η) on M(0, r) obtained by negative contact surgery on
(T 3, ξ(n,c1,c2,c3)) is tight.

Proof The first half of the theorem comes from the previous proposition and
from −1

r < t(ξ). All contact structures ξ(n,c1,c2,c3)(η) obtained by negative
contact surgery on (T 3, ξ(n,c1,c2,c3)) are tight because all tight contact structures
on T 3 are weakly symplectically fillable by Corollary 3.9.

Theorem 4.7 Let ξ(n,c1,c2,c3)(η) be a tight contact structure on M(0, r) ob-
tained by negative contact surgery on a vertical Legendrian curve in the tight
contact manifold (T 3, ξ(n,c1,c2,c3)). Let π∗ξ(n,c1,c2,c3)(η) be the contact struc-
ture on M(0, r, . . . , r) obtained as pull-back of ξ(n,c1,c2,c3)(η) with respect to
the finite covering

π : M(0, r, . . . , r) →M(0, r)

induced by a finite covering of T 2 . Then π∗ξ(n,c1,c2,c3)(η) is tight.

Proof Let ξ̃(n,c1,c2,c3) be the pull-back of ξ(n,c1,c2,c3) with respect to the the
finite covering of T 3 induced by the finite covering of T 2 . By construction,
π∗ξ(n,c1,c2,c3)(η) is the contact structure ξ̃(n,c1,c2,c3)(η, . . . , η), obtained by neg-
ative contact surgery along a finite number of fibres of T 3 .

The contact structure ξ̃(n,c1,c2,c3) is tight because all tight contact structures on
T 3 are universally tight, so it is also weakly symplectically fillable by Corollary
3.9. The contact manifold (M(0, r, . . . , r), ξ̃(n,c1,c2,c3)(η, . . . , η)) is obtained by
negative contact surgery on a weakly symplectically fillable contact manifold,
therefore it is tight.

Proposition 4.8 Let ξ be a tight contact structure with maximal twisting
number t(ξ) = −1 on the Seifert manifold M = M(e0, r) with integer Euler
number e0 < 0. Then any background (M \ V, ξ|M\V ) is contactomorphic to
the complement of a standard neighbourhood of a vertical Legendrian curve
with twisting number −1 in (T (e0), ξ0), where ξ0 is a tight contact structure
with t(ξ0) = −1.

Proof Let T ⊂ M \ V be a standard vertical torus so that the manifold
M \ (T ∪ V ) is diffeomorphic to Σ0 × S1 , where Σ0 is a pair of pants. We can
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assume that T has vertical Legendrian ruling and its dividing set intersects the
Legendrian ruling curves in two points. If this were not the case, an annulus A
between a Legendrian ruling curve of T and a Legendrian ruling curve of ∂(M \
V ) would give a bypass along T by the Imbalance Principle [22] Proposition
3.17, therefore we could decrease the number of intersection points between the
dividing set and the Legendrian ruling curves of T .

Let T+ and T− be the boundary tori of ∂(M \ (V ∪ T )) corresponding to T .
ξ|M\(V ∪T ) is a tight contact structure with boundary slopes 1 on ∂(M \ V ),
n on T+ , and −n + e0 on T− . Since the sum of the slopes is 1 + e0 ≤ 0
and there are no vertical Legendrian curves with twisting number 0, by [23],
Lemma 5.1 case 4(b), there are 1− e0 tight contact structures on Σ0 ×S

1 with
those boundary slopes. Such contact structures are constructed by removing a
standard neighbourhood of a vertical Legendrian curve with twisting number
−1 from a minimally twisting T 2× I with boundary slopes n−e0 and n. Note
here the effect of the orientation reversing identification T− ∼= T 2 × {0} on the
slope. We can also assume that the standard neighbourhood of the vertical
Legendrian curve is removed from an invariant collar of the boundary.

To have M back from M \ T , we glue T+ to −T− by the map A(e0) =(
1 0

−e0 1

)
, therefore, by comparing with the construction in [23], section 2.5,

case 9, (M \ V, ξM\V ) is the complement of a vertical Legendrian curve with
twisting number −1 in a circle bundle over the torus with Euler class e0 with
a tight contact structure with maximal twisting number t = −1.

Given any slope s ∈ [s(−T−), s(T+)], we can find a convex torus T ′ ⊂M \ (T ∪
V ) with slope s such that T− and T ′ bound a thickened torus T 2 × [0, 1

2 ] ⊂
M \ (T ∪V ). Choose s = n−1, then remove T 2× [0, 1

2 ] from M \T and glue it
back with A(e0) to the front, so that M \T ′ has boundary slopes n−e0−1 and
n− 1. Here one component of ∂(M \ T ′) is oriented with the outward normal
and the other one with the inward normal. In a similar way we can replace n
with n+ 1, so we have proved that the tight contact structure on M does not
depend on n.

Conversely, given any tight contact structure ξn on T (e0) with t(ξn) = −1, for
n ∈ Z/(1 − e0)Z any negative contact surgery (M(e0, r), ξn(η)) is tight.

Theorem 4.9 Let e0 < 0. Any tight contact structure with t = −1 on
M(e0, r) is negative contact surgery on a tight contact structure with t = −1
on T (e0). Conversely, given any tight contact structure ξn on T (e0) with
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t(ξn) = −1, for n ∈ Z/(1− e0)Z any negative contact surgery (M(e0, r), ξn(η))
is tight.

Proof Any tight contact structure with t = −1 on M(e0, r) is negative contact
surgery on a tight contact structure ξn with t = −1 on T (e0) because −1

r <
−1. Conversely, any negative contact surgery on (T (e0), ξn) is tight by [6],
Proposition 3 because (T (e0), ξn) is Stein fillable.

Theorem 4.10 Let π∗ξn(η) be the contact structure on M(ke0, r, . . . , r) ob-
tained as pull-back of ξn(η) with respect to a degree k finite covering

π : M(ke0, r, . . . , r) →M(e0, r)

induced by a covering of T 2 . Then π∗ξn(η) is tight.

Proof By construction, π∗ξn(η) = ξ̃n(η, . . . , η), where ξ̃n is the pull-back of
ξn to T (ke0). By [23], Section 2.5, Case 9, ξ̃n is a tight contact structure with
maximal twisting number t(ξ̃n) = −1, hence it is Stein fillable by Theorem
3.6. The contact manifold (M(ke0, r, . . . , r), ξ̃n(η, . . . , η)) is tight because it
is obtained by negative contact surgery on the Stein fillable contact manifold
(T (ke0), ξ̃n).

4.3 Tight contact structures with t = 0

In this subsection we construct all tight contact structures ξ on M(e0, r) with
maximal twisting number t(ξ) = 0. By Lemma 4.1, there is a tubular neigh-
bourhood V of the singular fibre such that −∂(M(e0, r) \ V ) is a convex torus
with infinite slope. M(e0, r)\V is diffeomorphic to Σ×S1 , where Σ is a punc-
tured torus. We will abusively identify Σ with the image of a section Σ → Σ×S1

and assume it is convex with Legendrian boundary and #Γ–minimising in its
isotopy class.

The dividing set ΓΣ of Σ consists of one arc with endpoints on ∂Σ and some
simple homotopically nontrivial closed curves.

Definition 4.11 We define an abstract dividing set on an oriented surface Σ
as a multicurve ΓΣ together with a map π0(Σ \ ΓΣ) → {+,−} such that any
connected component of ΓΣ belongs to the boundary of both a positive and a
negative region. We say that an abstract dividing set is tight if its underlying
multicurve does not have closed, homotopically trivial connected components.
We say that it is overtwisted if it is not tight.
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In the following, we will almost always use the same symbol for both an abstract
dividing set and for its underlying multicurve. However, we will always specify
what we are referring to, whenever it is relevant.

Definition 4.12 Given an abstract dividing set ΓΣ on Σ, we denote by ξΓΣ

the S1–invariant contact structure on Σ × S1 which induces the dividing set
ΓΣ on a convex #Γ–minimising section.

By Giroux’s tightness criterion, [23] Lemma 4.2, ξΓΣ
is tight (and in fact univer-

sally tight) if and only if ΓΣ is a tight abstract dividing set. By [23], Section 4.3,
(M(e0, r) \ V, ξ|M(e0,r)\V ) is contactomorphic to an S1–invariant tight contact
manifold (Σ × S1, ξΓΣ

). We call η = ξ|V and ξ = ξΓΣ
(η).

We recall that we have chosen the basis on −∂(M(e0, r) \ V ) so that ∂Σ has
slope e0 and the fibres have infinite slope and the basis on −∂(Σ×S1) so that
∂Σ has slope 0 and the fibres have infinite slope.

Proposition 4.13 Let ξ be a tight contact structure on M(e0, r) with maxi-
mal twisting number t(ξ) = 0 and fix a diffeomorphism M \V ∼= Σ×S1 so that
Σ is #Γ–minimising. If e0 ≤ 0, then ΓΣ has no boundary parallel dividing
curves. If e0 > 0 and ΓΣ has a boundary parallel dividing curve, then #Γ = 1.

Proof If Γ contains a boundary parallel dividing arc, then there is a singular
bypass on Σ by [22], Proposition 3.18. By [22], Lemma 3.15, attaching this
bypass to −∂(M \ V ) we thicken V to V ′ so that −∂(M \ V ′) has slope e0 .
If #Γ ≥ 2, and p ∈ Σ belongs to some other dividing curve, then {p} × S1 is
a Legendrian fibre with twisting number 0 because ξ|M\V is S1–invariant by
[23], section 4.3. Applying the Imbalance principle, [22], Proposition 3.17, we
use this curve to find a vertical bypass attached to ∂(M \V ′). The attachment
of this bypass gives a further thickening of V ′ to V ′′ so that −∂(M \ V ′′) has
infinite boundary slope again. By [22], Proposition 4.16, there is a standard
torus with slope −r in V ′′ \ V . This torus produces an overtwisted disc.

If #Γ = 1, we pick a simple closed curve C ⊂ Σ\V ′ which does not disconnect Σ
and is disjoint from the dividing curve. By the Legendrian Realization Principle,
[22], Theorem 3.7, we can arrange the characteristic foliation on Σ so that C is
a closed leaf. Because of the S1–invariance of ξ|M\V , C×S1 is a pre-Lagrangian
torus with slope 0. By Lemma 3.4 we can perturb this torus in order to obtain
a convex torus T in standard form with slope 0 and two dividing curves. The
torus T can be assumed to be disjoint from V ′ because C is disjoint from the
boundary parallel dividing arc producing the bypass.
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If we cut M \V ′ open along T , we obtain Σ0×S
1 , where Σ0 is a pair of pants,

and all the three boundary tori have slope 0 calculated with respect to the
product structure on Σ0 ×S1 . Let T± be the two boundary tori corresponding
to T , and take a convex vertical annulus A with Legendrian boundary between
T+ and T− . If the dividing curves on A do not go from T+ to T− , then there is
a vertical bypass along T . The attachment of this bypass produces a torus T ′

with infinite slope. Using a vertical Legendrian divide of T ′ we can thicken V ′

to V ′′ so that −∂(M \ V ′′) has infinite slope again, thus obtaining a standard
torus with slope −r in V ′′ \V . Again, this torus produces an overtwisted disc.
If the dividing curves on A go from one boundary component to the other, then,
after cutting along A and rounding the edges, by [22], Lemma 3.11 we obtain
a torus with slope −1 parallel to −∂(Σ×S1) which has slope e0 −1 calculated
with respect to the basis of −∂(M \ V ). If e0 ≤ 0, by [22], Proposition 4.16,
there is a convex torus with slope −r parallel to −∂(M \ V ) which gives an
overtwisted disc.

Proposition 4.14 Let Σ be a punctured torus and ΓΣ a tight abstract divid-
ing set on Σ without boundary parallel dividing arcs. Then (Σ × S1, ξΓΣ

) can
be contact embedded into a tight contact manifold (T (e0), ξΓΣ

) as the comple-
ment of a standard neighbourhood of a vertical Legendrian curve with twisting
number 0.

Proof Take a curve C ⊂ Σ so that C intersect each dividing arc in one single
point. If we make C Legendrian using the Legendrian realisation principle
[22] Corollary 3.8, the torus T = C × S1 is in standard form with infinite
slope because ξΓΣ

is S1–invariant. The contact structure ξΓΣ
restricted to

Σ×S1 \T is still S1–invariant and ΓΣ\C = ΓΣ \C is a #Γ–minimising section
of Σ × S1 \ T . Let S be the surface diffeomorphic to an annulus obtained by
gluing a disc D to the boundary component of Σ \ C corresponding to ∂Σ,
and let ΓS be the natural extension of ΓΣ\C to an abstract dividing set on S .
The S1–invariant tight contact manifold (S×S1, ξΓS

) is contactomorphic to an
I –invariant tight contact structure on T 2 × I by [22], Theorem 2.3(4) because
ΓS consists of parallel arcs joining the two different boundary components of
S . The S1–invariant contact manifold (D × S1, ξΓD

) is a tight solid torus
with infinite boundary slope and #Γ∂D×S1 = 2. By [22] Theorem 2.3 there is a
unique tight contact structure with such boundary conditions on the solid torus,
therefore it is contactomorphic to a standard neighbourhood of a Legendrian
curve with twisting number 0. Gluing T 2 × {0} to T 2 × {1} with the matrix(

1 0
−e0 1

)
we get a tight contact structure on T (e0) which we call ξΓΣ

again,
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then (Σ × S1, ξΓΣ
) contact embeds in (T (e0), ξΓΣ

) as the complement of a
vertical Legendrian curve with twisting number 0.

Theorem 4.15 let ΓΣ be a tight abstract dividing set on a punctured torus
Σ without boundary parallel dividing arcs, and let νL ⊂ (T (e0), ξΓΣ

) be a
standard neighbourhood of a vertical Legendrian curve L with twisting number
0. Then, for any tight contact structure η on D2 × S1 whose characteristic
foliation on ∂D2 × Σ is mapped by

A(r) : ∂(D2 × S1) → −∂(T (e0) \ νL)

to the characteristic foliation of −∂(T (e0) \ νL), the contact structure ξΓΣ
(η)

on M(e0, r) is tight.

Proof By Proposition 4.14, the contact manifold (M, ξΓΣ
(η)) is obtained by

negative contact surgery on (T (e0), ξΓΣ
), which is a weakly symplectically fil-

lable contact manifold by Theorem 3.14 because it is universally tight by S1–
invariance.

Proposition 4.16 Let Γ+
Σ and Γ−

Σ be the two tight abstract dividing sets
on the punctured torus Σ with underlying multicurve ΓΣ with no boundary
parallel dividing arcs. Then, for any tight contact structure η on D2 × S1 as
in Theorem 4.15, (M(e0, r), ξΓ+

Σ
(η)) is isotopic to (M(e0, r), ξΓ−

Σ
(η)).

Most of the proof of Proposition 4.16 relies on the following lemma.

Lemma 4.17 Let ΓT 2 be a tight abstract dividing set on T 2 , and γ1 , γ2 ⊂ T 2

dividing curves bounding a negative (positive) region C ⊂ T 2 . Given points
pi ∈ γi , for i = 1, 2, the curves {pi} × S1 in (T 3, ξΓ

T2 ) are Legendrian and

have twisting number tb({pi} × S1) = 0. If L1 and L2 are positive (negative)
stabilisations of {p1} × S1 and {p2} × S1 respectively, then they are contact
isotopic.

Proof The curves {pi}×S
1 are Legendrian because (T 3, ξΓT2 ) is S1–invariant.

Let (T 2 × [0, 1
2 ], ξ) be a positive (negative) basic slice with standard boundary

and boundary slopes s0 = 0 and s 1
2

= ∞, contact embedded in (T 3, ξΓT2 ) so

that {p1} × S1 is a Legendrian divide of T 2 × {1
2} and T 2 × {0} ⊂ C × S1 .

Make the Legendrian ruling of T 2×{0} vertical, and consider a convex vertical
annulus A between {p1} × S1 ⊂ T 2 × {1

2}, and a vertical Legendrian ruling
curve of T 2 × {0}. The dividing set of A consists of a single dividing arc with
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both endpoints on T 2 × {0}, and the simply connected region of A \ ΓA is
positive (negative). Then, by [9], Lemma 2.20, a vertical Legendrian ruling
curve of T 2 × {0} is a positive (negative) stabilisation of {p1} × S1 . From the
well-definedness up to isotopy of the stabilisation, it follows that L1 is contact
isotopic to a vertical Legendrian ruling curve of T 2 × {0}. We can repeat the
same argument with a basic slice ¡(T 2 × [0, 1

2 ], ξ) with the same sign and the
same boundary slopes so that {p2}×S

1 is a Legendrian divide of T 2×{1
2}, and

conclude that L2 is contact isotopic to a vertical Legendrian ruling of T 2×{0}.
Then L1 and L2 are Legendrian isotopic.

Proof of Proposition 4.16 Let V ⊂ M(e0, r) be a tubular neighbourhood
of the singular fibre such that (M(e0, r) \V, ξΓ±

Σ
(η)|M(e0,r)\V ) = (Σ×S1, ξΓ±

Σ
),

and (V, ξΓ±

Σ
(η)|V ) is contactomorphic to (D2 × S1, η). We can find a solid

torus V ′ ⊂ V such that −∂(M(e0, r)\V
′) has slope −1 because −1

r < −1. By
proposition 4.14, (Σ×S1, ξΓ±

Σ
) is the complement of a vertical Legendrian curve

{p1} × S1 with twisting number 0 with p1 ∈ γ1 , where γ1 is the completion in
T 2 of the dividing arc in Σ. Analogously, (M(e0, r) \ V

′, ξΓ±

Σ
(η)|M(e0,r)\V ′) =

(M(e0, r) \ V
′, ξ±) is the complement of a vertical Legendrian curve L1 with

twisting number −1 which is a stabilisation of {p1} × S1 by [9], Lemma 2.20.
The sign of the stabilisation is determined by the sign of the basic slice V \V ′ . In
order to fix the notation, let us suppose it is positive. We claim that (M(e0, r)\
V ′, ξ+) is contact isotopic to (M(e0, r) \ V

′, ξ−). Since our argument will be
semi-local, we can assume without loss of generality that T (e0) is a trivial
S1–bundle.

Let γ2 be another dividing curve on T 2 such that γ1 and γ2 bound a positive
region. Choose a point p2 ∈ γ2 and consider the vertical Legendrian curve
{p2}×S

1 and its positive stabilisation L2 . Then the complement of a standard
neighbourhood of L2 in (T (e0), ξΓ+

Σ
) is contactomorphic to (M(e0, r)\V

′, ξ−).

By Lemma 4.17, L1 and L2 are Legendrian isotopic, therefore, by [9], Theorem
2.12, there is a contact isotopy ϕt : (T (e0), ξΓ+

Σ
) → (T (e0), ξΓ+

Σ
) such that ϕ0 =

id and ϕ1(L1) = L2 . This implies that ϕ1(M(e0, r)\V
′) is the complement of a

standard neighbourhood of L2 , so (ϕt|M(e0,r)\V ′)∗ξΓ+
Σ

is a 1–parameter family

of contact structures on M(e0, r) \ V
′ all with the same boundary condition

joining ξ+ to ξ− . By Gray’s Theorem, this implies that (M(e0, r)\V
′, ξ+) and

(M(e0, r) \ V
′, ξ−) are contact isotopic.

Theorem 4.18 Let π∗ξΓΣ
(η) be the contact structure on M(ke0, r, . . . , r)

obtained by pull-back of ξΓΣ
(η) with respect to a degree k finite covering

π : M(ke0, r . . . , r) →M(e0, r)
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induced by a covering of T 2 . Then π∗ξΓΣ
(η) is tight when #ΓΣ > 1 and is

overtwisted when #ΓΣ = 1.

Proof By construction, π∗ξΓΣ
(η) = ξΓeΣ(η, . . . , η), where ΓeΣ is the pull-back of

ΓΣ with respect to the finite cover of T 2 (we remind that the inclusion ι : Σ →
T 2 can be lifted to an inclusion ι̃ : Σ̃ → T 2). If #ΓΣ > 1, then ΓΣ contains no
boundary parallel arcs. In this case, ΓeΣ does not contain boundary parallel di-
viding curves either, then the contact manifold (M(ke0, r, . . . , r), ξΓeΣ(η, . . . , η))
is obtained by negative contact surgery on the weakly symplectically fillable con-
tact manifold (T (ke0), ξΓeΣ), therefore ξΓeΣ(η, . . . , η)) is tight. If #ΓΣ = 1, then
ΓeΣ consists of k boundary parallel arcs, one for each boundary component of

Σ̃. When #Γ > 1 a boundary parallel dividing arc produces an overtwisted disc
as in the proof of Proposition 4.13, therefore ξΓeΣ(η, . . . , η)) is overtwisted.

5 Classification of the generic tight contact struc-

tures

5.1 Tight contact structures with t < 0

Theorem 5.1 Let e0 < 0. The tight contact manifolds (M(e0, r), ξn(η))
and (M(e0, r), ξm(η′)) obtained by negative contact surgery on (T (e0), ξn) and
(T (e0), ξm) respectively are isotopic if and only if m = n and η is isotopic to
η′ relative to the boundary.

Proof By Theorem 3.5 there are |e0 − 1| choices for the background and by
Lemma 2.4, there are |(d0 + 1) . . . (dk + 1)| choices for η . On the other hand,
Theorem 5.4 in [20] shows how to produce Stein fillings (W,J) for M(e0, r).
As a smooth manifold, W is the same for all the Stein fillings, and choosing
all possible rotation numbers in the Legendrian realisation of the surgery link
presenting W , by [20], Proposition 2.3, we obtain |(e0 − 1)(d0 + 1) . . . (d0 + k)|
Stein structures on W with different c1(J). By [29], Corollary 4.2, these Stein
structures induce |(e0 −1)(d0 +1) . . . (d0 +k)| mutually non isotopic tight tight
contact structures on T (e0).

Now we turn our attention to the tight contact structures on M(0, r) with
t < 0. The result proved here is a generalisation of Theorem 4.7 in [25] for
the part concerning the distinction of the tight contact structures obtained by
negative contact surgery on T 3 . We start with a preliminary digression about

Algebraic & Geometric Topology, Volume 5 (2005)



808 Paolo Ghiggini

negative contact surgery on nonrotative tight contact structures on T 2× I . We
fix a S1–bundle structure T 2×I → S1×I and, consequently, a Seifert fibration
M ′ → S1×I with one singular fibre F on any manifold M ′ obtained by surgery
along a fibre of T 2 × I .

Proposition 5.2 Let ξ be a nonrotative tight contact structure on T 2×I and
r a rational number such that −1

r < t(ξ). Let L ⊂ (T 2 × I, ξ) be a vertical
Legendrian curve with twisting number tb(L) = t(ξ) and (M ′, ξ(η)) a contact
manifold obtained from (T 2 × I, ξ) by contact surgery along L with surgery
coefficient −1

r with respect to the canonical framing. Then ξ(η) is tight and
any two properly embedded convex vertical annuli A0 , A1 with common Legen-
drian boundary are contact isotopic, possibly after perturbing the characteristic
foliation of A1 . In particular, ΓA0 is isotopic to ΓA1 and ξ(η)|M ′\Ai

is isotopic
to η for i = 0, 1.

Proof The contact structure ξ(η) is tight by [6], Proposition 3 because (T 2 ×
I, ξ) can be contact embedded into a weakly symplectically fillable contact
manifold.

First we prove that, if A0 and A1 are disjoint from the surgery support, then
ΓA0 is isotopic to ΓA1 . In this case, we can think of A0 and A1 also as convex
annuli in (T 2 × I, ξ). Passing to a finite covering in the horizontal direction,
we can assume that ξ is nonrotative with integer boundary slopes, therefore,
by [22], Lemma 5.7, ΓA0 is isotopic to ΓA1 .

Now we turn to the proof of the general case. We can assume without loss
of generality that one of the two annuli, say A0 , is disjoint from the surgery
support. If this is not the case, we introduce a third annulus A2 disjoint from
the surgery support and isotope A0 to A2 first, and then isotope A2 to A1 . By
Isotopy discretisation [25], Lemma 3.10, there is a sequence of convex vertical
annuli A0, . . . , A i

n
, . . . , An

n
= A1 all with the same Legendrian boundary such

that A i+1
n

is obtained from A i
n

by attaching a single bypass. By the following

Lemma 5.3, if A i
n

is disjoint from the surgery support, we can find another

contact surgery presentation of (M ′, ξ(η)) with surgery support disjoint from
both A i

n
and A i+1

n
. Once A i

n
and A i+1

n
are disjoint from the surgery support,

we can conclude that ΓA i
n

is isotopic to ΓA i+1
n

, so the bypass between A i
n

and

A i+1
n

is trivial. By the triviality of trivial bypass attachments, [25], Lemma

2.10, ξ(η) restricted to the layer between A i
n

and A i+1
n

is invariant, therefore

A i
n

and A i+1
n

are contact isotopic, possibly after perturbing the characteristic

foliation of A i+1
n

.
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Lemma 5.3 Let A0 and A1 be convex annuli in M ′ as in the statement of
Proposition 5.2 such that they intersect only at the boundary. Also assume that
A0 is disjoint from the surgery support V . Then we can find another contact
surgery presentation of (M ′, ξ(η)) such that the surgery support is disjoint
from both A0 and A1 .

Proof Let N be the component of M ′ \ (A0 ∪A1) homeomorphic to D2 ×S1 .
By the monotonicity of the slope, [22], Proposition 4.16, M ′ \N has boundary
slope p

q ∈ [ 1
t(ξ) ,−r) because M ′ \N ⊂M ′ \A0 . Let γ be a vertical Legendrian

curve contained in ∂(M ′ \N), then q ≤ 1
2#(γ ∩ Γ∂(M ′\N)). In particular, if we

take γ ⊂ A0 , then 1
2#(γ ∩ Γ∂(M ′\N)) = −t(ξ), so q ≤ −t(ξ). This is possible

only if p
q = 1

t(ξ) , therefore there is a solid torus V ′ ⊂ M ′ \ N with convex

boundary with slope − 1
t(ξ) such that (M ′ \ V ′, ξ(η)|M ′\V ′) is contactomorphic

to the complement of a standard neighbourhood of a vertical Legendrian curve
L′ with twisting number tb(L′) = t(ξ) in (T 2 × I, ξ). In fact, we can identify
M ′\V ′ and T 2×I\νL so that ∂V corresponds to ∂(νL). Then, both ξ(η)|M ′\V ′

and ξ|T 2×I\νL have the same boundary slopes, induce the same dividing set on
A0 and, after cutting along A0 and rounding the edges, yield a nonrotative
tight contact structure on T 2 × I with slope 1

t(ξ) . By [22], Lemma 5.7, there

is only one such tight contact structure on T 2 × I up to contactomorphism,
therefore ξ(η)|M ′\V ′ and ξ|T 2×I\νL are contactomorphic.

Let T1 , T2 ⊂ (M(e0, r), ξ(n,c1,c2,c3)(η)) be convex tori in the direction (x, z)
and (y, z) disjoint from the surgery support V such that their intersection is
a common vertical Legendrian ruling curve R with twisting number t: see
Figure 4.1. Let si be the slope of Ti and ni its division number. The fact that
R = T1 ∩ T2 is a common Legendrian ruling curve implies that the intersection
between R and ΓTi

is minimal for both i = 1, 2. Let U ⊂ V be a solid torus
such that −∂(M \ U) is convex and has slope 1

d0+1 , where d0 = [−1
r ].

Proposition 5.4 Let T ′ ⊂ M = M(e0, r) be a standard torus isotopic to T1

with vertical Legendrian ruling. Then:

(1) T ′ has slope s1 and division number n′ ≥ n1 .

(2) Any convex torus T ′′ intersecting T ′ in a vertical Legendrian ruling curve
of T ′ is contact isotopic to T2 , possibly after perturbing its characteristic
foliation.

Proof To simplify the notation, in the proof we will fix ξ = ξ(n,c1,c2,c3)(η).
By Isotopy Discretisation [25] Lemma 3.10, there is a sequence of convex tori
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T1 = T(1), . . . , T(n) = T ′ such that T(i+1) is obtained from T(i) by attaching a
bypass. In particular, T(i+1) and T(i) bound Ni diffeomorphic to T 2 × I . We
can assume inductively that T(i) satisfies:

(1) s(T(i)) = s1 and div(T(i)) ≥ n1 .

(2) There is a solid torus Ui ⊂ M \ T(i) isotopic in M to U such that

−∂(M \ Ui) is convex with slope 1
d0+1 .

(3) ξ|Ui
is isotopic to ξ|U and ξ|M\Ui

is isotopic to ξ|M\U .

(4) There is a convex vertical annulus Ai ⊂M \T(i) with Legendrian bound-

ary on ∂(M \ T(i)) such that A closes to a convex torus Ai ⊂M contact
isotopic to T2 .

We observe that the inductive hypotheses are satisfied for T1 taking as A0

the annulus obtained by cutting T2 open along R = T1 ∩ T2 , and U0 = U .
Assumptions 2 and 3 imply that (M \ Ti, ξ|M\Ti

) is negative contact surgery
along a vertical Legendrian curve in T 2 × I with a nonrotative tight contact
structure, therefore all vertical annuli as in assumption 4 have the same dividing
set by Proposition 5.2.

A priori there are three kinds of transitions from T(i) to T(i+1) :

(1) div(T(i)) = div(T(i+1)) = 1 and s(T(i+1)) 6= s1

(2) s(T(i+1)) = s1 and div(T(i+1)) = div(T(i)) + 1

(3) s(T(i+1)) = s1 and div(T(i+1)) = div(T(i)) − 1

Case 1 We will prove that there are no transitions which change the slope.
Suppose by contradiction that div(T(i)) = div(T(i+1)) = 1 and s(T(i+1)) = s′1 6=
s1 . We can assume either that the bypass is attached to T(i) from the front
and s′1 < s1 , or that the bypass is attached to T(i) from the back and s1 < s′1 .
We describe only the first possibility because the second one is symmetric.

Attaching bypasses coming from a convex vertical annulus with Legendrian
boundary S ⊂ M \ Ni as long as the Imbalance Principle can be applied, we
eventually obtain tori T ′

(i) and T ′
(i+1) bounding N ′

i ⊃ Ni . The tori T ′
(i) and

T ′
(i+1) have either infinite slope or have slopes s(T ′

(i)) = p
q > s(T ′

(i+1)) = p′

q and

a convex vertical annulus with Legendrian boundary S′ ⊂M \N ′
i between T ′

(i)
and T(i+1) contains no more boundary parallel dividing arcs. In the first case
we have a vertical Legendrian curve with twisting number 0 in M \ (T(i) ∪Ai).
This is excluded by the classification of tight contact structures on solid tori
because, by the inductive hypothesis, there is no such curve either in (Ui, ξ|Ui

)
or in (M \ (T(i) ∪ Ai ∪ Ui), ξ|M\(T(i)∪Ai∪Ui)). In the second case, after cutting
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along S and rounding the edges, we get slope p−p′−1
q ≥ 0 on ∂(M \ (N ′

i ∪S)) ⊂
M \ (T(i) ∪Ai). This is also impossible because M \ (T(i) ∪Ai) has meridional
slope −r < 0, and the existence of a torus with non negative slope contained
in M \ (T(i) ∪Ai) would imply the existence of a vertical Legendrian curve with
twisting number 0.

Case 2 Now we consider transitions which increase the division number. The
main point here is to show that the surgery support can be assumed to be
disjoint from the transition. Take convex vertical annuli A′

i ⊂ Ni and A′′
i ⊂

M \Ni with common Legendrian boundary and call Bi = A′
i ∪A

′′
i ⊂M \ T(i) .

By Proposition 5.2, Ai is contact isotopic to Bi and ξ|M\(T(i)∪Ai) is isotopic to

ξ|M\(T(i)∪Bi) . If we set Ai+1 = A′′
i ∪A

′
i ⊂M \T(i+1) , then Ai is contact isotopic

to Ai+1 . The solid torus obtained by rounding the edges of M \ (T(i) ∪ Bi)

has boundary slope − 1
ki

for some positive integer ki <
1
r and the solid torus

obtained by rounding the edges of M \ (Ni ∪ A
′′
i ) has boundary slope − 1

k′
i
∈

[− 1
ki
,−r) because M \ (T(i) ∪ Bi) has meridional slope −r . In M \ (Ni ∪ A

′′
i )

there is a solid torus Ui+1 such that −∂(M \Ui+1) is a convex torus with slope
1

do+1 because 1
do+1 ∈ [− 1

k′
i
,−r). Applying Proposition 6.5 to M \(T(i)∪Bi), we

conclude that ξ|Ui
is isotopic to ξ|Ui+1 because slope 1

do+1 is a border between
continued fraction blocks in M \ (T(i) ∪Bi), and no shuffling can occur between
the signs of basic slices belonging to different continued fraction blocks. For
the same reason ξ|M\(T(i)∪Ai∪Ui) is isotopic to ξ|M\(T(i)∪Bi∪Ui+1) , then we can

conclude that ξ|M\Ui
is isotopic to ξ|M\Ui+1

.

Case 3 Transitions which decrease the division number can be handled in
the same way as transitions which increase it, we need only to show that no
transition can decrease div(T(i)) below n1 . Suppose that, on the contrary,
div(T(i)) = n1 and div(T(i+1)) = n1−1 and take convex vertical annuli A′

i ⊂ Ni

and A′′
i ⊂ M \ Ni with common Legendrian boundary. The dividing set of

Bi = A′
i ∪ A

′′
i ⊂ M \ T(i) has at least one boundary parallel dividing arc, but

the same total number of dividing arcs as A0 . This is a contradiction because,
by Proposition 5.2 and the inductive hypothesis, the dividing set ΓBi

on the

torus Bi obtained by gluing the boundary components of Bi is isotopic to
ΓA0

= ΓT2 and ΓA0 contains no boundary parallel dividing arcs.

It remains to prove that any convex torus T ′′ isotopic to T2 and intersecting
T ′ in a Legendrian ruling curve of T ′ is contact isotopic to T2 . The Legendrian
curves T ′ ∩ An and T ′ ∩ T ′′ are Legendrian isotopic because they are both
Legendrian ruling curves of T ′ . Let ϕt : M →M be a contact isotopy extending
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the Legendrian isotopy between T ′ ∩ T ′′ and T ′ ∩ An , so that T ′ ∩ An =
T ′∩ϕ1(T

′′). By Proposition 5.2, An = An\T
′ is contact isotopic to ϕ1(T

′′)\T ′ ,
therefore the proof is finished because An is contact isotopic to T2 .

Theorem 5.5 Let ξ(n,c1,c2,c3) and ξ(n′,c′1,c′2,c′3)
be tight contact structures over

T 3 with c3 6= 0 and c′3 6= 0. Then the tight contact structures ξ(n,c1,c2,c3)(η)
and ξ(n′,c′1,c′2,c′3)

(η′) over M(0, r) constructed by negative contact surgery are
isotopic if and only if n = n′ , (c1, c2, c3) = ±(c′1, c

′
2, c

′
3) and η is isotopic to η′ .

Proof Suppose ξ(n,c1,c2,c3)(η) is isotopic to ξ(n′,c′1,c′2,c′3)
(η′) and call it ξ . Be-

cause of the presentation of ξ as ξ(n,c1,c2,c3)(η), in M = M(0, r) we find a solid

torus V ⊂ M so that −∂(M \ V ) is convex with slope 1
t = − 1

|nc3|
, ξ|V = η

and M \ V can be contact embedded in (T 3, ξ(n,c1,c2,c3)) as the complement of
a vertical Legendrian curve. In M \ V we choose tori T1 and T2 with slope
s(Ti) = ci

c3
and division number div(Ti) = n(ci, c3) respectively intersecting

along a common vertical Legendrian ruling curve. See the proof of Proposition
4.5 for details. Similarly, because of the the presentation of ξ as ξ(n′,c′1,c′2,c′3)

(η′),

in M = M(0, r) we find tori T ′
1 and T ′

2 with slope s(T ′
i ) =

c′i
c′3

and division num-

ber div(T ′
i ) = n′(c′i, c

′
3) respectively and a solid torus V ′ ⊂ M \ (T ′

1 ∪ T
′
2) such

that −∂(M \ V ′) is convex with slope 1
t′ = − 1

|n′c′3|
and ξ|′V = η′ .

Proposition 5.4, implies that ΓTi
is isotopic to ΓT ′

i
for i = 1, 2, therefore n = n′

and (c1, c2, c3) = ±(c′1, c
′
2, c

′
3). Applying Proposition 5.4 to the first cut, and

Proposition 5.2 to the second one, we prove that η ∼= ξ|M\(T1∪T2) is isotopic to
η′ ∼= ξ|M\(T ′

1∪T ′
2) , thus concluding the proof.

5.2 Tight contact structures with t = 0

The aim of this section is the classification of the tight contact structures on
M(e0, r) constructed by negative contact surgery on a vertical Legendrian curve
in a tight, S1–invariant contact structure on T (e0).

Given two multicurves Γ and Γ′ on a surface Σ, we say that they are diffeo-
morphic if there exists a diffeomorphism φ : Σ → Σ such that φ|∂Σ = id, and
φ(Γ) = Γ′ . If we consider Γ and Γ′ as abstract dividing sets, we require in
addition that φ maps positive regions to positive regions and negative regions
to negative regions.

Let Σ0 be a pair of pants with ∂Σ0 = C0 ∪C1∪C2 , and let ΓΣ0 be an abstract
dividing set on Σ0 with #ΓΣ0 ∩ Ci 6= ∅ for i = 0, 1, 2. If #ΓΣ0 ∩ C2 = 2,
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there is a canonical way up to isotopy to extend ΓΣ0 to an abstract dividing
set in A = S1 × I , namely by gluing a disc D to C2 along the boundary and
joining the endpoints of ΓΣ0 on ∂Σ0 with an arc contained in D . We will
call the extension ΓA , and will denote by ξΓA

the contact structure on T 2 × I
which is S1–invariant over ΓA . The contact manifold (M ′, ξΓΣ0

(η)) obtained by
negative contact surgery on a vertical Legendrian curve with twisting number 0
in (T 2×I, ξΓA

) is tight if and only if ΓA is tight. In fact, if ΓA is a tight abstract
dividing set, we can take a tight abstract dividing set ΓT 2 on T 2 together with
an embedding ι : A → T 2 so that ι(ΓA) = ΓT 2 ∩ ι(A). By Giroux Tightness
Criterion [22], Lemma 4.2, (T 3, ξΓT2 ) is universally tight, therefore it is also

symplectically fillable by Theorem 3.14. Since (T 2 × I, ξΓA
) contact embed

into (T 3, ξΓ
T2 ), then (M ′, ξΓΣ0

(η)) is tight because it can be embedded into a

contact manifold obtained by negative contact surgery on (T 3, ξΓT2 ).

On the contrary, if ΓA is overtwisted, then ΓΣ0 contains either a homotopically
trivial closed curve, or a boundary parallel dividing arcs with endpoints on
C2 . Then (M ′, ξΣ0(η)) is overtwisted by the same argument as in the proof of
Proposition 4.13 because #ΓΣ0 > 1.

Lemma 5.6 Let ΓΣ0 and Γ′
Σ0

be abstract dividing sets on the pair of pants Σ0

such that their completions ΓA and Γ′
A are tight, and let Γ̂A , Γ̂′

A be obtained
from ΓA , Γ′

A by throwing away every pair of closed curves bounding an annulus.

If ξΓΣ0
(η) is isotopic to ξΓ′

Σ0
(η′), then Γ̂A is diffeomorphic to Γ̂′

A (as abstract

dividing sets) and η is isotopic to η′ .

Proof Let ξΓΣ0
(η) and ξΓ′

Σ0
(η) be isotopic tight contact structures. By defi-

nition there exist neighbourhoods V and V ′ of the singular fibre and sections
σ : Σ0 →M ′ \ V and σ′ : Σ0 →M ′ \ V ′ coinciding on a neighbourhood of ∂Σ0

such that:

(1) −∂(M \ V ) and −∂(M \ V ′) have infinite boundary slope.

(2) ξΓΣ0
(η)|V is isotopic to η .

(3) ξΓ′
Σ0

(η′)|V ′ is isotopic to η′ .

(4) σ(Σ0) and σ′(Σ0) are convex with Legendrian boundary, Γσ(Σ0) = ΓΣ0

and Γσ′(Σ0) = Γ′
Σ0

.

If we glue a S1–invariant tight contact structure on T 2×I to either component
of ∂M ′ , the result is tight if and only if ΓA (respectively Γ′

A) glued to the di-
viding set on a convex horizontal annulus in T 2 × I produces no homotopically
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trivial curves. We will exploit this fact to prove the lemma using a technique
called Template Attaching, first introduced by Honda in [22], section 5.3.2. In
the following we will call elementary template a thickened torus T 2 × I carry-
ing a tight contact structure which is S1–invariant over a horizontal annulus
with only one boundary parallel dividing arc and 2(n − 1) dividing arcs with
endpoints on different boundary components.

The set ∂ΓA = ∂Γ′
A consists of a finite collection of points with cardinality

2(#Γ̂A) = 2(#Γ̂′
A). Given two points p, q ∈ ∂ΓA (respectively ∂Γ′

A ) joined by
an arc in the dividing set, we denote by (p, q) the arc in ΓA (respectively Γ′

A)
joining them. We partition ∂ΓA in the two subsets ∂ΓA ∩ C0 = {p0, . . . , pn}
and ∂ΓA ∩C1 = {p′0, . . . , p

′
m} and put a cyclic order on them.

We work by induction on the number of dividing arcs in ΓA with both endpoints
on the same boundary component. The base step is when there are no such
curves, or when #Γ̂A = 2. In the first case, ΓA coincides with Γ̂A , and defines
an order preserving bijection {p0, . . . , pn} → {p′0, . . . , p

′
n}, which determines it

up to diffeomorphism. We claim that Γ′
A has no boundary parallel dividing

arcs either and induces the same bijection as ΓA .

If Γ̂A contains no boundary parallel dividing arcs, then no single elementary
template attaching produces a homotopically trivial closed curve. Suppose
Γ′

A contains a boundary parallel arc (pi, pi+1). Then the attachment of an
elementary template such that pi and pi+1 are the endpoints of the boundary
parallel dividing arc in its horizontal annulus produces an overtwisted disc,
giving a contradiction. See Figure 5.1 case (b).

(a) (b) (c)

Figure 5.1: The attaching of an elementary template: Cases (a) and (c) preserve
tightness, cases (b) produces an overtwisted disc.

Let T0 and T1 be the two components of ∂M ′ . If we attach elementary tem-
plates to T0 and T1 such that {p0, p1} and {p′i, p

′
i+1} are the endpoints of the
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boundary parallel dividing arcs, then the only case in which we get an over-
twisted disc is when there are dividing arcs (p0, p

′
i) and (p1, p

′
i+1). This must

be true for both ΓA and Γ′
A , therefore the two dividing sets are isomorphic.

When #Γ̂A = 2, we have to distinguish the cases when ΓA consists of two non
boundary parallel dividing arcs, or when it consists of one boundary parallel
dividing arc on each side and a number of closed curves. In the first case,
(M ′, ξΓΣ0

(η)) remains tight after gluing S1–invariant tight contact structures
with a boundary parallel dividing curve on its horizontal annulus in any possible
way. In the second case some gluing produce an overtwisted disc. This forces
Γ̂′

A to be diffeomorphic to Γ̂A . We observe that template attaching cannot
detect multiple closed curves in ΓA and Γ′

A . This is the reason why we work

with Γ̂ instead of with Γ.

Now we suppose the lemma true when ΓA has k − 1 arcs with endpoints on
the same boundary component. Let ΓA have k of such arcs, and suppose that
(pi, pi+1) is one of them. If we glue an elementary template to (M ′, ξΓΣ0

(η)) so
that the boundary parallel dividing arc in its horizontal annulus matches with
(pi, pi+1) to give a closed homotopically trivial curve, we produce an overtwisted
disc. This fact implies that (pi, pi+1) is also a boundary parallel dividing arc
in Γ′

A .

After slightly perturbing ξΓΣ0
(η) and ξΓ′

Σ0
(η′), for both contact structures A

contains a bypass along ∂M ′ corresponding to the boundary parallel divid-
ing arc (pi, pi+1). After attaching these bypasses to ∂M ′ , and removing the
collars of ∂M in which the bypass attachment takes place, we obtain man-
ifolds M ′

1 , M ′
2 with tight contact structures ξΓΣ0

(η))|M ′
1

= ξΓΣ0
\(pi,pi+1)(η)

and ξΓ′
Σ0

(η′))|M ′
2

= ξΓ′
Σ0

\(pi,pi+1)(η
′). If we prove that ξΓΣ0

\(pi,pi+1)(η) is iso-

topic to ξΓ′
Σ0

\(pi,pi+1)(η
′) we can use the inductive hypothesis to conclude that

Γ̂A \ (pi, pi + 1) is diffeomorphic to Γ̂′
A \ (pi, pi + 1). From this it follows that

Γ̂A is diffeomorphic to Γ̂′
A .

To prove that ξΓΣ0
\(pi,pi+1)(η) is isotopic to ξΓ′

Σ0
\(pi,pi+1)(η

′), we glue an el-

ementary template to M ′ so that the boundary parallel dividing arc on its
horizontal annulus joins pi+1 to pi+2 . The resulting contact manifold M ′′ is
tight and both M ′′ \ M ′

1 and M ′′ \ M ′
2 are contactomorphic to I –invariant

thickened tori. See Figure 5.1 case (c).

If M decomposes as (M \ V ) ∪ V , consider the inclusions ιV : V →֒ M and
ιM\V : M \ V →֒ M . From the obstruction theoretical definition of the Euler
class it is immediate that

(ιV )∗PD(e(ξ|V , s)) + (ιM\V )∗PD(e(ξ|M\V , s) = PDe(ξ)
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for any section s of ξ on ∂V . If ξΓΣ0
(η) and ξΓΣ0

(η′) are isotopic, then
e(ξΓΣ0

(η)) = e(ξΓΣ0
(η′)). Moreover, ξΓΣ0

(η)|M\V = ξΓΣ0
(η′)|M\V = ξΓΣ0

, then

(ιM\V )∗PD(e(ξΓΣ0
(η)|M\V , s)) = (ιM\V )∗PD(e(ξΓΣ0

(η′)|M\V , s)).

By difference, (ιV )∗PD(η, s) = (ιV )∗PD(η′, s), therefore e(η, s) = e(η′, s) be-
cause (ιV )∗ is injective. By [22], Proposition 4.23, this proves that (D2×S1, η)
and (D2 × S1, η) are isotopic

Given (M, ξ), and a neighbourhood V of the singular fibre F such that −∂(M\
V ) is a standard torus with infinite slope, we can modify the Seifert fibration
π : M → T 2 by an isotopy so that M \ V fibres onto T 2 \D = Σ, where D is
an embedded disc. Let σ : Σ → M \ V be a section such that σ(Σ) is convex
with Legendrian boundary and #Γ–minimising in its isotopy class. With an
abuse of notation, we will denote σ(Σ) simply by Σ, and its dividing set by
ΓΣ . We will denote by Γ the extension of ΓΣ to T 2 obtained by joining the
endpoints of ΓΣ with an arc in D .

Proposition 5.7 Let γ ⊂ T 2 be a homotopically nontrivial simple closed
curve disjoint from the image of the singular fibre, and let Tγ be the family
of convex or pre-Lagrangian tori in (M(e0, r), ξΓΣ

(η)) isotopic to π−1(γ). If
we define the division number of a pre-Lagrangian torus to be zero, then the
equality

min
T∈Tγ

div(T ) =
1

2
|γ ∩ Γ|

holds.

Remark We say that a convex vertical torus T in M(e0, r) has infinite slope
if its dividing set is isotopic in M(e0, r) to regular fibres, otherwise we say that
T has finite slope. In general we cannot give a well-defined value to the slope
of T when it is finite.

Lemma 5.8 Tγ contains a pre-Lagrangian torus if and only if it contains a
convex torus which does not have infinite slope.

Proof Suppose there is a pre-Lagrangian torus T ∈ Tγ : then after a suitable
choice of coordinates (x, y, z) in a neighbourhood of T so that T = {y = 0},
the contact structure has equation dz − y dx in a neighbourhood of T . This
local model shows that for some small ǫ 6= 0, the torus Tǫ is pre-Lagrangian
and has rational slope different from the slope of T . Then we perturb Tǫ and
obtain a convex torus T ′ with finite slope by Lemma 3.4.
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Suppose that T ∈ Tγ contains a convex torus T with finite slope. First, we
show that T ∈ Tγ also contains a convex torus T ′ with infinite slope. In fact,
by hypothesis there is a vertical Legendrian curve L ⊂M with twisting number
0, hence we obtain a convex torus with infinite slope by first isotoping T so
that it becomes a convex torus T ′ with vertical ruling disjoint from L. Then,
if T ′ has not infinite slope already, by attaching the bypasses along T ′ coming
from a convex annulus between L and a Legendrian ruling curve of T ′ . This
operation produces a convex torus T ′′ parallel to T with infinite slope. Once
we have a convex torus with finite slope T and a convex torus with infinite
slope T ′′ , we can suppose by isotopy discretisation that they are disjoint, so
they bound a tight thickened torus with different boundary slopes. By [22],
Corollary 4.8, such thickened torus contains a pre-Lagrangian torus.

Proof of Proposition 5.7 Take a curve γ′ ⊂ T 2 \ D = Σ isotopic to γ
which realises the minimum of the intersection with the dividing set Γ. We can
identify γ′ with its image under the section σ and make it Legendrian. Since
(M \ V, ξ|M\V ) ∼= (Σ × S1, ξΓΣ

) is S1–invariant, T0 = π−1(γ′) is a standard

torus with division number 1
2 |γ ∩ Γ| if γ′ ∩ Γ 6= ∅, or a pre-Lagrangian torus if

γ′ ∩ Γ = ∅, therefore

min
T∈Tγ

div(T ) ≤
1

2
|γ ∩ Γ|.

Suppose by contradiction that there exists a convex torus T1 ∈ Tγ with either
div(T1) <

1
2 |γ ∩ Γ| and |γ ∩ Γ| > 2, or with slope different from infinity and

|γ ∩ Γ| = 2. By Isotopy Discretisation [25], Lemma 3.10, we can find a finite
family of disjoint convex tori T0 = T (0), . . . , T (n) = T1 such that, for any
i = 0, . . . , n − 1, T (i+1) is obtained from T (i) by the attachment of a single
bypass. In particular, they bound a layer Ni diffeomorphic to T 2 × I . If
T (n) = T1 has finite slope, we can assume that it is the first torus in the family
with that property.

For any i such that T (i) has infinite slope there is a Seifert fibration πi : M \
T (i) → S1 × I with one singular fibre, a neighbourhood Vi ⊂ M \ Ni of the
singular fibre such that −∂(M \Vi) has infinite slope, and a collar Ci = πi(Ni)
of a boundary component of Σ0 such that

πi|Ni
: Ni → Ci

πi|M\(Ni∪Vi) : M \ (Ni ∪ Vi) → Σ0 \ Ci

are S1–bundles. We choose sections σi : Σ0 →M \ (T (i) ∪ Vi) so that:

(1) σi(Σ0) is a convex #Γ–minimising surface with Legendrian boundary
denoted by Σ(i) .
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(2) Σ(i) ∩ T
(i+1) is a Legendrian curve.

(3) σi extends to a section σi : Σ →M \ Vi .

(4) σ0 = σ .

Define Σ(i) = σi(Σ) and identify ΓΣ(i)
with a multicurve on Σ using πi .

We claim that, for any i, ΓΣ(i)
differs from ΓΣ by a number of curves iso-

topic to γ or by Dehn twists around γ . The proof is by induction on i. If
i = 0 the claim is true because Σ = Σ(0) . Now suppose the claim true for

a fixed i. Let σ′i+1 : Σ0 → M \ (Vi ∪ T (i+1)) be the section which extends
to the section σi : Σ → M \ Vi . We denote σ′i+1(Σ0) by Σ′

i+1 and σ′i+1(Σ)

by Σ
′
i+1 . By properties (1) and (2) of σi , Σ′

i+1 is a convex #Γ–minimising
surface with Legendrian boundary, then by [23], Lemma 4.1 the S1–invariant
contact manifolds (M \ (T(i+1) ∪ Vi), ξ|M\(T(i+1)∪Vi)) and (Σ0 × S1, ξΓΣ′

i+1
) are

contactomorphic. Analogously, (M \(T(i+1)∪Vi+1), ξ|M\(T(i+1)∪Vi+1)) is contac-

tomorphic to (Σ0 × S1, ξΓΣi+1
). These contactomorphisms give presentations

of (M \ T(i+1), ξ|M\T(i+1)
) as negative contact surgery on (T 2 × I, ξΓΣ′

i+1
) and

(T 2 × I, ξΓΣi+1
) respectively, therefore by Lemma 5.6, Γ̂Σi+1 is diffeomorphic

to Γ̂Σ′
i+1

. By construction, ΓΣi
and ΓΣ′

i+1
extend to the same multicurve ΓΣi

on Σ, so the claim is proved.

Suppose now that T1 has infinite slope and div(T1) < div(T0): then the geo-
metric intersection |γ ∩ ΓΣ(n)

| is lesser than the the geometric intersection

|γ ∩ ΓΣ(0)
| = |γ ∩ Γ|. This is a contradiction because, by the claim, ΓΣ(0)

and

ΓΣ(n)
differ only by Dehn twists along γ or by the number of curves isotopic to

γ .

If the slope of T1 is not infinity, attaching the bypasses coming from a vertical
annulus A ⊂ M \Nn−1 between T(n) and T(n−1) we find a layer Nn

∼= T 2 × I
so that N = Nn−1 ∪ Nn has minimal boundary and infinite boundary slopes.
N is rotative because it has infinite boundary slopes, but T(n) ⊂ N has finite
slope, so by [22], Lemma 5.7, the dividing set of a #Γ–minimising section of
N contains no arcs with endpoints on different boundary components. We can
complete the section in N to a section Σ′

(n−1) = σ′n−1(Σ0) which has no dividing

arcs with endpoints on different boundary components. By Lemma 5.6, Γ̂Σ′

(n−1)

is isomorphic to Γ̂Σ(n−1)
and by the claim Γ̂Σ(n−1)

glues to the same dividing

set on T 2 as Γ̂Σ(0)
. This is a contradiction because Γ̂Σ′

(n−1)
has a curve isotopic

to γ and Γ̂Σ(0)
does not.
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Theorem 5.9 Let ΓΣ and Γ′
Σ be two tight abstract dividing sets on the

punctured torus Σ such that #ΓΣ∩∂Σ = #Γ′
Σ∩∂Σ = 2 and without boundary

parallel dividing arcs. Denote by Γ and Γ′ their completion. The tight contact
structures ξΓΣ

(η) and ξΓ′
Σ
(η′) on M(e0, r) are isotopic if and only if Γ is isotopic

to Γ′ , and η is isotopic to η′ .

Proof If Γ is isotopic to Γ′ and η is isotopic to η′ , then ξΓΣ
(η) is isotopic to

ξΓ′
Σ
(η′) by Proposition 4.16.

Let now ξΓΣ
(η) and ξΓ′

Σ
(η′) be isotopic tight contact structures. By Proposition

5.7 for any simple closed curve γ ⊂ T 2 we have |γ ∩Γ| = |γ ∩ Γ′|, therefore ΓΣ

is isotopic to Γ′
Σ . Suppose now that there are tight contact structures η0 and

η1 on D2 ×S1 such that ξΓΣ
(η) is isotopic to ξΓΣ

(η′): then there exist isotopic
convex vertical tori with infinite slope T0 , T1 ⊂ M , and, for i = 0, 1, Seifert
fibrations πi : M \ Ti → S1 × I , and neighbourhoods Vi of the singular fibre
such that ξ|Vi

∼= ηi .

By isotopy discretisation [25], Lemma 3.10, there is a finite sequence of convex
tori with infinite slope T0 = T (0), . . . , T (n) = T1 such that, for i = 0, . . . , n− 1,
T (i) and T (i+1) bound Ni diffeomorphic to T 2 × I . For any i, we can modify
the Seifert fibration on M so that the singular fibre is contained in M \Ni , and
find a neighbourhood of the singular fibre V ′

i contained in M \Ni . By Lemma
5.6 applied to M \ T (0) , η0 = ξ|V0 is isotopic to ξ|V ′

0
, by Lemma 5.6 applied

to M \ T (i) , ξ|V ′
i

is isotopic to ξ|V ′
i+1

, and by Lemma 5.6 applied to M \ T (n) ,

ξ|V ′
n

is isotopic to ξ|V1
∼= η1 .

6 Exceptional tight contact structures

In this section we prove tightness for the candidate tight contact structures
with #Γ = 1. The proof of tightness for this class of contact structures uses
a purely topological and three dimensional technique known as state traversal,
introduced by Honda in [23].

6.1 State traversal

Let (M, ξ) be a contact manifold and W ⊂ M be a properly embedded in-
compressible surface. We will assume W is convex. The contact manifold
(M \W, ξ|M\W ) will be called a state, and the surface W a wall. In general
both W and M \W could be disconnected. A state is said tight if ξ|M\W is
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tight. The boundary of M \W consists of two copies of W : W+ and W− . A
state transition consists of detaching a collar of W− and attaching it to W+ ,
or vice versa, so that ΓW is changed by a bypass attachment. We observe that
a state transition corresponds to moving W inside M by an isotopy.

Theorem 6.1 ([23], section 2.3.1 or [25], Theorem 3.5) If the initial state
(M \W, ξ|M\W ) is tight, and all the states reached from it in a finite number
of state transitions are also tight, then the contact manifold (M, ξ) is tight.

The set of states that can be reached from the initial state in a finite number of
bypass attachments is a complete isotopy invariant of ξ in the following sense.

Theorem 6.2 (Corollary of [25], Theorem 3.1) Let ξ1 and ξ2 be two tight
contact structures on M , and let W ⊂ M be a properly embedded incom-
pressible convex surface. Let C(ξi) be the set of isotopy classes relative to the
boundary of all the states reached from the initial state (M \W, ξ|M\W ) in
a finite number of state transitions. Then ξ1 is isotopic to ξ2 if and only if
C(ξ1) = C(ξ2).

Let ΓΣ be an abstract dividing set on the one–punctured torus Σ with #ΓΣ =
1. In order to apply the state traversal to (M(e0, r), ξΓΣ

(η)), we give an alter-
native description of this contact structure. By ξl , with l = 2 or l = −2, we
denote the tight contact structure with infinite boundary slopes and twisting

π on T 2 × I such that ξl has relative Euler class e(ξl) =

(
0
l

)
, (ξ±1 in the

notations of [22], Lemma 5.2) and by (M ′, ξl(η)) we denote the contact man-
ifold obtained by contact (−1

r )–surgery along a vertical Legendrian curve in
(T 2 × I, ξl) with twisting number 0.

Lemma 6.3 After gluing T1 to T0 with the map

(
1 0

−e0 1

)
, we obtain the

contact manifold (M(e0, r), ξΓΣ
(η)) with #ΓΣ = 1 and 〈e(ξΓΣ

), Σ〉 = l .

Proof To prove that we obtain a contact structure isotopic to ξΓΣ
(η) it is

enough to show that we obtain a contact manifold whose background is isotopic
to the background of (M(e0, r), ξΓΣ

(η)). We prove the isotopy between the
backgrounds by showing that they induce isotopic dividing sets on convex #Γ–
minimising sections of Σ × S1 , see [23] Lemma 4.1.

The background of (M ′, ξl(η)) is the contact manifold (Σ0×S
1, ξΓΣ0

) where Σ0

is a pair of pants and ξΓΣ0
is the tight contact structure which is S1–invariant
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T
2 × {0} T

2 × {1}

Figure 6.1: The dividing set ΓΣ0

over the abstract dividing set described in Figure 6.1. ΓΣ0 consists of two arcs
joining two boundary components of Σ0 and a boundary parallel arc with both
end-points on the third component of ∂Σ0 .

Consider a #Γ–minimising section Σ′
0 of Σ0 × S1 so that, after gluing two

boundary components of Σ0 × S1 as prescribed by the statement, we obtain a
section Σ′ of Σ× S1 . By [23] Lemma 4.5 ΓΣ′

0
is isotopic to ΓΣ0 , therefore ΓΣ′

is isotopic to ΓΣ .

For the rest of the section we fix the notation M = M(e0, r) and ξ = ξl(η) =
ξΓΣ

(η).

Lemma 6.4 Let W0,W1 ⊂ (M, ξ) be vertical incompressible disjoint convex
tori with finite slopes and let N ⊂ M be the thickened torus bounded by W0

and W1 . If ∂(M \N) = W1 −W0 , the slope of W1 is s1 = p
q , and the slope of

W0 is s0 ≤ p
q − e0 , then there is a vertical Legendrian curve L ⊂ M \N with

twisting number tb(L) = 0.

Proof Take a properly embedded convex vertical annulus with Legendrian
boundary A ⊂ (M \N) and attach all the possible bypasses it carries to W0 and
W1 . If in the process we get a torus with infinite slope we are done, otherwise
we end with two convex tori W ′

0 and W ′
1 parallel to W0 and W1 respectively

with slopes s′0 ≤ s0 ≤ p
q − e0 and s′1 ≥ p

q , and such that the vertical annulus A′
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between W ′
i and W ′

i+1 carries no bypasses. Let N ′ be the layer diffeomorphic
to T 2 × I between W ′

0 and W ′
1 . If we cut M \ N ′ along A′ and round the

edges, we get a solid torus with boundary slope s ≥ s′1 − s′0 − 1 ≥ 0. On the
other hand, if we make the singular fibre F Legendrian with very low twisting
number n, and remove a standard neighbourhood νF , we get slope −nβ−β′

nα+α′ on
−∂(M ′ \ νF ). Taking the limit for n going to infinity, we see that this slope
is negative for n small enough, therefore, by [22], Proposition 4.16, there is an
intermediate torus in M \ (N ′ ∪A′ ∪ νF ) with infinite slope.

If W ⊂ (M, ξ) is a vertical incompressible convex torus with finite slope, ap-
plying Lemma 6.4 with W0 = W1 = W , we find a vertical Legendrian curve L
with twisting number zero in M \W . Attaching the bypasses coming from L
to W on either sides, we can engulf W in a rotative T 2 × [−1, 1] with infinite
boundary slopes such that W = T 2 × {0}. By [24], Theorem 2.2, we need to
consider only transitions between states with minimal boundary, provided that
the walls can be engulfed into rotative thickened tori. In the present situation,
we have to consider transitions between states with finite boundary slope and
minimal boundary, or between states with infinite boundary slopes.

6.2 Analysis of the states

Before performing the state traversal we analyse the possible states. We observe
that the Seifert fibration on M can be isotoped so that W becomes a fibred
torus. Consequently there is an induced Seifert fibration on M \W ∼= M ′ .

Let ζ ′l be the minimally twisting tight contact structure on T 2 × [0, 1
2 ] with

boundary slopes s0 = p
q − e0 , s 1

2
= ∞, minimal boundary and relative Euler

class ±

(
−q

−1 − p+ e0q

)
. Let ζ ′′l be the minimally twisting tight contact

structure on T 2 × [12 , 1] with boundary slopes s 1
2

= ∞, s1 = p
q , minimal

boundary and relative Euler class ±

(
q

1 + p

)
. Here the signs of the relative

Euler classes are chosen accordingly to the sign of l . All the basic slices in the
decomposition of ζ ′l and ζ ′′l have the same sign. We denote by (M ′′, ζ ′l(η)) the
contact manifold constructed by contact (−1

r )-surgery on a vertical Legendrian
curve L with twisting number 0 in (T 2 × [0, 1

2 ], ζ ′l), and by (M ′, ξ′l(η)) the
contact manifold obtained by gluing (T 2 × [12 , 1], ζ

′′
−l) to (M ′′, ζ ′l(η)).

To the contact manifold (D2×S1, η) we associate the set of numerical invariants
(r0, . . . , rk) defined as

ri = #{positive basic slices in Ni} − #{negative basic slices in Ni}
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where Ni is the (i + 1)–th continued fraction block in the basic slices decom-
position of η . The classification of tight contact structures on solid tori [22,
Theorem 2.3] implies the following proposition.

Proposition 6.5 For any slope s, let Γs denote the tight abstract dividing
set on T 2 with slope s and #Γs = 2. Then the number of continued fraction
blocks and the slopes of the borders between continued fraction blocks of any
tight contact structure η ∈ Tight(D2 × S1,Γs) depend only on s and are
independent of η . Moreover, the map Tight(D2 × S1,Γs) → Zn+1 given by
η 7→ (r0, . . . , rk) is injective.

If Γs = A(r)−1Γ∞ , then the number of continued fraction blocks of η ∈
Tight(D2 × S1,Γs) is equal to the number of the coefficient in the continued
fraction expansion −1

r = [d0, . . . , dn], moreover |r0| ≤ |d0|, and |ri| ≤ |di| − 1
for i > 0. To classify the contact manifolds (M ′, ξ′l(η)) we need the following
lemmas.

Lemma 6.6 Let (T 2 × [0, 1
2 ], ζ ′l) be a basic slice with boundary slopes −n

and ∞, and let (T 2 × [12 , 1], ζ
′′
−l) be a basic slice with boundary slopes ∞

and 1 with opposite sign. We call (T 2 × [0, 1] \ V, ξ′l) the contact manifold
obtained from (T 2× [0, 1

2 ], ζ ′l)∪T 2×{ 1
2
} (T 2× [12 , 1], ζ

′′
−l) by removing a standard

neighbourhood V of a vertical Legendrian divide of T 2×{1
2}. Then (T 2×[0, 1]\

V, ξ′l) is isomorphic to (T 2 × [0, 1
2 ] \ U, ζ ′l |T 2×[0, 1

2
]\U ), where U is a standard

neighbourhood of a vertical Legendrian ruling curve of a standard torus parallel
to T 2 × {0} and contained in its invariant neighbourhood.

Proof Up to isotopy we can assume that T 2 × [12 − ǫ, 1
2 + ǫ] is an invariant

neighbourhood of T 2 × {1
2} in (T 2 × [0, 1

2 ], ζ ′l) ∪ (T 2 × [12 , 1], ζ
′′
−l), and that

V is contained in it. Clearly ξ′l|T 2×[0, 1
2
−ǫ] is isomorphic to ζ ′l and ξ′l|T 2×[ 1

2
+ǫ,1]

is isomorphic to ζ ′′−l . By [23, Lemma 4.1] ξ′l|T 2×[ 1
2
−ǫ, 1

2
+ǫ]\V is S1–invariant,

and the dividing set of a convex #Γ–minimising horizontal section Σ with
Legendrian boundary is as in Figure 6.2.

We decompose (T 2 × [0, 1
2 ] \ U, ζ ′l |T 2×[0, 1

2
]\U ) into three pieces which are iso-

morphic to (T 2 × [0, 1
2 − ǫ], ξ′l|T 2×[0, 1

2
−ǫ]), (T 2 × [12 + ǫ, 1], ξ′l|T 2×[ 1

2
+ǫ,1]), and

(T 2×[12−ǫ,
1
2+ǫ]\V, ξ′l|T 2×[ 1

2
−ǫ, 1

2
+ǫ]\V ) respectively. Thicken U ∈ (T 2×[0, 1

2 ], ζ ′l)

to U ′ by attaching the bypasses coming from a vertical annulus between a
Legendrian ruling curve of ∂U and a Legendrian divide of T 2 × {1

2} so that
∂U ′ has infinite slope. In a similar way find a collar C of T 2 × {0} in
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Figure 6.2: The dividing set on Σ and Σ′

(T 2 × [0, 1
2 ] \ U ′, ζ ′l |T 2×[0, 1

2
]\U ′) so that C has boundary slopes −n and ∞.

The isomorphism between (T 2 × [0, 1] \V, ξ′l) and (T 2 × [0, 1
2 ] \U, ζ ′l |T 2×[0, 1

2
]\U)

identifies T 2 × [0, 1
2 − ǫ] to C , T 2 × [12 − ǫ, 1

2 + ǫ] \ V to T 2 × [0, 1
2 ] \ (U ′ ∪C),

and T 2 × [12 + ǫ, 1] to U ′ \ U .

(T 2 × [0, 1
2 ]\ (U ′ ∪C), ζ ′l |T 2×[0, 1

2
]\(U ′∪C)) has infinite boundary slopes, therefore

by [23, Lemma 4.1] it is S1–invariant. Let Σ′ be a convex #Γ–minimising
horizontal section with Legendrian boundary. The dividing sets of Σ′ cannot
contain any boundary parallel dividing arc, otherwise such an arc would pro-
duce a bypass attached horizontally to T 2 × [0, 1

2 ] \ (U ′ ∪ C). The attachment
of this bypass would give a convex torus with slope zero in (T 2 × [0, 1

2 ], ζ ′l),
contradicting either tightness or minimal twisting. Thus the dividing sets of Σ′

is forced to be as in Figure 6.2, therefore (T 2×[0, 1
2 ]\(U ′∪C), ζ ′l |T 2×[0, 1

2
]\(U ′∪C))

is isomorphic to (T 2 × [12 − ǫ, 1
2 + ǫ] \ V, ξ′l|T 2×[ 1

2
−ǫ, 1

2
+ǫ]\V ) by [23, Lemma 4.1]

because they induce diffeomorphic dividing sets on the convex #Γ–minimising
horizontal sections Σ and Σ′ .

ζ ′l |C is isomorphic to ζ ′l
∼= ξ′l|T 2×[0, 1

2
−ǫ] because their relative Euler classes

have the same evaluation on a vertical annulus. In a similar way, the relative
Euler class of ζ ′l |U ′\U evaluates on a vertical annulus as the relative Euler class
of ζ ′l , therefore it evaluates as the opposite of the relative Euler class of ζ ′′−l

∼=
ξ′l|T 2×[ 1

2
+ǫ,1] . The change of sign is due to the fact that, in evaluating the relative

Euler class of ζ ′l |U ′\U , the boundary component ∂U is oriented as T 2 × {0},
i. e. by the inward normal. On the other hand, the isomorphism maps ∂U to
T 2 ×{1}, which is oriented by the outward normal. This change of orientation
on the boundary forces the orientation of the vertical annulus to change too, in
order to keep the global orientation unchanged.
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The contact manifold (T 2 × [0, 1
2 ], ζ ′l)∪ (T 2 × [12 , 1], ζ

′′
−l) is overtwisted because

it does not satisfy the conditions of the Gluing Theorem [22], Theorem 4.25.
However, it become tight when we remove V , as Lemma 6.6 shows.

Lemma 6.7 Let (T 2 × [0, 1] \ V, ξ′l) be a contact manifold as in Lemma 6.6.
Then there is a convex annulus A ⊂ T 2 × I \ V whose boundary consists of
vertical Legendrian ruling curves of T 2×{0} and T 2×{1} such that its dividing
set ΓA has no boundary parallel dividing curves, and ξ′l|T 2×I\(V ∪A) is isotopic
to ζ ′l .

Proof The annulus A can be easily found in the contact manifold (T 2 ×
[0, 1

2 ], ζ ′l), which is isomorphic to (T 2 × [0, 1] \ V, ξ′l) by Lemma 6.6. It is a
convex vertical annulus with Legendrian boundary between T 2 × {0} and ∂U
contained in an invariant collar of T 2×{0}. The invariance of the collar implies
that the annulus can carry no bypass.

Lemma 6.8 If e0 ≥ 2, then (M ′, ξ′l(η)) is tight for any η and any l . If e0 = 1,
then (M ′, ξ′l(η)) is tight if and only if r0 = ld0

2 . Moreover, ξ′l′(η
′) is isotopic to

ξ′l(η) if and only if either l = l′ and η is isotopic to η′ or s0 ∈ Z and

(1) l′ = −l and r′0 = r0 + l when e0 = 2,

(2) l′ = −l , r0 = −r′0 and r′1 = r1 + l when e0 = 1.

Proof After acting, if necessary, on M ′ by a self-diffeomorphism supported
outside the surgery and preserving the Seifert fibration, we can assume s1 =
p
q ∈ (0, 1]. There is a unique universally tight contact structure on D2 × S1

with boundary slope −s1 which can be glued to T 2 × [12 , 1] along −T 2 × {1}
with the identity map to give the tight contact structure with infinite boundary
slope on T 2× [12 , 1]∪D

2×S1 ∼= D2×S1 . After filling T 2×{1} in (M ′, ξ′l(η)) in
this way, we obtain a contact structure on D2×S1 still denoted by ξ′l(η) which
can be decomposed as (D2 × S1, ξ′l(η))

∼= (T 2 × [0, 1
2 ], ζ ′′l ) ∪A(r) (D2 × S1, η).

We start studying tightness for this bigger contact manifold. Since both (T 2 ×
[0, 1

2 ], ζ ′′l ) and (D2 × S1, η) are tight, the Gluing Theorem [22], Theorem 4.25,
gives necessary and sufficient conditions for ξl(η) to be tight. The application
of the Gluing Theorem for thickened tori to solid tori is possible because [22],
Propositions 4.15, 4.17, and 4.18 give an identification between isotopy classes
of tight contact structures on D2 × S1 and isotopy classes of tight minimally
twisting contact structures on T 2 × I .
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Let p
q − e0 = s0 > s 1

2n
> . . . > sn−1

2n
> s 1

2
= ∞ be the sequence of the

boundary slopes of a minimal basic slices decomposition of (T 2 × [0, 1
2 ], ζ ′l),

and let ∞ = s′1
2

> s′m−1
2m

> . . . > s′ 1
2m

> s′0 be the sequence of the boundary

slopes of a minimal basic slices decomposition of (D2 × S1, η) computed with
respect to the basis of T 2 × [0, 1

2 ]. The contact structure ξl(η) is tight if and
only if either s0 > . . . > sn−1

2n
> ∞ > s′m−1

2m

> . . . > s′0 is the shortest sequence

of slopes between s0 and s′0 , or there exist s k
2n
< ∞ < s′k′

2m

joined by an edge

in the Farey tessellation of H2 such that the basic slices between them have all
the same signs.

If p
q − e0 < 0, then the shortest sequence of slopes between s0 and s′0 needs to

go through ∞, because all the s i
2n

are negative and all the s′ j
2m

are positive,

therefore (D2×S1, ξ′l(η)) is tight for any l and any η . If p
q−e0 = 0, which means

p
q = 1, and e0 = 1, there is an edge in the Farey Tessellation joining 0 with

− 1
d0+1 , so ∞ is not a border between basic slices. In this case (D2 ×S1, ξ′l(η))

is tight if and only if (T 2 × [0, 1
2 ], ζ ′′l ) with boundary slopes s0 = 0 and s1 = ∞

glues with the first continued fraction block of η with boundary slopes s′1
2

= ∞

and s′m−d0−1
2m

= − 1
d0+1 to give a basic slice. This happens if and only if l = 2

and r0 = d0 , or l = −2 and r0 = −d0 . When (D2×S1, ξ′l(η)) is not tight, then
(M ′, ξ′l(η)) is not tight either, because Lemma 6.7 gives a contact embedding
of (D2 × S1, ξ′l(η)) into (M ′, ξ′l(η)).

In order to determine whether (M ′, ξ′l(η)) is isotopic to (M ′, ξ′l′(η
′)), we again

study the problem in D2 × S1 first. In fact, if (M ′, ξ′l(η)) is isotopic to
(M ′, ξ′l′(η

′)), then (D2 × S1, ξ′l(η)) is isotopic to (D2 × S1, ξ′l′(η
′)). We have

three cases here: when ∞ is a border between continued fraction blocks, when
∞ is a border between basic slices but not between continued fraction blocks,
and when ∞ is not a border between basic slices.

Case 1 When ∞ is a border between continued fraction blocks in the sequence
s0 > . . . > sn−1

2n
> ∞ > s′m−1

2m

> . . . > s′0 , it follows from the classification

theorem for tight contact structures on solid tori that (D2×S1, ξ′l(η)) is isotopic
to (D2 × S1, ξ′l′(η

′)) if and only if l = l′ , and η is isotopic to η′ .

Case 2 The condition for ∞ to be a border between basic slices but not a
border between continued fraction blocks in the minimal basic slices decompo-
sition of (D2 × S1, ξ′l(η)) is that the slopes sn−1

2n
and s′m−1

2m

are represented by

shortest integer vectors v−1, v0, v1 such that (v−1, v0) and (v0, v1) are integer
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bases, and |det(v−1, v1)| = 2. This condition is satisfied if and only if e0 = 2
and p

q = 1. In this case the basic slices belonging to the outermost continued

fraction block of η , which has boundary slopes ∞ and − 1
d0+1 , and the basic

slice (T 2× [0, 1
2 ], ζ ′′l ), with boundary slopes −1 and ∞ form a unique continued

fraction block in (D2 × S1, ξ′l(η)), therefore their signs can be shuffled. The
shuffle can occur in (M ′, ξ′l(η)) as well, because by Lemma 6.7 there is a contact
embedding of (D2 ×S1, ξ′l(η)) in (M ′, ξ′l(η)). We conclude that, when M ′ has
boundary slopes −1 and 1, (M ′, ξl(η)) is isotopic to (M ′, ξ′l′(η

′)) if and only
if one of the following holds: either l = l′ and η is isotopic to η′ , or l′ = −l
and r′0 = r0 + l .

Case 3 If e0 = 1, s1 = p
q = 1 and ξ′l(η) is tight, then (T 2 × [0, 1

2 ], ζ ′′l )
glues with the outermost continued fraction block of η to give a basic slice with
boundary slopes 0 and − 1

d0+1 . This basic slice forms a continued fraction block
with the basic slices belonging to the second outermost continued fraction block
in η , which has boundary slopes − 1

d0+1 and − d1+1
d0d1−1 , therefore their signs can

be shuffled. Again, by Lemma 6.7, the same result holds on M ′ , so we conclude
that (M ′, ξ′l(η)) is isotopic to (M ′, ξ′l′(η

′)), when M ′ has boundary slopes 0
and 1, if and only if one of the following holds: either l = l′ and η is isotopic
to η′ , or l′ = −l , r′0 = −r0 , and r′1 = r1 + l .

Now we analyse the states with infinite boundary slopes. Let A = S1× [0, 1] be
an annulus and let ΓA be a multicurve on A which closes to a homotopically
trivial closed curve in T 2 if we identify S1×{0} to S1×{1}. Let (M ′, ξΓA

(η)) be
the contact manifold obtained by contact (−1

r )–surgery on a vertical Legendrian
curve with twisting number 0 in (T 2 × I, ξΓA

).

Lemma 6.9 Let ΓA be an abstract dividing set on A = S1 × I without
homotopically trivial closed curves. Suppose that ΓA closes to an abstract
dividing set on T 2 consisting of a unique homotopically trivial closed curve if
we identify S1 × {0} and S1 × {1}. If Γ′

A is another multicurve on A and
η′ a tight contact structure on D2 × S1 such that (M ′, ξΓA

(η)) is isotopic to
(M ′, ξΓ′

A
(η′)), then η is isotopic to η′ and ΓA is diffeomorphic to Γ′

A .

Proof By Lemma 5.6, η is isotopic to η′ and Γ̂A is diffeomorphic to Γ̂′
A . If

ΓA contains an arc with endpoints on different boundary components, then
Γ̂A = ΓA and Γ̂′

A = Γ′
A , so we are done. If this is not the case, ΓA consists of

arcs with both endpoints on the same side, so Γ̂A = ΓA and Γ′
A differs from

ΓA by a number of closed curves.
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We take a multicurve ΓB on B = S1 × [1, 2] consisting of arcs with both
endpoints on the same side so that, after identifying S1 × {0} with S1 × {2},
ΓA ∪ ΓB closes to some homotopically nontrivial curves in T 2 . Then, gluing
(T 2× [1, 2], ξΓB

) to (M ′, ξΓA
(η)) ∼= (M ′, ξΓ′

A
(η′)) yields a generic tight contact

structure on M(e0, r). By Theorem 5.9, the closure of ΓA ∪ ΓB is isotopic to
the closure Γ′

A ∪ ΓB , in particular they have the same number of components.
This implies that ΓA and Γ′

A contain the same number of closed curves, then
ΓA is diffeomorphic to Γ′

A by Lemma 5.6.

6.3 Analysis of the transitions

Theorem 6.10 If e0 ≥ 2, then (M(e0, r), ξl(η)) is tight for any η and any
l . If e0 = 1, then (M(e0, r), ξl(η)) is tight if and only if r0 = ld0

2 . Moreover,
ξl′(η

′) is isotopic to ξl(η) if and only if either l = l′ and η is isotopic to η′ , or

• l′ = −l and r′0 = r0 + l when e0 = 2,

• l′ = −l , r′0 = −r0 and r′1 = r1 + l when e0 = 1.

Proof Let W0 ⊂ M be a convex incompressible vertical torus with infinite
slope and #ΓW0 = 2 such that the initial state (M \ W0, ξl(η)|M\W0

) ∼=

(M ′, ξ′l0(η0)) is contactomorphic to (M ′, ξ′l(η)). If e0 = 1 and r0 6= ld0
2 ,

then there is a transition from W0 to W1 which brings us to a state (M \
W1, ξl(η)|M\W1

) ∼= (M ′, ξ′l1(η1)) with boundary slopes 0 and 1 which is over-
twisted by Lemma 6.8, therefore (M(e0, r), ξl(η)) is overtwisted. In the rest of
the proof we will suppose either e0 > 1 or r0 = ld0

2 .

By induction, we assume we have reached a state (M \Wi, ξl(η)|M\Wi
) of one

of the following kinds.

(1) (M \Wi, ξl(η)|M\Wi
) is contactomorphic to (M ′, ξli(ηi)) with boundary

slopes pi

qi
− e0 and pi

qi
. If e0 > 2, then li = l and ηi is isotopic to

η . If e0 = 2, then, either li = l and ηi is isotopic to η , or li = −l
and ri

0 = r0 + l . If e0 = 1, then, either li = l and ηi is isotopic to η , or
li = −l , ri

0 = −r0 and ri
1 = r1+ l . Here (ri

0, . . . , r
i
n) denote the invariants

determining ηi and (r0, . . . , rn) denote the invariants determining η .

(2) (M \Wi, ξl(η)|M\Wi
) is contactomorphic to the tight contact manifold

(M ′, ξΓΣi
(η)) obtained by contact (−1

r )–surgery on the S1–invariant con-

tact manifold (T 2 × I, ξΓΣi
). Here ΓΣi

is a multicurve on S1 × I which

closes to a multicuve ΓΣi
on T 2 consisting of a unique homotopically

trivial closed curve if we identify S1 × {0} to S1 × {1}.
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We denote by χ+(T 2 \ΓΣi
) the Euler characteristic of the positive region

of T 2 \ ΓΣi
and by χ−(T 2 \ ΓΣi

) the Euler characteristic of the negative

region of T 2 \ ΓΣi
. We have here three cases.

• If e0 > 2, then χ+(T 2 \ ΓΣi
) − χ−(T 2 \ ΓΣi

) = l and ηi is isotopic
to η .

• If e0 = 2, then, either χ+(T 2 \ ΓΣi
) − χ−(T 2 \ ΓΣi

) = l and ηi is

isotopic to η , or χ+(T 2 \ΓΣi
)− χ−(T 2 \ ΓΣi

) = −l and ri
0 = r0 + l .

• If e0 = 1, then, either χ+(T 2 \ ΓΣi
) − χ−(T 2 \ ΓΣi

) = l and ηi is

isotopic to η , or χ+(T 2 \ ΓΣi
) − χ−(T 2 \ ΓΣi

) = −l , ri
0 = −r0 and

ri
1 = r1 + l .

A transition from the state M \Wi to the state M \Wi+1 consists of taking
a layer Ni

∼= T 2 × [12 , 1] ⊂ M \Wi with boundary Wi+1 ∪Wi , and moving it
from the front to the back, or vice versa. We only consider the case when Ni

is a front layer. When Ni is a back layer the proof is completely analogous.
There are two cases, depending on whether the transition changes the boundary
slopes or the division number of the boundary.

Case 1 This case corresponds to state transitions from (M\Wi, ξl(η)|M\Wi
) to

(M\Wi+1, ξl(η)|M\Wi+1
) such that Wi and Wi+1 are minimal and at least one of

them has finite slope. Suppose that (M \Wi, ξl(η)|M\Wi
) is contactomorphic

to (M ′, ξ′li(ηi)) and the transition changes the boundary slopes of the state
from pi

qi
− e0 and pi

qi
to pi+1

qi+1
− e0 and pi+1

qi+1
. We can assume that the interior

of Ni contains no tori with infinite slope. If this is not the case, we split the
transition in two parts, therefore we can assume that Wi+1 ⊂M \Wi has slope
pi+1

qi+1
∈ (pi

qi
,∞]. We isotope the Seifert fibration on M \Wi so that Wi+1 is a

fibred torus and the singular fibre Fi is contained in M \Ni .

By Lemma 6.4 there is a vertical Legendrian curve with twisting number 0 in
M \Ni . Using such curve we can find a neighbourhood Vi+1 ⊂M \Ni of the sin-
gular fibre such that −∂(M\Vi+1) has infinite slope by arguing as in the proof of
Lemma 4.1. The contact structures ξ′li(ηi)|Vi+1 = ηi+1 and ξ′li(ηi)|M\(Wi∪Vi+1) =
ξ′li+1

are determined by ηi and li as described in Lemma 6.8. In particular,

ξ′li(ηi)|Ni
= ξ′li+1

|Ni
is a minimally twisting tight contact structure with rela-

tive Euler class ±

(
qi − qi+1

pi − pi+1

)
, with the sign depending on li+1 . Moving Ni

to the back, its relative Euler class becomes ±

(
qi − qi+1

pi − pi+1 − e0(qi − qi+1)

)
,

so ξl(η)|(M\Wi+1∪V ) is contactomorphic to ξ′li+1
(ηi+1) with boundary slopes
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pi+1

qi+1
− e0 and

pi+1

qi+1
. This proves that any admissible transition transforms a

state of the type described in the inductive assumption to another state of the
same type.

Case 2 This case corresponds to state transitions from (M \Wi, ξl(η)|M\Wi
)

to (M \Wi+1, ξl(η)|M\Wi+1
) such that Wi and Wi+1 have both infinite slope.

Suppose that (M \Wi, ξl(η)|M\Wi
) is contactomorphic to (M ′, ξΓΣi

(ηi)) and

#ΓWi+1 = #ΓWi
± 1. We isotope the Seifert fibration M ′ → S1 × I so that the

singular fibre is contained in M ′ \ Ni and, fixed a neighbourhood Vi+1 of the
singular fibre so that −∂(M \ Vi+1) has infinite slope, the restrictions of the
fibration to Ni and M ′ \ (Ni ∪ Vi+1) are S1–bundles. Let Σ be a pair of pants
and let Σ be a punctured torus obtained by identifying two of the boundary
components of Σ. Let σi : Σ →M \Vi+1 be a section so that Σ′

i = σi(Σ) ⊂M ′

is a convex, #Γ–minimising surface with Legendrian boundary, and Σ′
i ∩Wi+1

is a Legendrian curve. We call Σ
′
i = σi(Σ) ⊂M \Vi+1 . (M \Wi, ξl(η)|M\Wi

) is
contactomorphic to (M ′, ξΓΣ′

i

(ηi+1)), therefore, by Lemma 6.9, ηi+1 is isotopic

to ηi and Γ
Σ

′

i
is isotopic to ΓΣi

. If we define Σi+1 ⊂ (M \ (Wi+1 ∪ Vi+1)

as Σi+1 = Σ
′
i \ Wi+1 , then ΓΣi+1

= Γ
Σ

′

i
and (M \ Wi+1, ξl(η)|M\Wi+1

) is

contactomorphic to (M ′, ξΓΣi+1
(ηi+1)).

As proved in Theorem 4.18, the tight contact structures considered in this sec-
tion become overtwisted after lifting to any finite covering of M(e0, r) induced
by a covering of T 2 , so they are the exceptional tight contact structure of The-
orem 2.3. The following corollary gives the number of the exceptional tight
contact structures on M(e0, r).

Corollary 6.11 When e0 > 0 the number of exceptional tight contact struc-
tures on M(e0, r) is finite and positive. It is

• 2|d0(d1 + 1) . . . (dk + 1)| if e0 > 2,

• |(d0 − 1)(d1 + 1) . . . (dk + 1))| if e0 = 2,

• |d1(d2 + 1) . . . (dk + 1)| if e0 = 1.

The last expression has to be interpreted as 2 when −1
r = d0 ∈ Z.

Proof By Theorem 6.10 and 2.4, when e0 > 2 for any l there are |d0(d1 +
1) . . . (dk + 1)| choices for η and 2 choices for the background, and all choices
give distinct tight contact structures, therefore the total number of exceptional
tight contact structures on M(e0, r) is 2|d0(d1 + 1) . . . (dk + 1)|.
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When e0 = 2, there are |d0(d1+1) . . . (dk+1)| choices for η for any choice of the
background, but not all choices give distinct tight contact structures. In fact,
any exceptional tight contact structure with l = −2 and r0 > d0 is isotopic to
a tight contact structure with l = 2, therefore we count |d0(d1 + 1) . . . (dk + 1)|
distinct exceptional tight contact structures with l = 2 and |(d1+1) . . . (dk +1)|
distinct tight contact structures with l = −2, namely those obtained from η
with r0 = d0 . The total number of distinct exceptional tight contact structures
up to isotopy on M(e0, r) with e0 = 2 is therefore |(d0 −1)(d1 +1) . . . (dk +1)|.

If e0 = 1 and 1
d 6∈ Z, then for any choice of the background there are |(d1 +

1) . . . (dk + 1)| choices for η , but not all choices give distinct tight contact
structures. In fact, we have |(d1 + 1) . . . (dk + 1)| distinct exceptional tight
contact structures with l = 2 up to isotopy, and |(d2 + 1) . . . (dk + 1)| distinct
exceptional tight contact structures with l = −2 which have not already been
counted, namely the ones with ri = di . The total number of exceptional tight
contact structures on M(e0, r) with e0 = 1 is therefore |d1(d2 +1) . . . (dk +1)|.
If e0 = 1 and 1

r ∈ Z, for any l there is only one possibility for η , and different
choices for the background produce non isotopic tight contact structures, there-
fore the total of exceptional tight contact structures on M(e0, r) with e0 = 1
and 1

r ∈ Z is 2.

The exceptional tight contact structures on M(e0, r) are negative contact surg-
eries on the exceptional tight contact structures on T (e0) when e0 > 1. On
the contrary, there are no exceptional tight contact structures on T (1), and the
exceptional tight contact structures on M(1, r) are negative contact surgeries
on an overtwisted contact structure on T (1). On T (2) there is only one ex-
ceptional tight contact structure up to isotopy, therefore the two backgrounds
extend to isotopic tight contact structure on T (2). This reflects the fact that
T (2) with the exceptional tight contact structure contains two non Legendrian
isotopic vertical Legendrian curves with twisting number 0, and negative con-
tact surgeries with the same surgery data on such curves yield different contact
manifolds. The shuffling between the background and the surgery data when
e0 = 2 shows that suitably stabilisations of the two non isotopic vertical Leg-
endrian curves with twisting number 0 become Legendrian isotopic.
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