Degree one maps between small 3-manifolds and Heegaard genus

Michel Boileau
Shicheng Wang

Abstract

We prove a rigidity theorem for degree one maps between small 3 -manifolds using Heegaard genus, and provide some applications and connections to Heegaard genus and Dehn surgery problems.

AMS Classification 57M50, 57N10
Keywords Degree one map, small 3-manifold, Heegaard genus

1 Introduction

All terminology not defined in this paper is standard, see He and Ja.
Let M and N be two closed, connected, orientable 3 -manifolds. Let H be a (not necessarily connected) compact 3 -submanifold of N. We say that a degree one map $f: M \rightarrow N$ is a homeomorphism outside H if $f:(M, M-$ $\left.\operatorname{int} f^{-1}(H), f^{-1}(H)\right) \rightarrow(N, N-\operatorname{int} H, H)$ is a map between the triples such that the restriction $f \mid: M-\operatorname{int} f^{-1}(H) \rightarrow N-\operatorname{int} H$ is a homeomorphism. We say also that f is a pinch and N is obtained from M by pinching $W=f^{-1}(H)$ onto H.

Let H be a compact 3-manifold (not necessarily connected). We use $g(H)$ to denote the Heegaard genus of H, that is the minimal number of 1-handles used to build H.

We define $m g(H)=\max \left\{g\left(H_{i}\right), H_{i}\right.$ runs over components of $\left.H\right\}$. It is clear that $m g(H) \leq g(H)$ and $m g(H)=g(H)$ if H is connected.
A path-connected subset X of a connected 3 -manifold is said to carry $\pi_{1} M$ if the inclusion homomorphism $\pi_{1} X \rightarrow \pi_{1} M$ is surjective.

In this paper, any incompressible surface in a 3-manifold is 2-sided and is not the 2 -sphere. A closed 3 -manifold M is small if it is orientable, irreducible and if it contains no incompressible surface.

It has been observed by Kneser, Haken and Waldhausen (Ha, Wa, see also [RW] for a quick transversality argument) that a degree one map $M \rightarrow N$ between two closed, orientable 3-manifolds is homotopic to a map which is a homeomorphism outside a handlebody corresponding to one side of a Heegaard splitting of N. This fact is known as "any degree one map between 3-manifolds is homotopic to a pinch".

A main result of this paper is the following rigidity theorem.
Theorem 1 Let M and N be two closed, small 3-manifolds. If there is a degree one map $f: M \rightarrow N$ which is a homeomorphism outside an irreducible submanifold $H \subset N$, then either:
(1) There is a component U of H which carries $\pi_{1} N$ and such that $g(U) \geq$ $g(N)$, or
(2) M and N are homeomorphic.

Remark 1 Given M and N two non-homeomorphic small 3-manifolds, Theorem \square implies that N cannot be obtained from M by a sequence of pinchings onto submanifolds of genus smaller than $g(N)$. However Theorem \square does not hold when M is not small. Below are easy examples:

- Let $f: P \# N \rightarrow N$ be a degree one map defined by pinching P to a 3 -ball in N. Then f is a homeomorphism outside the 3 -ball, which is genus zero and does not carry $\pi_{1} N$.
- Let k be a knot in a closed, orientable 3-manifold N and let F be a once punctured closed surface. Let M be the 3 -manifold obtained by gluing the boundaries of $F \times S^{1}$ and of $E(k)$ in such a way that $\partial F \times\{x\}$ is matched with the meridian of $k, x \in S^{1}$. Then a degree one map $f: M \rightarrow N$ pinching $F \times S^{1}$ to a tubular neigborhood $\mathcal{N}(k)$ of k, is a homeomorphism outside a handlebody of genus 1. If $\pi_{1} N$ is not cyclic or tivial, then $g(\mathcal{N}(k))<g(N)$ and $\mathcal{N}(k)$ does not carry $\pi_{1} N$.

The pinched part of a degree one map between closed, orientable non-homeomorphic surfaces has incompressible boundary [Ed]. The following straigtforward corollary of Theorem \square gives an analogous result for small 3-manifolds:

Corollary 1 Let M and N be two closed, small, non-homeomorphic 3-manifolds. Let $f: M \rightarrow N$ be a degree one map and let $V \cup H=N$ be a minimal genus Heegaard splitting for N. Then the map f can be homotoped to be a homeomorphism outside H such that $f^{-1}(H)$ is ∂-irreducible.

Remark 2 Corollary 1 remains true for any strongly irreducible heegaard splitting of N. Then the argument, using Casson-Gordon's result [CG], is essentially the same as [Le Theorem 3.1], even if in [Le it is only proved for the case $M=S^{3}$ and N a homotopy 3 -sphere. The proof in Le is based on his main result Le, Theorem 1.3], but one can also use a direct argument from degree one maps.

Theoremfollows directly from two rather technical Propositions (Proposition (1) and Proposition (2). Theorem (1) and its proof lead to some results about Heegaard genus of small 3-manifolds and Dehn surgery on null-homotopic knots.

Theorem 2 Let M be a closed, small 3-manifold. Let $F \subset M$ be a closed, orientable surface (not necessary connected) which cuts M into finitely many compact, connected 3-manifolds U_{1}, \ldots, U_{n}. Then there is a component U_{i} which carries $\pi_{1} M$ and such that $g\left(U_{i}\right) \geq g(M)$.

Remark 3 In general (see La) one has only the upper bound:

$$
\left.g(M) \leq \sum_{i=1}^{n} g\left(U_{i}\right)\right)-g(F)
$$

Suppose that k is a null-homotopic knot in a closed orientable 3-manifold M. Its unknotting number $u(k)$ is defined as the minimal number of self-crossing changes needed to transform it into a trivial knot contained in a 3 -ball in M.

Theorem 3 Let k be a null-homotopic knot in a closed, small 3-manifold M. If $u(k)<g(M)$, then every closed 3-manifolds obtained by a non-trivial Dehn surgery along k is not small. In particular k is determined by its complements.

This article is organized as follows.
In Section 2 we state and prove Proposition \square which is the first step in the proof of Theorem [1] The second step, given by Proposition [2 is proved in Section [3] then Theorem \square follows from these two propositions. Section $\mathbb{4}$ is devoted to the proof of Theorem [2 and Section 5 to the proof of Theorem 3.

Acknowledgements We would like to thank both the referee and Professor Scharlemann for their suggestions which enhance the paper. The second author is partially supported by MSTC and NSFC.

2 Making the preimage of $H \partial$-irreducible

The first step of the proof of Theorem \square is given by the following proposition:
Proposition 1 Let M and N be two closed, connected, orientable, irreducible 3 -manifolds which have the same first Betti number, but are not homeomorphic.

Suppose there is a degree one map $f_{0}: M \rightarrow N$ which is a homeomorphism outside a compact irreducible 3-submanifold $H_{0} \subset N$ with $\partial H_{0} \neq \emptyset$. Then there is a degree one map $f: M \rightarrow N$ which is a homeomorphism outside an irreducible submanifold $H \subset H_{0}$ such that:

- $\partial H \neq \emptyset$;
- $m g(H) \leq m g\left(H_{0}\right)$,
- Any connected component of $f^{-1}(H)$ is either ∂-irreducible or a 3-ball, and there is at least one component of $f^{-1}(H)$ which is ∂-irreducible.

Remark 4 Since M is not homeomorphic to N it is clear that at least one component of $f^{-1}(H)$ is not a 3 -ball.

Proof In the whole proof, 3-manifolds M and N are supposed to meet all hypotheses given in the first paragraph of Proposition $\mathbb{1}$.

By the assumption there is a degree one map $f_{0}: M \rightarrow N$ which is a homeomorphism outside an irreducible submanifold $H_{0} \subset N$ with $\partial H_{0} \neq \emptyset$.
Let \mathcal{H}_{0} be the set of all 3 -submanifolds $H \subset H_{0}$ such that:
(1) There is a degree one map $f: M \rightarrow N$ which is a homeomorphism outside H;
(2) $\partial H \neq \emptyset$;
(3) $m g(H) \leq m g\left(H_{0}\right)$;
(4) H is irreducible.

For an element $H \in \mathcal{H}_{0}$, its complexity is defined as a pair

$$
c(H)=\left(\sigma(\partial H), \pi_{0}(H)\right)
$$

with the lexicographic order, and where $\sigma(\partial H)$ is the sum of the squares of the genera of the components of ∂H, and $\pi_{0}(H)$ is the number of components of H.

Remark on $c(H)$ The second term of $c(H)$ is not used in this section, but will be used in the next two sections.

Clearly \mathcal{H}_{0} is not the empty set, since by assumption $H_{0} \in \mathcal{H}_{0}$.
A compressing disk for ∂H in H is a properly embedded 2-disk $(D, \partial D) \subset$ $(H, \partial H)$ such that $\partial D=D \cap \partial H$ is an essential simple closed curve on ∂H (i.e. does not bound a disk on ∂H). In the following we shall denote by $H \backslash \mathcal{N}(D)$ the compact 3-manifold obtained from H by removing an open product neighborhood of D. The operation of removing such neighborhood is called splitting H along D.

Lemma 1 Let H be a compact orientable 3-manifold and let $(D, \partial D) \subset$ $(H, \partial H)$ be a compressing disk. Then $m g\left(H_{*}\right) \leq m g(H)$, where $H_{*}=$ $H \backslash \mathcal{N}(D)$ is obtained by splitting H along D. Moreover $c\left(H_{*}\right)<c(H)$.

Proof By Haken's lemma for boundary-compressing disk (BO , CG), a minimal genus Heegaard surface for H can be isotoped to meet D along a single simple closed curve. It follows that $m g\left(H_{*}\right) \leq m g(H)$.
Since ∂D is an essential simple closed curve on ∂H, it is easy to see that $\sigma\left(\partial H_{*}\right)<\sigma(\partial H)$, therefore $c\left(H_{*}\right)<c(H)$.

The proof of Proposition follows from the following:
Lemma 2 Let $H \in \mathcal{H}_{0}$ be an element which realizes the minimal complexity, then any component of $f^{-1}(H)$ which is not a 3 -ball is ∂-irreducible.

Proof Let $W_{0} \subset W=f^{-1}(H)$ be a component which is not homeomorphic to a 3 -ball. Such a component exits since M is not homeomorphic to N. To prove that W_{0} is ∂-irreducible, we argue by contradiction.

If ∂W_{0} is compressible in W, there is a compressing disc $(D, \partial D) \rightarrow(W, \partial W)$ whose boundary is an essential simple closed curve on ∂W.

Since $f: M \rightarrow N$ is a homeomorphism outside the submanifold $H \subset N$ the restriction $f \mid:(W, \partial W) \rightarrow(H, \partial H)$ maps ∂W homeomorphically onto ∂H. Therefore $f(\partial D)$ is an essential simple closed curve on ∂H which bounds the immersed disk $f(D)$ in H. By Dehn's Lemma, $f(\partial D)$ bounds an embedded disc D^{*} in H.

Lemma 3 By a homotopy of f, supported on $W=f^{-1}(H)$ and constant on ∂W, we can achieve that:

- $f \mid: W \rightarrow H$ is a homeomorphism in a collar neighborhood of $\partial W \cup D$,
- $\left.f\right|^{-1}\left(D^{*}\right)=D \cup S$, where S is a closed orientable surface.

Proof We define a homotopy $F: W \times[0,1] \rightarrow H$ by the following steps:
(1) $F(x, 0)=f(x)$ for every $x \in W$;
(2) $F(x, t)=F(x, 0)$ for every $x \in \partial f^{-1}(H)=\partial W$ and for every $t \in[0,1]$;
(3) Then we extend $F(x, 1): D \times\{1\} \rightarrow D^{*}$ by a homeomorphism.

We have defined F on $D \times\{0\} \cup \partial D \times[0,1] \cup D \times\{1\}$ which is homeomorphic to a 2 -sphere S^{2}. Since H is irreducible, by the Sphere theorem $\pi_{2}(H)=\{0\}$. Hence:
(4) We can extend F to $D \times[0,1]$;

Now F has been defined on $W \times\{0\} \cup \partial W \times[0,1] \cup D \times[0,1]$, which is a deformation retract of $W \times[0,1]$, therefore:
(5) We can finally extend F on $W \times[0,1]$.

After this homotopy we may assume that $f(x)=F(x, 1)$, for every $x \in W$. Then by construction this new f sends $\partial W \cup D$ homeomorphically to $\partial H \cup D^{*}$. By transversality, we may further assume that $f \mid: W \rightarrow H$ is a homeomorphism in a collar neighborhood of $\partial W \cup D$ and that $\left.f\right|^{-1}\left(D^{*}\right)=D \cup S$, where S is a closed surface.

The following lemma will be useful:
Lemma 4 Suppose $f: M \rightarrow N$ is a degree one map between two closed orientable 3-manifolds with the same first Betti number $\beta_{1}(M)=\beta_{1}(N)$. Then $f_{\star}: H_{2}(M ; \mathbb{Z}) \rightarrow H_{2}(N ; \mathbb{Z})$ is an isomorphism.

Proof Since $f: M \rightarrow N$ is a degree one map, by Br , Theorem I.2.5], there is a homomorphism $\mu: H_{2}(N ; \mathbb{Z}) \rightarrow H_{2}(M ; \mathbb{Z})$ such that $f_{\star} \circ \mu: H_{2}(N ; \mathbb{Z}) \rightarrow$ $H_{2}(N ; \mathbb{Z})$ is the identity, where $f_{\star}: H_{2}(M ; \mathbb{Z}) \rightarrow H_{2}(N ; \mathbb{Z})$ is the homomorphism induced by f.

In particular $f_{\star}: H_{2}(M ; \mathbb{Z}) \rightarrow H_{2}(N ; \mathbb{Z})$ is surjective. Then the injectivity follows from the fact that $H_{2}(M ; \mathbb{Z})$ and $H_{2}(N ; \mathbb{Z})$ are torsion free abelian groups with the same finite rank $\beta_{2}(M)=\beta_{1}(M)=\beta_{1}(N)=\beta_{2}(M)$.

Since the degree one map $f: M \rightarrow N$ is a homeomorphism outside H, the Mayer-Vietoris sequence and Lemma $\mathbb{4}$ imply that $f_{\star}: H_{2}(W ; \mathbb{Z}) \rightarrow H_{2}(H ; \mathbb{Z})$ is an isomorphism.
Let S^{\prime} be a connected component of S. Since $f\left(S^{\prime}\right) \subset D^{*}$, the homology class $\left[f\left(S^{\prime}\right)\right]=f_{\star}\left(\left[S^{\prime}\right]\right)$ is zero in $H_{2}(H, \mathbb{Z})$. Hence the homology class $\left[S^{\prime}\right]$ is zero in $H_{2}(W, \mathbb{Z})$, because $f_{\star}: H_{2}(W, \mathbb{Z}) \rightarrow H_{2}(H, \mathbb{Z})$ is an isomorphism. It follows that S^{\prime} is the boundary of a compact submanifold of W. Therefore S^{\prime} divides W into two parts W_{1} and W_{2} such that $\partial W_{2}=S^{\prime}$ and W_{1} contains $\partial W \cup D$.
We can define a map $g: W \rightarrow H$ such that:
(a) $\left.g\right|_{W_{1}}=\left.f\right|_{W_{1}}$ and $g\left(W_{2}\right) \subset D^{*}$.

Then by slightly pushing the image $g\left(W_{2}\right)$ to the correct side of D^{*}, we can improve the map $g: W \rightarrow H$ such that:
(b) $g|\partial W=f| \partial W$,
(c) $g^{-1}\left(D^{*}\right)=D \cup\left(S \backslash S^{\prime}\right)$ and $g: \mathcal{N}(D) \rightarrow \mathcal{N}\left(D^{*}\right)$ is a homeomorphism.

After finitely many such steps we get a map $h: W \rightarrow H$ such that:
(b) $h|\partial W=f| \partial W$,
(d) $h^{-1}\left(D^{*}\right)=D$ and $h: \mathcal{N}(D) \rightarrow \mathcal{N}\left(D^{*}\right)$ is a homeomorphism.

Let $H_{*}=H \backslash \mathcal{N}(D)$ obtained by splitting H along D. Then H_{*} is still an irreducible 3 -submanifold of N with $\partial H_{*} \neq \emptyset$.
Now $\left.f\right|_{M-\operatorname{int} W}$ and $\left.h\right|_{W}$ together provide a degree one map $h: M \rightarrow N$. The transformation from f to h is supported in W, hence h is a homeomorphism outside the irreducible submanifold H_{*} of N.

Since H_{*} is obtained by splitting H along a compressing disk, we have $H_{*} \subset H_{0}$ and H_{*} belongs to \mathcal{H}_{0}. Moreover $m g\left(H_{*}\right) \leq m g(H)$ and $c\left(H_{*}\right)<c(H)$ by Lemma

This contradiction finishes the proof of Lemma 2 and thus the proof of Proposition

3 Finding a closed incompressible surface in the domain

Since closed, orientable, small 3-manifolds are irreducible and have first Betti number equal to zero, Theorem 1 is a direct corollary of the following proposition:

Proposition 2 Let M and N be two closed, connected, orientable, irreducible 3-manifolds whith the same first Betti number. Suppose that there is a degree one map $f: M \rightarrow N$ which is a homeomorphism outside an irreducible submanifold $H_{0} \subset N$ such that for each connected component U of H_{0}, either $g(U)<g(N)$ or U does not carry $\pi_{1} N$. Then either M contains an incompressible orientable surface or M is homeomorphic to N.

Let (M, N) be a pair of closed orientable 3-manifolds such that there is a degree one map from M to N. We say that condition (*) holds for the pair (M, N) if:

$$
\text { (*) } \quad \pi_{1} N=\{1\} \text { implies } M=S^{3} \text {. }
$$

For the proof we first assume that condition $(*)$ holds for the pair (M, N).

Proof of Proposition 2 under condition (*)

By the assumptions, there is a degree one map $f: M \rightarrow N$ which is a homeomorphism outside an irreducible submanifold $H_{0} \subset N$ with $\partial H_{0} \neq \emptyset$ and such that for each connected component U of H_{0} either $g(U)<g(N)$ or U does not carry $\pi_{1} N$. We assume moreover that M is not homeomorphic to N. Our goal is to show that M contains an incompressible surface.

Similar to Section let \mathcal{H} be the set of all 3-submanifolds $H \subset N$ such that:
(1) There is a degree one map $f: M \rightarrow N$ which is a homeomorphism outside H.
(2) ∂H is not empty.
(3) For each component U of H, either $g(U)<g(N)$ or U does not carry $\pi_{1} N$.
(4) H is irreducible.

The set \mathcal{H} is not empty by our assumptions.
The complexity $c(H)=\left(\sigma(\partial H), \pi_{0}(H)\right)$ for the elements of \mathcal{H} is defined like in Section 2

Lemma 5 Assume that there is a degree one map $f: M \rightarrow N$ which is a homeomorphism outside a submanifold $H \subset N$. If H contains 3 -ball component B^{3}, then f can be homotoped to be a homeomorphism outside H_{*}, where $H_{*}=H-B^{3}$. Moreover if H is irreducible, then H_{*} is also irreducible.

Proof By our assumption, there is a degree one map $f: M \rightarrow N$ which is a homeomorphism outside a submanifold $H \subset N$ and H contains a B^{3} component. Since $f \mid: f^{-1}(\partial H) \rightarrow \partial H$ is a homeomorphism, then $f^{-1}\left(\partial B^{3}\right)$ is a 2 -sphere $S_{*}^{2} \subset M$. Since M is irreducible, S_{*}^{2} bounds a 3 -ball B_{*}^{3} in M. Then either
(a) $M-\operatorname{int} f^{-1}\left(B^{3}\right)=B_{*}^{3}$, or
(b) $f^{-1}\left(B^{3}\right)=B_{*}^{3}$.

In case (a), $N=f\left(B_{*}^{3}\right) \cup B^{3}$ is a union of two homotopy 3 -balls with their boundaries identified homeomorphically, and clearly $\pi_{1} N=\{1\}$. So $M=S^{3}$ by assumption ($*$). Hence (b) holds in either case.
In case (b), by a homotopy of f supported in $f^{-1}\left(B^{3}\right)$, we can achieve that $f \mid: f^{-1}\left(B^{3}\right) \rightarrow B^{3}$ is a homeomorphism. Then f becomes a homeomorphism outside the irreducible 3 -submanifold $H_{*} \subset N$, obtained from H by deleting the 3 -ball B^{3}.

The last sentence in Lemma ${ }^{5}$ is obviously true.
Let $H \in \mathcal{H}$ be an element which realizes the minimal complexity. By Lemma 5 no component of H is a 3 -ball, hence no component of ∂H is a 2 -sphere since H is irreducible. Therefore no component of $f^{-1}(H)$ is a 3 -ball and $\partial f^{-1}(H)$ is incompressible in $f^{-1}(H)$ by the proof of Lemma 2

Since $f: M-\operatorname{int} f^{-1}(H) \rightarrow N-\operatorname{int} H$ is a homeomorphism, $\partial f^{-1}(H)$ is incompressible in $M-\operatorname{int} f^{-1}(H)$ if and only if ∂H is incompressible in $N-$ $\operatorname{int} H$. For simplicity we will set $V=N-\operatorname{int} H$, then $N=V \cup H$.
Then the proof of Proposition 2 under condition ($*$) follows from:
Lemma 6 If ∂H is compressible in V, then there is $H_{*} \in \mathcal{H}$ such that $c\left(H_{*}\right)<c(H)$.

Proof Suppose ∂H is compressible in V. Let $(D, \partial D) \subset(V, \partial V)$ be a compressing disc. By surgery along D, we get two submanifolds H_{1} and V_{1} as follows:

$$
H_{1}=H \cup \mathcal{N}(D), \quad V_{1}=V \backslash \mathcal{N}(D)
$$

Since H_{1} is obtained from H by adding a 2-handle, for each component U^{\prime} of H_{1} there is a component U of H_{0} such that $g\left(U^{\prime}\right) \leq g(U)$ and $\pi_{1} U^{\prime}$ is a quotient of $\pi_{1} U$, hence H_{1} verifies the defining condition (3) of \mathcal{H}. Moreover f is still a homeomorphism outside H_{1} because H_{1} contains H as a subset.

Clearly $\partial H_{1} \neq \emptyset$. Hence H_{1} satisfies also the defining conditions (1) and (2) of \mathcal{H}. We notice that $c\left(H_{1}\right)<c(H)$ because $\sigma\left(\partial H_{1}\right)<\sigma(\partial H)$.
We will modify H_{1} to become $H_{*} \in \mathcal{H}$ with $c\left(H_{*}\right) \leq c\left(H_{1}\right)$. The modification will be divided into two steps carried by Lemma 8 and Lemma 0 below. First the following standard lemma will be useful:

Lemma 7 Suppose U is a connected 3-submanifold in N and let $B^{3} \subset N$ be a 3-ball with $\partial B^{3}=S^{2}$.
(i) Suppose $S^{2} \subset \partial U$. If int $U \cap B^{3} \neq \emptyset$, then $U \subset B^{3}$. Otherwise $U \cap B^{3}=S^{2}$.
(ii) if $\partial U \subset B^{3}$, then either $U \subset B^{3}$, or $N-\operatorname{int} U \subset B^{3}$.

Proof For (i): Suppose first $\operatorname{int} U \cap B^{3} \neq \emptyset$. Let $x \in \operatorname{int} U \cap B^{3}$. Since U is connected, then for any $y \in U$, there is a path $\alpha \subset U$ connecting x and y. Since S^{2} is a component of $\partial U, \alpha$ does not cross S^{2}. Hence $\alpha \subset B^{3}$ and $y \in B^{3}$, therefore $U \subset B^{3}$.
Now suppose $\operatorname{int} U \cap B^{3}=\emptyset$. Let $x \in \partial U \cap B^{3}$. If $x \in \operatorname{int} B^{3}$, then there is $y \in \operatorname{int} U \cap B^{3}$. It contradicts the assumption. So $x \in \partial B^{3}=S^{2}$.
For (ii): Suppose that U is not a subset of B^{3}, then there is a point $x \in$ $U \cap\left(N-\operatorname{int} B^{3}\right)$. Let $y \in N-\operatorname{int} U$. If $y \in N-\operatorname{int} B^{3}$, there is a path α in $N-\operatorname{int} B^{3}$ connecting x and y, since $N-\operatorname{int} B^{3}$ is connected. This path α does not meet ∂U, because $\partial U \subset B^{3}$. This would contradict that $x \in U$ and $y \in N-\operatorname{int} U$. Hence we must have $y \in B^{3}$, and therefore $N-\operatorname{int} U \subset B^{3}$.

Lemma 8 Suppose H_{1} meets the defining conditions (1), (2) and (3) of the set \mathcal{H}. Then H_{1} can be modified to be a 3 -submanifold $H_{*} \subset N$ such that:
(i) ∂H_{*} contains no 2-sphere;
(ii) $c\left(H_{*}\right) \leq c\left(H_{1}\right)$;
(iii) H_{*} still meets the the defining conditions (1) (2) (3) of \mathcal{H}.

Proof We suppose that ∂H_{1} contains a 2 -sphere component S^{2}, otherwise Lemma 8 is proved. Then S^{2} bounds a 3 -ball B^{3} in N since N is irreducible. We consider two cases:

Case (a) S^{2} does bound a 3-ball B^{3} in H_{1}.
In this case B^{3} is a component of H_{1}. By Lemma 5 号 f can be homotoped to be a homeomorphism outside $H_{2}=H_{1}-B^{3}$.

Case (b) S^{2} does not bound a 3-ball B^{3} in H_{1}.
Let H_{1}^{\prime} be the component of H_{1} such that $S^{2} \subset \partial H_{1}^{\prime}$. By Lemma 7 (i), either:
($\left.\mathbf{b}^{\prime}\right) H_{1}^{\prime} \subset B^{3}$, or
($\mathbf{b}^{\prime \prime}$) $H_{1}^{\prime} \cap B^{3}=S^{2}$.
In case $\left(\mathbf{b}^{\prime}\right)$, let $H_{2}=H_{1}-B^{3}$. By Lemma $5 f$ can be homotoped to be a homeomorphism outside H_{2}. Note $H_{2} \neq \emptyset$, otherwise M and N are homeomorphic, which contradicts our assumption.

In case ($\mathbf{b}^{\prime \prime}$), let $H_{2}=H_{1} \cup B^{3}$, then ∂H_{2} has at least one component less than ∂H_{1}. Since we are enlarging H_{1}, f is a homeomorphism outside H_{2}.

It is easy to check that in each case (a), (b), (b") the components of H_{2} verify the defining condition (3) of \mathcal{H} and $c\left(H_{2}\right) \leq c\left(H_{1}\right)<c(H)$. Moreover H_{2} is not empty because M and N are not homeomorphic, and $\partial H_{2} \neq \emptyset$ since $g\left(H_{2}\right) \leq g\left(H_{1}\right)<g(N)$. Hence each of the transformations (a), (b^{\prime}) and ($\mathrm{b}^{\prime \prime}$) preserves properties (ii) and (iii) in the conclusion of Lemma 8 Since each one strictly reduces the number of components of H_{1} or of ∂H_{1}, after a finite number of such transformations we reach a 3 -submanifold H_{*} of N such that H_{*} meets the properties (ii) and (iii) of Lemma ${ }^{\text {a }}$, and ∂H_{*} contains no 2-sphere components. This proves Lemma 8

Lemma 9 Suppose that H_{1} meets conditions (i), (ii) and (iii) in the conclusion of Lemma 8, Then H_{1} can be modified to be a 3 -submanifold H_{*} of N such that:
(a) H_{*} is irreducible;
(b) $c\left(H_{*}\right) \leq c\left(H_{1}\right)$ is not increasing;
(c) H_{*} still meets the the defining conditions (1), (2), (3) of \mathcal{H}.

In particular H_{*} belongs to \mathcal{H}.
Proof If there is an essential 2-sphere S^{2} in H_{1}, it must separate N since N is irreducible. Let H_{1}^{\prime} be the component of H_{1} containing S^{2}. The 2-sphere S^{2} induces a connected sum decomposition of H_{1}^{\prime} : it separates H_{1}^{\prime} into two connected parts K_{\circ} and K_{\circ}^{\prime}, such that:

$$
H_{1}^{\prime}=K \#_{S^{2}} K^{\prime}=K_{\circ} \cup_{S^{2}} K_{\circ}^{\prime}
$$

$K_{\circ} \subset H_{1}\left(\right.$ resp. $\left.K_{\circ}^{\prime} \subset H_{1}\right)$ is homeomorphic to a once punctured K (resp. a once punctured K^{\prime}).

By Haken's Lemma, we have:

$$
g\left(H_{1}^{\prime}\right)=g(K)+g\left(K^{\prime}\right) .
$$

Neither K_{\circ} nor K_{\circ}^{\prime} is a n-punctured 3 -sphere, $n \geq 0$, because ∂H_{1} contains no 2 -sphere component, hence:

$$
g(K)<g\left(H_{1}^{\prime}\right) \quad \text { and } \quad g\left(K^{\prime}\right)<g\left(H_{1}^{\prime}\right)
$$

Since N is irreducible, S^{2} bounds a 3 -ball B^{3} in N. We may assume that $\operatorname{int} K_{\circ} \cap B^{3}=\emptyset$ and $\operatorname{int} K_{\circ}^{\prime} \cap B^{3} \neq \emptyset$. By Lemma $\mathbf{7}$ (i), we have $K_{\circ} \cap B^{3}=S^{2}$ and $K_{\circ}^{\prime} \subset B^{3}$.

Moreover $\partial H_{1}^{\prime} \cap B^{3} \neq \emptyset$, otherwise K_{\circ}^{\prime} is homeomorphic to B^{3}, in contradiction with the assumption that S^{2} is a 2 -sphere of connected sum.

Lemma $10 \partial H_{1}^{\prime}$ is not a subset of B^{3}.

Proof We argue by contradiction. If ∂H_{1}^{\prime} is a subset of B^{3}, we have $N-$ $\operatorname{int} H_{1}^{\prime} \subset B^{3}$ by Lemma $\mathbf{7}_{\text {(ii) }}$, since H_{1}^{\prime} is not a subset of B^{3}. Then:

$$
N=H_{1}^{\prime} \cup\left(N-\operatorname{int} H_{1}^{\prime}\right)=H_{1}^{\prime} \cup B^{3}=\left(K_{\circ} \#_{S^{2}} K_{\circ}^{\prime}\right) \cup B^{3}=K_{\circ} \cup_{S^{2}} B^{3}=K
$$

Hence K is homeomorphic to the whole N. If $g\left(H_{1}^{\prime}\right)<g(N)$, this contradicts the fact that $g(K)<g\left(H_{1}^{\prime}\right)<g(N)$. If H_{1}^{\prime} does not carry $\pi_{1} N$ this contadicts the fact that $K \subset H_{1}^{\prime}$.

By Lemma [10] ∂H_{1}^{\prime} (and therefore ∂H_{1}) has components disjoint from B^{3}. Therefore if we replace H_{1} by $H_{2}=H_{1} \cup B^{3}$, then ∂H_{2} is not empty and it has no component which is a 2 -sphere. Moreover the application of Haken's Lemma above shows that $g\left(H_{2}\right)<g\left(H_{1}\right)$.

Since we are enlarging H_{1}, f is a homeomorphism outside H_{2}, and clearly H_{2} still meets the the defining condition (3) of \mathcal{H}. Moreover $c\left(H_{2}\right) \leq c\left(H_{1}\right)$. Hence the transformation from H_{1} to H_{2} preserves properties (b) and (c) in the conclusion of Lemma 9 Since it strictly reduces $g\left(H_{1}\right)$, after a finite number of such transformations we will reach a 3 -submanifolds $H_{*} \subset N$ such that H_{*} meets conditions (b) and (c) in the conclusion of Lemma 9 , but does not contain any essential 2 -sphere. This proves Lemma 9

Lemma 8 and Lemma 9 imply Lemma 6 Hence we have proved Proposition 2 under condition (*).

Proof of Proposition 2 Let M and N be two closed, small 3-manifolds which are not homeomorphic. Suppose there is degree one map $f: M \rightarrow N$ which is a homeomorphism outside an irreducible submanifold $H \subset N$ such that: for each component U of H, either $g(U)<g(N)$ or U does not carry $\pi_{1} N$.
Condition (*) in the above proof of Proposition 2 is only used in the proof of Lemma廌 when H contains a 3 -ball component B^{3} and that $M-\operatorname{int} f^{-1}\left(B^{3}\right)=$ B_{*}^{3} and $f^{-1}\left(B^{3}\right) \neq B_{*}^{3}$. Indeed we can now prove that this case cannot occur.

If this case happens then $\pi_{1} N=\{1\}$ and thus $m g(H)<g(N)$, since every component of H carries $\pi_{1} N$. By replacing $f^{-1}\left(B^{3}\right)$ by a 3 -ball $B_{\#}^{3}$, we obtain a degree one map $\bar{f}: S^{3}=B_{*}^{3} \cup B_{\#}^{3} \rightarrow N$ defined by $\bar{f}\left|B_{*}=f\right| B_{*}$ and $\bar{f} \mid: B_{\#}^{3} \rightarrow B_{3}$ is a homeomorphism. Then $\bar{f}: S^{3} \rightarrow N$ is a map which is a homeomorphism outside a submanifold $H^{\prime}=H-B^{3}$. Clearly $m g\left(H^{\prime}\right)=$ $m g(H)<g(N)$. Furthermore condition ($*$) now holds.
Since Proposition 2 has been proved under condition $(*)$, we have that N must be homeomorphic to S^{3}, since S^{3} does not contain any incompressible surface. It would follow that $m g(H)<0$, which is impossible.

The proof of Proposition [2, and hence of Theorem \square is now complete.

4 Heegaard genus of small 3-manifolds

This section is devoted to the proof of Theorem [2,
Let M be a closed orientable irreducible 3-manifold. Let $F \subset M$ be a closed orientable surface (not necessary connected) which splits M into finitely many compact connected 3 -manifolds U_{1}, \ldots, U_{n}.
Let $M \backslash \mathcal{N}(F)$ be the manifold M split along the surface F. We define the complexity of the pair (M, F) as

$$
c(M, F)=\left\{\sigma(F), \pi_{0}(M \backslash \mathcal{N}(F))\right\}
$$

where $\sigma(F)$ is the sum of the squares of the genera of the components of F and $\pi_{0}(M \backslash \mathcal{N}(F))$ is the number of components of $M \backslash \mathcal{N}(F)$.
Let \mathcal{F} be the set of all closed surfaces F such that for each component U_{i} of $M \backslash F$, either $g\left(U_{i}\right)<g(M)$ or U_{i} does not carry $\pi_{1} M$.

Remark 5 This condition implies that the surface $F \neq \emptyset$ for every $F \in \mathcal{F}$.

With the hypothesis of Theorem 2 the set \mathcal{F} is not empty. Let $F \in \mathcal{F}$ be a surface realizing the minimal complexity. Then the following Lemma implies Theorem [2]

Lemma 11 A surface $F \in \mathcal{F}$ realizing the minimal complexity contains no 2 -sphere component and is incompressible.

Proof The arguments are analogous to those used in the proof of Propositions (2) We argue by contradiction.

Suppose that F contains a 2 -sphere component S^{2}. It bounds a 3 -ball $B^{3} \subset M$, since M is irreducible. Let U_{1} and U_{2} be the closures of the components of $M \backslash \mathcal{N}(F)$ which contain S^{2}. Then by Lemma (i), either:

- $U_{2} \subset B^{3}$ and $U_{1} \cap B^{3}=S^{2}$, or
- $U_{1} \subset B^{3}$ and $U_{2} \cap B^{3}=S^{2}$.

Since those two cases are symmetric, we may assume that we are in the first case. We consider the surface F^{\prime} corresponding to the decomposition $\left\{U_{1}^{\prime}, \ldots, U_{k}^{\prime}\right\}$ of M with $U_{1}^{\prime}=U_{1} \cup B^{3}$, after forgetting all $U_{i} \subset B^{3}$ and then re-indexing the remaining U_{i} 's to be $U_{2}^{\prime}, \ldots, U_{k}^{\prime}$. This operation does not increase the Heegaard genus of any one of the components of the new decomposition. Moreover if U_{1} does not carry $\pi_{1} M$, the same holds for U_{1}^{\prime}. Hence F^{\prime} still belongs to \mathcal{F}. However, this operation strictly decreases the number of components of F, hence $c\left(F^{\prime}\right)<c(F)$, in contradiction with our choice of F.

Suppose that the surface F is compressible. Then some essential simple closed curve γ on F bounds an embedded disk in M. Let D^{\prime} be a such a compression disk with the minimum number of circles of intersection in int $D^{\prime} \cap F$. Then a subdisk of D^{\prime} bounded by an innermost circle of intersection is contained inside one of the U_{i}, say U_{1}.

Let $(D, \partial D) \subset\left(U_{1}, F \cap \partial U_{1}\right)$ be such an innermost disk. Let U_{2} be adjacent to U_{1} along F, such that $\partial D \subset \partial U_{2}$. By surgery along D, we get a new surface F^{\prime} which gives a new decomposition $\left\{U_{1}^{\prime}, \ldots, U_{n}^{\prime}\right\}$ of M as follows:

$$
U_{1}^{\prime}=U_{1} \backslash \mathcal{N}(D), \quad U_{2}^{\prime}=U_{2} \cup \mathcal{N}(D), \quad U_{i}^{\prime}=U_{i}, \text { for } i \geq 3
$$

Then $g\left(U_{i}^{\prime}\right) \leq g\left(U_{i}\right)$, for $i=1, \ldots, n$. Moreover if U_{i} does not carry $\pi_{1} M$, the same holds for U_{i}^{\prime}. Hence $F^{\prime} \in \mathcal{F}$. However, $\sigma\left(F^{\prime}\right)<\sigma(F)$ since ∂D is an essential circle on F. Therefore $c\left(F^{\prime}\right)<c(F)$ and we reach a contradiction.

5 Null-homotopic knot with small unknotting number

In this section we prove Theorem 3.
Suppose M is a closed, small 3-manifold and $k \subset M$ is a null-homotopic knot with $u(k)<g(M)$. Then clearly M is not the 3 -sphere.

If k is a non-trivial knot in a 3 -ball $B^{3} \subset M$. Then the compact 3 -manifold $B^{3}(k, \lambda)$ obtained by any non-trivial surgery of slope λ on k will not be a 3 -ball by GL. Therefore $M(k, \lambda)$ contains an essential 2 -sphere.

Hence below we assume that k is not contained in a 3 -ball.
Since the knot $k \subset M$ is null-homotopic with unknotting number $u(k), k$ can be obtained from a trivial knot $k^{\prime} \subset B^{3} \subset M$ by $u(k)$ self-crossing changes. Let $D^{\prime} \subset M$ be an embedded disk bounded by k^{\prime}. If we let D^{\prime} move following the self-crossing changes from k^{\prime} to k, then each self-crossing change corresponds to an identification of pairs of arcs in D^{\prime}. Hence one obtains a singular disk Δ in M with $\partial \Delta=k$ and with $u(k)$ clasp singularities. Since Δ has the homotopy type of a graph, its regular neighborhood $\mathcal{N}(\Delta)$ is a handlebody of genus $g(\mathcal{N}(\Delta))=u(k)<g(M)$.

First we prove the following lemma which is a particular case of a more general result about Dehn surgeries on null-homotopic knots, obtained in BBDM. Since this paper is not yet available, we give here a simpler proof in this particular case.

Lemma 12 With the hypothesis above, if the slope α is not the meridian slope of k, then $M(k, \alpha)$ is not homeomorphic to M.

Proof Since M is irreducible and $k \subset M$ is not contained in a 3 -ball, $M-$ $\operatorname{int} \mathcal{N}(k)$ is irreducible and ∂-irreducible. Hence $1 \leq u(k)<g(M)$ and M cannot be a lens space.

Let consider the set \mathcal{W} of compact, connected, orientable, 3-submanifolds $W \subset$ M such that:
(1) $k \subset W$ is null-homotopic in W;
(2) there is no 2 -sphere component in ∂W;
(3) $g(W)<g(M)$.

By hypothesis the set \mathcal{W} is not empty since a regular neighborhood $\mathcal{N}(\Delta)$ of a singular unknotting disk for k is a handlebody of genus ≥ 1.

Claim 1 For a 3-submanifold $W_{0} \in \mathcal{W}$ with a minimal complexity $c\left(W_{0}\right)=$ $\sigma\left(\partial W_{0}\right)$, the surface ∂W_{0} is incompressible in the exterior $M-\operatorname{int} \mathcal{N}(k)$.

Proof If ∂W_{0} is compressible in $M-\operatorname{int} W_{0}$, let $(D, \partial D) \hookrightarrow\left(M-\operatorname{int} W_{0}, \partial W_{0}\right)$ be a compression disk for ∂W_{0}. The 3-manifold $W_{1}=W_{0} \cup \mathcal{N}(D)$, obtained by adding a 2 -andle to W_{0}, is a compact, connected submanifold of M containing k.

Any 2 -sphere in ∂W_{1} bounds a 3 -ball in $M-\operatorname{int} \mathcal{N}(k)$ since it is irreductible. Hence after gluing some 3 -ball along the boundary, we may assume that W_{1} contains no 2 -sphere component. Moreover $k \subset W_{1}$ is null-homotopic in W_{1} and $g\left(W_{1}\right) \leq g\left(W_{0}\right)<g(M)$. It follows that $W_{1} \in \mathcal{W}$. Since $c\left(W_{1}\right)<c\left(W_{0}\right)$ we get a contradiction.

If ∂W_{0} is compressible in $W_{0}-\operatorname{int} \mathcal{N}(k)$, let $(D, \partial D) \hookrightarrow,\left(W_{0}-\operatorname{int} \mathcal{N}(k), \partial W_{0}\right)$ be a compression disk for ∂W_{0}. Let W_{2} be the component of the 3-manifold $W_{0} \backslash \mathcal{N}(D)$ which contains k. As above, after possibly gluing some 3 -ball along the boundary, we may assume that ∂W_{2} contains no 2 -sphere component. The knot $k \subset W_{2}$ is null-homotopic in W_{2}, since it is null-homotopic in W_{0} and $\pi_{1} W_{2}$ is a factor of the free product decomposition of W_{0} induced by the $\partial-$ compression disk D. Moreover by Lemma $\quad g\left(W_{2}\right) \leq g\left(W_{0}\right)<g(M)$. It follows that $W_{2} \in \mathcal{W}$ and $c\left(W_{2}\right)<c\left(W_{0}\right)$. As above this contradicts the minimality of $c\left(W_{0}\right)$.

To finish the proof of Lemma 12 we distinguish two cases:
(a) The surface ∂W_{0} is compressible in $W_{0}(k, \alpha)$ Then one can apply Scharlemann's theorem Sch, Thm 6.1]. The fact that $k \subset W_{0}$ is null-homotopic rules out cases a) and b) of Scharlemann's theorem. Moreover by [BW, Prop.3.2] there is a degree one map $g: W_{0}(k, \alpha) \rightarrow W_{0}$, and thus there is a simple closed curve on ∂W_{0} which is a compression curve both in $W_{0}(k, \alpha)$ and in W_{0}. Therefore case d) of Scharlemann's theorem cannot occure. The remaining case c) of Scharlemann's theorem shows that $k \subset W_{0}$ is a non-trivial cable of a knot $k_{0} \subset W_{0}$ and that the surgery slope α corresponds to the slope of the cabling annulus. But then the manifold $M(k, \alpha)$ is the connected sum of a non-trivial Lens space with a manifold obtained by Dehn surgery along k_{0}. If $M(k, \alpha)$ is homeomorphic to the small 3-manifold M, then M and $M(k, \alpha)$ both would be homeomorphic to a Lens space, which is impossible since $1 \leq u(k)<g(M)$.
(b) The surface ∂W_{0} is incompressible in $W_{0}(k, \alpha)$ Since ∂W_{0} is incompressible in $M-\mathcal{N}(k)$, it is incompressible in $M(k, \alpha)$. Therefore $M(k, \alpha)$ and M cannot be homeomorphic since M is a small manifold.

It follows from [BW] Prop.3.2] that there is a degree one map $f: M(k, \alpha) \rightarrow M$ which is a homeomorphism outside $\mathcal{N}(\Delta)$. Since $g(\mathcal{N}(\Delta))=u(k)<g(M)$, Theorem 3 is a consequence of Theorem 1 and Lemma 12

References

[BBDM] M Boileau, S Boyer, M Domergue, Y Mathieu, Killing slopes, in preparation
[BW] M Boileau, S Wang, Non-zero degree maps and surface bundles over S^{1}, J. Differential Geom. 43 (1996) 789-806 MathReview
[BO] F Bonahon, J-P Otal, Scindements de Heegaard des espaces lenticulaires, Ann. Sci. École Norm. Sup. (4) 16 (1983) 451-466 (1984) MathReview
[Br] W Browder, Surgery on simply-connected manifolds, Springer-Verlag, New York (1972) MathReview
[CG] A J Casson, C M Gordon, Reducing Heegaard splittings, Topology Appl. 27 (1987) 275-283 MathReview
[Ed] AL Edmonds, Deformation of maps to branched coverings in dimension two, Ann. of Math. (2) 110 (1979) 113-125 MathReview
[GL] C McA Gordon, J Luecke, Reducible manifolds and Dehn surgery. Topology 35 (1996) 385-409 MathReview
[Ha] W Haken, On homotopy 3-spheres, Illinois J. Math. 10 (1966) 159-178 MathReview
[He] J Hempel, 3-Manifolds, Princeton University Press, Princeton, N. J. (1976) MathReview
[Ja] W H Jaco, Lectures on three-manifold topology, CBMS Regional Conference Series in Mathematics 43, American Mathematical Society, Providence, RI (1980) MathReview
[La] M Lackenby, The Heegaard genus of amalgamated 3-manifolds, Geom. Dedicata 109 (2004) 139-145 MathReview
[Le] F Lei, Complete systems of surfaces in 3-manifolds, Math. Proc. Cambridge Philos. Soc. 122 (1997) 185-191 MathReview
[RW] Y W Rong, S C Wang, The preimages of submanifolds, Math. Proc. Cambridge Philos. Soc. 112 (1992) 271-279 MathReview
[Sch] M Scharlemann, Producing reducible 3-manifolds by surgery on a knot, Topology 29 (1990) 481-500 MathReview
[Wa] F Waldhausen, On mappings of handlebodies and of Heegaard splittings, from: "Topology of Manifolds (Proc. Inst. Univ. of Georgia, Athens, Ga. 1969)", Markham, Chicago, Ill. (1970) 205-211 MathReview

Laboratoire Émile Picard, CNRS UMR 5580, Université Paul Sabatier 118 Route de Narbonne, F-31062 TOULOUSE Cedex 4, France and
LAMA Department of Mathematics, Peking University
Beijing 100871, China
Email: boileau@picard.ups-tlse.fr, wangsc@math.pku.edu.cn
Received: 20 July 2005

