Hyperbolic covering knots

Daniel S. Silver
Wilbur Whitten

Abstract

Given any knot k, there exists a hyperbolic knot \tilde{k} with arbitrarily large volume such that the knot group πk is a quotient of $\pi \tilde{k}$ by a map that sends meridian to meridian and longitude to longitude. The knot \tilde{k} can be chosen to be ribbon concordant to k and also to have the same Alexander invariant as k.

AMS Classification 57M25; 20F34
Keywords Alexander module, hyperbolic knot, ribbon concordance, tangle

1 Introduction

The classical problem of topology to find all homotopy classes of maps $M \rightarrow N$ between given complexes M and N has been variously expanded in recent years for the case in which M and N are manifolds of the same dimension; for an overview, see 27. In the spirit of this expanded viewpoint as applied to knot theory, the authors in 23] showed that given any knot k, there exists infinitely many prime knots \tilde{k} admitting an epimorphism of knot groups $\pi \tilde{k} \rightarrow$ πk sending a meridian-longitude pair for \tilde{k} to a meridian-longitude pair for k. We make use of this result, and go further, proving that the knots \tilde{k} can in fact be chosen to be hyperbolic with arbitrarily large volumes (see Theorem 2.2). The knots \tilde{k} that we construct are ribbon concordant to k, and have the same Alexander invariant as k; in particular, they have the same Alexander polynomial.
E. Kalfagianni showed in [9] that given any positive integer n, there exists a hyperbolic knot with trivial Alexander polynomial, trivial finite type invariants of orders $\leq n$ and volume greater than n. Our result can be seen as a partial generalization.
We are grateful to Abhijit Champanerkar, Tim Cochran and Danny Ruberman for helpful discussions. The first author is partially supported by NSF grant DMS-0304971.

Note added in proof Professor A. Kawauchi has informed the authors that many of the results of this paper can be found in [10] or [11].

2 Statement of results

We denote the group $\pi_{1}\left(S^{3} \backslash \operatorname{Int}(V), *\right)$ of a knot $k \subset S^{3}$ by πk. Here $V \cong k \times D^{2}$ is a tubular neighborhood of k, and $*$ is a basepoint chosen on the boundary $\partial V \cong k \times S^{1}$. An essential simple closed curve in ∂V that is contractible in V is called a meridian, and it is denoted by m. An essential simple closed curve $l \subset \partial V$ that is nullhomologous in $S^{3} \backslash \operatorname{Int}(V)$ is called a longitude. Once k is oriented, both m and l acquire induced orientations. The inclusion map $\partial V \hookrightarrow S^{3} \backslash \operatorname{Int}(V)$ induces an injection of fundamental groups. Its image is the subgroup $\langle m, l\rangle$ generated by m and l.
Let $k_{i}(i=1,2)$ be knots with meridian-longitude pairs m_{i}, l_{i}.
Definition 2.1 A homomorphism $\phi: \pi k_{1} \rightarrow \pi k_{2}$ preserves peripheral structure if the image of $\left\langle m_{1}, l_{1}\right\rangle$ is conjugate to a subgroup of $\left\langle m_{2}, l_{2}\right\rangle$. When ϕ is an epimorphism, we write $k_{1} \succeq k_{2}$.

The relation \succeq is a partial order [23]. After an appropriate choice of orientation, we can assume that $\phi\left(m_{1}\right)=m_{2} l_{2}^{p}$ and $\phi\left(l_{1}\right)=m_{2}^{q} l_{2}^{r}$, for some integers p, q, r. Since $m_{2}^{q} l_{2}^{r}$ must be in $\left(\pi k_{2}\right)^{\prime \prime} \cap Z\left(m_{2}\right)$ [8], we have $q=0$. Furthermore, since the normal subgroup of πk_{2} generated by $m_{2} l_{2}^{p}$ is all of πk_{2}, Corollary 2 of [3] implies that $p \in\{0,1,-1\}$; in fact the recent proof that every nontrivial knot satisfies Property P [13] implies that $p=0$. Hence $\phi\left(m_{1}\right)=m_{2}$ and $\phi\left(l_{1}\right)=l_{2}^{r}$. When $r=1$, we write $k_{2} \succeq_{1} k_{1}$. In [23] we showed that $k_{1} \succeq_{1} k_{2}$ implies $k_{1} \succeq k_{2}$ but not conversely.
A ribbon concordance from a knot k_{1} to another knot k_{0} is a smooth concordance $C \subset \mathbb{S}^{3} \times I$ with $C \cap \mathbb{S}^{3} \times\{i\}=k_{i}(i=0,1)$, and such that the restriction to C of the projection $\mathbb{S}^{3} \times I \rightarrow I$ is a Morse function with no local maxima. Visualizing such a concordance by cross-sections, we see a sequence of saddle points (called fusions) and local minima (the result of shrinking to points unknotted, unlinked components). We do not see any local maxima.
The notion of ribbon concordance was introduced by C. Gordon [5, who wrote $k_{1} \geq k_{0}$ if there is a ribbon concordance from k_{1} to k_{0}. The term was motivated by the fact that a knot k is ribbon concordant to the trivial knot if it bounds an immersed disk in \mathbb{S}^{3} with only ribbon singularities. Gordon conjectured that \geq is a partial order. The conjecture remains open. It is immediate from [16] that ribbon concordance does not imply \succeq, nor does \succeq imply ribbon concordance.

Theorem 2.2 Let k be a knot. There exists a hypberbolic knot \tilde{k} with the following properties.
(i) $\tilde{k} \succeq_{1} k$;
(ii) The Alexander invariants of \tilde{k} and k are isomorphic;
(iii) \tilde{k} has arbitrarily large volume;
(iv) \tilde{k} is ribbon concordant to k.

The 4-ball genus of a knot $k \subset \mathbb{S}^{3}=\partial B^{4}$ is the minimum genus of any properly embedded surface $F \subset B^{4}$ bounding k.

Corollary 2.3 Every Alexander polynomial is realized by hyperbolic knots with arbitrarily large volume and arbitrarily large 4-ball genus.

Corollary 2.3 is proven using results of J. Rasmussen [21] and C. Livingston [15]. The statement of Corollary 2.3 was shown earlier by A. Stoimenow using more combinatorial methods.

3 Proof of Theorem 2.2

The idea for the proof Theorem 2.2 was suggested by 16. The rough idea is as follows. First, we invoke [23] so that we may assume without loss of generality that k is prime. Having chosen a diagram for k with a minimal number of crossings, we introduce a carefully devised unknot (called a "staple") into a small neighborhood of each crossing. The greater part of the proof is devoted to showing that the resulting link is hyperbolic. Finally, we perform $1 / q$ surgery on each of the staples. Thurston's hyperbolic surgery theorem implies that the resulting knots \tilde{k} will be hyperbolic provided that the values of q are sufficiently large. The special form of the staples ensures that \tilde{k} has the same abelian invariants as k.

The main result of [23] implies that there exists a prime knot \tilde{k} such that $\tilde{k} \succeq_{1} k$. In fact there are infinitely many. Hence we can assume without any loss of generality that k is prime.

Take a regular projection of k with a minimal number m of crossings. We may assume that k lies in the projection plane except near the crossings. Number the crossings $i=1, \ldots, m$, and for each i, let B_{i} be a 3 -ball that meets k in two subarcs $t_{i_{1}}$ and $t_{i_{2}}$ that form the i th crossing. Thus each $\left(B_{i}, t_{i_{1}} \cup t_{i_{2}}\right)$,
abbreviated by $\left(B_{i}, t_{i}\right)$, is either the tangle +1 or -1 , depending on the crossing (Figure 1). We also assume that each B_{i} meets the projection plane in an equatorial disk, and that $B_{i} \cap B_{j}=\emptyset$ when $i \neq j$. We assume that the balls B_{i} are chosen so that $k \backslash t_{1} \cup \cdots \cup t_{m}$ is in the projection plane.

Figure 1: Tangle $\left(B_{i}, t_{i}\right)$
Next we insert an unknot γ_{i} in the interior of each $B_{i} \backslash k_{i}$, as in Figure 2. We refer to γ_{i} as a staple. We orient k in order to make the location of each staple specific. Note that $\left(B_{i}, t_{i}, \gamma_{i}\right)$ is homeomorphic to $\left(B_{j}, t_{j}, \gamma_{j}\right)$, for each i and j.

Figure 2: Tangle $\left(B_{i}, t_{i}, \gamma_{i}\right)$
The proof of Theorem 2.2 proceeds by a sequence of lemmas.
Lemma 3.1 The link $L=k \cup \gamma_{1} \cup \cdots \cup \gamma_{m}$ is unsplittable.

Proof By construction, the sublink $\gamma_{1} \cup \cdots \cup \gamma_{m}$ is trivial. It suffices to show that $k \cup \gamma_{i}$ is unsplittable, for each i.

It is convenient to have another view of $\left(B_{i}, t_{i}, \gamma_{i}\right)$, obtained in the style of Montisenos by stretching ∂B_{i} into an "arc," as in Figure 3a. Figure 3b gives a view of the 2 -fold cover of $B_{i} \backslash \gamma_{i}$ branched over t_{i}. It is a solid torus V_{i} minus the 2-component link $\tilde{\gamma}_{i}=\tilde{\gamma}_{i_{1}} \cup \tilde{\gamma}_{i_{2}}$. The program Snap shows that $\tilde{\gamma}_{i}$ is a hyperbolic link in V_{i}; that is, $\operatorname{Int}\left(V_{i} \backslash \tilde{\gamma}_{i}\right)$ is a hyperbolic 3-manifold.

Figure 3: (a) Tangle $\left(B_{i}, t_{i}, \gamma_{i}\right)$ (b) 2-Fold branched cover

If $k \cup \gamma_{i}$ is splittable, then there exists a 2 -sphere S bounding a pair of 3 -balls, one containing k, the other, which we call A, containing γ_{i}. Since each of B_{i} and A contains γ_{i}, their interiors intersect. Clearly B_{i} is not a subset of A, as B_{i} contains two subarcs of k. Therefore if A is not a subset of B_{i}, we can assume that $S \cap \partial B_{i}$ is a finite collection of pairwise disjoint simple closed curves. Let α be one of the curves that is innermost in S.
If α bounds a disk D in $S \cap \operatorname{cl}\left(S^{3} \backslash B_{i}\right)$, then it also bounds a disk D^{\prime} in ∂B_{i} that is in A, and since $D^{\prime} \cap k=\emptyset$, the sphere $D \cup D^{\prime}$ bounds a 3-ball not containing $k \cup \gamma_{i}$. Isotoping D through the ball, we can remove α without moving $k \cup \gamma_{i}$.
If, on the other hand, α bounds a disk $D \subset B_{i}$, then α also bounds a disk $D^{\prime} \subset \partial B_{i}$ that contains no points of $t_{i} \cap \partial B_{i}$, since otherwise either $D \cap t_{i} \neq \emptyset$ or else D lifts to a pair of meridianal disks of V_{i} neither of which meets $\tilde{\gamma}_{i_{1}} \cup \tilde{\gamma}_{i_{2}}$. But $D \cap t_{i}=\emptyset$ by construction, and $\tilde{\gamma}_{i_{1}} \cup \tilde{\gamma}_{i_{2}}$ is essential in the 2 -fold cover of B_{i} branched over t_{i}. Hence $D \cup D^{\prime}$ bounds a 3 -ball $A^{\prime} \subset B_{i} \backslash t_{i}$. If $\gamma_{i} \subset A^{\prime}$,
then we push D^{\prime} slightly into B_{i} and replace S by $D \cup D^{\prime}$. If γ_{i} is not a subset of A^{\prime}, then we push D through A^{\prime} into $\operatorname{cl}\left(S^{3} \backslash B_{i}\right)$, and thereby eliminate α.

Inductively, we remove all curves of $S \cap \partial B_{i}$, and assume henceforth that S and hence A are contained in the interior of B_{i}. However, the lift of S to the 2-fold cover $V_{i} \backslash \tilde{\gamma}_{i}$ of $B_{i} \backslash \gamma_{i}$ branched over t_{i} is a pair of 2 -spheres, each of which splits $\tilde{\gamma}_{i}=\tilde{\gamma}_{i_{1}} \cup \tilde{\gamma}_{i_{2}}$. Since $\operatorname{Int}\left(V_{i} \backslash \tilde{g}_{i}\right)$ is hyperbolic and hence irreducible, this is impossible. Therefore, $k \cup \gamma_{i}$ is unsplittable.

Lemma 3.2 The link $L=k \cup \gamma_{1} \cup \cdots \cup \gamma_{m}$ is prime.

Proof Let S be a 2 -sphere that meets L transversely in exactly two points. The two points must belong to the same component of L. Suppose first that this component is a staple γ_{i}. Then S bounds a pair of 3-balls, one of which contains k. The other 3 -ball, which we call A, contains an arc of γ_{i}, which must be unknotted as γ_{i} is trivial. It is not possible for A to contain another staple $\gamma_{j}, j \neq i$, since in that case S would split $k \cup \gamma_{j}$, thereby contradicting Lemma 3.1. Thus the ball A meets L in an unknotted spanning arc.

To complete the proof, we need to show that if the two points of $S \cap L$ belong to k, then S bounds a ball that intersects L in an unknotted spanning arc.

Suppose first that S is contained in the interior of some B_{i}. Then S bounds a 3 -ball $A \subset B_{i}$ meeting t_{i} in a spanning arc of A. Since $\left(B_{i}, t_{i}\right)$ is a trivial tangle, this spanning arc is unknotted. The lift of S to the 2 -fold cover of $B_{i} \backslash \gamma_{i}$ branched over t_{i} is a 2 -sphere bounding a 3 -ball that projects to A, as $V_{i} \backslash \tilde{\gamma}_{i}$ is irreducible. Thus γ_{i} is not contained in A, and hence A meets L in an unknotted spanning arc.

If S is not in the interior of any 3-ball B_{i}, then we can assume that $S \cap\left(\partial B_{1} \cup\right.$ $\left.\cdots \cup \partial B_{m}\right)$ is a finite collection of pairwise disjoint simple closed curves in which S meets $\partial B_{1} \cup \cdots \cup \partial B_{m}$ transversely. Our immediate goal is to show that we can move S without disturbing L setwise so that either S is contained in some B_{i} or else $S \cap\left(\partial B_{1} \cup \cdots \cup \partial B_{m}\right)=\emptyset$.

Let α be a component of $S \cap\left(\partial B_{1} \cup \cdots \cup \partial B_{m}\right)$ that is innermost in S. We can assume that $\alpha \subset \partial B_{i}$ and that α bounds a disk $D \subset S$ such that $D \cap B_{j}=\emptyset$, for $j \neq i$, and either $D \cap k=\emptyset$ or else $D \cap k$ is one of the two points of $S \cap k$. If $D \cap k=\emptyset$, then either $D \subset B_{i}$ or $D \subset \operatorname{cl}\left(S^{3} \backslash B_{i}\right)$. In the first case, D can be moved off B_{i}, as L is not splittable and $t_{i_{1}}$ and $t_{i_{2}}$ are not separated by D in $B_{i} \backslash \gamma_{i}$. In the second case, α also bounds a disk $D^{\prime} \subset \partial B_{i}$ such that the cardinality $\left|D^{\prime} \cap k\right|$ is 0,1 or 2 . If $\left|D^{\prime} \cap k\right|=0$, then the sphere $D \cup D^{\prime}$
bounds a 3-ball A such that $A \cap L=\emptyset$, since L is unsplittable or equivalently $\mathbb{S}^{3} \backslash L$ is irreducible, and we can therefore push D into B_{i} and thereby remove α without moving L. The case $\left|D^{\prime} \cap k\right|=1$ cannot occur, since $D \cap k=\emptyset$. If $\left|D^{\prime} \cap k\right|=2$, then $D \cup D^{\prime}$ bounds a 3 -ball outside $\operatorname{Int}\left(B_{i}\right)$ containing an arc of k and perhaps some of the balls B_{j}. This implies, however, that the crossing of k in B_{i} is nugatory, contradicting minimality of the projection of k. Hence $\left|D^{\prime} \cap k\right|=2$ also cannot occur.
Assume now that $D \cap k$ is one point, and recall that $\partial D=\alpha \subset \partial B_{i}$. Then α bounds a disk $D^{\prime} \subset \partial B_{i}$ meeting k in one point.
If $D \subset B_{i}$, then $D \cup D^{\prime}$ bounds a 3 -ball $A \subset B_{i}$ meeting k in a spanning arc. Since $\left(B_{i}, t_{i}\right)$ is a trivial tangle, the arc is unknotted. The irreducibility of the 2-fold cover of $B_{i} \backslash \gamma_{i}$ branched over t_{i} implies that γ_{i} is not a subset of A. Hence we can isotop D through A to remove α while keeping L setwise fixed.

If $D \subset \operatorname{cl}\left(\mathbb{S}^{3} \backslash B_{i}\right)$, then the fact that D is an innermost disk (with $\partial D=\alpha$) in S implies that $D \cap B_{j}=\emptyset$, for all $j \neq i$, and hence $D \cap k$ is a point in the projection plane. Let A dnote the 3 -ball in \mathbb{S}^{3} with $\partial A=D \cup D^{\prime}$ and $\operatorname{Int}\left(B_{i}\right)$ not a subset of A. If A contains any $B_{j}, j \neq i$, then we can move D^{\prime} slightly off B_{i} while keeping k setwise fixed to obtain a 2 -sphere $D \cup D^{\prime}$ such that $\left(D \cup D^{\prime}\right) \cap\left(\partial B_{1} \cup \cdots \cup \partial B_{m}\right)=\emptyset$ and such that $D \cup D^{\prime}$ bounds two 3 -balls each of which contains at least one of the balls B_{1}, \ldots, B_{m}. As we will see shortly, this cannot occur, and so $D \cap k$ is a point in one of the four planar arcs of k protruding from B_{i}. These arcs are unknotted by construction, and no staple γ_{j} or ball B_{j} is now in A. Hence we can push D back into B_{i} and remove α, again while keeping L setwise fixed.

We can, therefore, assume that either S is contained in some B_{i} or $S \cap\left(B_{1} \cup\right.$ $\left.\cdots \cup B_{m}\right)=\emptyset$. As we have seen, if S is in some B_{i}, then S bounds a 3 -ball in B_{i} meeting L in an unknotted spanning arc. So assume that $S \cap\left(B_{1} \cup \cdots \cup B_{m}\right)=\emptyset$. Let A_{1} and A_{2} be the two 3-balls bounded by S. Since k is prime, one of A_{1} and A_{2}, say A_{2}, meets k in an unknotted spanning arc b of A_{2}.

Assume that S is in general position with respect to the projection plane P of L. Since the general position isotopy of S can be chosen to fix the two points x_{1} and x_{2} of $S \cap k$, we can assume that S meets P in a simple closed curve containing x_{1}, x_{2} together with a collection of simple closed curves bounding disks in S. Since we can also assume that S meets a tubular neighborhood N of k (see proof of Lemma 3.3) in two disks, the disks in S bounded by the latter curves belong to the handlebody $\operatorname{cl}\left(\mathbb{S}^{3} \backslash \operatorname{cl}\left[\left(\cup_{i=1}^{m} B_{i}\right) \cup N\right]\right)$, and thus the curves themselves can be removed by cut and paste arguments. Hence there is a simple arc $\beta \subset P \cap S$ with $\partial \beta=\left\{x_{1}, x_{2}\right\}$ and a subarc α of k
such that $k=(\alpha \cup \beta) \sharp(\beta \cup b)$, where $\beta \cup b$ is an unknot, and k is ambient isotopic to $\alpha \cup \beta$. Since the projection of k in P has a minimal number of crossings m (equal to the crossing number of k), so does $\alpha \cup \beta$, and so $A_{1} \supset B_{1} \cup \cdots \cup B_{m} \supset \gamma_{1} \cup \cdots \cup \gamma_{m}$. Therefore, $b \subset P$ and $A_{2} \cap L=b$.

Lemma 3.3 The link $L=k \cup \gamma_{1} \cup \cdots \cup \gamma_{m}$ is hyperbolic.
Proof Let N be a tubular neighborhood of k in $S^{3} \backslash\left(\gamma_{1} \cup \cdots \cup \gamma_{m}\right)$, and let N_{i} be a tubular neighborhood of $\gamma_{i}, i=1, \ldots, m$, such that N, N_{1}, \ldots, N_{m} are pairwise disjoint and $N_{i} \subset \operatorname{Int}\left(B_{i}\right)$, for each i. We also assume that $N \cap \partial B_{i}$ is a collection of four meridianal disks of N, for each i. Set $\operatorname{Ext}(L)=\operatorname{cl}\left(\mathbb{S}^{3} \backslash\right.$ $\left.\left(N \cup N_{1} \cup \cdots \cup N_{m}\right)\right)$. With $\tilde{\gamma}_{i}=\tilde{\gamma}_{i_{1}} \cup \tilde{\gamma}_{i_{2}}(i=1, \ldots, m)$, the trivial link $\gamma_{1} \cup \cdots \cup \gamma_{m}$ lifts to a $2 m$-component link in the 2 -fold cover M_{2} of k, and each N_{i} lifts to a pair of tubular neighborhoods, $\tilde{N}_{i_{1}}$ and $\tilde{N}_{i_{2}}$, of $\tilde{\gamma}_{i_{1}}$ and $\tilde{\gamma}_{i_{2}}$, respectively, in M_{2}. Clearly, $\tilde{N}_{i_{1}} \cap \tilde{N}_{i_{2}}=\emptyset$ and $\tilde{N}_{i_{1}} \cup \tilde{N}_{i_{2}}$ is contained in the 2 -fold cover of B_{i} branched over t_{i}, which is in M_{2}. We set $M=$ $\operatorname{Ext}\left(\tilde{\gamma}_{1} \cup \cdots \cup \tilde{\gamma}_{m}\right)=\operatorname{cl}\left(M_{2} \backslash \cup_{i=1}^{m}\left(\tilde{N}_{i_{1}} \cup \tilde{N}_{i_{2}}\right)\right)$, which can be shown to be irreducible by a straightforward application of Lemma 3.2 and the \mathbb{Z}_{2} sphere theorem [12]. Since each of $\operatorname{Ext}(L)$ and M is an irreducible (in fact, a Haken) 3 -manifold that has torus boundary components and is not a solid torus, it is a standard fact that each of them has incompressible boundary.
To see that L is hyperbolic, we need to show that $S^{3} \backslash L$ is not a Seifert fibered space and that every incompressible torus is $\operatorname{Ext}(L)$ is boundary parallel [26]. That $\mathbb{S}^{3} \backslash L$ is not Seifert fibered follows from [2], which yields a geometric description of the unsplittable links in \mathbb{S}^{3} with Seifert fibered complements. Each component of such a link can be chosen to be a fiber of some Seifert fibration of \mathbb{S}^{3}. In particular, our link L has four or more components, so if $\mathbb{S}^{3} \backslash L$ is Seifert fibered, then either (1) each component of L is unknotted; or (2) one or two components are unknotted and each of the remaining components is a nontrivial torus knot (of a given fixed type (α, β)); or (3) all components are nontrivial torus knots of the same type. Since L has exactly one knotted component but three or more unknotted components, it follows that \mathbb{S}^{3} is not Seifert fibered.

We show now that $\operatorname{Ext}(L)$ is atoroidal, by which we mean that every incompressible torus in $\operatorname{Ext}(L)$ is boundary parallel. (Our argument was suggested by that of Case 3 in the proof of Theorem 2 of [6].) Suppose first that a torus $T \subset \operatorname{Ext}(L)$ is incompressible but not boundary parallel and that $T \subset \operatorname{Int}\left[B_{i} \backslash\left(t_{i} \cup \gamma_{i}\right)\right]$, for some i. Then the lift \tilde{T} of T to $V_{i} \backslash \tilde{\gamma}_{i}$ is either one or two tori. Since $V_{i} \backslash \tilde{\gamma}_{i}$ is hyperbolic (and thus atoroidal), there is a compressing
disk \tilde{D} for \tilde{T} in $V_{i} \backslash \tilde{\gamma}_{i}$ such that $g(\tilde{D}) \cap \tilde{D}=\emptyset$, or $g(\tilde{D})=\tilde{D}$ and \tilde{D} meets the fixed point set \tilde{t}_{i} of the involution g transversely in a single point [12] (see also Theorem 3 of [6]). Let D denote the image of \tilde{D} under the projection map $V_{i} \backslash \tilde{\gamma}_{i} \rightarrow B_{i} \backslash \gamma_{i}$. If $g(\tilde{D}) \cap \tilde{D}=\emptyset$, then the disk D compresses T in $\operatorname{Int}\left[B_{i} \backslash\left(t_{i} \cup \gamma_{i}\right)\right]$, which is a contradiction. If, however, $g(\tilde{D})=\tilde{D}$, then the disk D meets $t_{i_{1}}$ or $t_{i_{2}}$-say $t_{i_{1}}$ - transversely in a single point. We then split T along D to obtain a 2 -sphere S meeting $t_{i_{1}}$ in two points. As was shown in the proof of Lemma 3.2, S bounds a 3 -ball A in $B_{i} \backslash \gamma_{i}$ meeting $t_{i_{1}}$ in a spanning arc of A. It is now clear that T itself must bound the exterior of a nontrivial knot in $B_{i} \backslash \gamma_{i}$, since T is incompressible. This, however, implies that $t_{i_{1}}$ is a knotted arc, which is a contradiction. Hence T is not contained in $\operatorname{Int}\left[B_{i} \backslash\left(t_{i} \cup \gamma_{i}\right)\right]$, for any i.
On the other hand, the incompressible torus $T \subset \operatorname{Ext}(L)$ is also not in $\operatorname{cl}\left[\mathbb{S}^{3} \backslash\right.$ $\left(N \cup \cup_{i=1}^{m} B_{i}\right]$, as this is clearly a handlebody $\left(\neq \mathbb{S}^{1} \times D^{2}\right)$.

Thus we can assume that $T \cap\left(\partial B_{1} \cup \cdots \cup \partial B_{m}\right)$ is a finite collection of disjoint simple closed curves along which T and $\partial B_{1} \cup \cdots \cup \partial B_{m}$ meet transversely. Let α be one of these curves, on B_{i} say.

If α is homotopically trivial on T, then it bounds a disk $D \subset T$, and we can assume that α is innermost on T in the sense that there is no curve α^{\prime} in $T \cap\left(\partial B_{1} \cup \cdots \cup \partial B_{m}\right)$ such that $\alpha^{\prime} \subset \operatorname{Int}(D)$. Note that $\alpha \cap \partial\left(t_{i_{1}} \cup t_{i_{2}}\right)=\emptyset$ and that D is properly imbedded in $B_{i} \backslash\left(t_{i_{1}} \cup t_{i_{2}} \cup \gamma_{i}\right)$ or in $\operatorname{cl}\left(\mathbb{S}^{3} \backslash B_{i}\right)$.

Case $1 D \subset B_{i} \backslash\left(t_{i_{1}} \cup t_{i_{2}} \cup \gamma_{i}\right) \quad$ In this case, the disk D lifts to a pair of disks \tilde{D}_{1} and \tilde{D}_{2} in $V_{i} \backslash \tilde{\gamma}_{i}$, each of which is properly imbedded with $\partial \tilde{D}_{j} \subset \partial V_{i}$ and $\tilde{D}_{j} \cap\left(\tilde{\gamma}_{i} \cup \tilde{t}_{i}\right)=\emptyset(j=1,2$ and i fixed $)$. Since moreover ∂V_{i} is incompressible in $V_{i} \backslash \tilde{\gamma}_{i}$, it follows that $\partial \tilde{D}_{1}$ and $\partial \tilde{D}_{2}$ (the lifts of α) bound disks \tilde{D}_{1}^{\prime} and \tilde{D}_{2}^{\prime}, respectively, in ∂V_{i} such that $\tilde{D}_{j}^{\prime} \cap \partial \tilde{t}_{i}=\emptyset(j=1,2)$. The projection of $\tilde{D}_{1}^{\prime} \cup \tilde{D}_{2}^{\prime}$ is a disk $D^{\prime} \subset \partial B_{i}$ such that $D^{\prime} \cap \partial\left(t_{i_{1}} \cup t_{i_{2}}\right)=\emptyset$ and $\partial D^{\prime}=\alpha$, and so $D \cup D^{\prime}$ bounds a 3-ball A in B_{i} such that $A \cap L=\emptyset$, since $\mathbb{S}^{3} \backslash L$ is irreducible. Thus we can isotop T to remove α.

Case $2 D \subset \operatorname{cl}\left(\mathbb{S}^{3} \backslash B_{i}\right)$ The curve α bounds two disks $D_{1}, D_{2} \subset \partial B_{i}$ such that $D_{1} \cap D_{2}=\alpha$ and $D_{1} \cup D_{2}=\partial B_{i}$. If each of $\operatorname{Int}\left(D_{1}\right)$ and $\operatorname{Int}\left(D_{2}\right)$ contains a point of $\partial\left(t_{i_{1}} \cup t_{i_{2}}\right)$, then the minimal number of points in either disk is one or two. Since D contains no points of k, however, this minimal number clearly must be two, and since $\left|\partial\left(t_{i_{1}} \cup t_{i_{2}}\right)\right|=4$, each of $\operatorname{Int}\left(D_{1}\right)$ and $\operatorname{Int}\left(D_{2}\right)$ must therefore contain two points of k. Using D_{1}, say, it follows that $D \cup D_{1}$ is a 2 -sphere meeting L in two points of k. Since L is prime, $D \cup D_{1}$ bounds a

3 -ball meeting L in an unknotted arc b, a subarc of k. Considering B_{i}, this implies that either k consists of two components or the crossing of $t_{i_{1}}$ and $t_{i_{2}}$ in B_{i} is nugatory. Since neither of these is possible, one of D_{1} and D_{2} must miss $\partial\left(t_{i_{1}} \cup t_{i_{2}}\right)$, say D_{1}. By irreducibility of $\mathbb{S}^{3} \backslash L$, it follows that $D \cup D_{1}$ bounds a 3 -ball $A \subset \operatorname{cl}\left(\mathbb{S}^{3} \backslash B_{i}\right)$ such that $A \cap L=\emptyset$, and we can move T to eliminate α.

Application of Cases 1 and 2 can be used to remove all other curves in $T \cap$ $\left(\partial B_{1} \cup \cdots \cup \partial B_{m}\right)$ that are homotopically trivial in T without disturbing the remaining curves. We therefore assume now that $T \cap\left(\partial B_{1} \cup \cdots \cup \partial B_{m}\right)$ is a collection of homotopically nontrivial curves in T, which must of course be parallel. If this collection is empty, then T is either in some B_{i} or else T is in the handlebody cl $\left[\mathbb{S}^{3} \backslash\left(N \cup \cup_{i=1}^{m} B_{i}\right)\right]$. Clearly then, a pair of curves, α_{1} and α_{2}, in $T \cap\left(\partial B_{1} \cup \cdots \cup \partial B_{m}\right)$ must bound an annulus F in T with $F \subset B_{i} \backslash\left(t_{i} \cup \gamma_{i}\right)$, for some i, and no α^{\prime} in $T \cap\left(\partial B_{1} \cup \cdots \cup \partial B_{m}\right)$ is contained in $\operatorname{Int}(F)$. We now show that either F bounds a tubular neighborhood of $t_{i_{1}}$ or $t_{i_{2}}$ in $B_{i} \backslash \gamma_{i}$ or else F can be slightly isotoped off B_{i}.

The curves α_{1} and α_{2} bound disjoint disks D_{1} and D_{2}, respectively, in ∂B_{i}, and $\operatorname{Int}\left(D_{j}\right) \cap \partial\left(t_{i_{1}} \cup t_{i_{2}}\right) \neq \emptyset(j=1,2)$. Since $\left|\operatorname{lk}\left(k, \alpha_{1}\right)\right|=\left|\operatorname{lk}\left(k, \alpha_{2}\right)\right|$ and $\left|\partial B_{i} \cap \partial\left(t_{i_{1}} \cup t_{i_{2}}\right)\right|=4$, there are three possible cases, two of which we combine into Case (b).

Case (a) $\left|\operatorname{Int}\left(D_{j}\right) \cap \partial\left(t_{i_{1}} \cup t_{i_{2}}\right)\right|=1(j=1,2) \quad$ Since $D_{1} \cup F \cup D_{2}$ is a 2 -sphere S, it is clear that each of $\operatorname{Int}\left(D_{1}\right)$ and $\operatorname{Int}\left(D_{2}\right)$ contains an endpoint of the same arc $t_{i_{1}}$, say. Isotoping S into B_{i}, it follows that S bounds a 3 -ball A in $B_{i} \backslash \gamma_{i}$ meeting $t_{i_{1}}$ in an unknotted spanning arc of A (as in the proof of Lemma 3.2.) Isotoping S back to its original position, it follows that F is boundary parallel. (Recall that we began with the original assumption that $T \subset \operatorname{Ext}(L)$.

Case (b) Either $\left|\operatorname{Int}\left(D_{j}\right) \cap \partial\left(t_{i_{1}} \cup t_{i_{2}}\right)\right|=2(j=1,2)$, or $\mid \operatorname{Int}\left(D_{1}\right) \cap \partial\left(t_{i_{1}} \cup\right.$ $\left.t_{i_{2}}\right) \mid=1$ and $\left|\operatorname{Int}\left(D_{2}\right) \cap \partial\left(t_{i_{1}} \cup t_{i_{2}}\right)\right|=3$. (In the second possiblity, the disks' numbering can be switched.)
Let F^{\prime} denote the annulus $\operatorname{cl}\left[\partial B_{i} \backslash\left(D_{1} \cup D_{2}\right)\right]$, and isotop the torus $F \cup F^{\prime}$ slightly into $\operatorname{Int}\left[B_{i} \backslash\left(t_{i} \cup \gamma_{i}\right)\right]$ without moving L setwise. As we have seen, the image torus must be compressible in $\operatorname{Int}\left[B_{i} \backslash\left(t_{i} \cup \gamma_{i}\right)\right]$. Now there exist knot exteriors A_{1} and A_{2} (at least one of which is a solid torus) such that $\mathbb{S}^{3}=A_{1} \cup A_{2}$ with $A_{1} \cap A_{2}=F \cup F^{\prime}$. One of A_{1} and A_{2} (say A_{1}) is in $\operatorname{Int}\left[B_{i} \backslash\left(t_{i} \cup \gamma_{i}\right)\right]$; suppose that A_{1} is the exterior of a nontrivial knot k^{\prime}, that is, suppose that A_{1} is not a solid torus. Then the compressing disk D of $F \cup F^{\prime}$ in
$\operatorname{Int}\left[B_{i} \backslash\left(t_{i} \cup \gamma_{i}\right)\right]$ is properly imbedded in A_{2}. The boundary ∂D is not parallel to α_{1} (or to α_{2}) in $F \cup F^{\prime}$, since each of α_{1} and α_{2} represents a nontrivial element of πL (see Case 2). If ($\partial D, \ell^{\prime}$) is a meridian-longitude pair for k^{\prime} (with $\left\{\partial D, \ell^{\prime}\right\} \subset \partial A_{1}=F \cup F^{\prime}$), it follows that α_{1} represents an element of $\pi k^{\prime}\left(=\pi A_{1}\right)$ of the form $(\partial D)^{p}\left(\ell^{\prime}\right)^{q}$, where $p, q \in \mathbb{Z}$ with $q \neq 0$. This means, however, that as a simple closed curve in $\mathbb{S}^{3}, \alpha_{1}$ must be knotted. But α_{1} bounds a compressing disk for T in \mathbb{S}^{3}, and we have a contradiction. Hence A_{1} is a solid torus. Moving $F \cup F^{\prime}$ back to its original position, we can thus isotop F through A_{1} off B_{i} without disturbing L, since α_{1} and α_{2} are unknotted in \mathbb{S}^{3}.

Applying Cases (a) and (b) to $T \cup\left(B_{1} \cup \cdots \cup B_{m}\right)$, we can assume that $T \cup\left(B_{1} \cup\right.$ $\cdots \cup B_{m}$) is empty except when Case (a) holds for some collection $B_{i_{1}}, \ldots, B_{i_{r}}$ $(1 \leq r \leq m)$. If $T \cup\left(B_{1} \cup \cdots \cup B_{m}\right)=\emptyset$, then T is in the handlebody $\mathrm{cl}\left[\mathbb{S}^{3} \backslash\left(N \cup \cup_{i=1}^{m} B_{i}\right)\right]$, which is a contradiction, since T is incompressible in $\operatorname{Ext}(L)$. Thus we assume that, for some i, T meets B_{i} in an annulus F that is boundary parallel (in B_{i}) to ∂N. The following proposition will enable us to conclude the proof of the lemma.

Proposition 3.4 Let $\beta=\beta_{1} \cup \cdots \cup \beta_{n}$ be a prime link in \mathbb{S}^{3} of n components, and let T be a torus imbedded in $\mathbb{S}^{3} \backslash \beta$. Suppose that D is a compressing disk for T (in \mathbb{S}^{3}) meeting β transversely in a single point. Then either β is contained in one component of $\mathbb{S}^{3} \backslash T$ or else T bounds a tubular neighborhood of β_{i}, for some i.

Proof Assume that $D \cap \beta=D \cap \beta_{1}$ is the single point of transverse intersection. Assume also that β is not contained in one component of $\mathbb{S}^{3} \backslash T$. If some of $\beta_{2}, \ldots, \beta_{n}$ are contained in each component, then we surger T along D to obtain a splitting 2 -sphere S for β (Figure 4, contradicting primality.

Assume now that $\beta_{2} \cup \cdots \cup \beta_{n}$ lies in the component of $\mathbb{S}^{3} \backslash T$ not containing β_{1} (Figure 5(a)). As in the previous case, surger T along D to obtain a 2 -sphere S (Figure 5(b)). Let B be the 3 -ball with boundary S that does not contain $\beta_{2} \cup \cdots \cup \beta_{n}$. By primality of β, the 1 -tangle ($B, B \cup \beta_{1}$) must be trivial. Regard the neighborhood of D removed in surgery as a 1 -handle h with core equal to the part of β_{1} not contained in B. It is easy to arrange for h to miss $\beta_{2} \cup \cdots \cup \beta_{n}$, since the disk D does not intersect it. Now $B \cup h$ is a solid torus V bounded by T. Moreover, the product structure on h extends over B so that β_{1} is the core of V Figure 6).

Figure 4: Splitting 2-sphere S

Figure 5: Surgery on T

Continuing with the proof of Lemma 3.3, we have $T \cap B_{i}=F$, which is boundary parallel to the tubular neighborhood N of k. The boundary ∂F is a pair of unknotted curves, α_{1} and α_{2}, bounding disks D_{1} and D_{2} in ∂B_{i}, which are compressing disks for T, each meeting k transversely in one point. If $T \cap B_{j}=\emptyset$, for some $j \neq i$, then B_{j} is contained in a component U_{1} of $\mathbb{S}^{3} \backslash T$. Hence $k \cup \gamma_{j} \subset U_{1}$, and by Proposition 3.4, $L \subset U_{1}$. But if U_{2} denotes the other component of $\mathbb{S}^{3} \backslash T$, it is clear that $B_{i} \cap U_{2} \neq \emptyset$ and, moreover, that $\gamma_{i} \subset U_{2}$. Thus $T \cap B_{j} \neq \emptyset$, for all j, and T is boundary parallel. Therefore $\operatorname{Ext}(L)$ is atoroidal, and the proof of Lemma 3.3 is complete.

Since γ_{1} is unknotted in \mathbb{S}^{3} and represents the trivial element in πk, a $1 / q_{1}$ surgery on γ_{1} changes k into a knot k_{1} such that $k_{1} \succeq_{1} k$. Now, $\gamma_{2} \subset B_{2}$, and

Figure 6: $B \cup h$ seen as solid torus
the $1 / q_{1}$-surgery on γ_{1} can be regarded as a $\left(-q_{1}\right)$-twist on a disk $D_{1} \subset B_{1}$ that is transverse to k such that $\partial D_{1}=\gamma_{1}$ and $D_{1} \cap k$ is a set of four points. Thus since $B_{1} \cap B_{2}=\emptyset$, it follows that γ_{2} represents the trivial element of πk_{1}, and hence that a $1 / q_{2}$-surgery on γ_{2} changes k_{1} into a knot k_{2} such that $k_{2} \succeq_{1} k_{1}$. Continuing this process, we arrive at the m th stage, in which we do $1 / q_{m}$-surgery on γ_{m}. This changes k_{m-1} into a knot k_{m} such that $k_{m} \succeq_{1} k_{m-1}$. Thus

$$
k_{m} \succeq_{1} k_{m-1} \succeq_{1} \cdots \succeq_{1} k_{1} \succeq_{1} k,
$$

and so $k_{m} \succeq_{1} k$. By Thurston's hyperbolic surgery theorem [25], excluding all but a finite number of possible values of $q_{i} \in \mathbb{Z}$ for each i assures that k_{m} is hyperbolic. Hence statement (i) of Theorem 2.2 is proved.

In order to prove statement (ii) we observe that the staples γ_{i} bound pairwise disjoint ribbon disks in the complement of k (Figure 7). The disks can be lifted to the infinite cyclic cover of k, and since any two lifts meet only in ribbon singularities, it follows that each γ_{i} represents an element of the second commutator subgroup of πk. Hence $1 / q$-surgery on γ_{i} will not change the Alexander invariant (see Lemma 2 of [18).

Next we prove statement (iii). Let k_{0} be a hyperbolic knot with trivial Alexander polynomial. Consider the connected sum $k^{\prime}=k \sharp k_{0} \sharp \cdots \sharp k_{0}$ of k with N copies of k_{0}, where N is an arbitrary positive number. By [23] there exists a prime knot $k^{\prime \prime}$ such that $k^{\prime \prime} \succeq_{1} k^{\prime}$. A proper degree-1 map can be constructed from $\operatorname{Ext}\left(k^{\prime \prime}\right)$ to $\operatorname{Ext}\left(k^{\prime}\right)$, and hence by [7] the simplicial volume of $k^{\prime \prime}$ is no less than the simplicial volume of k^{\prime}. However, the simplicial volume of k^{\prime} is

Figure 7: Ribbon disk bounded by staple
at least N times that of k_{0}, which is greater than zero. Consequently, the simplicial volume of $k^{\prime \prime}$ can be made arbitrarily large by choosing N sufficiently large. By part (i) of Theorem 2.2, we can find a hyperbolic knot \tilde{k} such that $\tilde{k} \succeq_{1} k^{\prime \prime}$. As before, the simplicial volume of \tilde{k} is at least as large as that of $k^{\prime \prime}$, and hence the hyperbolic volume of \tilde{k} can be made arbitrarily large.

By [23] and part (ii) of Theorem 2.2, the knots $k^{\prime}, k^{\prime \prime}$ and \tilde{k} have the same Alexander invariants. Since k and k^{\prime} have isomorphic Alexander invariants, so do \tilde{k} and k.

Figure 8: Twisting about the staple

Finally we prove statement (iv). The key idea is that $1 / q$-surgery on any staple γ converts any knot k to a knot that is ribbon concordant to k. This is immediately seen in Figures 8 and 9 In Figure 8, we see the staple redrawn so that it bounds an obvious 2-disk. We perform $1 / q$-surgery by cutting, twisting $-q$ full times and reconnecting the strands of k that pass through the disk.

Figure 9 shows how a pair of fusions produces two unknotted, unlinked circles
that can be shrunk to points. Hence the knot produced from k by surgery is ribbon concordant to k.

Figure 9: Ribbon fusions recovering k
Recall that we began the proof of Theorem 2.2 by appealing to the main result of [23]. There we began with any knot k, and produced a prime knot by surgery on an unknot C that is not a staple. We complete the proof of Theorem 2.2 (iv) by showing that in fact C can be taken to be a staple.

According to Proposition 2.5 of 4], we can consider k as the numerator closure T^{N} of a tangle T that is either prime or rational. Form the 2-component link $L=k \cup \gamma$ (Figure 10).

Let (B, t, γ) be any tangle, where B is a 3 -ball, t is a finite collection of disjoint, properly embedded spanning arcs of B, and γ is a finite collection of disjoint simple closed curves in $\operatorname{Int}(B \backslash t)$ such that $t \neq \emptyset$. Following [20] and [1], we will say that (B, t, γ) is prime if it has the following properties.
(i) (No connected summand) Each 2-sphere in B intersecting $t \cup \gamma$ transversely in two points bounds a 3-ball in B that meets $t \cup \gamma$ in an unknotted spanning arc.
(ii) (Disk inseparable) No properly embedded disk in $B \backslash(t \cup \gamma)$ separates $t \cup \gamma$.
(iii) (Indivisible) Any properly embedded disk D in B such that $D \cap \gamma=\emptyset$ and such that D meets exactly one component of t transversely in a single

Figure 10: 2-component link $L=k \cup \gamma$
point divides (B, t, γ) into two tangles $\left(B_{1}, t^{\prime}, \emptyset\right)$ and $\left(B_{2}, t^{\prime \prime}, \gamma\right)$ such that t^{\prime} has only one component and that component is unknotted.

Lemma 3.5 The tangle (B, t, γ) in Figure 10 is prime, where $t=t_{1} \cup t_{2}$.
Proof Form the denominator closure B^{D}. According to the program Snap, a computer program developed at Melbourne University for studying arithmetic invariants of hyperbolic 3-manifolds (http://www.ms.unimelb.edu.au/ snap/), B^{D} is a hyperbolic link. Hence (B, t, γ) has no connected summand since otherwise B^{D} would have a connected summand.

Furthermore, (B, t, γ) is disk inseparable since the 2-fold cover $V \backslash \tilde{\gamma}$ of $B \backslash \gamma$ branched over t is hyperbolic. A properly embedded disk in $B \backslash(t \cup \gamma)$ lifts to two disks in $V \backslash(\tilde{t} \cup \tilde{\gamma})$, each of which forms a 2 -sphere with a corresponding disk in ∂V that bounds a 3 -ball in V missing $\tilde{t} \cup \tilde{\gamma}$. Each of these balls projects to the same 3 -ball in $B \backslash(t \cup \gamma)$.

According to Proposition 1.5 of [19], any tangle that has no connected summand, is disk inseparable, and has at most two spanning arcs is prime. Hence (B, t, γ) is prime.

Lemma 3.6 The link $L=k \cup \gamma$ is prime.

Proof Since (B, t, γ) is prime, this follows immediately from Theorem 1.10 of [19] if T is a prime tangle. If T is rational, then we can replace it with a prime
tangle T_{1} such that $T_{1}^{N}=k$. The tangle T_{1} is obtained as a partial sum of T with the prime tangle T_{2} as shown in Figure 11. It follows from Theorem 3 of [14] that T_{1} is prime, since T_{2} is prime. Hence again L is prime.

The remaining argument of [23] applies now, completing the proof of Theorem 2.2 (iv).

Figure 11: The knot k as the numerator closure of T_{1}

Proof of Corollary 2.3 Let k_{0} be the untwisted double of a trefoil. Corollary 5 and Theorem 1 of [15] together imply that the 4 -ball genus of the connected sum $k \sharp k_{0} \sharp \cdots \sharp k_{0}$ can be made arbitrarily large by increasing the number of summands k_{0}. (The results of [15] are convenient for us, but earlier work of Rudolph [22] could be used instead.) We replace k by $k \sharp k_{0} \sharp \cdots \sharp k_{0}$, which has the same Alexander invariant, and apply Theorem 2.2. Since the resulting knot \tilde{k} is (ribbon) concordant, the two knots have the same 4 -ball genus.

References

[1] S A Bleiler, Knots prime on many strings, Trans. Amer. Math. Soc. 282 (1984) 385-401 MathReview
[2] G Burde, K Murasugi, Links and Seifert fiber spaces, Duke Math. J. 37 (1970) 89-93 MathReview
[3] M Culler, C M Gordon, J Luecke, P B Shalen, Dehn surgery on knots, Ann. of Math. (2) 125 (1987) 237-300 MathReview
[4] S Eliahou, L H Kauffman, MB Thistlethwaite, Infinite families of links with trivial Jones polynomial, Topology 42 (2003) 155-169 MathReview
[5] CM Gordon, Ribbon concordance of knots in the 3-sphere, Math. Ann. 257 (1981) 157-170 MathReview
[6] CM Gordon, R A Litherland, Incompressible surfaces in branched coverings, from: "The Smith conjecture (New York, 1979)", Pure Appl. Math. 112, Academic Press, Orlando, FL (1984) 139-152 MathReview
[7] M Gromov, Volume and bounded cohomology, Inst. Hautes Études Sci. Publ. Math. (1982) 5-99 (1983) MathReview
[8] D Johnson, C Livingston, Peripherally specified homomorphs of knot groups, Trans. Amer. Math. Soc. 311 (1989) 135-146 MathReview
[9] E Kalfagianni, Alexander polynomial, finite type invariants and volume of hyperbolic knots, Algebr. Geom. Topol. 4 (2004) 1111-1123 MathReview
[10] A Kawauchi, Almost identical link imitations and the skein polynomial, from: "Knots 90 (Osaka, 1990)", Walter de Gruyter and Co. Berlin (1992) 465-476 MathReview
[11] A Kawauchi, Almost identical imitations of (3,1)-dimensional manifold pairs, Osaka J. Math 26 (1989) 743-758 MathReview
[12] P K Kim, JL Tollefson, Splitting the PL involutions of nonprime 3manifolds, Michigan Math. J. 27 (1980) 259-274 MathReview
[13] PB Kronheimer, TS Mrowka, Witten's conjecture and Property P, Geom. Topol. 8 (2004) 295-310 MathReview
[14] W B R Lickorish, Prime knots and tangles, Trans. Amer. Math. Soc. 267 (1981) 321-332 MathReview
[15] C Livingston, Computations of the Ozsváth-Szabó knot concordance invariant, Geom. Topol. 8 (2004) 735-742 MathReview
[16] K Miyazaki, Ribbon concordance does not imply a degree one map, Proc. Amer. Math. Soc. 108 (1990) 1055-1058 MathReview
[17] R Myers, Simple knots in compact, orientable 3-manifolds, Trans. Amer. Math. Soc. 273 (1982) 75-91 MathReview
[18] Y Nakanishi, Prime links, concordance and Alexander invariants, Math. Sem. Notes Kobe Univ. 8 (1980) 561-568 MathReview
[19] Y Nakanishi, Primeness of links, Math. Sem. Notes Kobe Univ. 9 (1981) 415440 MathReview
[20] Y Nakanishi, Prime and simple links, Math. Sem. Notes Kobe Univ. 11 (1983) 249-256 MathReview
[21] J Rasmussen, Khovanov homology and the slice genus, e-print (2004) arXiv:math.GT/0402131
[22] L Rudolph, Quasipositivity as an obstruction to sliceness, Bull. Amer. Math. Soc. (N.S.) 29 (1993) 51-59 MathReview
[23] D S Silver, W Whitten, Knot group epimorphisms, J. Knot Theory Ramifications, to appear
[24] A Stoimenow, On polynomials and surfaces of variously positive links, J. Eur. Math. Soc. (JEMS) 7 (2005) 477-509 MathReview
[25] W P Thurston, Three-dimensional geometry and topology, Vol 1, (Silvio Levy, editor), Princeton Mathematical Series 35 Princeton University Press, Princeton, NJ (1997) MathReview
[26] W P Thurston, Three-dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. (N.S.) 6 (1982) 357-381 MathReview
[27] S Wang, Non-zero degree maps between 3-manifolds, from: "Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002)", Higher Ed. Press, Beijing (2002) 457-468 MathReview

Department of Mathematics, University of South Alabama
Mobile AL 36688, USA
and
1620 Cottontown Road, Forest VA 24551, USA
Email: silver@jaguar1.usouthal.edu, bjwcw@aol.com
Received: 25 March 2005 Revised: 4 August 2005

