Regular geodesic languages and the falsification by fellow traveler property

Murray Elder

Abstract

We furnish an example of a finite generating set for a group that does not enjoy the falsification by fellow traveler property, while the full language of geodesics is regular.

AMS Classification 20F65; 20F10, 68Q80
Keywords Regular language, falsification by fellow traveler property

1 Introduction

In this short note we answer the following question of Neumann and Shapiro from (5):

Question Can one find a monoid generating set A of a group G so that the language of geodesics is regular but A does not have the falsification by fellow traveler property?

The converse to this statement is Proposition 4.1 of their paper, which states that if A has the falsification by fellow traveler property then the full language of geodesics on A is regular, and this fact is the reason for the property's existence. Several authors have used the falsification by fellow traveler property as a route to finding other (geometric) properties of groups; Rebbechi uses a version of the property to prove that relatively hyperbolic groups are biautomatic [6], and the author exploits the property to prove that a certain class of groups is almost convex [4. The author discusses various attributes and extensions of the property in [1, 2, 3].
In this article we answer the question via an example first given by Cannon to demonstrate that a group may have a regular language of geodesics with respect to one generating set but not another. Neumann and Shapiro include it in [5] to prove that the falsification by fellow traveler property is generating set dependent.

The author wishes to thank Walter Neumann and Jon McCammond for ideas and help with this paper.

2 Definitions

Definition 2.1 (Finite state automaton; regular language) Let A be a finite set of letters, and let A^{*} be the set of all finite strings, including the empty string, that can be formed from the letters of A. A finite state automaton is a quintuple $\left(S, A, \tau, Y, s_{0}\right)$, where S is a finite set of states, τ is a map $\tau: S \times A \rightarrow S, Y \subseteq S$ are the accept states, and $s_{0} \in S$ is the start state. A finite string $w \in A^{*}$ is accepted by the finite state automaton if starting in the state s_{0} and changing states according to the letters of w and the map τ, the final state is in Y. The set of all finite strings that are accepted by a finite state automaton is called the language of the automaton. A language $L \subseteq A^{*}$ is regular if it is the language of a finite state automaton.

Suppose G is a group with finite generating set A. A word in A^{*} represents a path in the Cayley graph based at any vertex. Define $d(a, b)$ to be the distance between two points a and b in the Cayley graph with respect to the path metric. Paths can be parameterized by non-negative $t \in \mathbb{R}$ by defining $w(t)$ as the point at distance t along the path w if t is between 0 and the length of w, and the endpoint of w otherwise.

Definition 2.2 (The (asynchronous) fellow traveler property) Paths u and v are said to k-fellow travel if $d(u(t), v(t)) \leq k$ for all $t \geq 0$. They asynchronously k-fellow travel if there is a non-decreasing proper continuous function $\phi:[0, \infty) \rightarrow[0, \infty)$ such that $d(u(t), v(\phi(t))) \leq k$. A language $L \subseteq A^{*}$ enjoys the (asynchronous) fellow traveler property if there is a constant k such that for each $u, v \in L$ that start at the identity and end at distance 0 or 1 apart in the Cayley graph, u and v (asynchronously) k-fellow travel.

Definition 2.3 (The (asynchronous) falsification by fellow traveler property) A finite generating set A for a group G has the (asynchronous) falsification by fellow traveler property if there is a constant k such that every non-geodesic word in the Cayley graph of G with respect to A is (asynchronously) k-fellow traveled by a shorter word.

The property arises naturally in the context of geodesic regular languages, and the proof of Proposition 4.1 in [5] uses the property to build an appropriate
finite state automaton. The author proves in [1] that the synchronous and asynchronous versions of the falsification by fellow traveler property are equivalent.

3 The Example

Let G be the split extension of \mathbb{Z}^{2}, generated by $\{a, b\}$, by \mathbb{Z}_{2}, generated by $\{t\}$, such that t conjugates a to b and b to a, with presentation

$$
\left\langle a, b, t \mid t^{2}=1, a b=b a, t a t=b\right\rangle .
$$

Performing one Tietze transformation (removing $b=t a t$) we obtain

$$
\left.\langle a, t| t^{2}=1, \text { atat }=t a t a\right\rangle
$$

Let $A=\left\{a^{ \pm 1}, t^{ \pm 1}\right\}$ be the inverse-closed generating set corresponding to this presentation. The Cayley graph for G with respect to A is shown in Figure (1) We can consider the vertices of the graph as either being in the top or the

Figure 1: The Cayley graph for $G=\langle a, t| t^{2}=1$, atat $=$ tata \rangle
bottom layer, where edges labeled t link top and bottom layers. We declare the identity vertex to lie in the bottom. Each vertex can also be given a coordinate (x, y) where x is the distance in the East-West direction from the identity, and
y is the distance in the North-South direction. In this way each vertex (group element) is uniquely specified by the triple (x, y, bottom) or (x, y, top).
For example, the identity has the coordinate (0,0 , bottom) , the word $a^{3} t a^{4}$ has the coordinate $(3,4$, top $)$, the word $a^{3} t a^{4} t$ has the coordinate (3,4 , bottom), and the word $t a^{3} t a^{4}$ has the coordinate (4,3 , bottom).

Lemma 3.1 Each word from 1 to a vertex in the top layer has an odd number of t letters, and each word from 1 to a vertex in the bottom layer has an even number of t letters.

Proof Suppose a vertex has the coordinate (x, y, top). Then $a^{x} t a^{y}$ is a word to this vertex. Suppose w is any other word to this vertex. Then $w a^{-y} t a^{-x}={ }_{G} 1$ so under the map which sends t to t and a to 1 this word must be sent to an even power of t, so w has an odd number of t letters. Similarly if a vertex lies in the bottom layer there is a word $a^{x} t a^{y} t$ to it from 1 . If w is any other word to this vertex then $w t a^{-y} t a^{-x}={ }_{G} 1$ gets sent to an even power of t so w has an even number of t letters.

Lemma 3.2 The word $t a^{n} t a^{m} t$ for any $m, n \in \mathbb{Z}$ is not geodesic.
Proof The word $t a^{n} t a^{m} t$ can be written as $a^{m} t a^{n}$ which is shorter.
Lemma 3.3 Each vertex in the top layer has a unique geodesic to it from the identity of the form $a^{x} t a^{y}$, where (x, y, top) is the coordinate of the vertex.

Proof By Lemma 3.1 any geodesic to the vertex with coordinate (x, y, top) has an odd number of t letters. If a word has three or more t letters then it has a subword of the form $t a^{n} t a^{m} t$ which is not geodesic by Lemma 3.2. So any geodesic to this vertex has exactly one t letter, so is of the form $a^{i} t a^{j}$. This path has coordinate (i, j, top $)$ so it must be that $i=x$ and $j=y$.

Proposition 3.4 A does not have the falsification by fellow traveler property.
Proof Suppose by way of contradiction that A has the falsification by fellow traveler property with positive constant k, and choose $n \gg k$. Consider the word $w=t a^{n} t a^{n} t$ which ends at the coordinate (n, n, top). Any word that ends at this vertex must move East at least n units and North at least n units, and by Lemma 3.1 must have an odd number of t letters. If it has just one t letter then it must be the unique geodesic $a^{n} t a^{n}$ which clearly does not k-fellow travel w. Otherwise it has three or more t letters, so has length at least $2 n+3$ so is not shorter than w, so we are done.

Theorem 3.5 There is a group and finite generating set such that the language of all geodesics is regular but fails to have the falsification by fellow traveler property.

Proof By Proposition 3.4 the group G with generating set A fails the falsification by fellow traveler property.

Consider the language $L=\left\{a^{x}, a^{x} t a^{y}, a^{x_{1}} t a^{y} t a^{x_{2}}: x, x_{1}, x_{2}, y \in \mathbb{Z}, x_{1} \cdot x_{2} \geq 0\right\}$. L is the language of the finite state automaton in Figure_2. All states are accept states.

Figure 2: A finite state automaton accepting the language L
We now show that L is the language of all geodesics on A for G. By Lemma 3.3 every group element corresponding to a vertex in the top layer has a unique geodesic representative of the form $a^{x} t a^{y}$. Otherwise the group element corresponds to a vertex in the bottom, so has an even number of t letters. If a word has more than two t letters then it has a subword of the form $t a^{n} t a^{m} t$ which is not geodesic by Lemma 3.2, so a geodesic word for a bottom element has either zero t letters, so is of the form a^{x}, or has two t letters, so is of the form $a^{x_{1}} t a^{y} t a^{x_{2}}$. If x_{1} and x_{2} don't have the same sign then we can find a shorter word $a^{\left(x_{1}+x_{2}\right)} t a^{y} t$. Otherwise $a^{x_{1}} t a^{y} t a^{x_{2}}$ is a geodesic to a vertex with coordinate $\left(x_{1}+x_{2}, y\right.$, bottom). Notice that this gives a family of $x_{1}+x_{2}+1$ geodesics to this vertex.

References

[1] Murray J Elder, Finiteness and the falsification by fellow traveler property, Geom. Dedicata 95 (2002) 103-113 MathReview
[2] Murray J Elder, The loop shortening property and almost convexity, Geom. Dedicata 102 (2003) 1-18 MathReview
[3] Murray J Elder, Patterns theory and geodesic automatic structure for a class of groups, Internat. J. Algebra Comput. 13 (2003) 203-230 MathReview
[4] Murray J Elder, A non-Hopfian almost convex group, J. Algebra 271 (2004) 11-21 MathReview
[5] Walter D Neumann, Michael Shapiro, Automatic structures, rational growth, and geometrically finite hyperbolic groups, Invent. Math. 120 (1995) 259-287 MathReview
[6] Donovan Rebbechi, Algorithmic Properties of Relatively Hyperbolic Groups, PhD Dissertation, Rutgers Newark, arXiv:math.GR/0302245

School of Mathematics and Statistics, University of St Andrews
North Haugh, St Andrews, Fife, KY16 9SS, Scotland
Email: murray@mcs.st-and.ac.uk
URL: http://www-groups.mcs.st-andrews.ac.uk/~murray/
Received: 21 September 2004

