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Abstract

Let X be a 4–manifold with contact boundary. We prove that the monopole
invariants of X introduced by Kronheimer and Mrowka vanish under the fol-
lowing assumptions: (i) a connected component of the boundary of X carries a
metric with positive scalar curvature and (ii) either b+2 (X) > 0 or the boundary
of X is disconnected. As an application we show that the Poincaré homology
3–sphere, oriented as the boundary of the positive E8 plumbing, does not carry
symplectically semi-fillable contact structures. This proves, in particular, a con-
jecture of Gompf, and provides the first example of a 3–manifold which is not
symplectically semi-fillable. Using work of Frøyshov, we also prove a result
constraining the topology of symplectic fillings of rational homology 3–spheres
having positive scalar curvature metrics.
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1 Introduction

1.1 Basic facts and questions on contact structures

Let Y be a closed 3–manifold. A coorientable field of 2–planes ξ ⊂ TY is
a contact structure if it is the kernel of a smooth 1–form θ on Y such that
θ∧dθ 6= 0 at every point of Y 1. Notice that since ξ is oriented by the restriction
of dθ the manifold Y is necessarily orientable. Moreover, an orientation on
Y induces a coorientation on ξ and vice-versa. When Y has a prescribed
orientation, ξ is said to be positive (negative, respectively), if the orientation
on Y induced by ξ coincides with (is the opposite of, respectively) the given
one. In this paper we shall only consider oriented 3–manifolds. Therefore,
from now on by the expression “3–manifold” we shall always mean “oriented
3–manifold”, and all contact structures will be implicitly assumed to be positive.

By the work of Martinet and Lutz [21] we know that every closed, oriented
3–manifold Y admits a positive contact structure. Eliashberg defined a spe-
cial class of contact structures, which he called overtwisted, and proved that in
any homotopy class of cooriented 2–plane fields on a 3–manifold there exists
a unique positive overtwisted contact structure up to isotopy [5]. Eliashberg
called tight the non-overtwisted contact structures. For tight contact struc-
tures, the questions of existence and uniqueness in a given homotopy class have
a negative answer, in general. For instance, Bennequin proved that there ex-
ist homotopic, non-isomorphic contact structures on S3 [2], while Eliashberg
showed that the set of Euler classes of tight contact structures (considered as
oriented 2–plane bundles) on a given 3–manifold is finite [7].

The only tight contact structures known at present are fillable in one sense or
another, ie, loosely speaking, they are a 3–dimensional phenomenon induced
by a 4–dimensional one. There exist several different notions of fillability for a
contact structure, but here we shall only define two of them (the weakest ones).
The reader interested in a comprehensive account can look at the survey [12].

A 4–manifold with contact boundary is a pair (X, ξ), where X is a connected,
oriented smooth 4–manifold with boundary and ξ is a contact structure on ∂X
(positive with respect to the boundary orientation). A compatible symplectic
form on (X, ξ) is a symplectic form ω on X such that ω|ξ > 0 at every point of
∂X . A contact 3–manifold (Y, ζ) is called symplectically fillable if there exists
a 4–manifold with contact boundary (X, ξ) carrying a compatible symplectic

1For an introduction to contact structures and a guide to the literature we refer the
reader to [2, 7, 14]
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form ω and an orientation-preserving diffeomorphism φ from Y to ∂X such
that φ∗(ζ) = ξ . The triple (X, ξ, ω) is said to be a symplectic filling of Y . More
generally, (Y, ζ) is called symplectically semi-fillable if the diffeomorphism φ
sends Y onto a connected component of ∂X . In this case (X, ξ, ω) is called a
symplectic semi-filling of Y . If (Y, ζ) is symplectically semi-fillable, then ζ is
tight by a theorem of Eliashberg and Gromov (see [6, 19]).

One of the aims of this paper is to address a fundamental question about the
fillability of contact 3–manifolds (cf [7], question 8.2.1, and [16], question 4.142):

Question 1.1 Does every oriented 3–manifold admit a fillable contact struc-
ture?

Eliashberg’s Legendrian surgery construction [5, 15] provides a rich source of
contact 3–manifolds which are filled by Stein surfaces (a special kind of 4–
manifolds with contact boundary carrying exact compatible symplectic forms).
Symplectically fillable contact structures are not necessarily fillable by Stein
surfaces. For example, the 3–torus S1 × S1 × S1 carries infinitely many iso-
morphism classes of symplectically fillable contact structures, but Eliashberg
showed [8] that only one of them can be filled by a Stein surface.

Gompf studied systematically the fillability of Seifert 3–manifolds using Eliash-
berg’s construction. This led him to formulate the following:

Conjecture 1.2 ([15]) The Poincaré homology sphere, oriented as the bound-
ary of the positive E8 plumbing, does not admit positive contact structures
which are fillable by a Stein surface.

Another basic question asks about the uniqueness of symplectic fillings. Via
Legendrian surgery one can construct, for instance, non-diffeomorphic (even
after blow-up) symplectic fillings of a given 3–manifold. On the other hand,
S3 is known to have just one symplectic filling up to blow-ups and diffeo-
morphisms [6]. We may loosely formulate the uniqueness question as follows
(cf question 10.2 in [6] and question 6 in [12]):

Question 1.3 To what extent does a 3–manifold determine its symplectic
fillings?
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1.2 Statement of results

Some progress in the understanding of contact structures has recently come
from studying the spaces of solutions to the Seiberg–Witten equations. One of
the outcomes of [20] was a proof of the existence, for every natural number n,
of homology 3–spheres carrying more than n homotopic, non-isomorphic tight
contact structures. Generalizing to a non-compact setting the results of [25, 26],
Kronheimer and Mrowka [17] introduced monopole invariants for smooth 4–
manifolds with contact boundary, and used them to strengthen the results of [20]
as well as to prove new results, as for example that on every oriented 3–manifold
there is only a finite number of homotopy classes of symplectically semi-fillable
contact structures. In this paper we apply [17] to establish the following:

Theorem 1.4 Let (X, ξ) be a 4–manifold with contact boundary equipped
with a compatible symplectic form. Suppose that a connected component of
the boundary of X admits a metric with positive scalar curvature. Then, the
boundary of X is connected and b+2 (X) = 0.

The following corollary of theorem 1.4 proves conjecture 1.2 as a particular case,
and provides a negative answer to question 1.1.

Corollary 1.5 Let Y denote the Poincaré homology sphere oriented as the
boundary of the positive E8 plumbing. Then, Y has no symplectically semi-
fillable contact structures. Moreover, Y#−Y is not symplectically semi-fillable
with any choice of orientation.

Proof Since Y is the quotient of S3 by a finite group of isometries acting
freely, it has a metric with positive scalar curvature. Hence, by theorem 1.4
if Y is symplectically semi-fillable then it is symplectically fillable. Moreover,
observe that Y cannot be the oriented boundary of a smooth oriented and
negative definite 4–manifold. In fact, if ∂X = Y then X ∪ (−E8) is a closed,
smooth oriented 4–manifold with a definite and non-standard intersection form.
The existence of such a 4–manifold is forbidden by the well-known theorem
of Donaldson [3, 4]. In view of theorem 1.4, this proves the first part of the
statement. The second part follows from a general result of Eliashberg: if M#N
is symplectically semi-fillable, then both M and N are (see [6], theorem 8.1).

Theorem 1.4 can be used, in conjunction with [13], to address question 1.3.
Let (X, ξ) be a 4–manifold with contact boundary equipped with a compatible
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symplectic form. Let QX : H2(X;Z)/Tor → Z be the intersection form of X .
Write the intersection lattice JX = (H2(X;Z)/Tor, QX) as

JX = m(−1)⊕ J̃X
for some m, where J̃X does not contain classes of square −1.

Corollary 1.6 Let Y be a rational homology sphere having a positive scalar
curvature metric. Then, while X ranges over the set of symplectic fillings of Y
such that J̃X is even, the set of isomorphism classes of the lattices J̃X ranges
over a finite set.

Proof By a result of Frøyshov ([13], theorem 1) there exists a rational num-
ber γ(Y ) ∈ Q depending only on Y such that if X is a negative 4–manifold
bounding Y , then for every characteristic element ξ ∈ H2(X,∂X;Z)/Tor (ie
such that ξ · x ≡ x · x mod 2 for every x ∈ H2(X,Z)/Tor), the following in-
equality holds:

rank(JX)− |ξ|2 ≤ γ(Y ). (1.1)

Thus, if X is a symplectic filling of Y , by theorem 1.4 b+2 (X) = 0 and therefore
equation (1.1) holds. Clearly (1.1) is also true with J̃X in place of JX . Hence,
if J̃X is even, choosing ξ = 0 we see that the rank of J̃X is bounded above by
a constant depending only on Y . On the other hand, the absolute value of its
determinant is bounded above by the order of H1(Y ;Z). It follows (see eg [22])
that the isomorphism class of J̃X must belong to a finite set determined by
Y .

Remark 1.7 The conclusion of corollary 1.6 can be strengthened in particular
cases. For example, if Y is an integral homology sphere, then the intersection
lattice JX of any symplectic filling of Y is unimodular. It follows from [9, 10]
that if γ(Y ) ≤ 8 then, regardless of whether J̃X is even or odd, there are
exactly 14 (explicitly known) possibilities for the isomorphism class of J̃X (due
to recent work of Mark Gaulter this is still true as long as γ(Y ) ≤ 24 [11]).
In particular, if Y is the Poincaré 3–sphere oriented as the boundary of the
negative plumbing −E8 , then γ(Y ) = 8 [13]. Up to isomorphism the only
even, negative and unimodular lattices of rank at most eight are 0 and −E8 .
Therefore, 0 and −E8 are the only possibilities for J̃X in this case. Moreover,
notice that if Y bounds a smooth 4–manifold with b2 = 0, the same is true
for −Y . On the other hand, the argument given to prove corollary 1.5 shows
that −Y cannot bound negative semi-definite manifolds. Therefore, if X is an
even symplectic filling of Y , JX is necessarily isomorphic to the negative lattice
−E8 .
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In view of corollary 1.6 and remark 1.7 it seems natural to formulate the fol-
lowing conjecture:

Conjecture 1.8 The conclusion of corollary 1.6 still holds, under the same
assumptions, if X is allowed to range over the set of all symplectic fillings of
Y .

The plan of the paper is the following. In section 2 we initially fix our notation
recalling the results of [17]. Then we state and prove, for later reference, an
immediate consequence of those results, observing how it implies a theorem of
Eliashberg. In section 3 we prove our main result, theorem 3.2, and its corollary
theorem 1.4. The line of the argument to prove theorem 3.2 is well-known to
the experts. It is the analogue, in the context of 4–manifolds with contact
boundary, of a standard argument proving the vanishing of the Seiberg–Witten
invariants of a closed smooth 4–manifold which splits as a union X1

⋃
Y X2 ,

with Y carrying a positive scalar curvature metric and b+2 (Xi) > 0, i = 1, 2
(cf [18], remark 6). The crucial points of such an argument depend on the
technical results of [23].

Acknowledgements. It is a pleasure to thank Dieter Kotschick for his interest
in this paper, and for useful comments on a preliminary version of it. Warm
thanks also go to Peter Kronheimer for observing that the assumption b+2 > 0
in theorem 3.2 could be disposed of when the boundary is disconnected, and to
Yasha Eliashberg for pointing out the second part of corollary 1.5. Finally, I
am grateful to the referee for her/his remarks.

2 Preliminaries

We start describing the set-up of [17] (the reader is referred to the origi-
nal paper for details). A Spinc structure on a smooth 4–manifold X is a
triple (W+,W−, ρ), where W+ and W− are hermitian rank–2 bundles over
X called respectively the positive and negative spinor bundle, and ρ : T ∗X →
Hom(W+,W−) is a linear map satisfying the Clifford relation: ρ(θ)∗ρ(θ) =
|θ|2 IdW+ for every θ ∈ T ∗X . The map ρ extends to a linear embedding
ρ : Λ∗T ∗X → Hom(W+,W−). A Spin connection A is a unitary connection
on W = W+ ⊕W− such that the induced connection on End(W ) agrees with
the Levi–Civita connection on the image of ρ. To any Spin connection A is
associated, via ρ, a twisted Dirac operator D+

A : Γ(W+)→ Γ(W−).
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Given a 4–manifold with contact boundary (X, ξ), let X+ be the smooth man-
ifold obtained from X by attaching the open cylinder [1,+∞)×∂X along ∂X .
Up to certain choices, the contact structure ξ determines on [1,+∞) × ∂X a
metric g0 and a self-dual 2–form ω0 of constant length

√
2. ω0 determines on

[1,+∞) × ∂X a Spinc structure s0 = (W+,W−, ρ) and a unit section Φ0 of
W+ . Moreover, there is a unique Spin connection A0 such that D+

A0
(Φ0) = 0.

Given an arbitrary extension of g0 to all of X+ , the triple (X+, ω0, g0) is an
AFAK (asymptotically flat almost Kähler) manifold, in the terminology of [17].
Consider the set Spinc(X, ξ) of isomorphism classes of Spinc structures on X+

whose restriction to [1,+∞)× ∂X is isomorphic to s0 . We shall now describe
how Kronheimer and Mrowka define a map

SW(X,ξ) : Spinc(X, ξ)→ Z

which is an invariant of the pair (X, ξ). Given s = (W+,W−, ρ) ∈ Spinc(X, ξ),
extend Φ0 and A0 arbitrarily to all of X+ . Let L2

l and L2
l,A0

, l ≥ 4 be,
respectively, the standard Sobolev spaces of imaginary 1–forms and sections
of W+ , and let C be the space of pairs (A,Φ) such that A − A0 ∈ L2

l and
Φ−Φ0 ∈ L2

l,A0
. Then, G = {u : X+ → C | |u| = 1, 1−u ∈ L2

l+1} is a Hilbert Lie
group acting freely on C . Let η ∈ L2

l−1(isu(W+)). Given a Spin connection
A, let Â be the induced U(1) connection on det(W+). Let Mη(s) be the
quotient, under the action of G , of the set of pairs (A,Φ) ∈ C which satisfy the
η–perturbed Seiberg–Witten (or monopole) equations{

ρ(F+

Â
)− {Φ⊗ Φ∗} = ρ(F+

Â0
)− {Φ0 ⊗ Φ∗0}+ η

D+
A(Φ) = 0,

(2.1)

where {Φ⊗Φ∗} denotes the traceless part of the endomorphism Φ⊗Φ∗ . Kro-
nheimer and Mrowka [17] prove that, for η in a Baire set of perturbing terms
exponentially decaying along the end, Mη(s) is (if non-empty) a smooth, com-
pact orientable manifold of dimension d(s) equal to 〈e(W+,Φ0), [X,∂X]〉, the
obstruction to extending Φ0 as a nowhere-vanishing section of W+ . Now sup-
pose that an orientation for Mη(s) has been chosen. Then, when d(s) = 0
one can define an integer as the number of points of Mη(s) counted with signs.
SW(X,ξ)(s) is defined to be this integer when d(s) = 0, and zero when d(s) 6= 0.

If (X, ξ) is equipped with a compatible symplectic form ω , then a theorem from
[17] says that there are natural choices of an element sω ∈ Spinc(X, ξ) and of
an orientation of Mη(sω) so that SW(X,ξ)(sω) = 1.

The following proposition is implicitly contained in [13] and [17]. Here we give
an explicit statement and proof for the sake of clarity and later reference.

Symplectic fillings and positive scalar curvature

Geometry and Topology, Volume 2 (1998)

109



Proposition 2.1 Let (X, ξ) be a 4–manifold with contact boundary. Suppose
that SW(X,ξ)(s) 6= 0 for some s ∈ Spinc(X, ξ). If a connected component Y of
the boundary of X has a metric with positive scalar curvature then the map
H2(X;R)→ H2(Y ;R) induced by the inclusion Y ⊂ X is the zero map.

Proof The contact structure ξ induces a Spinc structure t on Y (see [17]).
Let W be the associated spinor bundle on Y . Given a closed 2–form µ on
Y , denote by Nµ(Y, t) the set of gauge equivalence classes of solutions to the
3–dimensional monopole equations on Y corresponding to the Spinc structure
t and perturbation µ. As observed in [17], proposition 5.3, it follows from the
Weitzenböck formulae and [13] that if µ0 ∈ Ω2(Y ) is a closed 2–form with
[µ0] 6= 2πc1(W ), then there exists a Baire set of exact Cr forms µ1 such that
Nµ0+µ1(Y, t) consists of finitely many non-degenerate, irreducible solutions. Ar-
guing by contradiction, suppose that the restriction map H2(X;R)→ H2(Y ;R)
is non-zero. Then, for every real number ε > 0 there exists a closed 2–form µ
on Y such that:

(1) Nµ(Y, t) consists of finitely many non-degenerate, irreducible solutions.

(2) the L2 norm of µ is less than ε,

(3) [µ] 6= 2πc1(W ) ∈ H2(Y ;R) and [µ] is in the image of the restriction map
H2(X;R)→ H2(Y ;R).

Since SW(X,ξ)(s) 6= 0, by [17], proposition 5.8, Nµ(Y, t) is non-empty. But
since Y has a metric of positive scalar curvature, if ε is sufficiently small the
Weitzenböck formulae imply that Nµ(Y, t) is empty: a contradiction.

It is interesting to observe that proposition 2.1 has the following corollary, which
was first proved by Eliashberg using the technique of filling by holomorphic disks
[5].

Corollary 2.2 S2×D2 has no tame almost complex structure with J –convex
boundary.

Proof A standard product metric on S2 × S1 has positive scalar curvature.
Moreover, an almost complex structure on S2×D2 has J –convex boundary if,
by definition, the distribution ξ of complex tangents to S2 × S1 is a positive
contact structure. If J is tame, then there is a compatible symplectic form ω on
the 4–manifold with contact boundary (S2×D2, ξ). Hence SW(S2×D2,ξ)(sω) 6=
0. But the restriction map H2(S2 × D2;R) → H2(S2 × S1;R) is non-zero,
contradicting proposition 2.1.
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3 Proofs of the main results

In this section we prove the main results of the paper, namely theorem 3.2 and
its immediate corollary, theorem 1.4. Let (X, ξ) be a 4–manifold with contact
boundary. We shall start with a preliminary discussion under the assumption
that the boundary of X is connected and admits a metric with positive scalar
curvature. During the proof of theorem 3.2 we will say how to modify the
arguments when the boundary of X is possibly disconnected and at least one
of its connected components admits a metric with positive scalar curvature.

We begin along the lines of [17], proposition 5.6. Let (X+, g0) be the Rieman-
nian 4–manifold defined in section 2. We are going to analyze what happens
to the solutions of the equations (2.1) when the metric g0 is stretched in the
direction normal to the boundary of X .

In the following discussion we shall denote the boundary of X by Y . Let gY
be a positive scalar curvature metric on Y . Let g1 be a Riemannian metric
on X+ coinciding with g0 on [1,+∞)× Y and such that (X+, g1) contains an
isometric copy of the cylinder [−1, 1] × Y with the product metric dt2 + gY .
Choose a perturbing term η1 for the monopole equations which vanishes on this
cylinder. For every R ≥ 1 let gR and ηR be obtained by replacing [−1, 1]× Y
with a cylinder isometric to [−R,R]×Y . Denote by Xin and Xout , respectively,
the compact and non-compact component of the complement of the cylinder in
X+ . Suppose that, for some s ∈ Spinc(X, ξ), SW(X,ξ)(s) 6= 0. This implies
that the moduli space MηR(s) is non-empty for all R. Since the restriction
of ηR to the cylinder [−R,R] × Y vanishes, the proof of lemma 5.7 from [17]
applies. This says that for every solution [AR,ΦR] ∈MηR(s) the variation of the
Chern–Simons–Dirac (CSD for short) functional on the restriction of [AR,ΦR]
to [−R,R] × Y is bounded, independent of R. Denote by X̂in and X̂out the
Riemannian manifolds obtained by isometrically attaching cylinders [0,∞)×Y
and (−∞, 0]× Y with metric dt2 + gY to Xin and Xout respectively, where Y
denotes Y with the opposite orientation. Let ηin and ηout on X̂in and X̂out

respectively be compactly supported perturbing terms. Let Ri be a sequence
going to infinity, and let ηi = ηRi be a corresponding sequence of perturbing
terms as above converging to ηin and ηout . Since the moduli spaces Mηi(s) are
non-empty for all i, up to passing to a subsequence we may assume that there
are solutions converging on compact subsets to configurations (Ain, φin) and
(Aout, φout) on X̂in and X̂out . The configurations (Ain, φin) and (Aout, φout)
satisfy the monopole equations for Spinc structures sin and sout , say, with
perturbing terms ηin and ηout , and have finite variation of the CSD functional
on the cylindrical ends. Denote the moduli spaces of solutions with bounded
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variation of the CSD functional along the end by, respectively, Mηin
(X̂in) and

Mηout(X̂out, ξ).

The results of [23] imply that (Ain, φin), restricted to the slices {t} × Y con-
verges, as t → +∞, towards an element of the moduli space NX(Y ) of so-
lutions of the unperturbed 3–dimensional monopole equations on Y modulo
the gauge transformations which extend over X . In other words, there is a
map ∂X : Mηin

(X̂in) → NX(Y ). For every θ ∈ NX(Y ), we denote ∂−1
X (θ) by

Mηin
(X̂in, θ).

Now recall that, since SW(X, ξ)(s) 6= 0, by the definition of the invariants
d(s) = 0, and the canonical spinor Φ0 can be extended over X to a nowhere-
vanishing section of the bundle W+ . This is equivalent to saying that s is
the Spinc structure associated to an almost complex structure JX on X (see
[17], lemma 2.1). Let Z be a smooth, oriented Riemannian 4–manifold with
boundary Y and such that JX extends to an almost complex structure JM
on the closed oriented 4–manifold M = X ∪Y Z (the reason why such a Z
exists is explained in eg [15], lemma 4.4; one can always find a Z such that
the obstruction to extending JX over Z is concentrated at a finite number of
points, and then, in order to kill the obstruction, one can modify Z by connect
summing at those points with a suitable number of copies of S2 × S2 ). Let Ẑ
be the manifold with cylindrical end obtained by attaching (−∞, 1]×Y to the
boundary of Z . Fix an extension of JM from Z to Ẑ , and call s

Ẑ
the Spinc

structure induced on Ẑ . Choose an identification of the cylindrical ends of X̂out

and Ẑ (observe that s
Ẑ

is isomorphic to sout on the cylindrical end). Also,
choose a perturbing term η′ on Ẑ which coincides with ηout on the cylindrical
end. As before, there is a moduli space Mη′(Ẑ), a map ∂X : Mη′(Ẑ)→ NZ(Y ),
and, for every θ′ ∈ NZ(Y ), we denote ∂−1

Z (θ′) by Mη′(Ẑ, θ′).

Lemma 3.1 For any θ1 ∈ NX(Y ), θ2 ∈ NZ(Y ), Mηin
(X̂in, θ1) and Mη′(Ẑ, θ2)

are (possibly empty) smooth manifolds. Moreover, the sum of their expected
dimensions equals −1− b1(Y ).

Proof By a standard argument (see eg [24]), since the metric gY has nowhere
negative scalar curvature, the moduli space NX(Y ) consists of reducible so-
lutions, and the linearization of the equations on Y with appropriate gauge
fixing gives a deformation complex whose first cohomology group at a point
[A, 0] ∈ NX(Y ) can be identified with H1(Y ;R)⊕ kerDA . Since gY has posi-
tive scalar curvature, we have kerDA = 0 for every [A, 0] ∈ NX(Y ). Moreover,
since the dimension of NX(Y ) is b1(Y ), NX(Y ) is smooth, and the Kuranishi
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map from the first to the second cohomology of the deformation complex van-
ishes. It follows from [23] that every element of Mηin

(X̂in) converges, along the
end, exponentially fast towards an element of NX(Y ). This implies that, given
any θ ∈ NX(Y ), Mηin

(X̂in, θ) is a (possibly empty) smooth manifold. Exactly
the same arguments apply to Mη′(Ẑ).

Recall that taking the quotient of NX(Y ) by the whole gauge group of Y gives
a covering map p : NX(Y )→ N(Y ) with fiber H1(Y ;Z)/H1(X;Z). For every
θ1 ∈ NX(Y ), denote p(θ1) by θ1 . Let W+

X be the spinor bundle associated with
the Spinc structure sin . By [1] and [23] the exponential convergence implies
that, given θ1 = [A, 0], the expected dimension of Mηin

(X̂in, θ1) is

d1 =
1
4

(c1(W+
X )2 − 2χ(X)− 3σ(X)) − h0(θ1) + h1(θ1)

2
+ ηY (θ1) (3.1)

where h0(θ1) = 1 is the dimension of the stabilizer of the configuration (A, 0),
and h1(θ1) = b1(Y ) is the dimension of the first cohomology group of the defor-
mation complex at (A, 0). ηY (θ1) is the η–invariant of the relevant boundary
operator on Y defining the deformation complex (since we are going to use
only well known properties of this operator, we don’t need to be more spe-
cific, see [24] for more details). Note that the rational number c1(W+

X )2 is well
defined because by proposition 2.1 c1(W+

X )|Y is a torsion class.

Similarly, if θ2 ∈ NZ(Y ), the expected dimension of Mη′(Ẑ, θ2) is

d2 =
1
4

(c1(W+
Z )2 − 2χ(Z)− 3σ(Z))− h0(θ2) + h1(θ2)

2
+ ηY (θ2). (3.2)

Again, h0(θ2) = 1 and h1(θ2) = b1(Y ). Recall that ηY changes sign when the
orientation of Y is reversed. Moreover, since h0(θ) and h1(θ) are constant in
θ ∈ N(Y ) there is no spectral flow, and therefore ηY (θ) is constant too. Hence,
ηY (θ2) = −ηY (θ2) = −ηY (θ1). Finally, observe that the Spinc structures sin

and sZ can be glued together to give a Spinc structure sM on the closed
manifold M = X ∪Y Z . In fact, sM can be taken to be the Spinc structure
induced by the almost complex structure JM (see the discussion before the
statement). It follows that the associated spinor bundle W+

M satisfies

c1(W+
M )2 = 2χ(M) + 3σ(M),

and the formula d1 +d2 = −1−b1(Y ) follows immediately from (3.1) and (3.2).

Theorem 3.2 Let (X, ξ) be a 4–manifold with contact boundary. Suppose
that one of the following assumptions holds:
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1) The boundary of X is connected, it admits a metric with positive scalar
curvature and b+2 (X) > 0,

2) The boundary of X is disconnected and one of its connected components
admits a metric with positive scalar curvature.

Then, the map SW(X,ξ) is identically zero.

Proof We will start by establishing the conclusion under the first assump-
tion. Arguing by contradiction, suppose that the map SW(X,ξ) does not van-
ish. Then, one can argue as in [17], proposition 5.4, and show that, for ηin in
a Baire set of compactly supported perturbations, if, for some θ1 ∈ NX(Y ),
Mηin

(X̂in, θ1) is non-empty, then its expected dimension is non-negative (ob-
serve that, since the perturbing term is decaying to zero along the cylindrical
end, we need b+2 (X) > 0 to rule out reducible solutions). Thus, choosing ηin in
such a Baire set, the existence of (Ain,Φin) implies d1 ≥ 0. If we denote by d2

the expected dimension of Mηout(X̂out, ξ, θ2) (with the obvious meaning of the
symbols), the same argument gives d2 ≥ 0 (no assumption on b+2 is needed now,
because the elements of Mηout(X̂out, ξ, θ2) are asymptotically irreducible on the
“conical” end). As explained in [17], subsection 5.4, one can associate to θ2 a
homotopy class of 2–plane fields I(θ2) on Y . As in the proof of proposition 5.6
in [17], the expected dimension of Mηout(X̂out, ξ, θ2) is given by a difference
element δ (I(θ2), ξ) (see [17], subsection 5.1, for the definition of δ ; in the case
at hand this number is an integer because, by proposition 2.1, the restriction
of c1(W+) to Y is a torsion element). Moreover, δ (I(θ2), ξ) is also equal to
the expected dimension of Mη′(Ẑ, θ2). This contradicts lemma 3.1. Hence, we
have established the conclusion of the theorem under the first assumption.

When the boundary of X is disconnected the above argument can be eas-
ily modified so that the requirement on b+2 (X) becomes redundant. In fact,
one can repeat the same construction involving only the end corresponding to
the boundary component having positive scalar curvature. X̂in will have one
cylindrical end as well as some conical ends Ei , i = 1, . . . , k , while X̂out will
be the same as before. The conical ends can be chopped off and replaced by
suitable compact manifolds with boundary Zi (as we did before with X̂out )
without changing the expected dimension of the corresponding moduli spaces.
Then, denoting

(
X̂in \ ∪Ei

)
∪Zi by X̃in , the statement of lemma 3.1 will still

hold with Mηin

(
X̂in, θ1

)
replaced by Mηin

(
X̃in, θ1

)
, and will have a similar

proof. On the other hand, the same arguments as before show that, for generic
choices of ηin , the expected dimensions of Mηin

(
X̂in, ξ1, . . . , ξk, θ1

)
(with the
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obvious meaning of the symbols) and Mηout(X̂out, θ2, ξ) are non-negative, and

they coincide with the expected dimensions of Mηin

(
X̃in, θ1

)
and Mη′(Ẑ, θ2),

respectively. No assumption on b+2 (X) is needed, because both X̂in and X̂out

have at least one conical end, and the elements of Mηin

(
X̂in, ξ1, . . . , ξk, θ1

)
and Mηout(X̂out, ξ, θ2) are asymptotically irreducible on the conical ends. This
gives a contradiction as in the previous case, and concludes the proof of the
theorem.

Proof of theorem 1.4 Let ω be the compatible symplectic form. We know
(see section 2) that there is a distinguished element sω ∈ Spinc(X, ξ) such that
SW(X,ξ)(sω) 6= 0. The conclusion follows immediately from theorem 3.2.
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93), 7–33

[15] R E Gompf, Handlebody construction of Stein surfaces, Ann. of Math. (to
appear)

[16] R Kirby, Problems in Low-Dimensional Topology. In W H Kazez (Ed.), Geo-
metric Topology, Proc of the 1993 Georgia International Topology Conference,
AMS/IP Studies in Advanced Mathematics, pp. 35–473, AMS & International
Press (1997)

[17] P B Kronheimer, T S Mrowka, Monopoles and contact structures, In-
vent. Math. 130 (1997) 209–256

[18] D Kotschick, J W Morgan, C H Taubes, Four–manifolds without symplectic
structures but with non-trivial Seiberg–Witten invariants, Math. Res. Lett. 2
(1995) 119–124

[19] F Laudenbach, Orbites périodiques et courbes pseudo-holomorphes, application
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