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Abstract

The topological underpinnings are presented for a new algorithm which answers
the question: \Is a given knot the unknot?" The algorithm uses the braid foli-
ation technology of Bennequin and of Birman and Menasco. The approach is
to consider the knot as a closed braid, and to use the fact that a knot is un-
knotted if and only if it is the boundary of a disc with a combinatorial foliation.
The main problems which are solved in this paper are: how to systematically
enumerate combinatorial braid foliations of a disc; how to verify whether a com-
binatorial foliation can be realized by an embedded disc; how to �nd a word
in the the braid group whose conjugacy class represents the boundary of the
embedded disc; how to check whether the given knot is isotopic to one of the
enumerated examples; and �nally, how to know when we can stop checking and
be sure that our example is not the unknot.
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1 Introduction

The goal of this manuscript is the development of a new algorithm to answer
the question: Given a knot K which is de�ned by a diagram, does K represent
the unknot? Our algorithm is suitable for computer enumeration. Its approach
is straightforward:

(1) We show how to construct a su�ciently large set of diagrams which rep-
resent the unknot;

(2) We introduce a complexity function which allows us to order these dia-
grams, as we construct them, in order of complexity;

(3) We learn how to test in a systematic way whether an arbitrary diagram
for a knot K is equivalent to one of the diagrams on the list;

(4) We arrange that the checking process stop in a �nite time.

The focus of this paper will be on the topological underpinnings of the algo-
rithm. We are in the process of implementing the algorithm, and of assembling
computer-generated data for the ordered list which we produce, and the data
should be interesting. We plan to write a second paper on that work, when it is
complete and done e�ciently enough to give us the data we would like to see.

Before we describe our approach, we give a brief review of related work on the
problem.

� In the 1960’s W Haken [8] used the concept of a normal surface to show
that the homeomorphism problem is solvable for triangulated 3{manifolds
which contain an incompressible surface. The unknot K bounds a disc,
and the disc is an incompressible surface in the 3{manifold which is ob-
tained by removing an open tubular neighborhood of K from S3 , so
Haken’s work proves the existence of an algorithm for recognizing the
unknot. See [9] for a review of Haken’s contribution to the problem.

� Several months after an earlier draft of this paper was submitted for pub-
lication Hass, Lagarias and Pippenger announced new results on the prob-
lem of recognizing the unknot in [10]. Their work investigates Haken’s
algorithm in detail, using more recent contributions of Jaco and Oertel
and new techniques from computer science to sharpen Haken’s algorithm
and place explicit bounds on its running time. They then go on to prove
that the problem of recognizing the unknot is in class NP. That issue is
somewhat tangential to the subject matter of this paper. The emphasis
of this paper is on the existence of a new algorithm for unknottedness,
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rather than the complexity. Our proof that we can stop checking after an
explicit �nite time will use similar methods to [10], but the algorithm itself
is totally di�erent. It is not clear at this writing whether our algorithm
demonstrates that the problem of detecting unknots is in NP.

� In a di�erent direction, an open conjecture is whether there exists a non-
trivial knot whose Jones polynomial is 1. If none exists then the Jones
polynomial detects the unknot.

Our work is in the setting of closed braids. When we say that we list ‘a suf-
�ciently large set of diagrams which represent the unknot’ we mean that we
enumerate the conjugacy classes of the unknot in the braid group Bn , where
n is the number of Seifert circles in the given diagram of K , in an appropriate
order. Since there is a very simple algorithm [13] to change every knot diagram
with n Seifert circles to a closed n{braid diagram and to read o� a represent-
ing open braid, and since the conjugacy problem in the braid group is a solved
problem ([7],[6],[4]) we will then have the tool we need to solve problem 3, ie
to test (one conjugacy class at a time) whether the closed n{braid which we
constructed from the given diagram of K is conjugate to one of the members of
our list. The list is in�nite for n � 4, and our main problems are to construct
the list, to order it in an appropriate way, and to learn when we can stop test-
ing. Those are non-trivial problems, and we will bring much structure to bear
on them, in addition to using the known solution to the conjugacy problem.

The unknot is the unique knot which bounds a disc, and our tool for enumerat-
ing its closed n{braid representatives is based on the combinatorics of certain
braid foliations of the disc. These foliations were introduced by D Bennequin
in [1]. They were studied systematically as a tool in knot theory by the �rst
author and W Menasco in a series of papers with the common title ‘Studying
links via closed braids’, for example see [5]. Our detailed work involves many
ideas from those papers, but for convenience our references will be mainly to the
review article [3], which gathers together in one place the machinery developed
in those papers. Our technique for enumerating all closed braid representatives
of the unknot is in fact implicit in D. Bennequin’s work [1]. It is a method
of \stabilizing" a complicated embedded disc to obtain a simpler one whose
boundary has much higher braid index. We use the reverse of this procedure
to generate complicated discs whose boundaries have low braid index. Some of
these are not embeddable, so we develop a new (and surprisingly simple) test
for embeddability, allowing us to eliminate any non-embeddable ones that may
have arise in the course of the enumeration.

Having in hand an embeddable foliated disc with associated combinatorial data,
we know (from a theorem proved in [3]) that its embedding in 3{space relative
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to cylindrical coordinates is determined up to foliation-preserving isotopy. How-
ever, we still have to solve the problem of determining a word in the generators
of the braid group which represents the boundary of the given disc. The so-
lution to that problem is new to this paper and turns out to be quite elegant.
All of this, combined with the solution to the conjugacy problem in Bn in [4],
solves problems 1, 2 and 3 above.

The complexity measure which we assign to our foliated disc is a pair of integers
(n; v), where n is the braid index of the boundary and v is the number of
times the braid axis intersects the disc. The given knot K is de�ned by a
diagram, and as noted earlier n is also the number of Seifert circles in the
diagram, which is thus �xed for each example. To �nd a bound on v we must
relate v to the crossing number k of K . For this part of the argument we
construct a triangulation of the complement of a tubular neighborhood of K ,
doing it so that the braid axis meets the interiors of exactly 4 tetrahedra, in a
controlled way. We then �nd an upper bound on the number t of tetrahedra,
as a function of k and n. As is well-known, the work of Kneser and Haken
implies the existence of an upper bound on the number of times the disc we
are seeking can intersect a single tetrahedron. Fortunately we do not need to
compute that bound because Lemma 6.1 of [10] does the job for us. Multiplying
by 4 we obtain an upper bound for v , which then tells us when we can stop
testing.

Here is an outline of the paper. In Section 2 we review the prerequisite material
about braid foliations. This section is without proofs, but the material is fairly
understandable and believable. A convenient reference, complete with proofs, is
available [3]. In Section 3 we show how to test whether a given combinatorially
foliated surface actually corresponds to an embedded foliated surface, and if
so how to �nd a braid word which represents the boundary. In Section 4 we
show how to enumerate the ordered list of closed n{braid representatives of the
unknot which is the basis for our algorithm. In Section 5 we prove our ‘halting
theorem’. In Section 6 we present the algorithm.

For completeness, we show in Appendix A how to rapidly modify an arbitrary
knot diagram to a closed braid diagram, with control over the extra crossings
which are added. This part of the algorithm is based upon the work of Vogel,
reported on in [13]. In Appendix B we review the solution to the conjugacy
problem in Bn which we are using in our algorithm. The theoretical basis for
that algorithm is established in [4].

Acknowledgements We thank Elizabeth Finkelstein for her many contribu-
tions to this paper, both through her work in [3] and through our discussions
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sations. It was only after we read the manuscript [10] and talked to him that
we understood how to give the proof of the Halting Theorem which is presented
here, replacing a much more awkward solution to that problem in the earlier
draft of this paper. We also thank William Menasco and Brian Mangum for
helpful conversations.

The �rst author acknowledges partial support from the following sources: the
US National Science Foundation, grants DMS 94-02988 and DMS 97-05019;
Barnard College, for salary support during a Senior Faculty Research Leave;
the Mathematical Sciences Research Institute, where she was a Visiting Mem-
ber when part of this work was done; and the US Israel Binational Science
Foundation. The second author would like to thank the US National Science
Foundations for partial support under grants ASC-9527186 and DMS-9404261.

2 Braid foliations of spanning surfaces for knots

In this section we will review the basic theorems about the braid foliations
associated to an incompressible orientable surface spanning a knot or link. The
main theorems in this �eld are collected in the survey paper [3], which we will
use as our preferred reference for the material of this section.

While we are interested mainly in closed braid representatives of the unknot,
we state everything in terms of links, and the (possibly disconnected) incom-
pressible spanning surfaces of genus g � 0 which they bound. Admitting these
complications requires almost no extra work and yields much simpli�ed proofs
in Section 3. It is also necessary for any future extensions of these ideas to true
(knotted) knots.

Choose cylindrical coordinates (r; �; z) in 3{space (S3 thought of as R3 union
a point at 1). A link K is a closed braid with the z{axis as its braid axis if
each component of K has a parameterization f(r(t); �(t); z(t)) : t 2 [0; 1]g such
that r(t) 6= 0 and d�=dt > 0 for all t 2 [0; 1]. This means that K intersects
each half-plane H� through the axis transversally, as in Figure 1. It follows
that the number of points in K \H� is independent of � . This number is the
braid index, n = n(K), of K . Notice that the closed 4{braid diagram in Figure
1 contains 4 Seifert circles. See the Appendix for a proof that any diagram
with n Seifert circles can be modi�ed to a closed n{braid, adding a controlled
number of crossings.

Let K be a closed braid and let F be an embedded orientable surface of minimal
genus spanned by K . Note that both F and @F may be disconnected. Let
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Figure 1: Braids and closed braids

H = fH� : � 2 [0; 2�]g be the open book decomposition of R3 by half-
planes with boundary on the z{axis. Assume that F is in general position
with respect to H and consider the induced foliation on F . This foliation is
the braid foliation of F .

The braid foliation is singular both at points where F meets the braid axis
A, and at points where F is tangent to leaves of H . By general position,
these latter type of singularities can be assumed, a priori, to be of saddle
type, or center type with neighborhoods foliated by circles. The following is a
restatement of results of Bennequin [1]. It classi�es the leaves and singularities
of the braid foliation after an isotopy.

Theorem 2.1 ([3], Theorems 1.1,1.2) After a modi�cation of F rel @F (by
isotopy when @F is non-split) the following hold:

(1) The braid foliation near @F (see Figure 2) is transverse to @F . It is
radial in a neighborhood of each point of A \ F (see Figure 3).

K

Figure 2: The braid foliation in a neigh-
borhood of @F .

A

Figure 3: The braid foliation in a neigh-
borhood on F of each point of A \ F .

(2) The non-singular leaves of the braid foliation fall into three types: a, b
and c. (See the left sketch in Figure 4.)
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a: arcs with one endpoint on K and one on A, and

b: arcs with both endpoints on A.

c: arcs with both endpoints on K .

However arcs of type c are necessarily singular because intersections of
K with every �ber of H are coherently oriented (see the right sketch in
Figure 4), so they do not occur as non-singular leaves.

K

K

KK

H�

A AA

A

−+

+

a

bc

Figure 4: Leaves of type a ,b and c

(3) The singular points of the braid foliation are of two types which we call
vertices and singularities:

Vertices: points of intersection between F and A. The foliation is
radial near the vertices (see Figure 3).

Singularities: A point of tangency between F and some H� . These
tangencies are simple saddles (see Figure 5). Such H� are called sin-
gular. The point of tangency is called a singularity. The singularity,
together with its four leaves, is called a singular leaf. The four leaves
of a singular leaf are called branches of the singular leaf.

(4) Singularities fall into three types: aa, ab and bb (see Figure 5).

aa: those singularities between two a{arcs,

ab: those between an a{arc and a b{arc, and

bb: those between two b{arcs.

(5) The vertices are (circularly) ordered by their order on the braid axis
A. After isotopy distinct singular leave are on distinct H� and are thus
circularly ordered, as well.

In part 2 of the theorem, a salient point is that non-singular circular leaves can
occur at local minima and maxima, and the theorem says that (subject to the
assumption that F has minimum genus among all orientable surfaces bounded
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Figure 5: The three singularity types

by K ) we can cut o� any maxima and �ll up the minima without leaving the
class of surfaces which are of interest. If there no local minima or maxima, only
the vertex and saddle type singularities of part 3 can occur. This arrangement,
together with the fact that a leaf with both of its endpoints on K is necessarily
singular, is responsible for the rich combinatorics of braid foliations.

There are additional combinatorial data. Since the original braid K was ori-
ented, F has an orientation. If that orientation agrees with the orientation
of A at a vertex v , (ie the normal vector has positive inner product with the
oriented tangent vector to A) then we say the vertex is positive, otherwise it is
negative. Similarly, at a singularity, if the normal vector is positive with respect
to d� we say the singularity is positive, otherwise it is negative.

There is dual viewpoint with regard to these foliations. Instead of focusing on
singular leaves, one can break the surface up into tiles, one for each singular-
ity, by cutting along appropriate a{arcs and b{arcs. Figure 5 shows the tile
types, for each singularity. This is the point of view in [3], and so we use the
terminology \tiled surface".

We will need the following facts about singularities. They are self evident from
Figure 5 and follow easily from orientation considerations and the previous
theorem. Each singularity is connected to exactly two positive vertices along
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non-adjacent branches of the singular leaves. Each of the other two leaves can
go to either the boundary of the orientable surface, or to a negative vertex.

De�nition A tiled surface F is a 3{tuple (F;G;C) where F is an oriented
surface, G is a graph which is embedded in F (so that it has a well-de�ned
neighborhood in F), with some additional combinatorial data C which we call
decorations. The graph should be of the type attainable as the graph of singular
leaves, ie, G must be tripartite with each node either a vertex, a singularity,
or a boundary point. The singularities are of index 4 and are adjacent to at
most two boundary points (on non-adjacent edges). The boundary points are
on the boundary of F and adjacent to a single singularity. Each component
F 0 � F n G is a disc, also @F 0 contains either exactly 4 edges of G or exactly
3 edges, one of which meets F 0 on both sides. Each vertex has a sign, as does
each singularity. The vertices are circularly ordered, as are the singularities.
Vertices of the same sign can be adjacent to the same singularity only if they
are on edges which are non-adjacent at the singularity.

We wish to emphasize the decorations of the tiled surface. In the tiled surface
literature these decorations have been largely ignored, or, at best, implicit.
Tiled surfaces were studied primarily in terms of the graph with only secondary
thought given to the decorations.

If F is a tiled surface, then F can be foliated (uniquely, up to homeomorphism)
by a singular foliation so that G is the union of singular leaves. Thus every
tiled surface as de�ned above is implicitly foliated by a{arcs and b{arcs as
speci�ed in Theorem 2.1. Traditionally, one uses the foliation instead of the
graph. Graphs are more natural to use in an algorithmic context, and make
the decorations easier to understand, so we use them in our de�nition.

It is natural to abuse notation and think of F as a surface, rather than as a tuple
(F;G;C); we will try not to do this. We shall consistently use the convention
that the symbol for the surface will be a roman capital and the tiled surface
will be the same letter in a calligraphic font.

De�nition An embeddable tiled surface is a tiled surface which is actually
achieved as the graph of singular leaves of some embedded orientable surface
with closed braid boundary. This embedding is essentially unique. See Theo-
rem 2.2.

One more concept from the previously cited papers of Bennequin, Birman and
Menasco will be helpful, because it gives a very simple way to exclude unwanted
examples. As before, we refer the reader to [3] for a detailed exposition. Consult
Figure 6.
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Figure 6: Essential and inessential b{arcs

The sketch on the left illustrates a ‘pocket’ in an embedded disc. It cannot be
removed because the knot is in the way. If the knot was not an obstruction, we
could eliminate the pocket (and remove two vertices in the tiling) by an isotopy.
This leads us to a de�nition.

De�nition A b{arc � is said to be essential if both sides of H� split along �
are pierced by K . See the right sketch in Figure 6. An embeddable tiled surface
is an essential tiled surface if all the b{arcs of the braid foliation induced by
the embedding of the tiled surface are essential. An embeddable tiled surface
which is not an essential tiled surface is said to be an inessential tiled surface.

Example Figure 7 gives an example of a tiled surface of genus 2. We will see
shortly how to test that it is embeddable and essential. The 11 singularities
are indicated by small black dots, signed and labelled a; b; c; d; e; f; g; h; i; j; k
to correspond to their cyclic order in the �bers around the axis. The 8 white
circles (6 positive and 2 negative) are the signed tile vertices. They are labelled
1; 2; 2:1; 2:2; 3; 4; 5; 6 to them describe their order on the braid axis. (It will
become clear as we proceed why we choose non-integer labels for the negative
vertices).

In the next section we will learn how to test whether a given example is em-
beddable. We are aided in that project by the fact that when a tiled surface
is embeddable, then there is a unique embedding, up to foliation preserving
isotopy:
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Figure 7: An example of an embeddable essential tiled surface

Theorem 2.2 [3, Theorem 4.1] The combinatorial data for a embeddable
tiled surface F , ie, the embedded graph G and its embedding in F , the circu-
lar ordering for its vertices, the circular ordering for its singularities, and the
signs of the vertices and singularities, determine the embedding in S3 . This
embedding is unique up to foliation preserving isotopy. The embedding of the
boundary is determined by the same data, restricted to singular leaves which
meet the boundary and their associated vertices.

3 Testing for embeddability and �nding the bound-
ary word

Given a knot or link, it is natural to ask what surfaces it spans. In this section
we study a dual question: Given a tiled surface, is it embeddable? And if it
is embeddable, what braid is represented by its boundary? Our main results
on these matters are Theorems 3.4 and 3.5. During most of the section we
will ignore the question of whether the surface is essential, but at the end of
the section Proposition 3.6 will give a very simple test which can be used to
eliminate inessential tiled surfaces.
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3.1 A special case: positive tiled surfaces

Our work begins with a special case of the embeddability question: when is
a tiled surface which has only positive vertices embeddable in 3{space? The
answer, roughly, is \most of the time":

For convenience, we call a tiled surface with only positive vertices a positive tiled
surface. For such a surface every singularity is type aa and each singularity is
connected to exactly two vertices along non-adjacent branches of the singular
leaves (see Figure 5). Figure 8(a) is an example of a positive tiled surface. The
example is very simple, and so it’s easy to understand the embedding in 3{space
which is given in Figure 8(b). The surface is depicted as a Seifert surface for
the closed braid �3

1 , in Artin’s well-known generators of the braid group. The
two discs have been arranged as concentric discs in 3{space, with disc 2 above
disc 1. The two discs are joined by three half-twisted bands. The singularities
in all 3 bands are negative. The boundary is the negative trefoil knot.

1 2

(a) (b)

+ +

+

1−

2−3−
positive positive
side of side of
disc 1 disc 2

Figure 8: Example of a positive tiled surface

Lemma 3.1 Let F = (F;G;C) be a positive tiled surface. Assume that the
combinatorial data C is subject to a single restriction: the cyclic order of the
singularities around each vertex of valence � 3 is counterclockwise when viewed
on the positive side of F . Then F is embeddable.

Proof Clearly, in an embedded surface the singular leaves meeting at a vertex
are circularly ordered because the ordering is given precisely by their order
around the braid axis. Thus the order condition of the lemma is necessary. We
need to show it su�ces when there are no negative vertices in G. Assuming
the order condition is met about each vertex, we shall construct an embedded
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orientable surface in three space whose boundary is a braid, and whose graph
of singular leaves in the associated braid foliation is isomorphic to G with an
isomorphic embedding and isomorphic combinatorial data.

Let v1; v2; : : : ; vP be the vertices of F , and let s1; s2; : : : sS be the singularities,
written in order. Since F has no negative vertices, each singularity is adjacent
to exactly two vertices with the other two singular leaves going to @F . Let �i
be a disc parallel to the xy{plane, centered on the z{axis, height i, and radius
1=i. If si is adjacent to vj and vk , then connect the discs �j and �k with small
twisted bands at angle 2�i=S . The twisted band can twist in either of two
ways. Choose the twist so that the part connected to the positive part of �i is
positively oriented with respect to d� if the sign si is positive, and choose the
other twist if si is negative. Note that the edges of the twisted band can be
made arbitrarily close to straight lines because 1=i is a convex function.

Clearly, then, the surface F e given by the �i and the twisted bands is a surface
with closed braid boundary and associated graph G. The surface F e is ori-
entable since a twisted band always connects the discs so that the upper sides
connect to each other. All that remains is to check the signs of the vertices and
singularities. Clearly all the vertices are positive and the twists were chosen so
that the signs of the singularities would agree. Thus the braid foliation on F e

and F have the same combinatorial data, and it then follows from Theorem
2.2 that F is embeddable.

We next consider the question of determining a braid word which describes the
boundary of a positive embeddable tiled surface, ie an embeddable tiled surface
which has only positive vertices in its foliation. Since isotopic embeddings of
the same tiled surface can have boundaries that di�er by a conjugation, the
answer can only be determined up to conjugation. There is a convenient set of
generators for the braid group known as band generators. They are particularly
useful in algorithmic questions, having been to give fast solutions to the word
problem in Bn [4] and the conjugacy problem in B3 in [14] and B4 in [12].

Let k; j be integers with n � k � j � 1. Let ak;j denote an elementary braid
in which strands k and j exchange places with strand k crossing over strand
j and with both passing in front of all intermediate braid strands. See Figure
9. The collection of elementary braids ak;j and their inverses clearly generate
Bn because they contain as a subset the Artin generators �i = ai+1;i . These
are the band generators of the braid group. (See Appendix B for a discussion
of these generators and their relations.)
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1 2 j k

The braid ak;j

n

Figure 9: Band generators for the braid group

Lemma 3.2 Let F be a positive embeddable tiled surface with P positive
vertices (so its boundary is a braid with P strands) and S singularities at
angles �1; �2; : : : ; �S of signs �1; �2; : : : ; �S . Notice that every singularity in
the embeddable tiled surface has a exactly two branches connected to positive
vertices. For the singularity which is at angle �i , let vji ; vki be the vertices
associated to this singularity, where ki > ji . Then the closed braid given by
B(F) =

QS−1
i=1 a

�i
ki;ji

is a representative of @F .

Proof The proof follows directly from the construction which was given in the
proof of Lemma 3.1. That lemma constructed an embedded surface with the
same tiling as F . We abuse notation slightly and call the embedded surface
F as well.

From the construction we know that F is made of discs �i centered on the braid
axis with twisted bands between these discs. At �i there is a band between �ji
and �ki with a twist corresponding to the sign �i of the singularity at �i . The
boundary in a neighborhood of �i is then exactly given by the band generator
a�iki;ji . Thus the full closed braid is B(F) =

QS−1
i=1 a

�i
ki;ji

.

3.2 The general case: �nding the boundary word

We proceed to the general case, where both positive and negative vertices occur.
The most e�cient way to proceed is to bypass (for the moment) the question
of how to test for embeddability, and assume that we have been given an em-
beddable tiled surface.

De�nition Let F be an embeddable tiled surface with P positive vertices
v1; v2; : : : ; vP , in that order on A, and N negative vertices and S singularities at
angles �1; �2; : : : ; �S of signs �1; �2; : : : ; �S . Let � be the number of components
in @F . Recall that every singularity in the foliation has exactly two branches
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connected to positive vertices. For the singularity which is at angle �i , let
vji ; vki be the orientable surfaces which are associated to these two vertices,
where ki > ji . Let EB(F) be the closed braid given by

EB(F) =
S−1Y
i=1

a�iki;ji :

This is a link of one or more components, in 3{space. The word EB(F) is
called the extended boundary word of F . If the tiled surface F has only positive
vertices, then by Lemma 3.2 EB(F) = B(F). The word EB(F) is given as a
word in the band generators of the braid group BP , where P is the number of
positive vertices in the tiling. Our �rst lemma tells us that @F is represented
by a word in the braid group BP−N .

Lemma 3.3 Let F be an embeddable tiled surface which has P positive and
N negative vertices. Then the braid index of @F is n = P −N .

Proof The braid index n is the linking number of K = @F with the braid
axis A. Linking number may also be computed as the algebraic intersection
number of A with a surface which K bounds, ie P −N .

The next theorem tells us that one of the components of the closed braid EB(F)
represents the boundary of the surface F .

Theorem 3.4 Let F = (F;G;C) be an embeddable tiled surface with con-
nected boundary, P positive vertices and N negative vertices. Let K 0 be the
link represented by the extended boundary word EB(F). Then K 0 is a link
with N + 1 components, at least N of which are closed 1{braids which are
geometrically unlinked from the other components of K 0 . Let K be the link
which is obtained from K 0 after deleting N 1{braid components of K 0 . Then
K is a (P −N){braid whose closed braid has 1 component, and this component
represents @F .

Proof Let F 0 = (F 0; G0; C 0) be the tiled surface induced by removing a small
neighborhood about each negative vertex in F and deleting the corresponding
vertices from G and C . The surface F 0 is F with N holes. The tiled surface F 0
is clearly embeddable for the following reason: It a subset of the embeddable
tiled surface F . Also F 0 has no negative vertices, so Lemma 3.2 applies, and
@F 0 is represented by B(F 0). Thus K 0 = @F 0 is described by the word B(F 0).
Notice that B(F 0) is identical with EB(F), but not with B(F).
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Thinking of F 0 as a subset of F embedded in 3{space, we see that the boundary
link of F 0 contains N small circles which bound discs each containing a single
negative vertex in F . These discs are disjoint from F 0 (except on the boundary,
of course), thus these N components of @F 0 are geometrically unlinked from
the other components. Except for these N components, the boundaries of F
and F 0 are identical. Deleting these N components from @F 0 yields exactly
@F .

Example We illustrate Theorem 3.4, using the example in Figure 7. The
singularities are at a; b; c; d; e; f; g; i; j; k . Of those, only the singular leaves at
a; b; c; g; h; i have two endpoints on @F . Assuming that our tiled surface is em-
beddable, we determine its extended boundary word. The tiling has 6 positive
vertices, 2 negative vertices and 11 singularities. The extended boundary word
EB(F) is a 6{braid of length 11 in the band generators. It is:

EB(F) = a3
2;1a

−1
6;1a

−1
5;1a

−1
6;4a

3
5;3a6;4a5;1:

Figure 10 shows that it has 3 components, two of which (sketched as dotted
curves) are closed 1{braids which are unlinked from the rest of the braid and
from one-another. (It is not unique to this example that one has to check care-
fully to be sure that they are unlinked from the rest of the braid and from
one-another.) The third component represents the boundary of the surface of
Figure 7. Its braid index, which is the linking number of the axis A with @F ,
may be computed as the number of times the axis pierces F , where intersec-
tions are counted algebraically. Since P = 6;N = 2 this algebraic intersection
number is 6− 2 = 4, and indeed we see that (ignoring the two 1{braids) @F is
a 4{braid. The only thing which is not completely obvious at this time is how
to instruct a computer to �nd a word in the generators of B4 which represents
@F from the 3{component 6{braid EB(F). This will be discussed briefly at
the end of Section 4, and in more detail in our paper on the implementation of
the algorithm.

3.3 The general case: testing for embeddability

We pass to the question of testing the embeddability of an arbitrary tiled surface
F . Since the positive tiled surface F 0 is a subsurface of F , and since Lemma 3.1
gives a complete test for the embeddability of F 0 , it is clear that our general
embeddability test must include the cyclic order test of Lemma 3.1 (see (i)
of Theorem 3.5, stated below) and a corresponding condition on the cyclic
order around the negative vertices. In view of the proof of Theorem 3.4, the
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Figure 10: The extended boundary word for the example in Figure 7

remaining obstruction to embedding lies in �lling in the disc neighborhoods of
the the negative vertices. The obstruction must lie in the b{arcs, which are not
present in a positive tiled surface. To describe the obstruction, we need several
de�nitions.

By our hypothesis, the foliation of F is radial about each vertex. This means
that around every vertex there is a leaf which meets the vertex at the angle � ,
for every � 2 [0; 2�]. Suppose the singular leaves occur at angles �1; : : : ; �S .
Consider b(vi; vj), a b{arc joining vertices vi and vj . There is some maximal
open interval, (�m; �n) in which for any � 2 (�m; �n), there is a b{arc between
vertices vi and vj which is homotopic to b(vi; vj) rel endpoints. Let [b(vi; vj)]
be the equivalence class given by these b{arcs.

By a slight abuse of notation we say that the b{arc b(vi; vj) exists in the �
interval (�p−1; �p) if (�p−1; �p) � (�m; �n), ie, if some representative of the
equivalence class [b(vi; vj)] exists between angles �p−1 and �p . De�ne gb(vi; vj)
to be a gb{arc (or generalized b{arc) if either it is a true b{arc, or if vi and vj
are the positive vertices associated to a single type aa singularity at �p . In the
latter case, we de�ne the arc gb(vi; vj) to lie in then interval (�p−1; �p). Notice
that we do not include the corresponding arcs for an ab singularity, we will not
need them. When we do not need to distinguish between the gb{arcs which are
b{arcs and those which are not b{arcs, we will use the simpler notation vivj .

Example Table 1 illustrates the table of gb arcs for the example of Figure 7.
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interval gb{arcs
(�1; �2) b(v4; v2:2) b(v5; v2:1) gb(v1; v2)
(�2; �3) b(v4; v2:2) b(v5; v2:1) gb(v1; v2)
(�3; �4) b(v4; v2:2) b(v5; v2:1) gb(v1; v6)
(�4; �5) b(v4; v2:2) b(v5; v2:1) � � �
(�5; �6) b(v4; v2:2) b(v1; v2:1) � � �
(�6; �7) b(v6; v2:2) b(v1; v2:1) gb(v5; v3)
(�7; �8) b(v6; v2:2) b(v1; v2:1) gb(v5; v3)
(�8; �9) b(v6; v2:2) b(v1; v2:1) gb(v5; v3)
(�9; �10) b(v6; v2:2) b(v1; v2:1) � � �
(�10; �11) b(v4; v2:2) b(v1; v2:1) � � �
(�11; �1) b(v4; v2:2) b(v5; v2:1) gb(v1; v2)

Table 1: The table of gb{arcs for the example in Figure 7

The dotted entries indicate the intervals which end at an ab{singularity; for such
a singularity there is no gb{arc which is not a b{arc. In a more complicated
example the same would be true for bb{singularities. It is a consequence of our
de�nitions that there are exactly N = 2 arcs of type b in every interval and
either one or no arcs which have type gb but not type b.

Our embeddability test is given by the following theorem:

Theorem 3.5 Let F be a tiled surface whose regions have been labelled in
the manner just described. Then F is embeddable if and only if:

(i) The singularities about each positive (respectively negative) vertex are
positively (respectively negatively) cyclically ordered in the �bration,
with respect to increasing polar angle � .

(ii) The vertices about each positive (respectively negative) singularity are
positively (respectively negatively) cyclically ordered on the oriented braid
axis, and

(iii) The endpoints of a gb{arc in the interval (i − 1; i) never separate the
endpoints of a b{arc in the same interval.

Proof We begin the proof by establishing a set of tests which look much
more complicated than the tests in Theorem 3.5, but which will turn out to
be equivalent to them. Let F be a tiled surface with singularities at angles
�1; : : : �S . We claim that F is embeddable if and only if it passes the following
four tests.
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(1) The singularities about each positive (respectively negative) vertex are
positively (respectively negatively) cyclically ordered in the �bration.

(2) The vertices about each positive (respectively negative) singularity are
positively (respectively negatively) cyclically ordered in the braid axis.

(3) Let vw be a b{arc which exists during the �{interval (i − 1; i). Then
F is not embeddable if the vertices v and w are separated on A by the
endpoints of any other b{arc which exists in the �{interval (i− 1; i).

(4) Suppose the singularity at �i is type aa, between a{arcs at vertices v
and w . Then F is not embeddable if the vertices v and w are separated
on A by the endpoints of one of the b{arcs which exist in the �{interval
(i− 1; i).

(5) Suppose the singularity at �i is type ab, between an a{arc with vertex
endpoint x and a b{arc uv , where u is positive. Then F is not embed-
dable if there is di�erent b{arc, say yz , which occurs during (i − 1; i)
such that x is separated from uv on A by yz .

(6) If the singularity at �i is type bb, let u; v;w; x be the vertices of the bb tile
T , oriented as they are encountered in traversing @T counterclockwise on
the positive side of F , with u positive. Then F is not embeddable if there
is a b{arc in the interval (i− 1; i) which separates uv from wx.

To prove the claim we �rst notice that (1) is a necessary condition for the
surface to be embeddable, because the foliation is radial in a su�ciently small
neighborhood of every vertex. Similarly, (2) is necessary because the singular
leaves meeting at a singularity are embedded in a single H� . The vertices at the
ends of the leaves are all in the braid axis on the boundary of H� inducing an
order on the vertices. The sign of the singularity indicates whether the surface
is locally oriented compatibly with H� , or with reversed orientation.

Consider the intersections of the given orientable surface F with the �bers of
H , as � ranges over the interval [0; 2�]. Let N be the number of negative
vertices and let P be the number of positive vertices. An Euler-characteristic
count shows that there must be P arcs in all, with exactly N of them type b
and the remaining ones type a.

We �rst �nd necessary conditions for embeddability. If F is embedded, then
it has no self-intersections. Since F intersects each non-singular �ber transver-
sally, it follows that a necessary condition for embeddability is that F \ H� ,
where H� is non-singular, be a collection of pairwise disjoint arcs, with N of
them of type b and the remaining P − N type a. The b arcs divide H� , but
the a arcs do not. If there are b{arcs, say uv;wx � H� , they will intersect
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if and only if u; v separate w; x on A = @H� . Let H�1 ; : : : ;H�s be the sin-
gular �bers, in their natural cyclic order in the cycle of �bers around A, with
subscripts mod s. If � varies over the open interval � 2 (�i−1; �i) its intersec-
tions with F will be modi�ed by isotopy rel A. Thus a necessary condition for
F to be embeddable is that it pass test (4) for some � 2 (�i−1; �i) for every
i = 1; 2; : : : ; S .

Next we ask what happens to the intersections of our embedded orientable
surface F with H� when � passes through a singular angle in the �bration.
There are three types of singularities, ie aa, ab, and bb. It’s easy to see that
the arcs in the set F \H� only change in a manner which can be realized by
an isotopy after an aa singularity, but that is not the case after an ab or bb
singularity. As we approach the singular �ber which separates the intervals
(i − 1; i) and (i; i + 1) during an aa singularity the a{arcs with endpoints at
v;w must approach one-another. But if v and w are separated on A by the
endpoints of a b arc which exists during the interval (i − 1; i) that will be
impossible without a self-intersection in F . The reasons are the same for type
ab and bb. Thus, tests (4){(6) are also necessary conditions for embeddability.

In fact these tests are also su�cient. Assume that all 6 tests have been passed.
Then F \H� is a collection of pairwise disjoint arcs, with N of them type b and
P −N of them type a, for every non-singular �ber. Also, in every singular �ber
there is exactly one pair of intersecting arcs, namely the leaves of the associated
saddle-point tangency. The union of all of the arcs F \ H� as � varies over
the closed interval [0; 2�] is the trace of the isotopy of F \H� as � varies over
[0; 2�]. The claim is proved.

To complete the proof of Theorem 3.5 we now observe that test (i) of the
theorem is identical with (1) of this lemma, and test (ii) is identical with (2).
Test (iii) of the theorem is identical with (3) plus (4). It remains to show that
tests (5) and (6) are subsumed by test (iii).

The key fact to notice is that the changes as we pass through an ab (respectively
bb) singularity at the angle �i involve exactly one (respectively two) b arc
(respectively arcs). All other b{arcs in the interval (i; i+ 1) are identical with
those in the interval (i− 1; i).

Consider test (6) �rst. Suppose that there is a bb singularity at �i , as in (6),
with b arcs uv and wx in (i − 1; i), and new b{arcs vw and ux in (i; i + 1).
Suppose also that there is a b{arc cd in the interval (i− 1; i) which separates
uv and wx. Then c and d separate u and v . However, in the interval (i; i+ 1)
(ie after the singularity) there will be new b arcs vw; ux. The b{arc cd will
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still be present. But that is impossible by (3), because c and d separate u and
v .

Consider test (5) next. Suppose that there is an ab singularity at �i , as in (5),
such that the b{arc uv is in (i − 1; i) and the b{arc xv is in (i; i + i). All
other b{arcs in (i− 1; i) are also in (i; i+ 1). Suppose that x is separated from
the b{arc uv by some other b{arc yz in the interval (i− 1; i). By (3), the arc
yz cannot cross uv . This means that y and z separate x from both u and
v . Passing to the interval (i; i + 1), the arc yz is still present. However yz
crosses xv . But that is also impossible, by (3). The proof of Theorem 3.5 is
complete.

Example We illustrate the embeddability test on the example which was
given in Figure 7, using the data in Table 1. Recall that the direction of
increasing polar angle � is counterclockwise (respectively clockwise) about a
positive (respectively negative) vertex. An easy check shows that the order
is correct about every vertex, so the example passes test (i) of Theorem 3.5.
Similarly, test (ii) is passed. We turn to test (iii). There are two negative
vertices, and so there are two b{arcs in each non-singular �ber. Inspecting
Figure 7, we see that there is a b{arc joining vertices v4 and v2:2 in the interval
(�10; �6), and one joining vertices v6 and v2:2 in the interval (�6; �10). These are
the entries in the �rst column of Table 1. Similarly for the b{arcs which end at
vertex v2:2 , which are recorded in the second column. As for the gb{arcs, we see
that there are aa{singularities at �1; �2; �3; �4; �7; �8; �9 , explaining the entries
in the third column of Table 1. Inspecting the rows of the table, one at a time,
we verify that the endpoints of a gb{arc (remembering that gb{arcs include
b{arcs) never separate the endpoints of a b{arc. Thus test (iii) of Theorem 3.5
is also passed.

3.4 Eliminating inessential tiled surfaces

For e�ciency, we will want to be able to eliminate inessential tiled surfaces as
we do the enumeration. The following proposition will allow us to do so.

Proposition 3.6 Let F = (F;G;C) be a tiled surface which passes the em-
beddability test of Theorem 3.5. Then F is essential if, for every b{arc � in
the tiled surface, the two points in @� are not adjacent in the cyclic ordering
of the vertices on A.
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Proof Let � be a b{arc in F \H� for some non-singular �ber H� . Recall that
� divides divides H� into two subdiscs, �1 and �2 , and that � is inessential if
one of these discs, say �1 , has empty intersection with K . The subdisc �1 may
contain other b{arc within it, but we may assume that � is an innermost b{arc
and �1 contains no other b{arcs.

In this case, we can simplify the braid foliation of F by pushing F through a
neighborhood of �1 in 3{space to eliminate two points of A\F . We can detect
this situation combinatorially because, if � is inessential and innermost, its two
endpoints will be adjacent vertices on A.

4 Enumerating closed braid representatives of the

unknot

Our task in this section is develop a procedure for enumerating the closed n{
braid representatives of the unknot, up to conjugacy, for each �xed n. From
now on we restrict our attention to the case when the F is a disc. To stress
this, we use the notation D = (D;G;C). Each closed n{braid representative
of the unknot is the boundary of a embeddable tiled disc, and our plan is
to enumerate all embeddable tiled discs and read o� their boundary words.
If n � 4 there will be in�nitely many conjugacy classes. Our measure of
complexity for the enumeration is the number of vertices in the embeddable
tiled disc, ie the number of points in A \D .

We refer the reader to Figure 11. The top left sketch is a closed 4{braid diagram
for the unknot. It is readily seen to be the unknot, however the disc that it
bounds is a little obscure. The top right sketch illustrates the same closed braid
from a di�erent angle. The disc meets the braid axis A in 8 points (the vertices
of the induced foliation), labelled 1; 2; 3; 3:1; 3:2; 4; 5; 6. The two labelled 3.1
and 3.2 are negative vertices. The singularities are not labelled, but there are
7 of them. (By an Euler characteristic argument, there is always exactly one
fewer singularity than vertex.) Singularities occur on each of the three narrow
twisted bands, and each of the narrow, vertical tubes coming up out of discs 1
and 2 each have two singularities of opposite signs. Vertices are labelled with
numbers, singularities with letters. Both singularities and vertices have a label
of plus or minus, too. There is an embedding of a model disc D in 3{space
which realizes this geometry.

The bottom sketch in Figure 11 shows the model disc. The graph of the singular
leaves has been pulled back to the model disc, and decorated to show the
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Figure 11: Several views of a closed braid which bounds an interesting disc

order and signs of the vertices and singularities. This bottom sketch is our
embeddable tiled disc. The problem which we address now is this: let us
suppose that we were handed the 4{braid example K which is illustrated in
the left sketch in Figure 11, and we want to verify algorithmically that it is
the unknot. Our plan is to enumerate a suitably long list of foliated discs
whose boundaries are 4{braids, and to check our given example K against the
members of the list. So we need to learn how to generate, systematically, a list
of embeddable tiled discs all of whose boundaries have braid index 4, which is
long enough to contain the example in Figure 11.

In view of Lemma 3.3 our plan is to �x n = P−N and to enumerate embeddable
tiled discs in order of increasing v . This is the same as enumerating embeddable
tiled discs with (P;N) = (n; 0); (n + 1; 1); (n + 2; 2); : : : in that order.

To enumerate the embeddable tiled discs we apply ideas �rst used in the proof
of Lemma 1 of [1]. Again we refer the reader to [3] for details, and give a brief
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summary here. To do so we introduce a move which is guided by the foliation
of the surface and allows us to change an arbitrary embeddable tiled disc to a
new embeddable tiled disc. This new embeddable tiled disc is simpler in the
sense that it has fewer negative vertices. Our algorithm will attempt to reverse
this process, starting with a simple embeddable tiled disc and generating more
complex ones.

De�nition Stabilization along an ab{singularity Recall that, by hypothesis,
the foliation is radial is a neighborhood of each vertex in the tiling. The top
row in Figure 12 shows how, any time there is an ab{singularity in the foliation,
we may push K across the singularity and its associated negative vertex, in a
neighborhood of the separating leaf which meets K , to a new position which
is again everywhere transverse to the foliation. It follows that after we do this
move we will have a new closed braid representative, say K? , of the unknot.
Notice that after stabilizing, a bb singularity may have become an ab singularity.
The middle row of pictures shows why the move increases the braid index from
n to n + 1, while decreasing the number N of negative vertices from N to
N − 1. The bottom row shows our stabilization move on the embedded surface
in 3{space. If one looks carefully one can see the half-twist which has been
introduced in the course of the push. We note that the pictures of ab{tiles in
the bottom row of Figure 12 are deformations of the picture in Figure 5: we
stretched out the top sheet to make visible a neighborhood of the singular leaf.

Theorem 4.1 Let D be an arbitrary embeddable tiled disc. Suppose that the
graph of D contains P positive vertices and N negative vertices. Then there
exists a sequence of embeddable tiled discs:

D = D0 ! D1 ! : : :! DN;

where each Di+1 is obtained from Di by a single ab{stabilization, so DN has
only aa{singularities. If the initial the D is essential, then so is each Di .

Equivalently, every embeddable tiled disc with P positive vertices and N neg-
ative vertices may be constructed by �nding a embeddable tiled disc the graph
of which is a tree of P positive vertices, then adding N ab{tiles, one at a time,
to the graph. At each addition stage, the new vertex and singularity are in-
serted into the orders of the older vertices and singularities and in such a way
that the new graph corresponds to an embeddable tiled disc. If the disc to be
constructed is essential, then each intermediate disc may also be assumed to be
essential.
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Figure 12: Stabilization along an ab{tile, viewed from three perspectives

Proof We begin with the given embeddable tiled disc D , which, by hypothesis,
contains N negative vertices. If N = 0 we are done, so assume that N >
0. From Figure 5 we can see that the foliation of D0 necessarily contains
singularities of type bb or ab, because singularities of type aa only connect to
positive vertices. But if there are singularities of type bb, then there must also
be singularities of type ab because a bb tile can only be glued to another bb tile
or to an ab tile. However, a subsurface of D cannot be composed entirely of
bb{tiles, for if it were it would be closed, and also entirely in the interior of D ,
which is absurd. So we may assume that there is at least one ab{singularity.
It is then possible to stabilize along the ab singularities, one at a time, as in
Figure 12 until we obtain a tiled disc DN which has no negative vertices.

We must show that each Di is embeddable and has no inessential b{arcs. Since
the graph of DN has no negative vertices, its singularities must all be type aa.
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Since D is embeddable, and Di � D for all i, it follows that each Di is an
embeddable tiled disc. The b{arcs of each Di are also b{arcs of D . Consider
a b{arc of Di . It is isotopic to one inside a non-singular H� which we may
assume is su�ciently far from any singular H� . Since ab{stabilization occurs
in a neighborhood of a singularity which is inside a singular H� ,

@D \H� � @Di \H�;

and the b{arc is essential in D if and only if it is essential in Di .

Thus, the sequence of tiled discs is a sequence of (essential) embeddable tiled
discs.

In the previous theorem we examined how arbitrary essential tiled discs can be
simpli�ed by stabilization along ab{singularities. We showed that after some
number of such stabilizations one arrives at a positive tiled disc. The latter
contains only positive vertices, and so has only aa{singularities. Its graph of
singular leaves is a tree. As was shown by Bennequin in [1], the new tiled
disc can then be further simpli�ed to the trivially tiled disc by removing aa{
singularities which belong to vertices of valence 1, one at a time. That process
is known as destabilization along aa{singularities. See Figure 13.

Figure 13: Destabilization along an aa{tile having a vertex of valence 1

See [3] for a full discussion of how the two processes, ie a �nite number of sta-
bilization along ab{singularities followed by a �nite number of destabilizations
along aa{singularities can be used to change an arbitrary closed n{braid rep-
resentative of the unknot to an (n + m){braid representative which bounds a
simpler tiled disc and thence to the trivial 1{braid representative. We now con-
sider the reverse of stabilization along ab{singularities. This reverse proceess
will be used to build up all tiled discs.
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Theorem 4.2 All possible embeddable tiled discs of �xed braid index n may
be enumerated in order of increasing v by the following (not necessarily e�cient)
procedure:

� Enumerate all positive tiled discs with n vertices, testing each for embed-
dability and discarding non-embeddable examples. This gives a list of all
possible embeddable tiled discs of braid index n with v = n vertices.

� To enumerate all embeddable tiled discs with n+2 vertices, �rst enumer-
ate all positive tiled discs with n+1 vertices, testing each for embeddabil-
ity and discarding non-embeddable examples. Then add one ab tile, using
the reverse of stabilization along an ab{singularity, in all possible ways,
testing every position for embeddability and essentiality and discarding
non-embeddable or inessential examples. This produces a list of all pos-
sible essential embeddable tiled discs of braid index n with v = n + 2
vertices.

� To enumerate all embeddable tiled discs with n + 4 vertices, �rst enu-
merate all positive tiled discs with n+ 2 vertices, then discard any non-
embeddable examples. Then add two ab tiles in all possible ways, and
discard any non-embeddable or inessential examples. This produces a list
of all possible embeddable tiled discs of braid index n with v = n + 4
vertices.

� Continue in this way for v = n + 6; n + 8; : : : . For v = n + 2i, the
enumeration begins with all possible positive embeddable tiled discs with
n+ i vertices, and continues by adding i tiles of type ab.

Proof By Lemma 3.3 we know that n = P−N . Since v = P+N , the enumer-
ation begins with (P;N) = (n; 0) and continues with (n + 1; 1); (n + 2; 2); : : : .
By Theorem 4.1 every essential embeddable tiled disc will eventually appear
on the list. A key fact in the enumeration is that an embeddable tiled disc
can never be obtained from a non-embeddable tiled disc by the reverse of sta-
bilization along an ab{singularity. The reason is that each Di in any sequence
of tiled discs constructed by repeated ab{stabilization on a embeddable tiled
disc is embeddable. Similarly, by Lemma 4.1 an embeddable tiled disc with
essential b{arcs can never be obtained from a embeddable tiled disc having any
inessential b{arcs by the reverse of stabilization along an ab{singularity.

Corollary 4.3 All possible conjugacy classes of n{braid representatives of
the unknot may be enumerated in order of complexity (n; v) by enumerating
all embeddable tiled discs, using Theorem 4.2, and then using Theorem 3.4 to
determine the associated boundary words.
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Example We illustrate the enumeration process for the example which we
considered earlier, in Figure 11. See Figure 14.
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Figure 14: Working through the details in the example of Figure 11

Sketches (6),(3),(1) of Figure 14 are the successive modi�cations of the em-
beddable tiled disc which we �rst met in Figure 7. Call the three tiled discs
D0;D1 and D2 , respectively. The initial embeddable tiled disc D0 has 8 ver-
tices (at heights 1, 2, 3, 3.1, 3.2, 4, 5, and 6) and 7 singularities, labelled
a; b; c; d; e; f; g . Alternatively, our enumeration process begins with the positive
embeddable tiled disc D2 in sketch (1). Its embedding is illustrated in sketch
2. It is made of discs connected by twisted bands. The discs are �1; �2; : : : ; �6
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of heights 1; 2; : : : ; 6 and radii 6; 5; : : : 1, respectively. Its boundary word is
a6;4a6;2a3;2a2;1a

−1
5;1 .

In sketch (3) we have added the ab{tile associated to singularity b to make D1 .
We could equally well have added singularity f �rst, it would not matter. The
reader may �nd it interesting (we did!) to try adding f �rst, then b, and to see
the pleasing way in which the intermediate braids change, while both choices
lead to the same �nal braid (sketch (8)).

The component of EB(D1) that is not in @D1 is lightly dashed in sketch (4).
The new boundary of @D1 (ie, after deleting the dashed circle) is shown in
sketch (5).

The reader may have wondered about the negative vertex at level 3.2. As an
aside, we now suggest that the interested reader start with the embedded disc of
sketch (2) and add yet one more disc �3:2 of radius = 6−3:2, at a level between
�3 and �4 , only now with its negative side facing ‘up’. The boundary of �3:2 can
be seen to be homotopic through an embedded annulus to the dashed unknot
in sketch (4) of Figure 14. Let us refer to the disc with the annulus attached
as the new disc.

The new disc meets the old surface along part of its boundary|all of the dashed
unknot of sketch (4) except the dashed arc at polar angle (b). Further deform
the new disc slightly to take the dashed arc to the solid arc at angle (b) in
sketch (4). If we now form the union of the old surface and new disc, behold,
we have a new embedded surface whose boundary is exactly that of sketch (5)!
It’s wonderful to see how the pasting can be done without introducing any
intersections with the previous surface.

In this way we obtain an embedded disc D1 which is bounded by the braid in
sketch (5). The piece of the old boundary which was on the dashed circle and
away from the wedge of 3{space near polar angle b is in the interior of D1 , and
the half-band at polar angle b is a subarc of the new boundary.

Sketches (7) and (8) show the next stage of adding another ab{tile at singularity
f to get D0 . Again the new unknot component is lightly dashed. Again there
is a missing disc �3:1 , and it �ts right between �3 and �3:2 to give the embedded
surface D0 , which is exactly the surface in Figure 11, constructed in a systematic
way.

The braid in sketch (8) is @D0 . It is clearly a 4{braid, though there is some
question as to how one can read o� the braid word e�ciently and algorithmically
because its strands skip between 6 di�erent discs. There are many methods for
this which essentially involve keeping a table of which strands are in the braid
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component at each singular angle. We skip the details here. More information
will be provided in a future paper on implementation details of the algorithm.

The list of embeddable tiled discs which we have just constructed has dupli-
cations. Some redundancy is caused by non-uniqueness of foliations; we will
obtain duplicate embeddable tiled discs which di�er only by changes in folia-
tion, which at most change the boundary by an isotopy in the complement of
the axis. Additional redundancies occur because non-isotopic embeddable tiled
discs can have boundaries which represent the same conjugacy class in Bn . In
another paper we will consider the problem of implementing the algorithm, and
at that time we will address these issues.

Remark 4.4 The reader who has followed the details of the calculation which
we illustrated in Figure 14 will have learned that the boundary of the embed-
dable tiled disc which is illustrated in sketch (6) of that Figure, and also in the
bottom sketch in Figure 11, is represented by the 4{braid:

a4;2a3;2a2;1a4;3a
2
3;2a2;1a

−1
3;2a

−1
4;3a

−1
2;1a

−1
3;2:

On the other hand, the closed braid which is illustrated in the top left sketch
in Figure 11 is represented by the 4{braid:

a4;3a
−1
3;2a

−2
2;1a

−1
3;2a3;2a3;2a

2
2;1a3;2a

−1
4;3a3;2a2;1:

A direct attempt to show that these two 4{braids are conjugate in B4 will very
likely lead to frustration. Fortunately, an algorithmic solution to this di�cult
problem is available. Indeed, we have interfaced it with our program for the
algorithm. We refer the reader to Appendix B, where it is described, briefly.

5 The halting theorem

In the previous sections we have shown that there is an algorithm which enu-
merates all foliated discs. By reading the braid word of the boundary of each
disc we then get a list of all possible (conjugacy classes of) unknots. The prob-
lem which remains is to learn when to stop testing and conclude that the knot
in question is not going to appear on the list and, hence, is truly knotted.

The boundary of a foliated disc is a closed braid, but our given knot K will
in general not be a closed braid. The �rst step is to change K to a closed
braid. There are many ways to do this. If the knot has n Seifert circles and
k0 crossings, the method given in Appendix A is simple and it converts K to
a closed braid of n strands and word length k � k0 + (n)(n − 1). The pair

Joan S Birman and Michael D Hirsch

Geometry and Topology, Volume 2 (1998)

204



(n; k) is then a measure of complexity of the given example. But (n; v) is our
measure of complexity of the foliated disc. Our main task in this section is to
�nd a relationship between (n; v) and (n; k). Clearly, n = n, and we will show
that there is a relationship of the form v < f(n; k) where f is an appropriate
function. This will prove that we need not look for arbitrarily complicated
discs.

Establishing such an upper bound on v using foliated surface techniques is an
interesting and signi�cant open problem|one we have not solved. We believe
that a solution which is in the spirit of our algorithm exists, but that �nding it
will depend upon obtaining a better understanding than we have at this time
of the boundary words. We have been able to prove that an upper bound exists
by using the machinery in [5], but we were unable to �nd an explicit formula.
We have not included that proof because it requires the development of a great
deal of background material.

We present a di�erent approach. We establish our upper bound by �rst con-
structing a triangulation of the complement of K which is adapted to closed
braids. In particular, we do it so that the braid axis meets � tetrahedra, and
meets them in a controlled way. We will need to count the total number t of
tetrahedra in the triangulation. After that we will use the Kneser{Haken theory
of normal surfaces to obtain an upper bound, depending on t, on the number
of intersections of the axis with a single tetrahedron. Multiplying by � we will
obtain the bound that we need.

5.1 Constructing the triangulation

Our goal in this section is to construct the triangulation and to prove Lemma
5.1 below. A suitable triangulation of S3 is one for which:

(1) The knot K is in the 1{skeleton,

(2) A regular neighborhood of K is triangulated

(3) The knot K is a closed braid, and the braid axis meets a �xed number �
of tetrahedra, in a �xed way, ie as a straight line from the center of one
of the faces to the opposite vertex.

The construction of a suitable triangulation of S3 involves many technical de-
tails. The reader who is willing to accept the fact that we can construct one with
the stated properties will not lose the thread of the argument by proceeding at
this time directly to Lemma 5.1, and accepting its truth.
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In the interests of e�ciency of the algorithm, we will try to minimize t and � in
our construction of a suitable triangulation. We start by de�ning a few pieces
of the construction. At several points in the construction we must subdivide.
We need several speci�c subdivisions to do this well.

De�nition Each crossing of the braid strands will be carried by a tetrahedron
which we subdivide with the crossing triangulation which is de�ned as follows.
Given a tetrahedron T with vertices A;B;C;D as in Figure 15(a), start by
slicing it by two planes P1; P2 which separate the tetrahedron into 3 pieces as
in Figure 15(b). The top and bottom pieces are a�ne triangular prisms and
contain AB and CD respectively. The middle piece is an a�ne cube which can
be further divided into two a�ne prisms.

An a�ne prism can be triangulated with 3 tetrahedra. Consider the prism
ABEFGH in Figure 15(c). The simplices ABEG;BEFG and BFGH are a
triangulation of the prism. After cutting the middle piece into two prisms, T has
been divided into 4 prisms, each of which we can subdivide into 3 tetrahedra in a
compatible way to make a triangulation of ABCD with 12 tetrahedra. We call
this subdivision the crossing triangulation. Note that the crossing triangulation
of T has 5 triangles in each original face of T .

De�nition Given a tetrahedron, consider the frustum obtained by slicing o�
one corner (say, the top corner) with a plane (see Figure 16). This frustum
is a convex polyhedron with 3 quadrilateral faces and two triangular faces.
The frustum triangulation is the triangulation achieved by drawing in either of
the two diagonals in each quadrilateral face, thus triangulating the boundary,
then taking the cone of the triangulation on the boundary into any interior
point. The boundary of the triangulated frustum has 8 faces, so there are 8
tetrahedra after subdividing. The original tetrahedron has been subdivided
into 9 tetrahedra.

De�nition The �nal subdivision of a tetrahedron we will de�ne we call the
edge triangulation because we will use it for tetrahedra at the edges of our
picture. Suppose we have a rectangular pyramid triangulated as in Figure 17(a).
Figure 17 shows a pyramid divided into 4 tetrahedra, but in general there might
be any �nite number. Pick a point D in the edge CP and consider the plane
containing points A;B and D . Let D1; : : : ;Dn be the points of intersection
between this plane and the edges C1; P ; : : : ; Cn; P . This plane cuts each of
the original tetrahedra into 2 pieces, one of which (the one containing P ) is a
tetrahedron and one which is not a tetrahedron.
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Figure 15: The crossing triangulation

The �nal step in the construction is to divide the objects which are not tetrahe-
dra by another plane. Consider the plane containing the triangle ACkDk−1(0 <
k � n). This cuts the object with vertices A;Ck;Dk;Dk−1; Ck−1 into two tetra-
hedra. The end result is that each of the original simplices in Figure 17(a) is
now 3 simplices in (b), except for the tetrahedron ABCnP has been divided
into 2. Note that the face ABP is not subdivided by this triangulation.

We are now prepared to triangulate S3 so as to satisfy conditions 1 and 2 from
above. Consider Figure 18. It is a triangulated rectangle, but after identi�cation
of the top and bottom edges it becomes a triangulated cylinder or annulus. The
bold lines represent the original knot (as a braid) and the thinner lines are other
edges in the triangulation. The cylinder has been draw with the middle section
shown larger than the other two only because that is where the interesting detail
lies. It should be understood that the top and bottom portions will be larger
when the cylinder is embedded.
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Figure 16: The frustum triangulation

The goal of our triangulation is to minimize t and � while satisfying conditions
1,2 and 3. Satisfying 1 is easy|we build our triangulation by starting with
K as out 1{skeleton and extending it. To satisfy 2, we will use the following
condition:

Neighborhood Condition

� No two simplices which meet di�erent strands of K may intersect.

Clearly, any triangulation satisfying the Neighborhood Condition has a trian-
gulated regular neighborhood of K .

We assume that we have been presented with K as a braid with n strands
and word length k in the Artin generators. (See Appendix B for an exposition
on how to convert a knot to a braid e�ciently.) We think of K as lying on
a cylinder winding around and parallel to the braid axis A, where A is the
z{axis in 3{space. Furthermore, think of this cylinder as having a triangular
cross section, ie, it is made of three flat sides. All the crossings are assumed to
be on one side the cylinder, the other two sides carry the closing of the braid
into a knot. Thus, in Figure 18 all the crossings of the bold lines are in the
middle portion of the �gure and in the top and bottom sections there are no
crossings.

We start by considering a braid with n strands and no crossings. In this case all
three sections will be triangulated like the upper and lower ones. To guarantee

Joan S Birman and Michael D Hirsch

Geometry and Topology, Volume 2 (1998)

208



(a)

(b)

A

A
B

B

P

P

C0

C1

C2

C3

C0

C1

C2

C3

D0

D1

D2

D3

Figure 17: The edge triangulation

the Neighborhood Condition, subdivide the rectangle between each adjacent
pair of strands in each section of the cylinder into 3 rectangles, the subdivide
each these into a pair of triangles. Thus, for each adjacent pair of strands there
are 18 triangles, or 18(n − 1) in all.

Strands 1 and n are also adjacent to 3 rectangles which we divide into 2 triangle
each for 12 more triangles. These are the edge triangles; the others are interior
triangles. Thus, if K is an n stranded braid with no crossings it lies on a
triangulated cylinder with 18n− 6 triangles.
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Figure 18: The triangulated cylinder

Now consider adding a crossing. The strands cannot cross and stay on the
cylinder, so we fatten the cylinder at each crossing by adding a tetrahedron so
that the two strands are on opposite edges of the tetrahedron. We triangulate
the tetrahedron with the crossing triangulation described earlier (Figure 15,
thus guaranteeing the neighborhood condition. We do not draw this crossing
triangulation in Figure 18, but note that it introduces two new vertices on
four sides of a square around the crossing. Each crossing breaks the rectangles
between the strands into two rectangles (plus the crossing). We subdivide each
rectangle as before, converting each triangulated rectangle into 2, introducing
6 more triangles.
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The square around the crossing has 4 vertices on its sides, as well. These vertices
are in the middle of a vertical edge on a triangle inside a rectangle triangulation.
We retriangulate that triangle by adding straight lines from the new vertices to
the opposite vertex of the triangle, thus introducing 4 more triangles on each
side.

The crossing triangulation has 5 triangles on each face of the tetrahedron, and
two faces are on each side of the cylinder. Thus each crossing introduces 6 +
2(4) +2(5) = 24 new triangles onto the cylinder. (In addition, each crossing
triangulation has 12 tetrahedra which we will count later.) After adding all k
crossings we will have a triangulated cylinder with 18n−6+24k triangles. If K
is a knot, strands 1 and n must be in at least one crossing each, introducing 4
additional edge triangles on each side, so at least 18 triangles are edge triangles
and at most 18n+ 24k − 24 are interior triangles.

The boundary of the triangular cylinder is a pair of triangles. Cap o� the
cylinder with two triangles to make it a sphere triangulated with 18n+ 24k− 4
triangles. Pick two points in A, one enclosed by the sphere and one in its
exterior, called the South Pole (SP) and North Pole (NP), respectively.

The cone of the triangulation on the sphere to SP is a triangulated 3{ball with
18n + 24k − 4 tetrahedra. Unfortunately, the neighborhood condition is now
violated because all the tetrahedra meet at a single point, SP. We subdivide
each tetrahedron coming from an interior triangle by cutting the \tip" o� the
tetrahedron, yielding a tetrahedron at SP and an untriangulated frustum. We
triangulate each frustum into 8 tetrahedra by the frustum triangulation given
earlier, for a total of 9 new tetrahedron for each original one. Thus we get at
most 9(18n + 24k − 24) tetrahedra from interior triangles.

The tetrahedra coming from the edge triangles we triangulate with the edge
triangulation, replacing each edge tetrahedron with 2 or three new tetrahedra.
Thus we have at most 9(18n + 24k − 24)) + 3 � 18 tetrahedra coming from the
cylinder. We do this edge triangulation so that the sides of the edge tetrahedra
containing the boundary of the cylinder at not subdivided at all.

Finally, the tetrahedra made by coning the the boundary of the cylinder do
not need any subdividing. These tetrahedra do not touch the braid, thus they
vacuously satisfy the neighborhood condition. Furthermore, the only other
tetrahedra touching one of these tetrahedra are edge tetrahedra, and these are
not subdivided on the side touching the tetrahedra in question, so there is no
need to subdivide them at all.

Thus, our ball has 9(18n+ 24k− 24) + 3 � 18 + 2 tetrahedra. Perform the same
construction on the exterior of the sphere to yield twice that many tetrahedra.
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Now we add in all 12k tetrahedra in the crossing triangulations at each crossing
to get 324n+432k−376 tetrahedra in our triangulated triangulated S3 , which,
by construction, satis�es the neighborhood condition and hence condition 1 and
2 from the beginning of this section. Notice that the braid axis A intersects
exactly 4 tetrahedra in the triangulation, and does so in a canonical fashion.
The reason is that A is the z{axis and passes through SP, NP and the four
tetrahedra made by coning the boundary of the cylinder. By construction, it
meets each of these tetrahedra as a line segment which runs from the center of
one of the faces to the opposite vertex. Thus we have proved:

Lemma 5.1 Given a closed braid K of n strands and word length k in the
Artin generators, there is a triangulation of S3 satisfying the neighborhood
condition with 324n + 432k − 376 tetrahedra, only 4 of which meet the braid
axis in their interiors.

5.2 An upper bound on v

The next step in the formulation and proof of the halting theorem is to obtain
an upper bound for how many times the braid axis meets a single tetrahedron
in the triangulation. For this, we turn to the theory of normal surfaces in 3{
manifolds. A normal surface in a triangulated 3{manifold is a PL surface in the
complement of the 0{skeleton with some restrictions on how it can intersect a
tetrahedron of the triangulation.

See [9] for a review of the essential facts which we need about normal surfaces.
Among them is the fact that the disc which our unknot bounds can be isotoped
to a normal surface. Also, each component of the intersection of that normal
surface with a tetrahedron is a planar triangle or quadrilateral with corners in
the interiors of the distinct edges of the tetrahedron. Also, for each tetrahedron
there are 7 di�erent combinatorial types of possible intersections.

Lemma 5.2 Let M be the closure of S3 minus the triangulated regular neigh-
borhood of an unknot K . Let t be the number of 3{simplices in the triangu-
lation of M and let S be any simplex in the triangulation of M . Then some
longitude of K on @M bounds a disc F which is a normal surface, and the
number of components of S \ F is bounded above by 7t27t+2 .

Proof Fortunately we do not need to do any work at all. Lemma 6.1 of [10]
uses a very di�erent triangulation of a knot complement from ours, but pro-
vides exactly the estimate we need: that the number of components of a given
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combinatorial type in S \ F is at most t27t+2 . We thank Joel Hass for several
useful discussions on this matter. Since there are 7 possible combinatorial types
the assertion follows.

Our Halting Theorem is an immediate corollary of Lemmas 5.1 and 5.2. It says
that we can stop looking for tiled discs if one hasn’t shown up before a given
time.

Halting Theorem 5.3 Given an unknotted closed braid K of n strands and
word length k in the Artin generators, let t = 324n + 432k − 376. Then there
is an embedded disc in S3 whose boundary is a closed braid conjugate to K
and the induced braid foliation has complexity no higher than (n; 28t27t+2).

Proof By the arguments which are reviewed in Section 2 of this paper, the
normal surface can be isotoped to a tiled surface D = (D;G;C); via an isotopy
which takes place outside a neighborhood of A. (If D is inessential, there is an
essential tiled disc with fewer intersections with the braid axis.) As the isotopy
is away from the braid axis, the points of intersection of the surface with A are
unchanged.

By Lemma 5.1, the triangulation has at most t = 324n+432k−376 tetrahedra.
By Lemma 5.2 the normal surface may be assumed to meet each of the � t
tetrahedron in at most 7t27t+2 components. By Lemma 5.1 the braid axis
meets 4 tetrahedra. By our construction of the triangulation in Section 5.1
the braid axis A passes through each of these as a line segment which meets
each sheet of the normal surface at most once, transversally. The total number
of intersections of A with D is then bounded above by 28t27t+2 . Thus the
complexity (n; v) of the disc we seek is at most (n; 28t27t+2), where t �
324n + 432k − 376.

6 The algorithm

We summarize our test for whether K is the unknot in the form of an algorithm
which is based on our work in earlier sections. We are given a knot K , which
we may assume is given as a braid with n strands (see Appendix A) and Artin
word length k . As in the previous section, let t = 324n + 432k − 376, so there
is a triangulation of the knot complement with fewer than t tetrahedra.

Let [K] denote the conjugacy class of the braid word given by K . The algorithm
for determining whether K is the unknot is outlined below in Table 2 in pseudo-
code.
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(1) for each integer P from n to 14t27t+2 + n
(2) for each positive embeddable tiled disc D0

with exactly P positive vertices
(3) for each way of adding P −n negative vertices to D0 to get D
(4) if D is embeddable and all b-arcs are essential
(5) find the braid word W (@D)
(6) compute its conjugacy class [W (@D)]
(7) if [W (@D)] = [K]
(8) K is an unknot
(9) endif
(10) endif
(11) next D
(12) next embeddable tiled disc
(13) next P

Table 2: The algorithm to test for unknottedness

Theorem 6.1 The algorithm in Table 2 will enumerate a list of closed braids
containing examples from each conjugacy class of closed braids representing the
unknot. The given knot is unknotted if and only if it is in the conjugacy class
of one of the braids on our list.

Proof If K is unknotted, then the algorithm is guaranteed to �nd a disc that
K bounds. Theorem 4.1 proves that lines (1), (2), (3) will generate all tiled
discs which are embeddable tiled discs. Theorem 3.5 and Proposition 3.6 give
the algorithmic tests for embeddability and essential b{arcs used in line (4).
Theorem 3.4 explains how to read the braid word as needed in line (5). The
solution to the conjugacy problem needed for lines (6) and (7) can be found in
[4]. The Halting Theorem (Theorem 5.3) tells us that if K does bound a tiled
disc, then that disc has no more than 28t27t+2 vertices. Since it must have n
more positive than negative vertices, we only need to check up to 14t27t+2 + n
positive vertices.

Remark 6.2 The algorithm in Table 2 can easily be modi�ed to generate ex-
amples. One could generate all unknotted braids with a certain size embeddable
tiled disc, for example. In this way one could build some unknot tables which
might speed up the work of others who are building knot tables. One could
search for unknots whose embeddable tiled disc satis�es a particular property,
such as not having any valence one vertices in the graph. Such examples are
interesting in that they are the unknotted closed braids which have no trivial
loop. One could search for any property of the embeddable tiled disc (including
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all properties of the braid word itself). We will discuss this more fully in our
paper on the implementation of the algorithm.

Running Time and Implementation Issues This program has been im-
plemented and is running, but not yet robustly tested. There are many aspects
of an implementation that this paper has ignored, such as how to represent
embeddable tiled discs on a computer, how to enumerate positive embeddable
tiled discs, and how to decide where to add negative vertices. There are many
solutions to these problems, and our current implementation is crude at best.
When the entire program is in more mature form we will write a paper dis-
cussing these issues and giving experimental results.

Typically, one would like an estimate of running time for an algorithm. In this
case it is best not contemplated. There are 2P−2 labelled trees (representing the
positive embeddable tiled discs of the �rst step of the algorithm with cyclically
ordered vertices) each of which has 2P−1 possible signs and (P − 2)! di�erent
cyclic orders on the singularities. Thus, the �rst part of the algorithm (gener-
ating all positive embeddable tiled discs of P vertices) has running time at of
at least PP−2!(P − 2)!2P−1 , which assumes that everything is generated with
perfect e�ciency and no redundancy and doesn’t take into account multiple,
non-isomorphic embeddings of the graphs in the disc.

Adding the negative vertices is no faster, just harder to analyze. The good news
is that there are many more non-embeddable or inessential ways to add negative
vertices than embeddable, essential ways. Thus the number of embeddable tiled
discs starts going down as negative vertices are added. The bad news is that
the algorithm is still exponential time.

In practice, we don’t bother with implementing the upper bound in line (1).
Because of the exponential growth in the number of examples, this algorithm
implemented on a single computer won’t be able to go beyond, say, 20 vertices
in any reasonable time.

The test for embeddability is quadratic in the number of vertices if implemented
as written, as is the method for extracting the braid word. A faster version (in
progress) of the embeddability test would be very helpful. The algorithm also
depends heavily on the conjugacy computation of [4], and the running time
of that computation has not yet been fully analyzed. The running time of the
related solution to the word problem in [4] has been fully analysed and is shown
in [4] to be O(jKj2n).

A new algorithm for recognizing the unknot

Geometry and Topology, Volume 2 (1998)

215



References

[1] D Bennequin, Entrelacements et equations de Pfa�, Asterisque 107{108 (1983)
87{161

[2] J S Birman, Braids, Links and mapping class groups, Annals of Math. Studies
82, Princeton University Press (1974)

[3] J S Birman, E Finkelstein, Studying surfaces via closed braids, International
Journal of Knot Theory and its Applications, to appear

[4] J S Birman, K H Ko, S J Lee, A new approach to the word and conjugacy
problems in the braid groups, Advances in Mathematics, to appear

[5] J S Birman, W Menasco, Studying links via closed braids V: Closed braid
representatives of the unlink, Trans AMS, 329 (1992) 585{606

[6] E A Elrifai, H Morton, Algorithms for positive braids, Quart. J. Math. Ox-
ford, 45 (1994) 479{497

[7] F A Garside, The braid group and other groups, Quart. J. Math. Oxford, 20
(1969) 235{254

[8] W Haken, Theorie der Normalflachen, Acta math. 105 (1961) 245{375

[9] J Hass, Algorithms for recognizing knots and 3{manifolds, Dept. of Math. UC
Davis, preprint (1997)

[10] J Hass, J Lagarias, N Pippenger, The computational complexity of knot and
link problems, preprint (1997)

[11] F Jaeger, D L Vertigan, D J A Welsh, On the computational complexity
of the Jones and Tutte polynomials, Math. Proc. Camb. Phil. Soc. 108 (1990)
35{53

[12] E S Kang, K H Ko, S J Lee, Band-generator presentation for the 4{braid
group, Topology and its Applications 78 (1997) 39{60

[13] P Vogel, Representation of links by braids: A new algorithm, Comment. Math
Helv. 65 (1990) 104{113

[14] P J Xu, The genus of closed 3{braids, J. of Knot Theory and its Rami�cations,
1 (1992) 303{326

[15] S Yamada, The minimal number of Seifert circles equals the braid index of a
link, Invent. Math. 89 (1987) 347{356

Joan S Birman and Michael D Hirsch

Geometry and Topology, Volume 2 (1998)

216



A Appendix: Changing knots to closed braids

In spite of a flood of recent applications of braid theory to knot theory, many topologists
regard the problem of changing knot diagrams to closed braids as a di�cult project.
We give, here, a very simple algorithm which does the job. It is due to Vogel [13], and
incorporates earlier ideas of Yamada [15].

Let D(K) be a c{crossing diagram on the plane R2 which describes a knot K . Smooth-
ing the c crossings, the diagram is replaced by a Seifert diagram, ie by a collection of
oriented Seifert circles s1; : : : ; sn which are joined in pairs by half-twisted bands. We
indicate the bands symbolically by signed ties, where the sign depends on the sign of
the associated crossing. An example is given in Figure 19. (In the examples we omit
the signs on the ties because they are irrelevant to the present discussion.)

Knot diagram Seifert diagram Closed braid

Figure 19: A Seifert diagram

Each pair of Seifert circles si; sj cobounds a unique annulus Ai;j on the 2{sphere
R2 [ f1g . Seifert circles si and sj are coherently oriented if they represent the same
element in H1(Ai;j ;Z), otherwise they are incoherently oriented. A key fact, �rst noted
by Yamada [15] is that if all pairs of Seifert circles are coherent, then the diagram is
already essentially a closed braid diagram. This is the case in the example in Figure
19. Every pair of Seifert circles is coherently oriented, and there is no obstructions
to sliding the ties together and grouping them into a single block. After so-doing we
can number the strands and �nd a representing braid word. To be sure, it may be
necessary to pull some of the Seifert circles through the point at in�nity to obtain
a more conventional closed braid diagram, as illustrated, but the braid word can be
found without that �nal step, so the key point is to convert the given diagram to one
in which every pair of Seifert circles is coherently oriented.

In the second example, given in Figure 20 there is an incoherent pair of Seifert circles.

Yamada proves that if an incoherent pair of Seifert circles exists, then one can always
�nd a pair, such as the pair which is joined by the dotted arc in the second sketch for
example (b). Call the circles sp; sq and call the arc �p;q . We require that the interior
of �p;q be disjoint from D(K). Vogel’s contribution was to notice that we can then
use �p;q to de�ne a Reidemeister move of type II, as in the third sketch. This move
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Knot diagram
its Seifert diagram has one incoherent

pair of Seifert circles

after Vogel’s move new Seifert diagram is a
closed braid

Figure 20: Another example

preserves the number of Seifert circles and reduces the number of incoherent pairs.
Thus after a �nite number of Vogel moves we will obtain a new diagram D0(K) in
which every pair of Seifert circles is coherently oriented.

Notice that the number n of Seifert circles is unchanged by the Vogel moves, and
when all the Seifert circles are coherently oriented this number is the braid index of
the given example. Hence, we may compute n from the given knot diagram of K .
The writhe of the diagram is also unchanged by Vogel moves, and we �nally obtain a
closed braid the writhe is the number we have called the exponent sum. Thus, given a
diagram of K we can easily convert it to a braid for use in our algorithm. The crossing
number, is increased by Vogel moves, but it is proved in [13] that the increase is at
most (n− 1)(n− 2).

B Appendix: Testing for conjugacy

In this appendix we describe, briefly, the solution to the conjugacy problem which is
given in [4]. We choose that solution over the other known solutions, for example [6],
because it uses the band generators and so is natural for our work. Also, there is
hope that when various technical di�culties are overcome it can be proved to be a
polynomial-time algorithm.
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Let at;s be one of the band generators of the braid group which were introduced in
Section 3 of this paper and illustrated in Figure 9. Notice that these generators include
the more familiar generators f�1; �2; : : : ; �n−1g as a proper subset, because ai+1;i = �i .
It is proved in [4] that:

Proposition B.1 Bn has a presentation with generators fats; n � t > s � 1g and
with de�ning relations:

(1) atsarq = arqats if (t− r)(t − q)(s− r)(s− q) > 0
(2) atsasr = atrats = asratr for all t; s; r with n � t > s > r � 1 .

The de�ning relations in the presentation of Theorem B.1 for Bn , like the more stan-
dard presentation of Artin, only involves positive powers of the generators. This allows
us to introduce a semigroup B+

n which has the same presentation as Bn in terms of the
band generators. There is a natural map B+

n ! Bn which takes each generator at;s of
B+
n to the corresponding generator of Bn . Following methods pioneered by Garside,

the following embedding theorem is proved in [4]. We remark that the theorem does
not appear to follow directly from the earlier work of Garside.

Proposition B.2 If two positive words in the band generators represent the same
element of Bn , then they also represent the same element of B+

n .

In view of Proposition B.2, we may regard B+
n as a submonoid of Bn . Generalizing the

ideas of Garside (but many of the details are di�erent because of the new generating
set) the fundamental word � is introduced in [4]:

� = an(n−1)a(n−1)(n−2) � � � a21: (1)

The reader who is familiar with the mathematics of braids will recognize that �n

generates the center of Bn . The following two properties of � are established in [4].

Lemma B.3 Let � be the fundamental braid. Then:

(1) For each generator at;s of Bn there exists a positive word Pt;s in the band
generators such that a−1

t;s = �−1Pt;s .

(2) The braid � has the following (weak) commutativity properties: at;s� = �at+1;s+1

and at;s�
−1 = �−1at−1;s−1

Using (1) of Lemma B.3, we may replace all negative letters in any word W in the
band generators by positive words and powers of �−1 . Using (2) we may then move
all powers of �−1 to the left. In this way, one may choose an arbitrary word W in the
band generators and change it to an equivalent word of the form �pP , where P 2 B+

n .

An element of B+
n is a descending cycle if it can be represented by a word of the form

a(tk;tk−1)a(tk−1;tk−2); : : : ; a(t2;t1); n � tk > tk−1 > : : : > t1 � 1:
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We describe a descending cycle by the array of subscripts (tk; tk−1; : : : ; t1). Two de-
scending cycles (tk; tk−1; : : : ; t1) and (sm; sm−1; : : : ; s1) are parallel if no pair (tj ; ti)
separates any pair (sq; sp). These concepts are investigated in detail in [4]. A canonical
factor is an element of B+

n which can be represented by a product of parallel descending
cycles. It is proved in [4] that the canonical factors are precisely the ‘initial segments’
of � , a concept which will be familiar to those readers who have worked through the
details of the papers on Garside’s algorithm. The main result in [4] is:

Theorem B.4 [4] Let W be an arbitrary word in the band generators which rep-
resents W 2 Bn . Then there is a algorithmic procedure which allows one to �nd,
starting with W , all possible representatives of the conjugacy class [W ] of the form
�pA1A2 : : : Ak; such that:

(1) p is maximal for all such representations,

and simultaneously

(2) k is minimal for all such representations.

Also:

(3) each Ai 2 B+
n is a canonical factor,

(4) each product AiAi+1; i = 1; : : : ; k − 1 is left-weighted, as de�ned in [4].

The set of �nitely many words in the form �pA1A2 : : : Ak which represent W is known
as the super summit set of [W ]. Two elements W ;W 0 2 Bn are conjugate if and only
if they have the same values of p and k and the same super summit set.
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