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336 N P Strickland

1 Introduction

Let A be the group of order two, and let MU�A be the homotopical A{equivariant
complex cobordism ring, as de�ned in [3] (for example). In this note we give a
simple and explicit presentation of MU�A as an algebra over the nonequivariant
complex cobordism ring MU� (which is of course well understood).

Our construction and proofs are short and elementary so we have decided to
publish them as they stand. Elsewhere, we will describe the conceptual back-
ground (formal multicurves and equivariant formal groups) and generalise our
results to other compact Lie groups. In the general abelian case, we hope to
be almost as explicit as in the present work. We will also describe MU�AX
for many naturally-occurring A{spaces X , using the algebraic geometry of for-
mal schemes; from the right viewpoint, the results are closely parallel to their
nonequivariant analogs. A large part of the theory depends only on the fact
that MU�GPV is a �nitely generated projective module over MU�G for all rep-
resentations V , which holds when G is abelian; we do not know whether there
are any nonabelian examples.

Our approach is based on a pullback square exhibited by Kriz [2]. We note
that Sinha [4] has also calculated MU�A , but his presentation is less explicit
and depends on some choices.

2 The model

Let L = MU� be the Lazard ring, with universal formal group law x +F y =P
ij aijx

iyj . Recall that

aij = aji

a0i = �1i =

(
1 if i = 1
0 otherwise.

There are of course other relations, expressing the associativity of F . It is well-
known that L can be expressed as a polynomial algebra Z[x1; x2; : : : ], although
there is no system of generators that is both explicit and convenient. Here we
take the structure of L as given and concentrate on describing MU�A as an
algebra over it.

Let R be generated over L by elements sij (for i; j � 0) and ti (for i � 0)
subject to relations given below. We use bk as a synonym for s0k , and e as a
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synonym for b0 = s00 . The relations are:

t0 = 0
s10 = 1
si0 = 0 for i > 1

tk − bk = etk+1

sjk − ajk = esj+1;k

We can give R a grading with jsijj = jaij j = 2(1− i− j) and jtkj = 2(1− k) so
jbkj = 2(1 − k) and jej = 2.

Note that the equation t0 − b0 = et1 gives (1 + t1)e = 0. Moreover, we have
t1 = b1 + et2 = a01 + es11 + et2 = 1 + e(s11 + t2), so 1 − t1 = 0 (mod e). It
follows that 1− t21 = (1− t1)(1 + t1) = 0, so t21 = 1.

Our main result is as follows:

Theorem 1 There is an isomorphism R ’MU�A of graded MU�{algebras.

The rest of this paper constitutes the proof.

Remark 2 Greenlees has studied the ring LA that classi�es A{equivariant
formal group laws; he shows that there is a surjective map � : LA −! MU�A
whose kernel is e{divisible and e{torsion (and is conjectured to be zero). One
can deduce from the above theorem that there is a ring map � : R = MU�A −!
LA with �� = 1. It seems likely that our methods can be used to prove that
� is an isomorphism, but we have not succeeded as yet.

3 The pullback square

Put R0 = L[b0; b1; b2; : : : ][b−1
0 ]. Next, we de�ne as usual [2](x) = x +F x =P

i;j aijx
i+j 2 L[[x]], and we put bR = L[[e]]=[2](e), and ( bR)0 = bR[1=e]. There is

an evident map bR −! ( bR)0 , which we call � . Next, we de�ne a map � : R0 −! ( bR)0

by letting �(bi) be the coe�cient of xi in the power series x+F e. (In particular,
�(b0) = e, which is invertible in ( bR)0 , as required.)

The following result summarises much of what was previously known about
MU�A :
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Theorem 3 There is a pullback square as follows:

MU�A −−−! R0??y ??y�
bR �−−−! ( bR)0

Proof This is Theorem 1.1 of [2], in the case p = 2. Our element bi is Kriz’s
b
(i)
1 u1 , and his u1 is our e. There is a slight misprint in the statement: the

element b(0)
k is 1, not 0. Geometrically, the square comes from the Tate diagram

of co�brations, as studied in [1]. In this context, bR is identi�ed with MU�BA,
and R0 with �−��AMUA .

Below we shall exhibit a similar pullback square with MU�A replaced by R;
Theorem 1 follows by uniqueness of pullbacks. To show that our square is a
pullback, we use the following result.

Theorem 4 Let S be a ring, and d an element of S . Suppose that S has
bounded d{torsion, or in other words that

S
k annS(dk) = annS(dN ) for some

N . Then there is a pullback square as follows:

S −−−! S[1=d]??y ??y
S^d −−−! (S^d )[1=d]:

Proof This is standard, but we give a proof for completeness. First, it is clear
that there is a commutative square as shown. Thus, if we let T denote the
pullback of S[1=d] and S^d , we get a map S −! T , and we must show that it is
an isomorphism.

Suppose that u 2 S has image zero in both S[1=d] and in S^d . As u 7! 0 in
S[1=d] we have dku = 0 for some k � 0. As u 7! 0 in S^d = lim

 - j
S=dj we

see that u 7! 0 in S=dN , so u = dNv say. It follows that dN+kv = 0 but
annS(dN+k) = annS(dN ) so dNv = 0 or in other words u = 0. This means
that the map S −! T is injective.

Now suppose we have an element (u; v) 2 T , so u 2 S[1=d] and v 2 S^d , and
u and v have the same image in (S^d )[1=d]. We then have u = u0=di for some
u0 2 S and i � 0, and dju0 = di+jv in S^d for some j � 0. Next, we can
choose a sequence (vm) in S such that vm = vm+1 (mod dm) and vm −! v in
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S^d . It follows that the element dj(u0 − divm) = di+j(v − vm) maps to zero in
S=di+j+m , say dj(u0− divm) = di+j+mwm . We may replace vm by vm + dmwm
and thus assume that dju0 = di+jvm for all m. Now let xm be such that
vm+1−vm = dmxm . As di+jvm = dju0 = di+jvm+1 , we see that di+j+mxm = 0.
As annS(dk) � annS(dN ) for all k , we have dNxm = 0. When m � N this
gives dmxm = 0 and thus vm = vm+1 . We put v0 = vN = vN+1 = : : : 2 S . It
is clear that v0 7! v in S^d . Moreover, the equation dju0 = di+jvm shows that
v0 7! u0=di = u in S[1=d], so v0 7! (u; v) 2 T . Thus, the map S −! T is also
surjective, as required.

It will be a signi�cant part of our task to check that R has bounded e{torsion.

4 Completion at e

The following proposition can be proved easily by reading the relations modulo
e. Here �1k is Kronecker’s delta.

Proposition 5 There is a map � : R −!L with

�(sij) = aij

�(tk) = �(bk) = �1k

�(e) = 0;

and this induces an isomorphism R=e −!L.

This can be improved as follows:

Proposition 6 There is a map � : R −! bR given by

�(sij) =
X
k�0

ai+k;je
k

�(tk) =
X
i;j�0

ai+k;je
i+j

�(bl) =
X
m�0

alme
m

�(e) = e:

If �0 : bR −! L is given by �0(e) = 0, then �0� = �. Moreover, � induces an
isomorphism �̂ : R^e −! bR.
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Proof First, note that the de�nitions of �(bl) and �(e) are simply the ap-
propriate specialisations of the de�nition of �(sij) so they can essentially be
ignored.

To see that � respects the relations, note that

�(t0) =
X
ij

aije
i+j = [2](e) = 0

�(s10) =
X
k�0

a1+k;0e
k =

X
k�0

�k0e
k = 1

�(tk)− �(bk) =
X
i>0

X
j�0

ai+k;je
i+j

= e
X
i;j�0

ai+k+1;je
i+j = e�(tk+1)

�(sij)− aij =
X
k>0

ai+k;je
k

= e
X
k�0

ai+k+1;je
k = e�(si+1;j):

It is trivial to check that �0� = �.

There is an evident map  : L[e] −! R, which induces a map  ̂ : L[[e]] −! R^e .
As bR is already complete at e, we also get a map �̂ : R^e −! bR . It is easy to
see that the composite �̂ ̂ : L[[e]] −! bR = L[[e]]=[2](e) is just the usual quotient
map.

Next, one checks by induction on m that in R we have

sij −
X
l<m

ai+l;je
l = si+m;je

m

tk −
X
l<m

bk+le
l = tk+me

m:

In each case the right hand side converges e{adically to 0, so in R^e we have

sij =
X
l

ai+l;je
l

tk =
X
l

bk+le
l:

Using this, we see that  ̂ is surjective. Moreover, as a special case of the �rst
equation, we have bj =

P
l alje

l . Putting this into the second equation gives
tk =

P
l;m ak+l;me

l+m . In particular, we have [2](e) =
P

l;m alme
l+m = t0 = 0,
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so  ̂ factors through a map  : bR = L[[e]]=[2](e) −!R^e . As  ̂ is surjective and
�̂ = 1 we see that �̂ is an isomorphism.

5 Inverting e

Proposition 7 There is a map � : R −!R0 given by

�(sij) = bjb
−i
0 −

iX
l=1

ai−l;jb
−l
0

�(tk) = −
kX
l=1

bk−lb
−l
0

Moreover, this induces an isomorphism R[1=e] −!R0 .

Proof First observe that �(s0j) = bj so the notation is self-consistent.

To see that � respects the relations, note that

�(t0) = 0

�(s10) = b0b
−1
0 − a00b

−1
0 = 1

�(si0) = b1−i0 −
iX
l=1

ai−l;0b
−l
0

= bi−1
0 −

iX
l=1

�i−l;1b
−l
0

= 0 for i > 1

�(tk)− �(bk) = −bk −
kX
l=1

bk−lb
−l
0

= −
kX
l=0

bk−lb
−l
0

= b0(−
k+1X
m=1

bk+1−mb
−m
0 )

= b0�(tk+1)
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�(sij)− aij = bjb
−i
0 −

iX
l=0

ai−l;jb
−l
0

= b0(bjb−1−i
0 −

i+1X
m=1

ai+1−m;jb
−m
0 )

= b0�(si+1;j):

It follows that we have a ring homomorphism as described. It induces a map
R[1=e] −!R0 , which we again call � . On the other hand, it is clear that there
is a unique map � : R0 −! R[1=e] sending bi to bi , and that �� = 1. As
sj+1;k = (sjk − ajk)=e in R[1=e], we see inductively that sjk lies in the image
of � for all j and k . A similar argument shows that tk lies in the image of � ,
so � is surjective. As �� = 1 we deduce that � and � give an isomorphism
R[1=e] ’ R0 .

Lemma 8 The following diagram commutes:

R
�−−−! R0

�

??y �

??ybR −−−!
�

( bR)0

Proof First, recall that �(bj) is the coe�cient of xj in the series e +F x =P
m;j amje

mxj , so �(bj) =
P1

m=0 amje
m . Next, we have �(sij) = bjb

−i
0 −Pi

l=1 ai−l;jb
−l
0 . By putting m = i− l we can rewrite this as

bje
−i −

i−1X
m=0

amje
m−i

It follows that ��(sij) =
P1

m=i amje
m−i =

P1
k=0 ai+k;je

k . By inspecting Propo-
sition 6, we see that this is the same as ��(sij).

Next, recall that �(tk) = −
Pk

l=1 bk−le
−l , so

��(tk) = −
kX
l=1

1X
m=0

am;k−le
m−l

= −
X
r

er−k
X
faij j i+ j = r ; 0 � i < k ; 0 � jg
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(by putting r = m− l− k and j = m and i = k− l and noting that aij = aji).
Next observeX

r

er−k
X
faij j i+ j = r ; 0 � i; jg = e−k[2](e) = 0 in ( bR)0:

It follows that

��(tk) =
X
r

er−k
X
faij j i+ j = r ; i � k ; j � 0g:

On the other hand, we have

��(tk) =
X
i;j�0

ai+k;je
i+j :

This is the same up to reindexing, as required.

6 e{power torsion

Recall that (1 + t1)e = 0 in R. We shall check that this gives all the e{power
torsion, or equivalently that e is a regular element in the ring R = R=(1 + t1).
Our method is to exhibit R as a colimit of rings Rk in which the corresponding
fact can be checked directly.

Proposition 9 The element e is regular in R.

Proof For k > 1 we put

Ak = L[tk; skj j 0 < j]
Bk = L[ti; sij j 0 � i � k; 0 < j]:

We de�ne a polynomial gk(e) 2 Ak[e] by

gk(e) =
k−1X
l;m=0

amle
m+l−1 +

k−1X
l=1

skle
k+l−1 + tke

k−1:

We then put Rk = Ak[e]=gk(e). One checks that gk(0) = 2, which is a regular
element in Ak . It follows easily that gk(e) is regular in Ak[e], and thus that e
is regular in Rk .
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Next, we de�ne a map � : Bk −!Ak[e] by

�(ti) =
k−1−iX
l=0

k−1X
m=0

am;i+le
m+l +

k−1−iX
l=0

sk;i+le
k+l + tke

k−i

�(sij) =
k−1X
l=0

ai+l;je
l + skje

k−i:

In the case j = 0 of the second equation, the term sk0 is to be interpreted as
0. It is easy to see that �(tk) = tk and �(skj) = skj and �(s00) = e, so the
notation is consistent. Moreover, we see that �(1 + t1) = gk(e). Using this, we
see that � induces an isomorphism Bk=Ik −!Rk , where

Ik =(t0; t1 + 1; s10 − 1) +
(si0 j i > 1) +
(ti − s0i − s00ti+1 j 0 � i < k) +
(sij − aij − s00si+1;j j 0 � i < k; 0 � j):

It is clear from this that R = lim
-! k

Rk . As e is regular in Rk for all k , it must

be regular in R as well.

Corollary 10 The e{power torsion in R is generated by t1 + 1, and thus is
annihilated by e.

Proof Suppose that u 2 R and eku = 0 for some k > 0. It is clear from
the proposition that the image of u in R must be zero, so u 2 (t1 + 1), so
eu = 0.

Corollary 11 There is a pullback square of rings as follows:

R
�−−−! R0

�

??y ??ybR −−−! ( bR)0

Thus, R = MU�A .

Proof Combine Corollary 10, Theorem 4, Proposition 6, Proposition 7, Lem-
ma 8, and Theorem 3.
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