Geometry \& Topology
Volume 6 (2002) 409\{424
Published: 15 September 2002

On the Cut Number of a $\mathbf{3}$ \{manifold

Shelly L Harvey
Department of Mathematics
University of California at San Diego
La J olla, CA 92093-0112, USA
Email: shar vey@lath. ucsd. edu
URL: http: // math. ucsd. edu/ ~sharvey

Abstract

The question was raised as to whether the cut number of a 3 \{manifold X is bounded from below by $\frac{1}{3} 1(X)$. We show that the answer to this question is \no." For each m 1, we construct explicit examples of closed 3\{manifolds X with ${ }_{1}(X)=m$ and cut number 1 . That is, ${ }_{1}(X)$ cannot map onto any non-abelian freegroup. Moreover, we show that these examples can be assumed to be hyperbolic.

AMS Classi cation numbers Primary: 57M27, 57N10
Secondary: 57M 05, 57M50, 20F 34, 20F 67

Keywords: 3\{manifold, fundamental group, corank, Alexander module, virtual betti number, fre group

Proposed: Cameron Gordon	Received: 27 February 2002
Seconded: J oan Birman, Walter Neumann	Accepted: 22 August 2002

c Geometry \& Topology Publications

1 Introduction

Let X be a closed, orientable n \{manifold. The cut number of $X, c(X)$, is de ned to bethemaximal number of components of a closed, 2 \{sided, orientable hypersurface $F \quad X$ such that $X-F$ is connected. Hence, for any n $c(X)$, we can construct a map $f: X!{ }_{i=1}^{n} S^{1}$ such that the induced map on 1 is surjective That is, there exists a surjective map $f:{ }_{1}(X) \rightarrow F(c)$, where F (c) is the free group with $c=c(X)$ generators. Conversely, if we have any epimorphism : $1(X) \rightarrow F(n)$, then we can nd a map $f: X$!
$\mathrm{i}_{\mathrm{i}=1} \mathrm{~S}^{1}$ such that $\mathrm{f}=$. After making the f transverse to a non-wedge point x_{i} on each $S^{1}, f^{-1}(X)$ will give n disjoint surfaces $F=\left[F_{i}\right.$ with $\mathrm{X}-\mathrm{F}$ connected. Hence one has the following elementary group-theoretic characterization of $c(X)$.

Proposition $1.1 \mathrm{c}(\mathrm{X})$ is the maximal n such that there is an epimorphism : $\quad 1(X) \rightarrow F(n)$ onto the free group with n generators.

Example 1.2 Let $X=S^{1} \quad S^{1} \quad S^{1}$ be the 3\{torus. Since ${ }_{1}(X)=\mathbb{Z}^{3}$ is abelian, $c(X)=1$.

Using Proposition 1.1, we show that the cut number is additive under connected sum.

Proposition 1.3 If $X=X_{1} \# X_{2}$ is the connected sum of X_{1} and X_{2} then

$$
c(X)=c\left(X_{1}\right)+c\left(X_{2}\right) .
$$

Proof Let $\mathrm{G}_{\mathrm{i}}={ }_{1}\left(\mathrm{X}_{\mathrm{i}}\right)$ for $\mathrm{i}=1 ; 2$ and $\mathrm{G}={ }_{1}(\mathrm{X})=\mathrm{G}_{1} \mathrm{G}_{2}$. It is clear that G maps surjectively onto $F\left(c\left(X_{1}\right)\right) \quad F\left(c\left(X_{2}\right)\right)=F\left(c\left(X_{1}+X_{2}\right)\right)$. Therefore $c(X) \quad c\left(X_{1}\right)+c\left(X_{2}\right)$.

Now suppose that there exists a map : $G \rightarrow F(n)$. Let $i: G_{i}!F(n)$ be the composition $G_{i}!G_{1} G_{2}!G \rightarrow F(n)$. Since is surjective and $\mathrm{G}=\mathrm{G}_{1} \mathrm{G}_{2}, \operatorname{Im}\left(\mathrm{I}_{1}\right)$ and $\operatorname{Im}(2)$ generate $\mathrm{F}(\mathrm{n})$. Morever, $\operatorname{Im}(\mathrm{i})$ is a subgroup of a free group, hence is free of rank less than or equal to $c\left(X_{i}\right)$. It follows that $n \quad c\left(X_{1}\right)+c\left(X_{2}\right)$. In particular, when n is maximal we have $c(X)=n \quad c\left(X_{1}\right)+c\left(X_{2}\right)$.

In this paper, we will only consider 3 \{manifolds with ${ }_{1}(X) \quad 1$. Consider the surjective map ${ }_{1}(X) \rightarrow H_{1}(X)=f \mathbb{Z}\left\{\right.$ torsiong $=\mathbb{Z}^{1(X)}$. Since ${ }_{1}(X) \quad 1$,
we can nd a surjective map from $\mathbb{Z}^{1(X)}$ onto \mathbb{Z}. It follows from Proposition 1.1 that $c(X)$ 1. Moreover, every map : $1(X) \rightarrow F(n)$ gives rise to an epimorphism ${ }^{-}: H_{1}(X) \rightarrow H_{1}{ }_{i=1}^{n} S^{1}=\mathbb{Z}^{n}$ It follows that ${ }_{1}(X) \quad n$ which gives us the well known result:

$$
\begin{equation*}
1 \quad c(X) \quad 1(X) . \tag{1}
\end{equation*}
$$

It has recently been asked whether a (non-trivial) lower bound exists for the cut number. We make the following observations.

Remark 1.4 If S is a closed, orientable surface then $C(S)=\frac{1}{2} \quad{ }_{1}(S)$.
Remark 1.5 If X has solvable fundamental group then $C(X)=1$ and ${ }_{1}(X)$ 3.

Remark 1.6 Both c and 1 are additive under connected sum (Proposition 1.3).

Therefore it is natural to ask the following question rst asked by A Sikora and T Kerler. This question was motivated by certain results and conjectures on the divisibility of quantum 3\{manifold invariants by P Gilmer\{T Kerler [2] and T Cochran\{P Melvin [1].

Question 1.7 Is c(X) $\frac{1}{3}{ }_{1}(X)$ for all closed, orientable 3\{manifolds X ?
We show that the answer to this question is \as far from yes as possible." In fact, we show that for each $m 1$ there exists a closed, hyperbolic 3 \{manifold with ${ }_{1}(X)=m$ and $c(X)=1$. We actually prove a stronger statement.

Theorem 3.1 For each $m \quad 1$ there exist closed 3\{manifolds X with ${ }_{1}(X)$ $=m$ such that for any in nite cyclic cover $X \quad!\quad X, \operatorname{rank}_{\mathbb{Z}[t}{ }^{1]} H_{1}(X)=0$.

We note the condition stated in the Theorem 3.1 is especially interesting because of the following theorem of J Howie [3]. Recall that a group G is large if some subgroup of nite index has a non-abelian free homomorphic image. Howie shows that if G has an in nite cydic cover whose rank is at least 1 then G is large.

Theorem 1.8 (Howie [3]) Suppose that $\mathfrak{\Vdash}$ is a connected regular covering complex of a nite 2 \{complex K , with nontrivial free abelian covering transformation group A. Suppose also that H_{1} 付 \mathbb{Q} has a free $\mathbb{Q}[A]\{$ submodule of rank at least 1 . Then $G={ }_{1}(K)$ is large.

Using the proof of Theorem 3.1 we show that the fundamental group of the aforementioned 3 \{manifolds cannot map onto $\mathrm{F} F_{4}$ where F is the free group with 2 generators and F_{4} is the $4^{\text {th }}$ term of the lower central series of F.

Proposition 3.3 Let X beas in Theorem 3.1, $G={ }_{1}(X)$ and F bethe fre group on 2 generators. There is no epimorphism from G onto $F \neq{ }_{4}$.

Independently, A Sikora has recently shown that the cut number of a \generic" 3 \{manifold is at most 2 [8]. Also, C Leininger and A Reid have constructed speci c examples of genus 2 surface bundles X satisfying (i) $\quad{ }_{1}(X)=5$ and $c(X)=1$ and (ii) $\quad 1(X)=7$ and $c(X)=2[6]$.

Acknowledgements I became interested in the question as to whether the cut number of a 3 \{manifold was bounded below by onethird the rst betti number after hearing it asked by A Sikora at a problem session of the 2001 Georgia Topology Conference The question was also posed in a talk by T Kerler at the 2001 Lehigh Geometry and Topology Conference The author was supported by NSF DMS-0104275 as well as by the Bob E and Lore Merten Watt Fellowship.

2 Relative Cut Number

Le be a primitive dass in $H^{1}(X ; \mathbb{Z})$. Since $H^{1}(X ; \mathbb{Z})=\operatorname{Hom}\left({ }_{1}(X) ; \mathbb{Z}\right)$, we can assume is a surjective homomorphism, : $\quad 1(X) \rightarrow \mathbb{Z}$. Since X is an orientable 3 \{manifold, every element in $\mathrm{H}_{2}(\mathrm{X} ; \mathbb{Z})$ can be represented by an embedded, oriented, 2 \{sided surface [10, Lemma 1]. Therefore, if 2 $H^{1}(X ; \mathbb{Z})=H_{2}(X ; \mathbb{Z})$ there exists a surface (not unique) dual to . The cut number of X relative to,$c(X ;)$, is de ned as the maximal number of components of a closed, 2 \{sided, oriented surface $F \quad X$ such that $X-F$ is connected and one of the components of F is dual to . In the above de nition, we could have required that \any number" of components of F be dual to as opposed to just \one." We remark that since $X-F$ is connected, these two conditions are equivalent. Similar to c(X) , we can describe c(X;) group theoretically.

Proposition $2.1 \mathrm{c}(\mathrm{X}$;) is the maximal n such that there is an epimorphism $: \quad 1(X) \rightarrow F(n)$ onto the free group with n generators that factors through (se diagram on next page).

It follows immediately from thede nitions that $c(X$;) $C(X)$ for all primitive
. Now let F be any surface with $c(X)$ components and let be dual to one of the components, then $c(X ;)=c(X)$. Hence

$$
\begin{equation*}
c(X)=\max c(X ;) j \quad \text { is a primitive element of } H^{1}(X ; \mathbb{Z}) . \tag{2}
\end{equation*}
$$

In particular, if $c(X ;)=1$ for all then $c(X)=1$.
We wish to nd su cient conditions for $c(X ;)=1$. In [5, page 44], T Kerler develops a skein theoretic algorithm to compute the onevariable Alexander polynomial $\quad x$; from a surgery presentation of X. As a result, he shows that if $c(X$;) 2 then the Frohman \{Nicas TQFT evaluated on the cut cobordism is zero, implying that $\quad x ;=0$. Using the fact that $\mathbb{Q} t^{1}$ is a principal ideal domain one can prove that $\quad x$; $=0$ is equivalent to $\operatorname{rank}_{\mathbb{Z}[t]}{ }_{1]} \mathrm{H}_{1}(X) \quad 1$. We give an elementary proof of the equivalent statement of Kerler's.

Proposition 2.2 If $c(X ;) \quad 2$ then $\operatorname{rank}_{\mathbb{Z}[t}{ }^{1]} \mathrm{H}_{1}(X) \quad 1$.
Proof Suppose $c\left(X\right.$;) 2 then there is a surjective map : ${ }_{1}(X) \rightarrow F(n)$ that factors through with $n \quad 2$. Let ${ }^{-}: F(n) \rightarrow \mathbb{Z}$ be the homomorphism such that $=^{-}$. surjective implies that ${ }_{j}$ ker : ker \rightarrow ker $^{-}$is surjective Writing \mathbb{Z} as the multiplicative group generated by t , we can consider $\frac{\mathrm{ker}}{[\mathrm{ker} ; \mathrm{ker}]}$ and $\frac{\mathrm{ker}^{-}}{\left[\mathrm{ker}^{-} ; \mathrm{ker}^{-}\right]}$as modules over $\mathbb{Z} \mathrm{t}^{1}$. Here, thet acts by conjugating by an element that maps to t by or^{-}. Moreover, $\mathrm{jker}: \frac{\mathrm{ker}}{[\mathrm{ker} ; \mathrm{ker}]} \rightarrow$ $\frac{\mathrm{ker}^{-}}{\left[\mathrm{ker}^{-} ; \mathrm{ker}^{-}\right]}$is surjective hence

$$
\left.\operatorname{rank}_{\mathbb{Z}\left[\mathrm{t}^{1]}\right]} \frac{\text { ker }}{\left[\mathrm{ker} ; \mathrm{ker}^{~]}\right.} \quad \text { rank }_{\mathbb{Z}[\mathrm{t}}{ }^{1}\right] \frac{\mathrm{ker}^{-}}{\mathrm{ker}^{-} ; \mathrm{ker}^{-}}=\mathrm{n}-1 .
$$

Since n

$$
\text { 2, } \left.\operatorname{rank}_{\mathbb{Z}[\mathrm{t}}{ }^{1]} \mathrm{H}_{1}(\mathrm{X})=\operatorname{rank}_{\mathbb{Z}[\mathrm{t}}{ }^{1]}\right] \frac{\mathrm{ker}}{[\text { ker ;ker }]}
$$

1.

Corollary 2.3 If ${ }_{1}(X) \rightarrow F \not \mp^{\infty}$ where F is a freegroup of rank 2 then there exists a : ${ }_{1}(X) \rightarrow \mathbb{Z}$ such that rank $\mathbb{Z}_{\mathbb{Z}}{ }^{1}{ }^{1} \mathrm{H}_{1}(X) 1$.

Proof This follows immediately from the proof of Proposition 2.2 after noticing that F^{\oplus} ker ${ }^{-}$; ker ${ }^{-}$and $\operatorname{Hom}\left(F \neq{ }^{\oplus}, \mathbb{Z}\right)=\operatorname{Hom}(F ; \mathbb{Z})$.

3 The Examples

We construct closed 3\{manifolds all of whose in nite cyclic covers have rst homology that is $\mathbb{Z} \mathrm{t}^{1}$ \{torsion. The 3 \{manifolds we consider are 0 \{surgery on an m \{component link that is obtained from the trivial link by tying a Whitehead link interaction between each two components.

Theorem 3.1 For each m 1 there exist closed 3 \{manifolds X with ${ }_{1}(X)$ $=m$ such that for any in nite cyclic cover $X \quad!\quad X, \operatorname{rank}_{\mathbb{Z}[t}{ }^{1]} H_{1}(X)=0$.

It follows from Propostion 2.2 that the cut number of the manifolds in Theorem 3.1 is 1 . In fact, Corollary 2.3 implies that $1(X)$ does not map onto $F \neq{ }^{\infty}$ where F is a free group of rank 2. Moreover, the proof of this theorem shows that ${ }_{1}(X)$ does not even map onto $F F_{4}$ where F_{n} is the $n^{\text {th }}$ term of the lower central series of F (see Proposition 3.3).
By a theorem of Ruberman [7], we can assume that the manifolds with cut number 1 are hyperbolic.

Corollary 3.2 For each m 1 there exist closed, orientable, hyperbolic 3\{ manifolds Y with ${ }_{1}(\mathrm{Y})=\mathrm{m}$ such that for any in nite cydic cover $\mathrm{Y}!\mathrm{Y}$, $\operatorname{rank}_{\mathbb{Z}[t}{ }^{1]} \mathrm{H}_{1}(\mathrm{Y})=0$.

Proof Let X be one of the 3 \{manifolds in Theorem 3.1. By [7, Theorem 2.6], there exists a degree one map $f: Y!X$ where Y is hyperbolic and f is an isomorphism on H. Denote by $G={ }_{1}(X)$ and $P={ }_{1}(Y)$. It is then well-known that f is surjective on 1 . It follows from Stalling's theorem [9, page 170] that the kerne of f is $P!\quad \backslash P_{n}$. Now, suppose : $P \stackrel{f}{\rightarrow} G \rightarrow \mathbb{Z}$ de nes an in nite cyclic cover of Y. Then $H_{1}(Y) \rightarrow H_{1} X-\quad$ has kernel $P_{!}=[$ker ;ker $]$. To show that $\operatorname{rank}_{\mathbb{Z}[t}{ }^{1]} \mathrm{H}_{1}(\mathrm{Y})=0$ it su ces to show that $P!$ vanishes under the map $H_{1}(Y)!H_{1}(Y) \otimes_{\mathbb{Z}[t}{ }^{1]} \mathbb{Q} t^{1}!H_{1}(Y) \otimes_{\mathbb{Z}[t}{ }^{1]}$ $\mathbb{Q}(t)$ since then $\operatorname{rank}_{\mathbb{Z}[t}{ }^{1]} \mathrm{H}_{1}(Y)=\operatorname{rank}_{\mathbb{Z}[\mathrm{t}}{ }_{1} \mathrm{H}_{1} \quad \mathrm{X}-=0$.
Note that $\left.H_{1}(Y) \otimes_{\mathbb{Z}[t}{ }^{1}\right] \mathbb{Q} t^{1}={ }^{L}{ }_{i=1}^{n} \mathbb{Q} t^{1} \quad T$ where T is a $\mathbb{Q} t^{1}$ torsion module. Moreover, P_{n} is generated by elements of the form $\gamma=$
$\left[p_{1}\left[p_{2}\left[p_{3} ;:::\left[p_{n-2} ;\right]\right]\right]\right]$ where $2 P_{2}$ ker . Therefore

$$
[\gamma]=\left(\left(p_{i}\right)-1\right) \quad\left(\left(p_{n-2}\right)-1\right)[]
$$

in $H_{1}(Y)$ which implies that $P_{n} \quad J^{n-2}\left(H_{1}(Y)\right)$ for $n \quad 2$ where J is the augmentation ideal of $\mathbb{Z} t^{1}$. It follows that any element of P ! considered as an element of $\left.H_{1}(Y) \otimes_{\mathbb{Z}[t}{ }^{1}\right] \mathbb{Q} \mathrm{t}^{1}$ is in nitely divisible by $\mathrm{t}-1$ and hence is torsion.

Proof of Theorem 3.1 Let $L=t L_{i}$ be the oriented trivial link with m components in S^{3} and $t D_{i}$ be oriented disjoint disks with $@_{i}=L_{i}$. The fundamental group of $S^{3}-L$ is freely generated by $f x_{i} g$ where x_{i} is a meridian curve of L_{i} which intersects D_{i} exactly once and $D_{i} x_{i}=1$. For all $i ; j$ with $1 \mathrm{i}<\mathrm{j} \mathrm{m}$ let $\mathrm{ij}: 1!\mathrm{S}^{3}$ be oriented disjointly embedded arcs such that ${ }_{\mathrm{ij}}(0) 2 \mathrm{~L}_{\mathrm{i}}$ and ${ }_{\mathrm{ij}}(1) 2 \mathrm{~L}_{\mathrm{j}}$ and $\mathrm{ij}(\mathrm{I})$ does not intersect $\mathrm{t} \mathrm{D}_{\mathrm{i}}$. For each arc ${ }_{i j}$, let $Y_{i j}$ be the curve embedded in a small neighborhood of ${ }_{i j}$ representing the class $\left[x_{i} ; x_{j}\right]$ as in Figure 1. Let X be the $3\{$ manifold obtained performing

Figure 1

0 \{framed Dehn surgery on L and -1 \{framed Dehn surgery on each $\gamma=t \gamma_{i j}$. See Figure 2 for an example of X when $m=5$.

Denote by X_{0}, the manifold obtained by performing 0\{framed Dehn surgery on L . Let W be the 4 \{manifold obtained by adding a 2 \{handle to X_{0} I along each curve $\gamma_{i j} \quad \mathrm{f} 1 \mathrm{~g}$ with framing coe cient -1 . The boundary of W is $@ \mathrm{~V}=\mathrm{X}_{0} \mathrm{t}-\mathrm{X}$. We note that

$$
1(W)=h x_{1} ;::: ; x_{m j}\left[x_{i} ; x_{j}\right]=1 \text { for all } 1 \quad i<j \quad m i=\mathbb{Z}^{m} .
$$

Figure 2: The surgered manifold X when $m=5$
 Wirtinger presentation where $x_{i k}$ are meridians of the $i^{\text {th }}$ component of L and $\mathrm{ij} \mid$ are meridians of the $(\mathrm{i} ; \mathrm{j})^{\text {th }}$ component of $\mathrm{\gamma}$. Note that $\mathrm{f} \mathrm{x}_{\mathrm{ik}}$; ${ }_{\mathrm{ij}} \mathrm{I} \mathrm{g}$ generate $\mathrm{G} \quad{ }_{1}(X)$. For each $1 \mathrm{i} m$ let $X_{i}=x_{i 1}$ and $-_{i j}$ be the speci $C \quad i j$ that is denoted in Figure 3. We will use the convention that

$$
[a ; b]=a b a^{-1} b^{-1}
$$

and

$$
\mathrm{a}^{\mathrm{b}}=\mathrm{bab}^{-1}
$$

We can choose a projection of the trivial link so that the arcs $\mathrm{ij}_{\mathrm{ij}}$ do not pass under a component of L. Since $-{ }_{i j}$ is equal to a longitude of the curve $\gamma_{i j}$ in X, we have ${ }_{i j}=x_{i n_{i j}} ; x_{j n_{j i}}-1$ for some $n_{i j}$ and $n_{j i}$ and where is a product of conjugates of meridian curves $-_{l k}$ and $-_{\mid k}^{-1}$. Moreover, we can nd

Figure 3
a projection of $L t \gamma$ so that the individual components of L do not pass under or over one another. Hence $x_{i j}=!x_{i}!^{-1}$ where! is a product of conjugates of the meridian curves $-{ }_{l k}$ and $-_{1 k}^{-1}$. As a result, we have

$$
\begin{align*}
-_{i j} & =x_{i n_{i j}} ; x_{j n_{j i}}-1 \tag{3}\\
& =!{ }_{1} x_{i}!!_{1}^{-1} ;!_{2} x_{j}!{ }_{2}^{-1}-1 \\
& =x_{i} ;!_{1}^{-1}!{ }_{2} x_{j}!{ }_{2}^{-1}{ }^{-1}!_{1}^{-1}!_{1}
\end{align*}
$$

for some , ! ${ }_{1}$, and ! 2 .
We note that ${ }_{i j}=\mathrm{x}_{\mathrm{in} \mathrm{ij}} ; \mathrm{x}_{\mathrm{j} \mathrm{n}_{\mathrm{j}}}{ }^{-1}$ hence $-{ }_{\mathrm{ij}} 2 \mathrm{G}^{0}$ for all $\mathrm{i}<\mathrm{j}$. Setting $v=!_{1}^{-1}!_{2}$ and using the equality

$$
\begin{equation*}
[a ; b c]=[a ; b][a ; c]^{b} \tag{4}
\end{equation*}
$$

we see that

$$
\begin{align*}
-{ }_{i j} & =x_{i} ; v x_{j} v^{-1}!_{1} \tag{5}\\
& =x_{i} ; v x_{j} v^{-1} \bmod G^{\infty} \\
& =\left[x_{i} ;\left[v ; x_{j}\right] x_{j}\right] \\
& =\left[x_{i} ;\left[v ; x_{j}\right]\right]\left[x_{i} ; x_{j}\right]_{i}^{\left[v x_{j}\right]} \\
& =\left[x_{i} ;\left[v ; x_{j}\right]\right]\left[x_{i} ; x_{j}\right] \bmod G^{\infty}
\end{align*}
$$

since ${ }_{1} ; \mathrm{V}^{2} \mathrm{G}^{0}$.
Consider the dual relative handlebody decomposition ($\mathrm{W} ; \mathrm{X}$). W can be obtained from X by adding a 0 framed 2 \{handle to $X \quad I$ along each of the
meridian curves $-{ }_{i j}$ flg. (3) implies that $-_{i j}$ is trivial in $H_{1}(X)$ hence the inclusion map j: X ! W induces an isomorphism $\mathrm{j}: \mathrm{H}_{1}(\mathrm{X})!\mathrm{H}_{1}(W)$. Therefore if : G \rightarrow where is abelian then there exists a : $1(W) \rightarrow$ such that $\quad \mathrm{j}=$.
Suppose : $\mathrm{G} \rightarrow \mathrm{hti}=\mathbb{Z}$ and $:{ }_{1}(\mathrm{~W}) \rightarrow \mathrm{hti}$ is an extension of to ${ }_{1}(W)$. Let X and W be the in nite cyclic covers of W and X corresponding to and respectively. Consider the long exact sequence of pairs,

$$
\begin{equation*}
!\mathrm{H}_{2}(\mathrm{~W} ; \mathrm{X}) @ \mathrm{H}_{1}(\mathrm{X})!\mathrm{H}_{1}(\mathrm{~W})! \tag{6}
\end{equation*}
$$

Since ${ }_{1}(W)=\mathbb{Z}^{m}, H_{1}(W)=\mathbb{Z}^{m-1}$ where t acts trivially so that $H_{1}(W)$ has rank 0 as a $\mathbb{Z} \mathrm{t}^{1}$ \{module. $\mathrm{H}_{2}(\mathrm{~W} ; \mathrm{X})=\mathbb{Z} \mathrm{t}^{1\left(\begin{array}{c}\binom{m}{2}\end{array} \text { generated by the }\right.}$ core of each 2 \{handle (extended by $-_{i j}$ I) attached to X. Therefore, Im@ is generated by a lift of $-_{i j}$ in $H_{1}(X)$ for all $1 \quad i<j \quad m$. To show that $\mathrm{H}_{1}(\mathrm{X})$ has rank 0 it su ces to show that each of the ${ }^{-}{ }_{\mathrm{ij}}$ are $\mathbb{Z} \mathrm{t}^{1}$ \{torsion in $H_{1}(X)$.

Let $F=\mid \mathbb{x}_{1} ;::: ; \mathrm{x}_{\mathrm{m}} \mathrm{i}$ bethefreegroup of rank m and $\mathrm{f}: \mathrm{F}$! G bede ned by $f\left(X_{i}\right)=x_{i}$. We havethefollowing ${ }_{3}^{m}$ J acobi relations in $F \neq{ }^{\infty}[4$, Proposition 7.3.6]. For all $1 \mathrm{i}<\mathrm{j}<\mathrm{k} \mathrm{m}$,

$$
\left[\mathrm{x}_{\mathrm{i}} ;\left[\mathrm{x}_{\mathrm{j}} ; \mathrm{x}_{\mathrm{k}}\right]\right]\left[\mathrm{x}_{\mathrm{j}} ;\left[\mathrm{x}_{\mathrm{k}} ; \mathrm{x}_{\mathrm{i}}\right]\right]\left[\mathrm{x}_{\mathrm{k}} ;\left[\mathrm{x}_{\mathrm{i}} ; \mathrm{x}_{\mathrm{j}}\right]\right]=1 \bmod \mathrm{~F} .
$$

Using f , we sœ that these relations hold in $\mathrm{G}=\mathrm{G}^{\infty}$ as well. From (5), we can write

$$
\left[\mathrm{x}_{\mathrm{i}} ; \mathrm{x}_{\mathrm{j}}\right]=\left[\left[\mathrm{v}_{\mathrm{ij}} ; \mathrm{x}_{\mathrm{j}}\right] ; \mathrm{x}_{\mathrm{i}}\right]^{-}{ }_{\mathrm{ij}} \bmod \mathrm{G}^{\infty} .
$$

Hence for each $1 \quad \mathrm{i}<\mathrm{j}<\mathrm{k} \quad \mathrm{m}$ we have the J acobi relation J $(\mathrm{i} ; \mathrm{j} ; \mathrm{k})$ in $G=G^{\infty}$,

$$
\begin{align*}
& 1=\left[\mathrm{x}_{\mathrm{i}} ;\left[\mathrm{x}_{\mathrm{j}} ; \mathrm{x}_{\mathrm{k}}\right]\right]^{\mathrm{h}} \mathrm{x}_{\mathrm{j}} ;\left[\mathrm{x}_{\mathrm{i}} ; \mathrm{x}_{\mathrm{k}}\right]^{-1}{ }^{\mathrm{i}}\left[\mathrm{x}_{\mathrm{k}} ;\left[\mathrm{x}_{\mathrm{i}} ; \mathrm{x}_{\mathrm{j}}\right]\right] \bmod \mathrm{G}^{\text {® }} \\
& =\mathrm{x}_{\mathrm{i}} ;\left[\left[\mathrm{v}_{\mathrm{jk}} ; \mathrm{x}_{\mathrm{k}}\right] ; \mathrm{X}_{\mathrm{j}}\right]^{-}{ }_{j k} \quad \mathrm{X}_{\mathrm{j}} ;{ }^{-1 k}{ }_{i k}^{-1}\left[\mathrm{x}_{\mathrm{i}} ;\left[\mathrm{v}_{\mathrm{ik}} ; \mathrm{x}_{\mathrm{k}}\right]\right] \\
& \mathrm{X}_{\mathrm{k}} ;\left[\left[\mathrm{v}_{\mathrm{ij}} ; \mathrm{x}_{\mathrm{j}}\right] ; \mathrm{x}_{\mathrm{i}}\right]_{\mathrm{ij}} \quad \bmod \mathrm{G}^{\infty} \\
& =\left[\mathrm{x}_{\mathrm{i}} ;\left[\left[\mathrm{v}_{\mathrm{j} k} ; \mathrm{x}_{\mathrm{k}}\right] ; \mathrm{x}_{\mathrm{j}}\right]\right] \mathrm{x}_{\mathrm{i}} ;-_{\mathrm{jk}} \quad \mathrm{x}_{\mathrm{j}} ;-{ }_{i k}^{-1}\left[\mathrm{x}_{\mathrm{j}} ;\left[\mathrm{x}_{\mathrm{i}} ;\left[\mathrm{v}_{\mathrm{ik}} ; \mathrm{x}_{\mathrm{k}}\right]\right]\right] \\
& {\left[\mathrm{x}_{\mathrm{k}} ;\left[\left[\mathrm{v}_{\mathrm{ij}} ; \mathrm{x}_{\mathrm{j}}\right] ; \mathrm{x}_{\mathrm{i}}\right]\right] \mathrm{x}_{\mathrm{k}} ; \mathrm{i}_{\mathrm{ij}} \quad \bmod \mathrm{G}^{\text {® }}} \\
& =\quad \mathrm{x}_{\mathrm{i}} ;{ }^{-}{ }_{j k} \quad \mathrm{x}_{\mathrm{j}} ;-_{\mathrm{ik}}^{-1} \quad \mathrm{x}_{\mathrm{k}} ;-{ }_{\mathrm{ij}} \quad\left[\mathrm{x}_{\mathrm{i}} ;\left[\left[\mathrm{v}_{\mathrm{j} k} ; \mathrm{x}_{\mathrm{k}}\right] ; \mathrm{x}_{\mathrm{j}}\right]\right]\left[\mathrm{x}_{\mathrm{j}} ;\left[\mathrm{x}_{\mathrm{i}} ;\left[\mathrm{v}_{\mathrm{ik}} ; \mathrm{x}_{\mathrm{k}}\right]\right]\right] \\
& {\left[\mathrm{x}_{\mathrm{k}} ;\left[\left[\mathrm{vij}_{\mathrm{ij}} ; \mathrm{x}_{\mathrm{j}}\right] ; \mathrm{x}_{\mathrm{i}}\right]\right] \bmod \mathrm{G}^{\oplus} \text {. }} \tag{7}
\end{align*}
$$

M oreover, for each component of the trivial link L_{i} the longitude, I_{i}, of L_{i} is trivial in G and is a product of commutators of ${ }_{i j}$ with a conjugate of X_{j}. We
can write each of the longitudes (see Figure 4) as

$$
\begin{aligned}
& I_{i}=Y{ }_{j} j_{j}^{-1--1}{ }_{j i}{ }^{Y}-_{i k k} \bmod G^{\varnothing}
\end{aligned}
$$

$$
\begin{aligned}
& \text { }{ }^{j}<i \\
& -_{i k} \quad \mathrm{k}_{\mathrm{k} n_{\mathrm{ki}}}^{-1} \mathrm{k}^{-1--1}{ }_{\mathrm{ik}} \mathrm{k} \mathrm{X}_{\mathrm{kn}}^{\mathrm{ki}} \mathrm{k}^{-1}
\end{aligned}
$$

$$
\begin{align*}
& ={\underset{j<i}{j<i} h X_{j}^{-1} ;--_{j i}^{i}}_{Y_{k>i}^{k}}^{Y_{i k} ; X_{k}^{-1}} \bmod G^{\oplus} . \tag{8}
\end{align*}
$$

Figure 4

It follows that

$$
\underset{j<i}{Y} X_{j}^{-1,}--_{j i}^{i} \underset{k>i}{Y}-{ }_{i k} ; X_{k}^{-1}=1 \bmod G^{\oplus} .
$$

Since $G^{\varnothing} \quad[k e r \quad$;ker $]$, the relations in (7) and (8) hold in $\mathrm{H}_{1}(\mathrm{X})$ ($=\mathrm{ker}=[\mathrm{ker} ; \mathrm{ker}]$) as well. Suppose : $\mathrm{G} \rightarrow \mathbb{Z}$ is de ned by sending $\mathrm{x}_{\mathrm{i}} 7$! $t^{n_{i}}$. Since is surjective, $n_{N} \in 0$ for some N. We consider a subset of ${ }_{2}^{m}$ relations in $\mathrm{H}_{1}(\mathrm{X})$ that we index by $(\mathrm{i} ; \mathrm{j})$ for $1 \quad \mathrm{i}<\mathrm{j} \quad \mathrm{m}$. When $\mathrm{i}=\mathrm{N}$ or $\mathrm{j}=\mathrm{N}$ we consider the $\mathrm{m}-1$ relations

$$
\text { (i) } R_{i N}=I_{i} \quad \text { and } \quad \text { (ii) } \quad R_{N j}=I_{j}^{-1} \text {. }
$$

Rewriting I_{i} as an element of the $\mathbb{Z} t^{1}$-module $H_{1}(X)$ generated by $-_{i j} j 1 \quad i<j \quad m \xrightarrow[X]{\text { from (8) we have }}$

$$
\begin{aligned}
& R_{i N}={ }^{X} \quad t^{-n_{j}}-1-{ }_{j i}+{ }^{X} \quad 1-t^{-n_{k}}-i k \\
& \begin{array}{l}
={ }^{j^{<i}} t^{-n_{j}}\left(1-t^{n_{j}}\right)-{ }_{j i}{ }^{k>i} X{ }_{k>i}^{j^{<i}} t^{-n_{k}}\left(t^{n_{k}}-1\right)-{ }_{i k} \\
=X^{i}\left(1-t^{n_{j}}\right)+t^{-n_{j}}-1\left(1-t^{n_{j}}\right)-j i+
\end{array} \\
& x^{<i}\left(t^{n_{k}}-1\right)+t^{-n_{k}}-1\left(t^{n_{k}}-1\right)-{ }_{i k} . \\
& \text { k>i }
\end{aligned}
$$

Similarily, we have

$$
R_{N j}=\underbrace{X}_{X^{i<j}}\left(t^{n_{i}}-1\right)+t^{-n_{i}}-1\left(t^{n_{i}}-1\right)-i j+t^{n^{n_{k}}})+t^{-n_{k}}-1\left(1-t^{n_{k}}\right)-{ }_{j k} .
$$

For the other ${ }_{3}^{m-1}$ relations, we use the J acobi relations from (7). De ne $R_{i j}$ to be

$$
R_{i j}=\stackrel{8}{<} \mathrm{J}(N ; i ; j) \text { for } N<i<j(i ; N ; j)^{-1} \text { for } i<N<j .
$$

We can dwrite these relations as

Geometry \& Topology, Volume 6 (2002)
where $m_{i j}$ is a lift of v_{ij}.
For $1 \mathrm{i}<\mathrm{j} \mathrm{m}$ order the pairs ij by the dictionary ordering. That is, $\mathrm{ij}<\mathrm{Ik}$ provided either $\mathrm{i}<\mathrm{I}$ or $\mathrm{j}<\mathrm{k}$ when $\mathrm{i}=\mathrm{I}$. The relations above give us an ${\underset{2}{m}}_{m}^{m}$ matrix M with coe cients in $\mathbb{Z} t^{1}$. The $(i j ; k l)^{\text {th }}$ component of M is the coe cient of ${ }_{k l}$ in $R_{i j}$. We daim for now that

$$
\begin{equation*}
M=\left(t^{n_{N}}-1\right) I+(t-1) S+(t-1)^{2} E \tag{12}
\end{equation*}
$$

for some \error" matrix E where I is the identity matrix and S is a skewsymmetric matrix. For an example, when $\mathrm{m}=4$ and $\mathrm{N}=1, \mathrm{M}$ is the matrix

$2 \mathrm{t}^{\mathrm{n}_{1}-1}$	0	0	$1-\mathrm{t}^{\text {n }}$	$1-t^{\text {n }}$	0	3
60	$\mathrm{t}^{\mathrm{n}_{1}}-1$	0	$\mathrm{t}^{\mathrm{n}_{2}-1}$	0	$1-\mathrm{t}^{\mathrm{n}_{4}}$	7
0	0	$\mathrm{t}^{\mathrm{n}_{1}}-1$	0	$\mathrm{t}^{\mathrm{n}_{2}}-1$	$\mathrm{t}^{\mathrm{n}_{3}}-1$	
$\mathrm{t}^{\mathrm{n}_{3}-1}$	$1-t^{n_{2}}$	0	$t^{n_{1}}-1$	0	0	
t^{n} - 1	0	$1-t^{n_{2}}$	0	$\mathrm{t}^{\mathrm{n}_{1}}-1$	0	5
0	$\mathrm{t}^{\mathrm{n}_{4}}-1$	$1-t^{n_{3}}$	0	0	$\mathrm{t}^{\mathrm{n}_{1}}-1$	

The proof of (12) is left until the end.
We will show that M is non-singular as a matrix over the quotient eld $\mathbb{Q}(t)$. Consider the matrix $A=\frac{1}{t-1} M$. We note that A is a matrix with entries in $\mathbb{Z} t^{1}$ and $A(1)$ evaluated at $t=1$ is

$$
A(1)=N I+S(1) .
$$

To show that M is non-singular, it su ces to show that $A(1)$ is non-singular. Consider the quadratic form $q: \mathbb{Q}^{\binom{m}{2}}$! $\mathbb{Q}_{(1}^{\left(\frac{m}{2}\right)}$ de ned by $q(z) \quad z^{\top} A(1) z$ where z^{\top} is the transpose of z. Since $A(1)=N I+S(1)$ where $S(1)$ is skew-symmetric we have,

$$
q(z)=N^{X} z_{i}^{2} .
$$

Moreover, $\mathrm{N} \in 0$ so $q(z)=0$ if and only if $z=0$. Let z be a vector satisfying $A(1) z=0$. We have $q(z)=z^{\top} A(1) z=z^{\top} 0=0$ which implies that $z=0$. Therefore M is a non-singular matrix. This implies that each element $-_{i j}$ is $\mathbb{Z} \mathrm{t}^{1}$ \{torsion which will complete the the proof once we have established the above claim.

We ignore entries in M that lie in J^{2} where J is the augmentation ideal of $\mathbb{Z} \mathrm{t}^{1}$ since they only contribute to the error matrix E . Using (9), (10), and (11) above we can explicitely write the entries in $M \bmod \mathrm{~J}^{2}$. Let $\mathrm{m}_{\mathrm{ij} ; / \mathrm{k}}$ denote the $(\mathrm{ij} ; \mathrm{Ik})$ entry of $\mathrm{M} \bmod \mathrm{J}^{2}$.

Case $1(\mathrm{j}=\mathrm{N})$: From (9) we have

$$
m_{i N ; i i}=1-\mathrm{t}^{\mathrm{n}_{1}}, \mathrm{~m}_{\mathrm{iN} ; i \mathrm{k}}=\mathrm{t}^{\mathrm{n}_{\mathrm{k}}}-1,
$$

and $m_{i N ;}=0$ when neither I nor k is equal to N .
Case $2(\mathrm{i}=\mathrm{N})$: From (10) we have

$$
m_{N j ; l j}=t^{n_{1}}-1, m_{N j ; j k}=1-t^{n_{k}},
$$

and $m_{N j ; k}=0$ when neither I nor k is equal to N.
Case $3(\mathrm{~N}<\mathrm{i}<\mathrm{j})$: From (11) we have

$$
m_{i j ; N i}=t^{n_{j}}-1, m_{i j ; N j}=1-t^{n_{i}}, m_{i j ; i j}=t^{n_{N}}-1,
$$

and $m_{\mathrm{ij} ; \mathrm{k}}=0$ otherwise.
Case $4(\mathrm{i}<\mathrm{N}<\mathrm{j})$: From (11) we have

$$
m_{i j ; i N}=1-t^{n_{j}}, m_{i j ; i j}=t^{n_{N}}-1, m_{i j ; N j}=1-t^{n_{i}}
$$

and $m_{i j ; l k}=0$ otherwise.
Case $5(\mathrm{i}<\mathrm{j}<\mathrm{N})$: From (11) we have

$$
m_{i j ; i j}=t^{n_{N}}-1, m_{i j ; i N}=1-t^{n_{j}}, m_{i j ; j N}=t^{n_{i}}-1,
$$

and $m_{i j ; 1 k}=0$ otherwise.
We rst note that in each of the cases, the diagonal entries $m_{i j ; i j}$ are all $\mathrm{t}^{\mathrm{n}_{\mathrm{N}}}-1$. Next, we will show that theo diagonal entries have the property that $m_{i j ; l k}=$ $-\mathrm{m}_{\mathrm{I} ; \mathrm{ij}}$ for $\mathrm{ij}<\mathrm{Ik}$. This will complete the proof of the claim since we see that each entry is divisible by $\mathrm{t}-1$.
We verify the skew symmetry in Cases 1 and 3 . The other cases are similar and we leave the veri cations to the reader.
Case $1(\mathrm{j}=\mathrm{N})$:

$$
m_{i N ; i l}=1-\mathrm{t}^{\mathrm{n}_{\mathrm{l}}}=-\mathrm{m}_{\mathrm{l} ; ; \mathrm{iN}}(\text { case } 5)
$$

and

$$
\left.m_{i N ; i k}=t^{n_{k}}-1=-m_{i k ; i N} \text { (case } 4\right) .
$$

Case $3(\mathrm{~N}<\mathrm{i}<\mathrm{j})$:

$$
\mathrm{m}_{\mathrm{ij} ; \mathrm{Ni}}=\mathrm{t}^{\mathrm{n}_{\mathrm{j}}}-1=-\mathrm{m}_{\mathrm{N} ; ; i \mathrm{ij}} \text { (case 2) }
$$

and

$$
\left.m_{i j ; N j}=1-t^{n_{i}}=-m_{N j ; i j} \text { (case } 2\right) .
$$

Proposition 3.3 Let X be as in Theorem 3.1, $G={ }_{1}(X)$ and F bethe fre group on 2 generators. There is no epimorphism from G onto $F=F_{4}$.

Proof Let $\mathrm{F}=\mathrm{hx}$; yi be the free group and : $\mathrm{F} / \mathrm{F}_{4} \rightarrow \mathrm{hti}$ be de ned by $x 7!\quad t$ and $y 7!$ 1. Supposethat thereexists a surjectivemap $: G \rightarrow F / F_{4}$. Let $\mathrm{N}=\operatorname{ker}$ and $\mathrm{H}=\operatorname{ker}(\quad)$. Since is surjective we get an epimorphism of $\mathbb{Z} \mathrm{t}^{1}$ \{modules e: $\mathrm{H} / \mathrm{H}^{0} \rightarrow \mathrm{~N} / \mathrm{N}^{0}$. From (6) we get the short exact sequence

$$
0 \text { ! Im@! } \mathrm{H}_{1}(\mathrm{X})!\mathrm{H}_{1}(\mathrm{~W}) \text { ! } 0 \text { : }
$$

Let J be the augmentation ideal of $\mathbb{Z} t^{1}$. We compute $N / N^{0}=\mathbb{Z} t^{1} J^{3}$ so that e: $\mathrm{H}_{1}(\mathrm{X} \quad) \rightarrow \mathbb{Z} \mathrm{t}^{1} \mathrm{~J}^{3}$. Let $2 \mathrm{H}_{1}(\mathrm{X} \quad$) such that $\mathrm{e}(\mathrm{)}=1$. Since every element in $H_{1}(W)={\underset{i}{i=1}}_{\mathrm{m}-1}^{\mathbb{Z}\left[\mathrm{t}^{1}\right]}$ is $(\mathrm{t}-1)$ \{torsion, $(\mathrm{t}-1) 2$ Im@ hencet-12 Im(e i). Recall that in the proof of the Theorem 3.1, we showed that there exists a surjective $\mathbb{Z} \mathrm{t}^{1}$ \{module homomorphism : $\mathrm{P} \rightarrow$ Im@ where P is nitely presented as

$$
0!\mathbb{Z} \mathrm{t}^{1\binom{m}{2}(\mathrm{t}-1) \mathrm{A}} \mathbb{Z} \mathrm{t}^{1} \begin{aligned}
& \binom{m}{2}
\end{aligned} \mathrm{P}!0
$$

Let $\mathrm{g}: \mathrm{P}!\mathbb{Z}^{1}{ }^{1} \mathrm{~J}^{3}$ de ned by g e i . Since is surjective, $\mathrm{t}-12$ Img. After tensoring with $\mathbb{Q} t^{1}$, we get a map $g: P \otimes_{\mathbb{Z}[t}{ }^{1]} \mathbb{Q} t^{1}$! $\mathbb{Q} \mathrm{t}^{1} \mathrm{~J}^{3}$. It is easy to se that either g is surjective or the image of g is the submodule generated by $\mathrm{t}-1$. Note that the submodule generated by $t-1$ is isomorphic $\mathbb{Q} t^{1} J^{2}$. Hence, in either case, we get a surjective map $\mathrm{h}: \mathrm{P} \otimes_{\mathbb{Z}\left[\mathrm{t}^{1]}\right.} \mathbb{Q} \mathrm{t}^{1}!\mathbb{Q} \mathrm{t}^{1} \mathrm{~J}^{2}$.

Consider the $\mathbb{Q} \mathrm{t}^{1}$ \{module P^{0} presented by A . Let $\mathrm{h}^{0}: \mathbb{Q} \mathrm{t}^{1\binom{m}{2}}$! $\mathbb{Q} \mathrm{t}^{1} \mathrm{~J}^{2}$ be de ned by $\mathrm{h}^{0}=(\mathrm{t}-1) \mathrm{h}$. Since

$$
h^{0}(A())=(t-1) h((A()))=h(((t-1) A()))=h(0)=0 ;
$$

this de nes a map $h^{0}: P^{0}!\mathbb{Q} t^{1} J^{2}$ whose image is the submodule generated by $t-1$. It follows that P^{0} maps onto $\mathbb{Q} t^{1} / \mathrm{J}$. Setting $t=1$, the vector space over \mathbb{Q} presented by $A(1)$ maps onto \mathbb{Q}. Therefore $\operatorname{det}(A(1))=0$. However, it was previously shown that A (1) was non-singular which is a contradiction.

Corollary 3.4 For any closed, orientable 3 \{manifold Y with $P \neq P_{4}=G=G_{4}$ where $P={ }_{1}(Y)$ and $G={ }_{1}(X)$ is the fundamental group of the examples in Theorem 3.1, $c(Y)=1$.

Using Proposition 3.3, it is much easier to show that there exist hyperbolic 3 \{manifolds with cut number 1 .

Corollary 3.5 For each m 1 there exist closed, orientable, hyperbolic 3\{ manifolds Y with ${ }_{1}(Y)=m$ such that ${ }_{1}(Y)$ cannot map onto $F \not F_{4}$ where F is the free group on 2 generators.

Proof Let X be one of the $3\{$ manifolds in Theorem 3.1. By [7, Theorem 2.6], there exists a degre one map $f: Y!X$ where Y is hyperbolic and f is an isomorphism on H . Denote by $\mathrm{G}={ }_{1}(\mathrm{X})$ and $\mathrm{P}={ }_{1}(\mathrm{Y})$. It follows from Stalling's theorem [9] that f induces an isomorphism $f: P=P_{n}!G=G_{n}$. In particular this is true for $\mathrm{n}=4$ which completes the proof.

References

[1] T Cochran, P Melvin, Quantum cylotomic orders of 3\{manifolds, Topology 40 (2001) $95\{125$
[2] P G ilmer, T Kerler, Cut numbers of 3\{manifolds via quantum orders in \mathbb{Z} [5], preprint
[3] J Howie, Fre subgroups in groups of small de ciency, J. Group Theory 1 (1998) 95\{112
[4] A Kawauchi, A survey of knot theory, Birkhauser Verlag, Basel (1996)
[5] T Kerler, Homology TQFTs and the Alexander \{Reidemeister invariant of 3\{ manifolds via Hopf algebras and skein theory, preprint
[6] C Leininger, A Reid, The co-rank conjecture for 3\{manifold groups, Algebr. Geom. Topol. 2 (2002) 37\{50
[7] D R uberman, Seifert surfaces of knots in S^{4}, Paci c J. Math. 145 (1990)
[8] A S Sikora, Cut numbers of 3\{manifolds, preprint
[9] J Stallings, Homology and central series of groups, J. Algebra 2 (1965) $170\{181$
[10] W P Thurston, A norm for the homology of 3\{manifolds, Mem. Amer. Math. Soc. 59 (1986) i $\{v i, 99\{130$

