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288 Ian Agol and Tao Li

1 Introduction

Essential laminations were introduced by Gabai and Oertel [21], as a generaliza-
tion of incompressible surfaces [22], measured incompressible laminations [29],
Reebless foliations [31], and laminations coming from pseudo-Anosov flows of fi-
bred manifolds [38]. Many properties of Haken manifolds are now known to hold
for manifolds containing essential laminations, eg, they satisfy a weak hyper-
bolization property: either the fundamental group contains Z2 , or the manifold
has word-hyperbolic fundamental group, as shown by Gabai and Kazez for gen-
uine essential laminations [20], and by Calegari for taut foliations [8, 6, 7]. By
the solution of the Seifert conjecture [10, 17], if Z2 ≤ π1(M), then either M
contains an embedded incompressible torus, or it is a small Seifert fibered space
with infinite fundamental group, for which essential laminations have been clas-
sified [4, 1, 11, 27, 30]. Thus, it is natural to wonder to what extent 3-manifolds
with infinite fundamental group and no Z2 subgroup of the fundamental group
contain essential laminations.

To resolve this question, it would be useful to have an algorithm to determine
whether or not a 3-manifold contains an essential lamination. Jaco and Oer-
tel proved that there is an algorithm to determine if an irreducible 3-manifold
is Haken, by showing that if there is an incompressible surface, then there is
one among a finite collection of algorithmically constructible normal surfaces.
Oertel showed that there is an algorithm to determine whether a manifold con-
tains an affine lamination [32]. Some progress was made by Brittenham, who
showed that if a manifold contains an essential lamination, then it contains
an essential lamination which is normal with respect to a given triangulation
[2]. Brittenham’s normalization process was analyzed in depth by Gabai [19],
who determined exactly how the normalized lamination differs from the starting
lamination. Li gave a criterion on a branched surface embedded in a 3-manifold,
called a laminar branched surface, which implies that the manifold has an es-
sential lamination carried by the branched surface, and he proved that any
manifold with an essential lamination contains such a laminar branched sur-
face [28]. We show in this paper that the results of Gabai and Li imply the
existence of algorithms to determine if a 3-manifold contains an essential lami-
nation or a Reebless foliation, answering Problem 2.3 of [18]. Recently, Roberts,
Shareshian, and Stein [33] have given examples of 3-manifolds which admit no
Reebless foliation, and Sergio Fenley [12] has extended this to show that their
examples contain no essential lamination. The method of proof they use is to
show that the groups do not act on order trees. It is unknown whether there
are non-laminar 3-manifolds that do not act on order trees, so their approach
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An algorithm to detect laminar 3-manifolds 289

does not provide an algorithm.

The algorithm to determine if a manifold has an essential lamination described
in theorem 4.6 proceeds by first finding a finite collection of incompressible
Reebless branched surfaces which carry every nowhere dense essential lamina-
tion in M which is normal with respect to a particular one-efficient triangula-
tion. Then the algorithm splits into two procedures run in tandem: for each
branched surface, one procedure tries to find a laminar branched surface carried
by it, which succeeds for at least one branched surface if the manifold contains
an essential lamination; the other procedure tries to split each branched surface
in all possible ways, which fails for every branched surface in the finite collection
if the manifold does not contain an essential lamination.

Acknowledgments We would like to thank Bus Jaco for many helpful con-
versations about one-efficient triangulations, and Mark Brittenham for finding
some errors in an earlier draft of this paper. We also thank the referee for many
useful comments, and for noticing some gaps and errors in earlier drafts. The
second author is partially supported by NSF grant DMS 0102316.

2 Laminar branched surfaces

In this paper, we will assume that all 3-manifolds are orientable, since irre-
ducible non-orientable manifolds are Haken, and therefore laminar.

Definition 2.1 A branched surface B is a union of finitely many compact
smooth surfaces glued together to form a compact subspace (of M ) locally
modelled on Figure 1(a).

Notation Throughout this paper, we denote the interior of X by int(X), and
denote the number of components of X by |X|, for any X .

Given a branched surface B embedded in a 3-manifold M , we denote by N(B)
a regular neighborhood of B , as shown in Figure 1(b). One can regard N(B)
as an interval bundle over B , with a foliation V by intervals. We denote by
π : N(B)→ B the projection that collapses every interval fiber of V to a point.
The branched locus of B is the 1-skeleton of B , when viewed as a spine. So, L
can be considered as a union of immersed curves in B , and we call a point in
L a double point of L if any small neighborhood of this point is modelled on
Figure 1(a).
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(a) (b)

∂hN(B)∂vN(B)

Figure 1

A (codimension one) lamination λ in a 3-manifold M is a foliated, closed
subset of M , ie, λ is covered by a collection of open sets U of the form R2×R
such that λ ∩ U = R2 × C , where C is a closed set in R, and the transition
maps preserve the product structures. The coordinate neighborhoods of leaves
are of the form R2 × x, x ∈ C . Let Mλ be the metric completion of the
manifold M − λ with the path metric inherited from a metric on M . Let
H = {(x, y) ∈ R2|y ≥ 0} be the closed upper half plane. An end compression is
a proper embedding d : (H,∂H)→ (Mλ, ∂Mλ) such that d|∂H does not extend
to a proper embedding d′ : H → ∂Mλ .

Given a branched surface B ⊂M , a lamination λ is carried by B if λ ⊂ N(B)
and each leaf of λ is transverse to V , and fully carries if λ meets every fiber
of V . Similarly, a branched surface B′ is carried by B if B′ ⊂ N(B) and B′

is smoothly transverse to V . If B′ is carried by B and meets every fiber of V ,
then B′ is a splitting of B .

Definition 2.2 λ is an essential lamination in M if it satisfies the following
conditions:

(1) The inclusion of leaves of the lamination into M induces a injection on
π1 .

(2) Mλ is irreducible.

(3) λ has no sphere leaves.

(4) λ has no end compressions.

Theorem 2.3 [21, Proposition 4.5]

(1) Every essential lamination is fully carried by a branched surface with the
following properties:
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(a) (b)

Figure 2: Sink disks

(a) ∂hN(B) is incompressible in M − int(N(B)), no component of
∂hN(B) is a sphere, and M −B is irreducible.

(b) There is no monogon in M − int(N(B)), ie, no disk D ⊂ M −
int(N(B)) with ∂D = D ∩N(B) = α ∪ β , where α ⊂ ∂vN(B) is in
an interval fiber of ∂vN(B) and β ⊂ ∂hN(B).

(c) There is no Reeb component, ie, B does not carry a sublamination
of a Reeb foliation of a solid torus.

(d) B has no disk of contact, ie, no disk D ⊂ N(B) such that D is
transverse to the I -fibers V of N(B) and ∂D ⊂ ∂vN(B), see Figure
2(a) for an example.

(2) If a branched surface with the properties above fully carries a lamination,
then it is an essential lamination.

A branched surface satisfying conditions (a), (b), and (d) of Theorem 2.3 is an
incompressible branched surface, and if it satisfies conditions (a)–(d), it is an
incompressible Reebless branched surface.

Definition 2.4 Suppose B is an incompressible branched surface. Let D1 and
D2 be two disk components of ∂hN(B), such that π(∂D1) = π(∂D2). Then
there is a region K ∼= D2× I of M − int(N(B)) such that D1 ∪D2 = D2× ∂I .
If π(int(D1)) ∩ π(int(D2)) = ∅, then we call K a trivial bubble, and we may
collapse B along K by collapsing each I -fiber to a point, to get a new branched
surface B′ , such that any lamination is carried by B if and only if it is carried
by B′ .

Definition 2.5 A sink disk of B is a disk component D of B − L such that
∂hπ

−1(D) ∩ ∂vN(B) = ∅ (see figure 2(b)).
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Definition 2.6 A branched surface B having no trivial bubble in M is called
a laminar branched surface if it satisfies conditions 1(a)–(c) of theorem 2.3 and
has no sink disk.

The following theorem follows from the proof of Lemma 5.4 in [28].

Theorem 2.7 A branched surface carrying an essential lamination which is
not a lamination by planes has a splitting which is laminar.

Theorem 2.8 Given a branched surface B which carries no spheres or tori,
there is a procedure which terminates if and only if B fully carries a lamination.
Moreover, if the procedure terminates, it outputs a certificate that the branched
surface fully carries a lamination.

Proof If B is an essential branched surface, then by theorem 2.7, there is a
laminar branched surface B′ fully carried by B , ie, B′ has no sink disks and no
trivial bubbles (one need not check the other conditions for laminar branched
surface, since B′ cannot carry a sphere or torus, and B′ will have no monogon
or compression of ∂hN(B′) in N(B) since B′ is a splitting of B , by Lemma 2.5
of [21]). Choose a triangulation τ of N(B) such that each simplex is transverse
to the fibers V of N(B), and the foliation of the simplex by fibers of V is linear
in the affine structure on the simplex. There is a triangulation of N(B) η
such that B′ is embedded in η(2) . The triangulations η and τ have a common
subdivision µ, which carries B in µ(2) , since η does. If we choose µ to be
generic, then it will be transverse to V since V is linear on each simplex of τ .
The procedure proceeds in steps. Let m = |τ−τ (2)| be the number of 3-simplices
in τ . Then the nth step of the procedure first enumerates all subdivisions µ
of τ transverse to V which have m+n 3-simplices, up to isotopy transverse to
V . For a given n, there are only finitely many such subdivisions, which may
be found combinatorially, because of the linearity of the foliation V restricted
to each tetrahedron of τ . For each such subdivision µ, it then enumerates all
branched surfaces in µ(2) transverse to V , and checks to see whether they have
no sink disk or trivial bubble. The certificate is a description of the subdivision
µ and the branched surface in µ(2) .

Lemma 2.9 For a 3-manifold M with triangulation ν , and a branched surface
B ⊂ ν(2) , there is an algorithm to determine if B is incompressible and Reebless.

Proof We need to check that B satisfies all the conditions of an incompress-
ible Reebless branched surface. The complement of B has a triangulation ν ′
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by splitting ν along B . Property 1(a) of theorem 2.3 states that ∂hN(B) is
incompressible in M − int(N(B)), no component of ∂hN(B) is a sphere, and
M −B is irreducible. To check that ∂hN(B) is incompressible, we use Haken’s
algorithm, as improved by Jaco and Tollefson in Algorithm 9.6 of [26], by show-
ing that there is no vertex normal compressing disk for ∂hN(B). One computes
the Euler characteristic and number of boundary components of each compo-
nent of ∂hN(B) in order to check that no component is a sphere. If M − B
is reducible, then there would be an essential 2-sphere in M − B which is a
vertex normal surface with respect to ν ′ by Theorem 5.2 [26]. We may use
an algorithm of Rubinstein [34] and Thompson [36] to show that every vertex
normal 2-sphere in M −B bounds a ball.

Property 1(b) of theorem 2.3 states that there is no monogon in M−int(N(B)).
Again, one need only check that there is no vertex normal disk meeting ∂hN(B)
exactly once using the argument in Theorem 6.1 of [26].

Property 1(c) states that there is no Reeb component, ie, B does not carry a
torus that bounds a solid torus in M . To check this, we compute the normal
solution space of surfaces carried by B , and compute all vertex surfaces which
are tori. For each one, we check that it does not bound a solid torus, by checking
that either it bounds no compressing disk using Haken’s algorithm, or that it
has a compressing disk and bounds a ball with knotted hole, which may be
checked using Rubinstein and Thompson’s algorithm to recognize the 3-ball
[34, 36].

Property 1(d) states that there is no disk of contact. We may solve relative
normal coordinates to check that no surface carried by B with boundary on
∂vN(B) is a disk, using the method of Floyd and Oertel in Claim 3, page 123
of [13].

3 Splitting branched surfaces

Given a branched surface B ⊂ M , let the pared locus p(B) ⊂ ∂Nv(B) be a
collection of simple closed curves which are cores for ∂vN(B).

Definition 3.1 A splitting surface S ⊂ N(B) is a complete 1 − 1 immersed
surface carried by N(B) such that ∂S = p(B), and such that for each I -fiber
J of V , S ∩ J is a discrete set. There is a regular open neighborhood N (S)
which fibers over S induced by the fibration V , such that N (S) ∩ ∂vN(B) =
int(∂vN(B)) and ∂N (S) is an immersed surface transverse to V .
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Theorem 3.2 A splitting surface S for B determines a unique lamination LS
fully carried by B . Conversely, any lamination L fully carried by B determines
a splitting surface S , and LS is a canonical blow-down of L.

Proof For each I -fiber J of V , J −N (S) is a closed subset. If J −N (S) has
non-empty interior, then consider the quotient J ′ where each open interval of
int(J − N (S)) is identified to a point. Doing this for each I -fiber, we get a
quotient complex N(B)′ with fibration V ′ over the branched surface B , where
the fibration is by points over the subcomplex of faces of B which do not carry
S , and is a fibration by intervals over π(S). The complement of N (S) in N(B)′

is a lamination LS fully carried by B . Moreover, LS is unique up to normal
isotopy.

Conversely, suppose we have a lamination L fully carried by B . Isotope L so
that it meets the endpoints of each fiber of V , possibly collapsing intervals of
V to points over the faces of B which carry L with multiplicity one. Then
the complementary regions which meet ∂vN(B) consist of I -bundles over an
embedded surface S , which we may choose to intersect ∂vN(B) in p(B), so that
the region is N (S) in the topology induced from ML using the path metric.
Thus S is a splitting surface. Consider the intersection with each I -fiber J ,
and as before quotient the open intervals of J −N (S) to points. This quotient
map gives a blow-down of L to LS .

The branched surface B has a cell structure τ . A splitting surface S has an
induced cell structure τS by pulling back the cell structure τ under the quotient
map π (which collapses each fiber of V to a point).

Definition 3.3 A splitting complex is an embedded complex c in N(B) whose
cells are transverse to V and which has a cell structure τc induced by pullback
by π from τ . Moreover, c is locally embedded in a surface transverse to V , in
particular int(c) is a surface. Let ∂c be the graph of all 1-cells of τc which are
not incident with two 2-cells of τc , ie ∂c = c − int(c) . Then we also require
that ∂c ∩ ∂vN(B) = p(B).

A B -isotopy of a splitting complex c is an isotopy of c through splitting com-
plexes which preserves intersections with fibers of V . So a splitting surface S is
also a splitting complex, and one should think of a splitting complex as a sub-
complex of a splitting surface. If b ⊂ c is a subcomplex of a splitting complex
c, then let B1(b, c) consist of the subcomplex of c by adjoining all closed cells
incident with b to b. This is akin to taking the combinatorial ball of radius 1
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about b. Define inductively Bk(b, c) = B1(Bk−1(b, c), c). Let the radius of a
splitting complex c be R(c) = max{k|Bk(p(B), c) ∩ ∂c = p(B)}. The radius
measures the minimal combinatorial distance from p(B) to ∂c−p(B). Suppose
that each cell of B has at most r cells (counted with multiplicity) incident with
it. Then for any splitting complex c, Bk(p(B), c) has at most rk|p(B)(0)| cells.

Lemma 3.4 There are only finitely many splitting complexes of B with ≤ N
cells, up to B -isotopy, and there is an algorithm to enumerate them.

Proof The B -isotopy class of each splitting complex c is determined by the
number of cells of each type and how they are glued together along π−1(τ (1)).
To describe a splitting complex with ≤ N 2-cells up to B -isotopy, we list for
each 2-cell f of τ , the number of 2-cells of c which map to f under π . These 2-
cells are numbered by the vertical order they come in the I -fibration of π−1(f).
Then we give a pairing of a subset of edges of these cells, and a pairing of some
edges with edges of p(B). There are checkable restrictions on the pairings so
that the quotient complex is a splitting complex. The pairings must preserve
the orderings of the cells, and must not induce branching about π−1(τ (0)), and
there must be exactly one edge paired with each edge of p(B).

Theorem 3.5 There is a sequence of splitting complexes ck of B such that
the radius R(ck)→∞ as k →∞ if and only if there is a splitting surface S of
B .

Proof If there is a splitting surface S , then R(Bk(p(B), S)) = k − 1→∞ as
k →∞, so we may take ck = Bk(p(B), S).

Conversely, given a sequence of splitting complexes ck , with R(ck) → ∞, we
may assume that {R(ck)} is an increasing sequence. Then for k ≥ K , the
sequence of complexes {BR(cK)(p(B), ck)} must have a constant subsequence,
since there are at most |p(B)(0)|rR(cK) cells in these complexes, and thus there
are only finitely many complexes up to B -isotopy, by lemma 3.4. Thus, we
may find a subsequence {cki} such that for all j > i, BR(cki)

(p(B), cki) is B -
isotopic to BR(cki )

(p(B), ckj ). We may B -isotope BR(ckj )(p(B), ckj ) so that
BR(cki )

(p(B), cki) =BR(cki )
(p(B), ckj ). Moreover, we may choose a small I -

bundle neighborhood of each {BR(cki )
(p(B), cki)} so that the later stages remain

disjoint from it. In the limit, the union of BR(cki )
(p(B), cki) forms a splitting

surface S .

Theorem 3.6 Given a branched surface B , there is a procedure which termi-
nates if and only if B does not carry a lamination.
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Remark The referee points out that this theorem was already known to Oer-
tel.

Proof The algorithm proceeds by enumerating all splitting complexes c using
≤ |p(B)(0)|rN cells, by the algorithm described in lemma 3.4, for N = 1, 2, 3, . . . .
For each N , one finds whether there is such a c with R(c) ≥ N − 1, which is
algorithmic since given c there is a simple algorithm to compute R(c). If no
such complex c exists, then B carries no lamination fully, since if there were
a splitting surface S , then BN (p(B), S) would be a splitting complex with at
most ≤ |p(B)(0)|rN cells and with radius ≥ N − 1.

4 Constructing essential branched surfaces

Suppose we split a certain branched surface B along a splitting surface de-
scribed before. The inverse limit of an infinite splitting is a lamination carried
by B by Lemma 4.2 of [21]. Thus, the process of such splitting will stop unless
B fully carries a lamination. By Theorem 1 of [21], if an incompressible Reebless
branched surface fully carries a lamination, then it is an essential lamination.
Therefore, in order to make the algorithm work, we need to find finitely many
incompressible Reebless branched surfaces such that one of them fully carries
a lamination if M is laminar.

We assume that M is irreducible and has a triangulation τ . We may also as-
sume that M is atoroidal, otherwise M contains an essential torus, and thus
has an essential lamination. By [25], there is an algorithm to find an efficient
triangulation τ of M , which has the property that the only normal 2-sphere
is the vertex linking 2-sphere, and there are only finitely many normal tori
(each bounding a solid torus). It has been shown in [2, 19] that if M con-
tains an essential lamination, then M contains a normal essential lamination
with respect to any given triangulation. By putting normal disks together, as
on p. 122 of [13], we can construct finitely many branched surfaces such that
any normal lamination is fully carried by one of them. In fact, for any normal
essential lamination, by identifying all the normal disks of the same type to
one normal disk, we get a branched surface B that is among the finitely many
branched surfaces constructed above and B fully carries the essential lamina-
tion. By solving certain systems of branch equations, we can algorithmically
find all minimal weight disks of contact in B and split B to eliminate all of
these disks of contact. This can be done in finitely many steps. The argument
of Claims 1–3, pages 122–123 of [13] generalizes from incompressible surfaces
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to laminations to show that, once we have split along all minimal weight disks
of contact, we will have a branched surface carrying a lamination isotopic to
λ which does not carry any 2-sphere, since τ was assumed to be an efficient
triangulation.

We say that a surface S is carried by N(B) if S is transverse to the I -fibers
of N(B). In this paper, we always assume our surface S above is embedded
in N(B). We define the weight of a surface S to be the number of intersection
points of S with the 1-skeleton of the triangulation, and define the length of
an arc to be the number of intersection points of this arc with the 2-skeleton.
Let p0 and p1 be surfaces or arcs in N(B) transverse to the I -fibers of N(B).
We say p0 and p1 are B -parallel if there is an isotopy H : F × [0, 1] → N(B)
such that H(F × i) = pi (i = 0, 1) and H(q × [0, 1]) is a subarc of an I -fiber
of N(B) for any q ∈ F . We also call this isotopy a B -isotopy.

Lemma 4.1 Suppose B fully carries a nowhere dense essential lamination λ
and B contains no disk of contact and carries no 2-spheres. Let T be a torus
carried by N(B) and bounding a solid torus V in M . Then, after K steps
of splitting, where K depends on B and T (not on λ), B can be split into a
branched surface that still carries λ (up to isotopy) but does not carry T .

Proof If there are subarcs of I -fibers of N(B) properly embedded in M −
int(V ), then the union of these subarcs is an I -bundle over a compact surface
whose horizontal boundary lies in T . Let H ⊂ T be the horizontal boundary of
this I -bundle. Note that we can assume H consists of planar surfaces, other-
wise, since M is irreducible, M must be the union of V and a twisted I -bundle
over a Klein bottle, which contradicts that M contains an essential lamination
(because such 3-manifolds are double covered by lens spaces). Then, by split-
ting along a union of surfaces (in this I -bundle) with total weight bounded by
the weight of H , we get a branched surface that still carries T and λ but there
is no subarc of any I -fiber properly embedded in M − int(V ).

So we may assume that there is no subarc of any I -fiber of N(B) properly em-
bedded in M − int(V ). In the discussion below, we always assume T intersects
λ transversely. We can perform B -isotopy on parts of λ pushing λ into V as
much as one can in the sense that after the B -isotopy, for any point x ∈ T ∩λ,
there is an arc α ⊂ λ− int(V ) such that, x ∈ α, α is not B -parallel to any arc
in T , and the combinatorial length of α is bounded by K1 , where K1 depends
on B and T (not on λ).

If λ ∩ T contains circles homotopically trivial in T , then as in [1], there are
trivial circles bounding disks in V ∩λ or λ−int(V ). Then, after some standard
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cutting and pasting on λ, we can eliminate the trivial circles in T∩λ. Note that
one can perform such cutting and pasting on laminations because of the Reeb
stability theorem (see the proof of Lemma 2.1 of [1]). Moreover, since N(B)
does not carry any 2-sphere, after such cutting and pasting, the lamination is
still transverse to the I -fibers of N(B). After this operation, by Lemma 2.1
and Theorem 3.1 in [1], V ∩ λ is either a union of meridional disks or contains
a sublamination by annuli (with at most one Möbius band). Moreover, if the
second case happens, any non annulus (or Möbius band) leaf in V ∩ λ is non-
compact and simply connected, and each annulus leaf is π1 -injective in V .

Suppose V ∩λ is a union of meridional disks. In general, a meridional disk (with
fixed boundary) can wrap around T many times similar to a Reeb foliation.
However, we can perform an isotopy (in fact a Dehn twist) near T to unwrap
these disks, see Figure 6.1 in [19] for a schematic picture. Thus, after this
unwrapping, there must exist a point x in T ∩ λ and an arc β ⊂ V ∩ λ such
that x ∈ β , β is not B -parallel to any arc in T , and the length of β is bounded
by K2 , where K2 depends on V ∩ N(B) (not on λ). By connecting β and α
above together, we get an arc (puncturing through T ) with length less than
K1 + K2 . Hence, by splitting B along some disk with diameter less than
K1 + K2 , one gets a branched surface that carries a lamination isotopic to λ
but does not carry T .

Now, we suppose V ∩ λ has a sublamination by π1 -injective annuli (with at
most one Möbius band). The annular leaves that are B -parallel to subannuli in
T (fixing the boundary) form a sublamination of V ∩λ. After some B -isotopy,
we can push these annuli (and the simply connected leaves in between) out of
V (this can also be done by performing some cutting and pasting on annuli
in T ). Such a B -isotopy may create some new intersection points in T ∩ λ
and these new intersection points lie in the simply connected leaves of V ∩ λ.
After perturbing the simply connected leaves in V ∩λ, for each new intersection
point x in T ∩ λ (created during the B -isotopy above), there is an arc αx ⊂ λ
connecting x to an intersection point that is fixed during the B -isotopy above.
Moreover, αx is B -parallel to an arc in an annulus leaf that is pushed out of
V , and the length of αx is bounded by a number depending only on T . So, for
each point x in T ∩ λ after this B -isotopy, there is still an arc α with length
bounded by a number K1 as above, containing x, and not B -parallel to any
arc in T .

So, we can assume T ∩ λ contains no annulus leaf that is B -parallel to a
subannulus in T , and T ∩ λ is not a union of meridional disks. In general, an
annulus leaf in T ∩ λ (with fixed boundary) can form a monogon × S1 and
wrap around T many times. However, after a Dehn twist near T , any annulus
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is isotopic (fixing the boundary) to one with smaller weight, as in the case of
meridional disks above. In particular, after this isotopy, there exists a point x
in the boundary of this annulus leaf A and an arc β ⊂ A with x ∈ ∂β such
that β is not B -parallel to any arc in T and the length of β is bounded by K2 ,
where K2 is as above. Then, as before, by connecting α and β , we get an arc
(puncturing through T ) with length less than K1 +K2 . Hence, by splitting B
along some disk with diameter less than K1 +K2 , one gets a branched surface
carrying λ but not T .

Therefore, in any of the cases, after splitting along a union of surfaces with
bounded total weight, we can get a branched surface that carries λ (up to
isotopy) but does not carry T . Since the total weight is bounded by a number
that does not depend on λ, we can enumerate all possible surfaces along which
we perform splitting as above, and after splitting we get finitely many branched
surfaces from B , one of which carries λ but does not carry T .

Note that after the splitting performed in the proof of Lemma 4.1, new disks
of contact may appear, but we can always find and eliminate them by another
splitting and taking sub-branched surfaces.

Proposition 4.2 Suppose B fully carries an essential lamination and B con-
tains no disk of contact. Let C be a component of M− int(N(B)) and suppose
C contains a monogon. Then, C must be a solid torus in the form of D × S1 ,
where D is a monogon.

Proof Since B fully carries an essential lamination and B contains no disk
of contact, ∂hN(B) is incompressible in M . Let D be a monogon in C , ie,
the disk D is properly embedded in C , ∂D consists of two arcs α ⊂ ∂vN(B)
and β ⊂ ∂hN(B), and α is a vertical arc in ∂vN(B). Let v be the component
of ∂vN(B) containing α and N(v ∪ D) be a small regular neighborhood of
v∪D in M . Then, the intersection of N(v∪D) and the component of ∂hN(B)
containing β is a circle γ . By the construction, γ is a trivial curve in N(v∪D).
Since ∂hN(B) is incompressible, γ must bound a disk in ∂hN(B). Thus, the
component of ∂hN(B) containing β is an annulus, ∂C is a compressible torus,
and D is a compressing disk for ∂C . Since C is irreducible, C must be a solid
torus in the form of D × S1 , where D is the monogon above.

Suppose A is an annulus carried by N(B). We say A is a splitting annulus if
∂A lies in distinct components of ∂vN(B).
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Proposition 4.3 Let B be a branched surface fully carrying an essential
lamination λ, and suppose B has a monogon. Then, there is a splitting annulus
A in N(B) such that A ∩ λ = ∅.

Proof We can suppose B does not have any disk of contact. Let C be a
component of M − int(N(B)) containing a monogon D . Suppose ∂D = α∪β ,
where α is a vertical arc in ∂vN(B) and β ⊂ ∂hN(B). By Proposition 4.2, C =
D × S1 . Let ν = α × S1 be the corresponding component of ∂vN(B). By the
end-incompressibility of the essential lamination, we can split N(B) along λ (by
drilling a tunnel) and connect C to another component W of M − int(N(B)),
ie, there is a vertical rectangle R in N(B) connecting ν and another component
of ∂vN(B) in ∂W such that R ∩ λ = ∅. Note that if R connects ν to itself,
one gets a compressing disk that is the union of R and two monogons, which
contradicts that λ is essential unless R is parallel to ν . So, existence of such
a vertical rectangle R is guaranteed by the end-incompressibility of λ. After
removing a small neighborhood of R, N(B) becomes N(B′) which is a fibered
neighborhood of another branched surface B′ carrying λ, and now C and
W (connected through R) become a component C ′ of M − int(N(B′)), and
ν becomes ν ′ which is a component of ∂vN(B′). Moreover, since λ is end-
incompressible, we can assume that W is not a D2 × I region.

Since C = D × S1 , after this splitting above, C ′ still contains a monogon.
As W is not a D2 × I region, C ′ cannot be in the form of monogon × S1 .
Therefore, by Proposition 4.2, B′ cannot be incompressible. Since B′ fully
carries λ and B contains no disks of contact, B′ must contain a disk of contact
whose boundary must lie in ν ′ , ie, there must be a disk in N(B′) transverse to
the I -fibers and with boundary in ν ′ . By our construction of B′ and ν ′ , there
must be a splitting annulus A in N(B) connecting ν and another component
of ∂vN(B) with A ∩ λ = ∅ and A ∩R a nontrivial arc in A.

Intuitively, if M is atoroidal, one should be able to eliminate all tori carried by
a branched surface in finitely many steps of splitting as in Lemma 4.1. However,
the situation can be very complicated if the branched surface carries infinitely
many tori. These tori can tangle together in a complicated way, and it is not
clear to us whether there is a simple way to deal with it. This problem can be
simplified to a great extent, if we use a special kind of triangulation, namely the
one-efficient triangulation due to Jaco and Rubinstein [25]. A triangulation is
one-efficient if every normal torus is either thin or thick edge linking. A trivial
consequence of using a one-efficient triangulation is that there are only finitely
many normal tori, which is the only thing we need for our purpose.
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Lemma 4.4 Suppose M is an atoroidal 3-manifold with a one-efficient tri-
angulation τ . Then there is an algorithm to construct finitely many incom-
pressible Reebless branched surfaces such that every (nowhere dense) essential
lamination normal with respect to τ is fully carried by one of these branched
surfaces.

Proof As before, we start with finitely many normal branched surfaces. Since
τ is one-efficient, any normal 2-sphere is normal isotopic to the vertex linking
2-sphere. If a normal branched surface B carried a 2-sphere, then some com-
ponent of ∂hN(B) would be a 2-sphere parallel to the vertex linking 2-sphere,
so B could not fully carry an essential lamination, since then it would have a
sphere leaf. So we may assume B carries no 2-spheres. We eliminate all disks
of contact, then take sub-branched surfaces. Since there are only finitely many
normal tori, by Lemma 4.1, we can split these branched surfaces in finitely
many steps to construct finitely many branched surfaces that do not carry any
tori, and each normal essential lamination is carried by one of them, then we
get rid of disks of contact again. So, these branched surfaces contain no Reeb
components. By taking sub branched surfaces if necessary, we can assume
each normal essential lamination is fully carried by one of finitely many such
branched surfaces.

Let B be a branched surface constructed above. B contains no disk of contact
and does not carry any torus. Suppose B fully carries an essential lamination
λ but M − B has a monogon. By Proposition 4.3, there is a splitting annulus
A (A ∩ λ = ∅) connecting two components v1 and v2 of ∂vN(B). Next,
we analyze annuli carried by N(B) with exactly two boundary circles lying
in v1 and v2 respectively by solving a system of branch equations as in [13].
Note that we are considering surfaces with boundary, so some equations are
like xi + xj = xk − 1 and this system of linear equations is not homogeneous.
As in [13], there is a one-to-one correspondence between non-negative integer
solutions to this system of branch equations and surfaces carried by B with
exact two boundary circles lying in v1 and v2 respectively. Such a solution is
a point in Rm with non-negative integer coordinates, where m is the number
of variables.

Suppose A1 = (a1, . . . , am) and A2 = (b1, . . . , bm) are two solutions to the
system above, and suppose χ(A1) = χ(A2) = 0, where χ(Aj) denotes the
Euler characteristic of the surface Aj . If ai ≤ bi for each i, then T =
(b1 − a1, . . . , bm − am) is a non-negative integer solution to the correspond-
ing homogeneous system, and hence T is a union of closed surfaces carried by
B . Moreover, A1 + T = A2 implies χ(A1) + χ(T ) = χ(A2). Hence, χ(T ) = 0.
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Since B does not carry any 2-sphere or torus, this is impossible. So, there
are no such pairs of annuli among integer solutions. Now, we interpret zero
Euler characteristic as a linear equation and add this equation to the system
above. Then, every non-negative integer solution to this new system gives us
an annulus (or a pair of Möbius bands). Since there are no two annuli A1 and
A2 as above, there are only finitely many non-negative integer solutions to this
new system, and hence there are only finitely many possible splitting annuli
connecting v1 and v2 . Note that since this is a system of linear equations with
integer coefficients, the solution space must be bounded in the region of xi ≥ 0
(for all i), otherwise there would be infinitely many non-negative integer solu-
tions. Thus, one can calculate the maximum for each coordinate, and list all
non-negative integer solutions, ie, one can list all possible splitting annuli.

After splitting along these splitting annuli, we can eliminate all monogons and
get finitely many branched surfaces. By taking sub branched surfaces if nec-
essary, we have that, after isotopy, each normal essential lamination is fully
carried by one of these branched surfaces.

Finally, for each of these branched surfaces, we subdivide the triangulation so
that the branched surface lies in the 2-skeleton, and then using the algorithm
described in lemma 2.9 to check that each branched surface is incompressible
and Reebless.

Remark 4.5 (1) If M is a small Seifert fiber space, one can always rec-
ognize this manifold if it does not admit a one-vertex triangulation [25].
Moreover, using layered solid tori, one can construct a nice triangulation
for a small Seifert fiber space [23] that also makes the proof work, though
it may not be one-efficient.

(2) One does not need a one-efficient triangulation to eliminate all Reeb
branched surfaces. Suppose T is a torus carried by N(B) and bounding
a solid torus V , and V ∩ N(B) fully carries a sublamination of a Reeb
foliation of a solid torus. Then, each I -fiber of N(B) can intersect T
in at most 2 points. Otherwise, since T is separating, if an I -fiber in-
tersects T in more than 2 points, there must be a subarc of this I -fiber
properly embedded in the solid torus V . This contradicts a well-known
fact that there is no properly embedded compact arc in a solid torus that
is transverse to the Reeb foliation (extended from the Reeb lamination).
Therefore, B contains only finitely many Reeb components.

(3) By replacing a leaf of a lamination by an I -bundle over this leaf and then
deleting the interior of this I -bundle, one can change every lamination
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to a nowhere dense one (see Remark 4.4, [21]). Gabai proved that, up
to isotopy, every nowhere dense essential lamination in an atoroidal 3-
manifold is fully carried by one of finitely many essential branched surfaces
(Theorem 6.5 of [19]). However, step 1 of the proof of Theorem 6.5 of
[19] uses Plante’s argument on the limit of normal annuli, and it does not
clearly give an algorithm to find these finitely many essential branched
surfaces. In particular, if a branched surface carries infinitely many tori,
the picture of those normal annuli can be very complicated, and it is not
clear how to algorithmically analyze the limit of these annuli.

Theorem 4.6 There is an algorithm to decide whether a 3-manifold contains
an essential lamination.

Proof The first step of the algorithm is to modify the triangulation of M to
a one-efficient triangulation τ using the algorithm in [25]. By [25], in finitely
many steps, we either get a one-efficient triangulation, or M contains an in-
compressible torus, or we can recognize M as certain small Seifert fiber space.
An incompressible torus can be found, if one exists, by [24] or by Algorithm 8.2
of [26], and essential laminations in small Seifert fiber spaces are classified by
[1, 11, 27, 30]. So, we know whether M is laminar in these exceptional cases,
and we can assume our triangulation for M is one-efficient.

By Lemma 4.4, we can algorithmically construct finitely many incompressible
Reebless branched surfaces such that every nowhere dense essential lamination
normal with respect to τ is fully carried by one of them. Then, if one of these
incompressible Reebless branched surfaces fully carries a lamination (hence it
is an essential lamination), the procedure described in theorem 2.8 will stop,
which means M is laminar. If none of them fully carries a lamination, the
procedure described in theorem 3.6 will stop, which means M contains no
essential lamination.

5 Recognizing Reebless foliations

In this section, we will assume the reader is familiar with the notion of a sutured
manifold, introduced by Gabai in [15]. We will follow the notation of [15].

Remark We note that if a manifold M is atoroidal and admits a Reebless
foliation, then the foliation is taut. But in the case of irreducible toroidal man-
ifolds, there are examples that admit Reebless foliations, but no taut foliation
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[5]. It seems to be unknown in general when a toroidal manifold admits a taut
foliation. Thus, in the theorems below, we will restrict ourselves to considering
Reebless foliations.

Theorem 5.1 Given a sutured manifold (M,γ) with triangulation τ and
γ ⊂ τ (1) , there is an algorithm to determine if (M,γ) is taut.

Proof By theorem 4.2 of [15], a connected taut sutured manifold (M,γ) has
a sutured manifold hierarchy

(M0, γ0) S1−→ (M1, γ1) S2−→ · · · Sn−→ (Mn, γn)

such that (Mn, A(γn)) = (R × I, ∂R × I) and R+(γn) = R× 1. Moreover, for
each component V of R(γi), Si+1 ∩ V is a union of k(≥ 0) parallel oriented
non-separating simple closed curves or arcs. Moreover, if (M,γ) has a sutured
manifold hierarchy such that no component of R(γi) is a compressible torus,
then (M,γ) is taut by corollary 5.3 of [15].

The algorithm to determine if (M,γ) is taut proceeds by running two pro-
cedures. The first procedure constructs subdivisions ν of the triangulation τ
searching for surfaces (S, ∂S) ⊂ (M,γ) ∩ ν(2) such that [S, ∂S] = [R+, γ] ∈
H2(M,γ), and x(S) < x(R±). If (M,γ) is not taut, then this procedure ter-
minates in a finite number of steps.

The second algorithm searches for a sutured manifold hierarchy. Again, it
constructs subdivisions ν of τ , and searches for oriented surfaces Si ⊂ ν(2) such
that they satisfy the conditions for a sutured manifold hierarchy. By Algorithm
9.7 of [26], there is an algorithm to check that (Mn, A(γn)) ∼= (R× I, ∂R× I).
There are also algorithms to check the other conditions listed above. By Gabai’s
theorem, if (M,γ) is taut, then this procedure will halt in finitely many steps
by finding a sutured manifold hierarchy which certifies that (M,γ) is taut.

Theorem 5.2 There is an algorithm to decide whether an orientable 3-man-
ifold contains a Reebless foliation.

Proof First, we describe the algorithm.

Step 1 We check that M is irreducible using an algorithm of Rubinstein [34]
and Thompson [36]. If it is not irreducible, then we check to see if M is S2×S1 ,
by cutting along a non-separating sphere, cap off the resulting boundary with
balls, and check if we have a ball again. Otherwise M is not prime, and M
cannot have a Reebless foliation. If M is irreducible then we continue.
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Step 2 We check to see if M is toroidal. If M is toroidal and irreducible, then
it has a transversely orientable Reebless foliation by the method of Corollary
6.5 of [15].

Step 3 If M is irreducible and atoroidal, then we construct finitely many
normal essential branched surfaces B which fully carry every normal essential
lamination using Lemma 4.4. We check to see if B carries a lamination. We
triangulate the complementary regions of B . Then we use algorithm 8.2 of [26]
to find the maximal I -bundle (C, ∂vC) ⊂ (M − intN(B), ∂vN(B)). We then
delete from M − intN(B) unions of components I -bundle components C ′ ⊂ C
in all 2β0(C) possible ways. We use the algorithm described in theorem 5.1 to
determine if the regions of M − int(N(B) ∪ C ′) are taut sutured manifolds.
If all of them are, then by a theorem of Gabai [15], M − int(N(B) ∪ C ′) has
foliations transverse to ∂v(N(B) ∪ C ′), with ∂hN(B) − C ′ as leaves. We may
extend these foliations and the lamination carried by the branched surface to a
Reebless foliation, using the method of the proof of theorem 5.1, pages 471–477
in [15] (see also constructions 4.16 and 4.17, pages 498–500 of [16]), since B
contains no disk of contact.

To see that the algorithm works, we need to show that if M has a Reebless
foliation, then for the branched surfaces constructed in Lemma 4.4, one of the
essential branched surfaces union some I -bundles has as complementary re-
gions taut sutured manifolds which may be extended to a foliation. If M has
a Reebless foliation, then by theorem 4.4 of [19], there exists a normal essen-
tial lamination such that each complementary region of the normal essential
branched surface B′ carrying this lamination is either a taut sutured manifold
or an I -bundle, since the normal lamination is obtained from the foliation by
first splitting, then evacuating a taut sutured manifold. Moreover, these regions
are π1 -injective in the 3-manifold group, by condition (ii) of definition 4.2 [19].
The normal essential lamination fully carried by B′ is also fully carried by one
of the branched surfaces B constructed in Lemma 4.4, and thus there is an
essential normal branched surface B0 that is a splitting of both B and B′ . So,
there is a union of product regions C such that N(B0) ∪ C = N(B). Let λ be
the normal essential lamination fully carried by B0 , B and B′ , and suppose
λ extends to a Reebless foliation F . For any I -bundle E ∈ C , we suppose
that the horizontal boundary of E lies in λ and the vertical boundary of E
consists of essential annuli in M −N(B0). Moreover, since B0 is a splitting of
B and B contains no splitting annulus as in the construction in Lemma 4.4,
we also assume that E is not an annulus × I or an I -bundle over a Möbius
band. Next, we show that after isotopies, F is transverse to the I -fibers of
E for any E . Note that the case that some vertical boundary component of
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E is not an essential annulus (ie, bounds a D2 × I region) and the case that
E is an I -bundle over an annulus or a Möbius band with a vertical boundary
component in ∂vN(B0) are easy to prove by similar arguments.

We can split F into a lamination F ′ so that λ is a sublamination of F ′ and,
after isotopy, F ′ ∩ E is an essential lamination in E . By our assumption that
E is not an I -bundle over an annulus or a Möbius band, the double of E
is an I -bundle over a closed surface of genus greater than 1. A theorem of
Brittenham [3] says that any essential lamination in an I -bundle over a closed
surface with genus > 1, containing the boundary as leaves, can be isotoped
to be transverse to the I -fibers. Thus, we can assume F ′ ∩ E is transverse
to the I -fibers of E . Let N(B0) ∪ E = N(B1) be a fibered neighborhood
of another essential branched surface B1 . Since the vertical boundary of E
consists of essential annuli and E is not an I -bundle over an annulus or a
Möbius band, B1 contains no splitting annulus that cuts through E . Note
that by the construction in [19], every I -fiber of N(B′) (and hence N(B0))
is transverse to the foliation F . If there is an I -fiber of E that cannot be
transverse to the foliation F , then there must be an arc α in a leaf of F ′ and
a subarc β of an I -fiber in ∂E such that α ∪ β bounds a monogon disk in
M − F ′ . Similar to the proofs of Propositions 4.2 and 4.3, such a monogon
disk implies that N(B1) contains a splitting annulus cutting through E , which
gives a contradiction. Hence, after isotopies, the foliation F is transvere to the
I -fibers of E for any E ∈ C .

Therefore, by our assumptions on B′ , λ and F , there must be a union of
product regions C ′ in M−int(N(B)) such that M−int(N(B)∪C ′) consists of
taut sutured manifolds. Conversely, if we find such a C ′ for B , we can conclude
that the essential lamination fully carried by B extends to a Reebless foliation
by [15, 16] because the complementary regions of B are essential. Thus, the
algorithm will succeed if and only if the manifold has a Reebless foliation.

6 Conclusion

The algorithm we have described is unsatisfying, since the proof that the algo-
rithm terminates doesn’t give us any idea of how long the algorithm will take,
and it seems that it would be nearly impossible to implement on a computer.
It would be interesting to get an upper bound on how much one needs to split
an essential branched surface to get a laminar branched surface. If the bound
were good enough, then one might be able to answer the following question.
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Question Is there an NP algorithm to determine if a 3-manifold is laminar?

Other questions of interest:

(1) Is there a finite collection of laminar branched surfaces in M which carry
every essential lamination, and if so, is there an algorithm to find them?

(2) Are there algorithms to determine if a manifold has a tight lamination [2],
an R-covered foliation [8], a slithering [37], or a pseudo-Anosov flow [14]
(these references give definitions of these objects, not necessarily original
sources for the definitions)?

(3) Is there an algorithm to determine if the fundamental group of a 3-
manifold has a circular ordering? If an atoroidal manifold M has a taut
transversely orientable foliation, then it has been shown by Bill Thurston
that π1(M) has a circular ordering, also proven by Calegari and Dunfield
in Theorem 6.2 of [9].

(4) Is there an algorithm to find all essential laminations in Dehn fillings on
a link? What we have in mind here would be to describe a collection
of branched surfaces in a link complement, and a description for each
branched surface of which Dehn fillings on the link have essential lami-
nations which meet the link complement in a lamination carried by that
branched surface. This has been done for the figure eight knot comple-
ment by Tim Schwider [35].
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