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948 Ronald Fintushel and Ronald J Stern

1 Introduction

This paper is concerned with the construction and detection of homologous but
inequivalent (under diffeomorphism or symplectomorphism) Lagrangian tori.
In recent years there has been considerable progress made on the companion
problem for symplectic tori. In fact, it is now known that in a simply connected
symplectic 4–manifold with b+ > 1, if T is an embedded symplectic torus, then
for each m > 1 the homology class of mT contains infinitely many nonisotopic
embedded symplectic tori. (See eg [3, 7, 8].) The techniques used for the
construction of these examples fail for Lagrangian tori.

The first examples of inequivalent homologous Lagrangian tori were discov-
ered by S Vidussi [19] who presented a technique for constructing infinitely
many homologous, but nonisotopic, Lagrangian tori in E(2)K , the result of
knot surgery on the K3–surface using the trefoil knot, K . The work in this
paper was motivated by an attempt to better understand and distinguish the
examples presented in [19]. We found that the key to these examples is the
construction of infinite families of nullhomologous Lagrangian tori T in a sym-
plectic 4–manifold X . There is a simple process by which an integer λ(T ), a
Lagrangian framing defect, can be associated to T . In this paper we show that
λ(T ) is an invariant of the symplectomorphism, and in many cases the diffeo-
morphism, type of (X,T ). We then construct infinite families of inequivalent
nullhomologous Lagrangian tori distinguished by λ(T ). Homologically essential
examples are created from these by a circle sum process.

Some examples typical of those we which we study can be briefly described: Let
X be any symplectic manifold which contains an embedded self-intersection 0
symplectic torus T . For any fibered knot K consider the symplectic manifold
XK constructed by knot surgery [5]. Since XK is the fiber sum of X and
S1 ×MK along T and S1 × m in S1 ×MK , where MK is the result of 0–
framed surgery on K and m is a meridian of K , there is a codimension 0
submanifold V in XK diffeomorphic to S1 × (MK \ m). The manifold V is
fibered by punctured surfaces Σ′ , and if γ is any loop on such a surface, the
torus Tγ = S1 × γ in XK is nullhomologous and Lagrangian. We show that
λ(Tγ) is a diffeomorphism invariant. This invariant persists even after circle
sums with essential Lagrangian tori, and it distinguishes all our (and Vidussi’s)
examples.

Here is a more precise summary of our examples:

Theorem 1.1 (a) Let X be any symplectic manifold with b+2 (X) > 1 which
contains an embedded self-intersection 0 symplectic torus with a vanishing cy-
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cle. (See Section 4 for a definition.) Then for each nontrivial fibered knot K
in S3 , the result of knot surgery XK contains infinitely many nullhomologous
Lagrangian tori, pairwise inequivalent under orientation-preserving diffeomor-
phisms.

(b) Let Xi , i = 1, 2, be symplectic 4–manifolds containing embedded self-
intersection 0 symplectic tori Fi and assume that F1 contains a vanishing cycle.
Let X be the fiber sum, X = X1#F1=F2X2 . Then for each nontrivial fibered
knot K in S3 , the manifold XK contains an infinite family of homologically
primitive and homologous Lagrangian tori which are pairwise inequivalent.

In Section 6 we shall also give examples of nullhomologous Lagrangian tori Ti
in a symplectic 4–manifold where the λ(Ti) are mutually distinct, so these tori
are inequivalent under symplectomorphisms, but the techniques of this paper,
namely relative Seiberg–Witten invariants, fail to distinguish the the Ti . It
remains an extremely interesting question whether the these tori are equivalent
under diffeomorphisms.

2 Seiberg–Witten invariants for embedded tori

The Seiberg–Witten invariant of a smooth closed oriented 4–manifold X with
b+2 (X) > 1 is an integer-valued function SWX which is defined on the set of
spinc structures over X . Corresponding to each spinc structure s over X
is the bundle of positive spinors W+

s over X . Set c(s) ∈ H2(X) to be the
Poincaré dual of c1(W+

s ). Each c(s) is a characteristic element of H2(X; Z)
(ie, its Poincaré dual ĉ(s) = c1(W+

s ) reduces mod 2 to w2(X)). We shall work
with the modified Seiberg–Witten invariant

SW′X : {k ∈ H2(X; Z)|k̂ ≡ w2(TX) (mod 2))} → Z

defined by SW′X(k) =
∑

c(s)=k

SWX(s).

The sign of SWX depends on a homology orientation of X , that is, an ori-
entation of H0(X; R) ⊗ detH2

+(X; R) ⊗ detH1(X; R). If SW′X(β) 6= 0, then
β is called a basic class of X . It is a fundamental fact that the set of ba-
sic classes is finite. Furthermore, if β is a basic class, then so is −β with
SW′X(−β) = (−1)(e+sign)(X)/4 SW′X(β) where e(X) is the Euler number and
sign(X) is the signature of X . The Seiberg–Witten invariant is an orientation-
preserving diffeomorphism invariant of X (together with the choice of a homol-
ogy orientation).
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It is convenient to view the Seiberg–Witten invariant as an element of the
integral group ring ZH2(X), where for each α ∈ H2(X) we let tα denote the
corresponding element in ZH2(X). Suppose that {±β1, . . . ,±βn} is the set of
nonzero basic classes for X . Then the Seiberg–Witten invariant of X is the
Laurent polynomial

SWX = SW′X(0) +
n∑
j=1

SW′X(βj) · (tβj + (−1)(e+sign)(X)/4 t−1
βj

) ∈ ZH2(X).

Suppose that T is an embedded (but not necessarily homologically essential)
torus of self-intersection 0 in X , and identify a tubular neighborhood of T with
T ×D2 . Let α, β , γ be simple loops on ∂(T × D2) whose homology classes
generate H1(∂(T × D2)). Denote by XT (p, q, r) the result of surgery on T
which annihilates the class of pα+ qβ + rγ ; ie,

XT (p, q, r) = (X \ T ×D2) ∪ϕ T 2 ×D2 (1)

where ϕ : ∂(X \ T ×D2) → ∂(T 2 ×D2) is an orientation-reversing diffeomor-
phism satisfying ϕ∗[pα+qβ+rγ] = [∂D2]. An important formula for calculating
the Seiberg–Witten invariants of surgeries on tori is due to Morgan, Mrowka,
and Szabo [13] (see also [12], [17]). Suppose that b+2 (X \ (T ×D2)) > 1. Then
each b+2 (XT (p, q, r)) > 1. Given a class k ∈ H2(X):∑

i

SW′XT (p,q,r)(k(p,q,r) + i[T ]) = p
∑
i

SW′XT (1,0,0)(k(1,0,0) + i[T ])+

+ q
∑
i

SW′XT (0,1,0)(k(0,1,0) + i[T ]) + r
∑
i

SW′XT (0,0,1)(k(0,0,1) + i[T ]) (2)

In this formula, T denotes the torus which is the core T 2 × 0 ⊂ T 2 × D2 in
each specific manifold XT (a, b, c) in the formula, and k(a,b,c) ∈ H2(XT (a, b, c))
is any class which agrees with the restriction of k in H2(X \ T ×D2, ∂) in the
diagram:

H2(XT (a, b, c)) −→ H2(XT (a, b, c), T ×D2)y ∼=
H2(X \ T ×D2, ∂)x ∼=

H2(X) −→ H2(X,T ×D2)

Furthermore, in each term of (2), unless the homology class [T ] is 2–divisible,
each i must be even since the classes k(a,b,c) + i[T ] must be characteristic in
H2(XT (a, b, c)).

Geometry & Topology, Volume 8 (2004)



Invariants for Lagrangian tori 951

Let π(a, b, c) : H2(XT (a, b, c)) → H2(X \T ×D2, ∂) be the composition of maps
in the above diagram, and π(a, b, c)∗ the induced map of integral group rings.
Since we are interested in invariants of the pair (X,T ), we shall work with

SW(XT (a,b,c),T ) = π(a, b, c)∗(SWXT (a,b,c)) ∈ ZH2(X \ T ×D2, ∂).

The indeterminacy in (2) is caused by multiples of [T ]; so passing to SW
removes this indeterminacy, and the Morgan–Mrowka–Szabo formula becomes

SW(XT (p,q,r),T ) = pSW(XT (1,0,0),T ) + q SW(XT (0,1,0),T ) + r SW(XT (0,0,1),T ). (3)

Let T and T ′ be embedded tori in the oriented 4–manifold X . We shall say that
these tori are C∞–equivalent if there is an orientation-preserving diffeomorphism
f of X with f(T ) = T ′ . Any self-diffeomorphism of X which throws T onto
T ′ , takes a loop on the ∂(T × D2) to a loop on the boundary of a tubular
neighborhood of T ′ . Set

I(X,T ) = {SW(XT (a,b,c),T )|a, b, c ∈ Z}.

Proposition 2.1 Let T be an embedded torus of self-intersection 0 in the
simply connected 4–manifold X with b+2 (X \ T ) > 1. After fixing a homol-
ogy orientation for X , I(X,T ) is an invariant of the pair (X,T ) up to C∞-
equivalence.

3 The Lagrangian framing invariant

In this section we shall define the invariant λ(T ) of a nullhomologous La-
grangian torus. To begin, consider a nullhomologous torus T embedded in a
smooth 4–manifold X with tubular neighborhood NT . Let i : ∂NT → X \NT

be the inclusion.

Definition 3.1 A framing of T is a diffeomorphism ϕ : T ×D2 → NT such
that ϕ(p) = p for all p ∈ T . A framing ϕ of T is nullhomologous if for x ∈ ∂D2 ,
the homology class ϕ∗[T × {x}] ∈ ker i∗ .

Given a framing ϕ : T × D2 → NT , there is an associated section σ(ϕ) of
∂NT → T given by σ(ϕ)(x) = ϕ(x, 1), and given a pair of framings, ϕ0 , ϕ1

there is a difference class δ(ϕ0, ϕ1) ∈ H1(T ; Z) ∼= [T, S1], the homotopy class
of the composition

T
σ(ϕ1)−→ ∂NT

ϕ−1
0−→ T × ∂D2 pr2−→ ∂D2 ∼= S1.

Geometry & Topology, Volume 8 (2004)
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Note that if α is a loop on T , then δ(ϕ0, ϕ1)[α] = σ(ϕ1)∗[α] · σ(ϕ0)∗[T ] using
the intersection pairing on ∂NT , or equivalently,

(ϕ0)−1
∗ σ(ϕ1)∗[α] = [α× {1}] + δ(ϕ0, ϕ1)[α] [∂D2] ∈ H1(T × ∂D2; Z).

Proposition 3.2 A nullhomologous framing of T is unique up to homotopy.

Proof Since T is nullhomologous, it follows that H2(X\NT )→ H2(X) is onto,
and H3(X \ NT , ∂NT ) ∼= H3(X,T ) ∼= H3(X) ⊕ H2(T ). Then the long exact
sequence of (X\NT , ∂NT ) shows that the kernel of i∗ : H2(∂NT )→ H2(X\NT )
is isomorphic to H2(T ) = Z. So any two nullhomologous framings ϕ0 , ϕ1 give
rise to homologous tori σ(ϕi)(T ) in ∂NT . Thus for any loop α on T :

δ(ϕ0, ϕ1)[α] = σ(ϕ1)∗[α] · σ(ϕ0)∗[T ] =
σ(ϕ1)∗[α] · σ(ϕ1)∗[T ] = [α× {1}] · [T × {1}] = 0

the last pairing in T × ∂D2 . Hence δ(ϕ0, ϕ1) = 0.

We denote by ϕN any such nullhomologous framing of T .

Now suppose that (X,ω) is a symplectic 4–manifold containing an embedded
Lagrangian torus T . For any closed oriented Lagrangian surface Σ ⊂ X there
is a nondegenerate bilinear pairing

(TX/TΣ)⊗ TΣ→ R, ([v], u)→ ω(v, u).

Hence, the normal bundle NΣ
∼= T ∗Σ, the cotangent bundle; so computing

Euler numbers, 2g − 2 = −e(Σ) = e(T ∗(Σ)) = e(NΣ) = Σ · Σ, for g the genus
of Σ. Furthermore, this is true symplectically as well. The Lagrangian neigh-
borhood theorem [20] states that each such Lagrangian surface has a tubular
neighborhood which is symplectomorphic to a neighborhood of the zero sec-
tion of its cotangent bundle with its standard symplectic structure, where the
symplectomorphism is the identity on Σ.

Thus an embedded Lagrangian torus T has self-intersection 0, and small enough
tubular neighborhoods NT have, up to symplectic isotopy, a preferred framing
ϕL : T ×D2 → NT such that for any point x ∈ D2 , the torus ϕL(T × {x}) is
also Lagrangian. We shall call ϕL the Lagrangian framing of T .

Thus if T is a nullhomologous Lagrangian torus, we may consider the difference
δ(ϕN , ϕL) ∈ H1(T ; Z) = [T, S1]. It thus induces a well-defined homomorphism
δ(ϕN , ϕL)∗ : H1(T ; Z)→ H1(S1).
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Definition 3.3 The Lagrangian framing invariant of a nullhomologous La-
grangian torus T is the nonnegative integer λ(T ) such that

δ(ϕN , ϕL)∗(H1(T ; Z)) = λ(T ) Z in H1(S1) = Z.

Thus if a and b form a basis for H1(T ; Z) then λ(T ) is the greatest common
divisor of |δ(ϕN , ϕL)(a)| and |δ(ϕN , ϕL)(b)|. Furthermore, if f : X → Y is a
symplectomorphism with f(T ) = T ′ , then f ◦ϕN is a nullhomologous framing
of T ′ , and for small enough NT , f ◦ϕL is the Lagrangian framing of T ′ . Hence:

Theorem 3.4 Let T be a nullhomologous Lagrangian torus in the symplectic
4–manifold X . Then the Lagrangian framing invariant λ(T ) is a symplecto-
morphism invariant of (X,T ).

Here is an example. Let K be any fibered knot in S3 , and let MK be the
result of 0–surgery on K . Then MK is a 3–manifold with the same homology
as S2 × S1 , and MK is fibered over the circle. Let γ be any embedded loop
which lies on a fiber of the fibration S3 \ K → S1 . Ie, γ lies on a Seifert
surface Σ of K . The first homology H1(MK) = H1(S3 \ K) ∼= Z, and the
integer corresponding to a given loop is the linking number of the loop with K .
Since γ lies on a Seifert surface, its linking number with K is 0, and so γ is
nullhomologous in MK .

Taking the product with a circle, S1×MK fibers over T 2 , and it is a symplectic
4–manifold with a symplectic form which arises from the sum of volume forms
in the base and in the fiber. More precisely, one can choose metrics so that the
fiber bundle projection, p : MK → S1 is harmonic. Let α be the volume form
on the base S1 , and let β be the volume form on the first S1 in S1 ×MK .
Then ω = β ∧ p∗(α) + ∗3 p∗(α) defines a symplectic form on S1 ×MK . Since
γ lies in a fiber, its tangent space at any point is spanned by a vector parallel
to the tangent space of the fiber and a vector tangent to S1 . So ω vanishes on
T (S1 × γ). (See also [19].) Thus Tγ = S1 × γ is a nullhomologous Lagrangian
torus in S1 × MK . If γ′ is a pushoff of γ in the Seifert surface Σ, then
S1 × γ′ is again Lagrangian. This, together with the pushoff of γ onto nearby
fibers, describes the Lagrangian framing of Tγ . We shall also say that γ′ is the
Lagrangian pushoff of γ .

Definition 3.5 Let K be a fibered knot in S3 , and let γ be any embedded
loop lying on a fiber of the fibration S3 \ K → S1 . The Lagrangian framing
defect λ(γ) of γ is the linking number of γ with a Lagrangian pushoff of itself.

Geometry & Topology, Volume 8 (2004)
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In Figures 1 and 2, we have λ(γ1) = 1, and λ(γ2) = 3.
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As in the above definition, let γ be an embedded loop lying on a fiber of the
fibration S3 \K → S1 , and let N(γ) ∼= γ ×D2 be a tubular neighborhood of
γ . Further, let `(γ) ∈ H1(∂N(γ)) be the (nullhomologous) 0–framing of γ in
S3 ; that is, the nontrivial primitive class which is sent to 0 by H1(∂(N(γ))) →
H1(S3 \ N(γ)). Then if γ′ is a Lagrangian pushoff of γ , in H1(∂(N(γ))) we
have the relation

[γ′] = `(γ) + λ(γ)[∂D2].

In other words, the Lagrangian pushoff corresponds to the framing λ(γ) with
respect to the usual 0–framing `(γ) in S3 . So, for example, a Lagrangian 1/p
surgery on the curve γ1 above corresponds to a (p+ 1)/p surgery with respect
to the usual framing of γ1 in S3 . More generally, a 1/p Lagrangian surgery
on a curve γ in the Seifert surface of a fibered knot in S3 corresponds to a
(pλ(γ) + 1)/p surgery with respect to the usual framing of γ in S3 .

Theorem 3.6 In S1×MK , the Lagrangian framing invariant of Tγ is λ(Tγ) =
|λ(γ)|.

Proof As a basis for H1(Tγ ; Z) take [{1} × γ] and [S1 × {x}] where x ∈ γ .
Since the linking number of γ and K is 0, there is a Seifert surface C for γ in
S3 which is disjoint from K . The tubular neighborhood NT of Tγ is given by
NT = S1×N(γ) and σ(ϕN )(Tγ) = (S1×C)∩∂NT = S1× (C ∩∂N(γ)) = S1×
`(γ), where we are using ‘`(γ)’ here to denote a curve in the class `(γ). Thus
δ(ϕN , ϕL)[S1×{x}] = σ(ϕL)∗[S1×{x}]·[S1×`(γ)] = [S1×{pt}]·[S1×`(γ)] = 0,

Geometry & Topology, Volume 8 (2004)
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and

δ(ϕN , ϕL)[{1} × γ] = σ(ϕL)∗[{1} × γ] · [S1 × `(γ)] =

[{1} × γ′] · [S1 × `(γ)] = ±(`(γ) + λ(γ)[∂D2]) · `(γ) = ±λ(γ)

Thus λ(Tγ) = gcd(|δ(ϕN , ϕL)[{1} × γ]|, |δ(ϕN , ϕL)[S1 × {x}]|) = |λ(γ)|.

Lemma 3.7 Given any nontrivial fibered knot K in S3 , there is a sequence
of embedded loops γn contained in a fixed fiber Σ of S3 \K → S1 such that
lim
n→∞

|λ(γn)| =∞.

Proof If we can find any c ∈ H1(Σ) represented by an embedded loop such
that λ(c) 6= 0, then if e ∈ H1(Σ) is represented by a loop and is not a multiple
of c, λ(e+nc) is the linking number of e+nc with e′+nc′ (c′ , e′ the Lagrangian
pushoffs). Thus

λ(e+ nc) = λ(e) + n2λ(c) + n(lk(c, e′) + lk(e, c′)),

whose absolute value clearly goes to ∞ as n→∞. Further, e+nc is represented
by an embedded loop for all n for which e+nc is primitive, and this is true for
infinitely many n. (To see this, identify H1(Σ) with Z2g . Then since c and e
are independent and primitive, we may make a change of coordinates so that in
these new coordinates c = (1, 0, 0, . . . , 0) and e = (r, s, 0, . . . , 0), for r, s ∈ Z,
s 6= 0. Thus e + nc = (n + r, s, 0, . . . , 0). The first coordinate is prime for
infinitely many n, and at most finitely many of these primes can divide s. So
these e+ nc are primitive.)

To find c with λ(c) 6= 0, note that lk(c, e′) is the Seifert linking pairing. Since
∆K(t) 6= 1; this pairing is nontrivial. Let {bi} be a basis for H1(Σ). If all
λ(bi) = 0, and all λ(bi + bj) = 0 then lk(bj , b′i) = −lk(bi, b′j) for all i 6= j . This
means that the Seifert matrix V corresponding to this basis satisfies V T =
−V . However, ±1 = ∆K(1) = det(V T − V ) = det(2V T ) = 22g det(V T ), a
contradiction.

We conclude from Theorem 3.6 and this lemma:

Theorem 3.8 Let K be any nontrivial fibered knot in S3 . Then in the
symplectic manifold X = S1 ×MK there are infinitely many nullhomologous
Lagrangian tori which are inequivalent under symplectomorphisms of X .
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The constructions of this section are related to Polterovich’s ‘linking class’
L ∈ H1(T ; Z) (see [15]) which is defined for Lagrangian tori T ⊂ C2 , by
L([a]) = lk(T, a′), where a′ is a pushoff of a representative a of [a] ∈ H1(T ; Z)
in the Lagrangian direction. One quickly sees that L is actually defined for
a nullhomologous Lagrangian torus in any symplectic 4–manifold, and L =
δ(ϕN , ϕL).

The Polterovich linking class is also defined for totally real tori in C2 , and it is
shown in [15] that the value of L on totally real tori can be essentially arbitrary,
whereas Eliashberg and Polterovich have shown that in C2 the linking class L
vanishes on Lagrangian tori.

The results of this section may be interpreted as saying that this vanishing
phenomenon disappears in symplectic 4–manifolds more complicated than C2 .

4 Nullhomologous Lagrangian tori

In this section we shall describe examples of collections of C∞–inequivalent
nullhomologous Lagrangian tori. The key point is that for our examples, the
Lagrangian framing invariant is actually a C∞ invariant.

We begin by describing the symplectic 4–manifolds which contain the examples.
Let X be a symplectic 4–manifold with b+2 (X) > 1 which contains an embedded
symplectic torus F satisfying

(a) F · F = 0

(b) F contains a loop α∆ , primitive in π1(F ), which in X \ F bounds an
embedded disk ∆ of self-intersection −1.

For example, a fiber of a simply connected elliptic surface satisfies this condition.
Any torus with a neighborhood symplectically diffeomorphic to a neighborhood
of a nodal or cuspidal fiber in an elliptic surface also satisfies the condition, and
such tori can be seen to occur in many complex surfaces [4]. Let us describe this
situation by saying that X contains an embedded symplectic self-intersection
0 torus with a vanishing cycle.

Now consider a genus g fibered knot K in S3 , and let Σ be a fiber of the
fibration MK → S1 and let m be a meridian of K . Let X be a symplectic 4–
manifold with b+2 (X) > 1 and with an embedded symplectic self-intersection 0
torus, F , with a vanishing cycle. Fix tubular neighborhoods N = S1×m×D2

Geometry & Topology, Volume 8 (2004)
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of the torus S1 ×m in S1 ×MK and NF = F ×D2 of F in X , and consider
the result of knot surgery

XK = X#F=S1×m(S1 ×MK)

where we require the gluing to take the circle (S1×pt×pt) in ∂N to (α∆×pt)
in ∂NF . Then XK is a symplectic 4–manifold with Seiberg–Witten invariant
SWXK = ∆sym

K (t2F ) · SWX where ∆sym
K is the symmetrized Alexander polyno-

mial of K (see [5]). Fix an embedded loop γ on Σ whose linking number with
the chosen meridian m is 0, and let Tγ = S1×γ , a Lagrangian torus with tubu-
lar neighborhood NTγ = Tγ×D2 in S1×MK . Now MK is a homology S1×S2

and H1(Σ) → H1(MK) is the 0–map. Removing the neighborhood Nm of a
meridian from MK does not change H1 . (Nm ∩Σ = D2 ; so ∂D2 is a meridian
to m and it bounds Σ\D2 .) Thus we have [γ] = 0 in H1(MK \Nm), and hence
Tγ is nullhomologous in XK . In fact, since the linking number of γ and K and
m is 0, the loop γ bounds an oriented surface C ⊂ S3 \ (K ∪m). Thus S1×C
provides a nullhomology of Tγ in XK . Also note that b+2 (XK\Tγ) = b+2 (X) > 1.

Proposition 4.1 For loops γ1 , γ2 in the fiber Σ of MK → S1 , if the corre-
sponding nullhomologous tori Tγ1 and Tγ2 in XK are symplectically equivalent
then λ(Tγ1) = λ(Tγ1).

Proof Because S1 × C is a nullhomology of Tg , the invariant λ(Tγ) is calcu-
lated exactly as in Theorem 3.6; so this proposition follows.

We wish to calculate I(XK , Tγ). First fix a basis for ∂NTγ which is adapted to
the Lagrangian framing of Tγ . This basis is {[S1×{y}], [γ′], [∂D2]} where γ′ is a
Lagrangian pushoff of γ in Σ and y ∈ γ′ . We begin by studying XK,Tγ(1, 0, 0),
the manifold obtained from XK by the surgery on Tγ which kills S1 × {y}.

Proposition 4.2 SWXK,Tγ (1,0,0) = 0.

Proof Let τ be a path in Σ from y to the point x at which m intersects Σ.
By construction, S1 × {x} is identified with α∆ × pt ∈ ∂NF . This means that
S1 × {x} is the boundary of a disk ∆ of self-intersection −1 in X \NF . The
surgery curve, S1×{y}, bounds a disk D of self-intersection 0 in XK,Tγ(1, 0, 0)
(disjoint from XK \ Tγ ×D2 ); so the surgered manifold XK,Tγ(1, 0, 0) contains
the sphere C = ∆ ∪ (S1 × τ) ∪D of self-intersection −1.

The rim torus R = m × ∂D2 ⊂ ∂NF intersects the sphere C in a single
positive intersection point, but this is impossible if SWXK,Tγ (1,0,0) 6= 0. For,
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if SWXK,Tγ (1,0,0) 6= 0, then blowing down C , we obtain a 4–manifold Z (with
b+2 > 1) which contains a torus R′ of self-intersection +1, and the Seiberg–
Witten invariant of Z is nontrivial. However, the adjunction inequality states
that for any basic class β of Z we have 0 ≥ 1+|β ·R′|, an obvious contradiction.

Before proceeding further, note that since Tγ is nullhomologous in XK ,

j∗ : H2(XK)→ H2(XK , Tγ)

is an injection. Thus we may identify SW(XK ,Tγ) = j∗(SWXK ) with SWXK .
We shall make use of an important result due to Meng and Taubes concerning
the Seiberg–Witten invariant of a closed 3–manifold M [12]:{

SWM = ∆sym
M (t2) · (t− t−1)−2, b1(M) = 1

SWM = ∆sym
M , b1(M) > 1

(4)

where ∆sym
M is the symmetrized Alexander polynomial of M , and if b1(M) = 1

then t ∈ ZH1(M ; R) corresponds to the generator of H1(M,R).

Since XK,Tγ (0, 0, 1) is the result of the surgery which kills ∂D2 , it is XK

again, and we know that SWXK = ∆sym
K (t2F ) · SWX . This also means that

SW(XK ,Tγ) = ∆sym
K (t2F ) · SWX . Thus to calculate I(XK , Tγ), it remains only

to calculate the Seiberg–Witten invariant of XK,Tγ (0, 1, 0), the manifold ob-
tained by the surgery on Tγ which makes γ′ bound a disk.

Let MK(γ) denote the result of surgery on γ in MK with the Lagrangian
framing. In terms of the usual nullhomologous framing, this is the result of
surgery on the link K ∪ γ in S3 with framings 0 on K and λ(γ) on γ . In
case λ(γ) 6= 0, we have b1(MK(γ)) = 1 and if λ(γ) = 0 then b1(MK(γ)) = 2.
In this case, the extra generator of H1(MK(γ); R) is given by a meridian to γ
in S3 . Accordingly, the Seiberg–Witten invariant of MK(γ) (equivalently, the
Seiberg–Witten invariant of S1 ×MK(γ)) is given by

SWMK(γ) =

{
∆sym
MK(γ)(t

2) · (t− t−1)−2, λ(γ) 6= 0

∆sym
MK(γ)(t

2, s2), λ(γ) = 0
(5)

where t corresponds to the meridian of K and s to the meridian of γ .

Proposition 4.3 Suppose that λ(γ) 6= 0, then |∆MK(γ)(1)| = |λ(γ)|.

Proof We have H1(MK(γ)) = Z ⊕ Z|λ(γ)| . It is a well-known fact [18] that
for 3–manifolds with b1 = 1, the sum of the coefficients of the Alexander
polynomial is, up to sign, the order of the torsion of H1 .
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Let Z denote the 3–manifold obtained from MK by doing +1 surgery on Tγ
with respect to the Lagrangian framing. This is the surgery that kills the class
[γ′] + [∂D2] on the boundary of a tubular neighborhood γ × D2 of γ . Then
H1(Z) = Z⊕Zb where b = |λ(γ) + 1|. Since MK is fibered over the circle, the
manifold Z is also fibered over the circle with the same fiber Σ. (This is true
for any (1/p)–Lagrangian-framed surgery. The effect of such a surgery on the
monodromy is to compose it with the pth power of a Dehn twist about γ . See
[16, 1].)

If λ(γ) 6= −1, then b1(Z) = 1, and its symmetrized Alexander polynomial
∆sym
Z (t) is a function of one variable. If λ(γ) = −1, we have H1(Z) = Z⊕Z. In

this case, the Alexander polynomial of Z is a 2–variable polynomial ∆sym
Z (t, s)

where s corresponds to the meridian of γ . Let ∆̄sym
Z (t) = ∆sym

Z (t, 1).

Write ∆sym
K (t) = a0 + (tg + t−g) +

g−1∑
i=1

ai(ti + t−i). (This is equal to ∆sym
MK

(t).)

Lemma 4.4 The symmetrized Alexander polynomial of Z is given by

∆sym
Z (t) = b0 + (tg + t−g) +

g−1∑
i=1

bi(ti + t−i), λ(γ) 6= −1

∆̄sym
Z (t) =

(
b0 + (tg + t−g) +

g−1∑
i=1

bi(ti + t−i)

)
· (t1/2 − t−1/2)−2, λ(γ) = −1

for some choice of coefficients bi .

Proof For a 3–manifold with b1 = 1 which is fibered over the circle, the
Alexander polynomial is the characteristic polynomial of the (homology) mon-
odromy. (Compare [18, VII.5.d].) This is a monic symmetric polynomial of
degree 2g , as claimed.

In case λ(γ) = −1, one can either apply the theorem of Turaev op.cit. or
apply the work of Hutchings and Lee. According to [10] together with Mark
[11], after appropriate symmetrization, the zeta invariant of the monodromy,
namely the characteristic (Laurent) polynomial of the homology monodromy
times the term (t1/2 − t−1/2)−2 is equal to a (Laurent) polynomial in t, whose
coefficient of tn is the sum over m of the coefficients of all terms of ∆sym

Z (t, s)
of the form an,mt

nsm . In other words, ∆̄sym
Z (t) = ∆sym

Z (t, 1) is this Laurent
polynomial. This proves the second statement of the lemma.

Lemma 4.5 The Seiberg–Witten invariant of XK,Tγ(0, 1, 0) is

SW(XK,Tγ (0,1,0),Tγ ) =
(
∆sym
Z (t2F )−∆sym

K (t2F )
)
· SWX
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if λ(γ) 6= −1, and if λ(γ) = −1:

SW(XK,Tγ (0,1,0),Tγ) =
(
∆̄sym
Z (t2F ) · (tF − t−1

F )2 −∆sym
K (t2F )

)
· SWX ,

Proof The result of (+1)–Lagrangian-framed surgery on Tγ in XK is the
fiber sum X#F=S1×m(S1 × Z). If λ(γ) 6= −1, it follows from (4) and the
usual gluing formulas that this manifold has Seiberg–Witten invariant equal to
∆sym
Z (t2F ) · SWX . Applying the surgery formula,

SW(X#F=S1×m(S1×Z),Tγ) = SW(XK,Tγ (0,1,0),Tγ ) + SW(XK ,Tγ)

or
∆sym
Z (t2F ) · SWX = SW(XK,Tγ (0,1,0),Tγ ) + ∆sym

K (t2F ) · SWX

and the lemma follows.

If λ(γ) = −1, then

SW(X#F=S1×m(S1×Z),Tγ) = SWX · SW(S1×Z,Tγ) · (tF − t−1
F )2

= SWX · ∆̄sym
Z (t2F ) · (tF − t−1

F )2

and the result follows as above.

Theorem 4.6 Let X be a symplectic 4–manifold with b+ > 1 containing
an embedded self-intersection 0 torus F with a vanishing cycle. Let K be a
nontrivial fibered knot, and let γ be an embedded loop on a fiber of S3 \K →
S1 . Then the Lagrangian framing invariant λ(Tγ) is an orientation-preserving
diffeomorphism invariant of the pair (XK , Tγ).

Proof Using the notation above and Lemmas 4.4 and 4.5,

SW(XK,Tγ (0,1,0),Tγ ) =

(
(b0 − a0) +

g−1∑
i=1

(bi − ai)(t2iF + t−2i
F )

)
· SWX (6)

It follows from (3) that

SW(XK,Tγ (0,p,q),Tγ) = p

(
(b0 − a0) +

g−1∑
i=1

(bi − ai)(t2iF + t−2i
F )

)
· SWX

+ q

(
a0 + (t2gF + t−2g

F ) +
g−1∑
i=1

ai(t2iF + t−2i
F )

)
· SWX (7)
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Since ∆sym
K (1) = ±1, we have 2 + a0 + 2

g−1∑
1
ai = ε = ±1. Furthermore,

SW(XK,Tγ (0,1,0),Tγ) =

{
SWX ·∆sym

MK(γ)
(t2F ), λ(γ) 6= 0,

SWX · ∆̄sym
MK(γ)(t

2
F ) · (tF − t−1

F )2, λ(γ) = 0.
(8)

(See (5).) Thus if λ(γ) 6= 0,

∆sym
MK(γ)(t

2) = (b0 − a0) +
g−1∑
i=1

(bi − ai)(t2i + t−2i)

and by Proposition 4.3,

(b0 − a0) + 2
g−1∑

1

(bi − ai) = ±λ(γ) = δ λ(γ) (9)

If λ(γ) = 0, it follows from equations (6) and (8) that

∆̄sym
MK(γ)(t

2) · (t− t−1)2 = (b0 − a0) +
g−1∑
i=1

(bi − ai)(t2i + t−2i)

so (b0−a0)+2
g−1∑

1
(bi−ai) = 0 in this case, and we see that (9) holds in general.

Let σ(p, q) be the sum of all coefficients of SW(XK,Tγ (0,p,q),Tγ)/SWX from terms
of degree not equal to ±2g . Then it follows from (7) that σ(p, q) = pδλ(γ) +
q(ε−2). Let τ(p, q) be the coefficient of t2gF in SWXTγ (0,p,q)/SWX ; so τ(p, q) =
q .

We have seen that

I(XK , Tγ) = {SW(XK,Tγ (a,p,q),Tγ)|a, p, q ∈ Z} = {SW(XK,Tγ (0,p,q),Tγ)|p, q ∈ Z}
(the last equality by Proposition 4.2) is an orientation-preserving diffeomor-
phism invariant of the pair (XK , Tγ). From I(XK , Tγ) we can extract the
invariant

gcd{|σ(p, q)+(2−ε)τ(p, q)|
∣∣p, q ∈ Z} = gcd{|pδλ(γ)|

∣∣p ∈ Z} = |λ(γ)| = λ(Tγ).

Theorem 4.7 Let X be a symplectic 4–manifold with b+ > 1 containing an
embedded self-intersection 0 torus F with a vanishing cycle, and let K be a
nontrivial fibered knot. Then in XK there is an infinite sequence of pairwise
inequivalent nullhomologous Lagrangian tori Tγn .

Proof Choose a sequence of loops γn as in the statement of Lemma 3.7, then
it is clear that the elements γn give inequivalent Tγn .
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5 Circle sums and essential Lagrangian tori

We next discuss a technique for utilizing families of inequivalent nullhomol-
ogous Lagrangian tori to build families of inequivalent essential homologous
Lagrangian tori. For a fibered knot K in S3 , let m1 , m2 be meridians, and
consider a meridian µ1 of m1 in MK as shown in Figure 3.

Let Xi , i = 1, 2 be symplectic 4–manifolds, containing embedded symplectic
tori Fi of self-intersection 0, and suppose that F1 has a vanishing cycle. Denote
by X the fiber sum X = X1#F1=F2X2 . Then

XK = (X1#F1=F2X2)K = X1#F1=S1×m1
S1 ×MK#S1×m2=F2

X2

As in the previous section, we insist that the gluing map from the boundary of
a tubular neighborhood of S1×m1 to the boundary of a tubular neighborhood
of F1 should take S1 × pt× pt to the loop α∆ × pt representing the vanishing
cycle. Because Tµ = S1 × µ1 is a rim torus to F1 it follows easily that Tµ
is a Lagrangian torus which represents an essential, in fact primitive, class in
H2(XK).

$
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Figure 3

Proposition 5.1 I(XK , Tµ) = {q SW(XK ,Tµ)| q ∈ Z}.

Proof If we choose a tubular neighborhood Tµ × D2 with the Lagrangian
framing, then we may use the basis {[S1×{y}], [µ′1], [∂D2]} for H1(∂(Tµ×D2)),
and as in Proposition 4.2, SWXK,Tµ (1,0,0) = 0. Of course, SWXK,Tµ (0,0,1) =
SWXK . It remains to calculate SWXK,Tµ (0,1,0) . This can be done via Kirby
calculus. Let Y denote the result of surgery on µ1 in MK with respect to the
Lagrangian framing. This is shown in Figure 4.
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Slide the 0–surgered handle corresponding to K over the 0–surgered µ1 , to get
Figure 5. Thus Y ∼= MK#(S1 × S2). Hence

XK,Tµ(0, 1, 0) = (X1#F1=S1×m1
T 2 × S2) \ (D3 × S1)⋃
S2×S1

(X2#F2=S1×m2
S1 ×MK) \ (D3 × S1)

Each of the two sides of the union has b+ ≥ 1, and S2 × S1 admits a metric
of positive scalar curvature. This means that SWXK,Tµ (0,1,0) = 0, and the
proposition follows. $
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Let {Tγn} be the family of nullhomologous Lagrangian tori in XK given by
Theorem 4.7 (thinking of m = m1 ). For any Tγn in the family, we can form the
circle sum of Tγn with Tµ . This is done by fixing a path in the fiber Σ running
from a point of γn to a point in µ1 and taking the connected sum γ′n of γn with
µ1 along this path. (See Figures 4 and 6.) The resulting torus Tγ′n = S1 × γ′n
in X is Lagrangian and homologous to Tµ . Note that λ(γ′n) = λ(γn); in fact,
γ′n and γn are isotopic in MK . $
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We wish to calculate I(XK , Tγ′n). Using, as in the previous section, the basis
adapted to the Lagrangian framing of Tγ′n , because SWXK,T

γ′n
(1,0,0) = 0 and

SWXK,T
γ′n

(0,0,1) = SWXK , we only need to calculate SW(XK,T
γ′n

(0,1,0),Tγ′ )
.

Consider MK(γ′n) the 3–manifold obtained by surgery on γ′n in MK using
the Lagrangian framing. Since γ′n and γn are isotopic in MK , the manifolds
MK(γ′n) and MK(γn) are diffeomorphic. We may as well assume that λ(γ) 6= 0.
We have H1(MK(γ′n)) = Z ⊕ Z|λ(γn)| where the infinite cyclic summand is
generated by the class of m2 and the finite cyclic summand by the class of ν ,
a meridian to γn . Note that [m1] = [m2] + [ν].

To obtain MK(γ′n), one does surgery which kills the curve γ′n + λ(γn) ν . Thus
[γ′n] = −λ(γn) [ν] in H1(MK(γ′n) \ (m1 ∪m2)). Furthermore, in the manifold
with boundary MK(γ′n) \ (m1 ∪m2), the core C of the surgery solid torus is
homologous to (1/λ(γn)) γ′n . We are interested in

XK,Tγ′n
(0, 1, 0) = X1#F1=S1×m1

S1 ×MK(γ′n)#S1×m2=F2
X2

In H2(XK,Tγ′n
(0, 1, 0)) we have

[F1] = [F2] + [S1 × ν] = [F2]− (1/λ(γn))[S1 × γ′n] = [F2]− [S1 × C]

Let T = S1×C . We need to calculate SW(XK,T
γ′n

(0,1,0),Tγ′n
) which is an element

of
ZH2(XK,Tγ′n

(0, 1, 0) \ T ×D2, ∂) = ZH2(XK,Tγ′n
(0, 1, 0), T )

Thus we may assume that [F1] = [F2] = [F ], say, for the purpose of this
calculation. Now precisely the same proof as that of Theorem 4.6 (replacing X
by X1#F1=F2X2 ) gives:

Theorem 5.2 Let Xi , i = 1, 2 be symplectic 4–manifolds containing em-
bedded symplectic tori Fi of self-intersection 0. Suppose also that F1 has a
vanishing cycle. Set X = X1#F1=F2X2 . Let K be a nontrivial fibered knot
and let γ be an embedded loop on a fiber Σ of S3 \K → S1 . Let m1 and m2

be meridians to K which do not link γ , µ a meridian to m1 which lies on Σ,
and γ′ the connected sum of γ and µ in Σ. Then Tγ′ = S1×γ′ is a Lagrangian
torus in XK and represents a primitive homology class.

If η is another loop on Σ which has linking number 0 with m1 and m2 and
η′ is the connected sum of η and µ in Σ with corresponding Lagrangian torus
Tµ′ = S1 × µ′ , then Tη′ is homologous to Tγ′ and if Tγ′ and Tη′ are equivalent
in XK , it follows that λ(Tη) = λ(Tγ).
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This completes the proof of Theorem 1.1. Since the fiber F of E(1) has a
vanishing cycle and since (E(1)#FX)K ∼= XK#FE(1) we have, for example,
the following corollary:

Corollary 5.3 Let X be any symplectic 4–manifold containing an embedded
symplectic torus of self-intersection 0. Let K be any nontrivial fibered knot.
Then in XK#FE(1) there is an infinite sequence of essential Lagrangian tori
Tγ′n which are pairwise homologous but no two of which are equivalent.

6 Symplectically inequivalent Lagrangian tori which

are not distinguished by relative Seiberg–Witten
invariants

These examples live in simple versions of the manifolds constructed in [6]. It
would be very easy to give much larger classes of examples, but we shall content
ourselves with those below.

Let X be the K3–surface with elliptic fiber F , and let K be a nontrivial
fibered knot. Let γ1 , γ2 be embedded loops on a fiber of S3 \ K → S1 with
different λ(γi) > 0, and consider the nullhomologous Lagrangian tori Tγi ⊂ XK .
Theorem 4.6 implies that these tori are C∞–inequivalent. Suppose that the
knot K has genus g . In the construction of XK we have replaced a 2–disk in
a section of the elliptic fibration of K3 with a punctured surface of genus g , a
fiber of S3 \ K → S1 . Thus XK contains a symplectic genus g surface S of
self-intersection −2 and [S] · [F ] = 1. Consider another smooth fiber F ′ of the
elliptic fibration of (X \N(T )) ⊂ XK . Then F ′ + S is a singular surface with
one double point, which can be smoothed to give a symplectically embedded
surface S′ of genus g+1 representing the homology class [S′] = [F ]+[S]. Thus
[S′]2 = 0 and [S′] · [F ] = 1.

Next, let K ′ denote the trefoil knot in S3 . Since K ′ is a fibered genus 1 knot,
the 4–manifold S1 ×MK ′ is a smooth T 2–fiber bundle over T 2 . We obtain a
symplectic manifold Y by forming the fiber sum of g + 1 copies of S1 ×MK ′

along the tori T where mi is a meridian of K ′ in the ith copy of MK ′ . There
is a fiber bundle

T 2 −→ Y = S1 ×MK ′#T 2 · · ·#T 2S1 ×MK ′y
C0
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where C0 is a genus g+1 surface. There is a symplectic section C ⊂ Y given by
the connected sum of the individual sections S1×mi . Now form the symplectic
manifold ZK = XK#S′=CY . We perform the fiber sum so that ZK is spin [9].
In [6] it is shown that ZK is simply connected and that SWZK = tκ+(−1)gt−1

κ

where κ is the canonical class of ZK .

Since S′ ⊂ XK can be chosen disjoint from a nullhomology of Tγi , we still have
λ(Tγi) = λ(γi) for the Lagrangian framing invariants of the nullhomologous
Lagrangian tori Tγi ⊂ ZK . Thus Tγ1 and Tγ2 are symplectically inequivalent
in ZK .

We next compute I(ZK , Tγi), using the same basis that we used in Section 4.
As in Proposition 4.2, SWZK,Tγ (1,0,0) = 0. The point is that

ZK,Tγ(1, 0, 0) = XK,Tγ(1, 0, 0)#S′=CY

and the sphere of self-intersection −1 and its dual torus of square 0 found in
Proposition 4.2 both live in the complement of the surface S′ .

Next consider ZK,Tγ(0, 1, 0). For any manifold X̄ obtained from X by surgery
on Tγ , H2(X̄) = H2(X) if the surgery curve is homologically nontrivial in
X \ Tγ and H2(X̄) = H2(X) ⊕ U where U has rank 2 if the surgery curve is
homologically trivial in X \ Tγ . Since λ(γi) > 0, the surgery curve γ′ for the
surgery giving ZK,Tγ(0, 1, 0) is not nullhomologous. This means that for

ZK,Tγ(0, 1, 0) = XK,Tγ(0, 1, 0)#S′=CY

H2(ZK,Tγ (0, 1, 0)) = H2(ZK), and the arguments of [6] using the adjunction
inequality and [14] to show that SWZK = tκ + (−1)gt−1

κ , will again show
that SWZK,Tγ (0,1,0) = tκ + (−1)gt−1

κ . Hence I(ZK , Tγi) = {p(tκ + (−1)gt−1
κ ) +

q(tκ + (−1)gt−1
κ )|p, q ∈ Z} = {r(tκ + (−1)gt−1

κ )|r ∈ Z}, independent of γi ;
so relative Seiberg–Witten invariants don’t detect whether or not the Tγi are
C∞–equivalent. It would be extremely interesting if they were not.

7 Discussion

As we have already mentioned in Section 1, the first examples like those of
Corollary 5.3 were recently discovered by S. Vidussi [19]. The examples of [19]
live in E(2)K and are of the type described in Theorem 5.2, thus they can be
distinguished by using the Lagrangian framing invariant. Again view E(2)K
as a double fiber sum, E(1)#F=S1×m1

S1×MK#S1×m2=FE(1). Vidussi points
out that for a torus Tβ = S1×β , β a loop in Σ whose linking number with m2
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is 0, the homology class of Tβ in E(2)K is determined by the linking number of
β with m1 . We have restricted ourselves to the case where the linking number
is 1, but this is completely unnecessary, and the Lagrangian framing invariant
gives an invariant for the general situation.

One need not restrict to genus one Lagrangian submanifolds in order to take
advantage of the technique of Lagrangian circle sums with nullhomologous La-
grangian tori. However the authors have not yet been able to find invariants
for higher genus Lagrangian surfaces which are as simple to calculate as those
in this paper.

Acknowledgements The authors gratefully acknowledge support from the
National Science Foundation. The first author was partially supported NSF
Grants DMS0072212 and DMS0305818, and the second author by NSF Grant
DMS0204041.

References

[1] D Auroux, S Donaldson, L Katzarkov, Luttinger surgery along Lagrangian
tori and non-isotopy for singular symplectic plane curves, Math. Ann. 326 (2003)
185–203

[2] Y Eliashberg, L Polterovich, New applications of Luttinger’s surgery, Com-
ment. Math. Helv. 69 (1994) 512 – 522

[3] T Etgu, B D Park, Non-isotopic symplectic tori in the same homology class,
arXiv:math.GT/0212356

[4] R Fintushel, R Stern, Rational blowdowns of smooth 4–manifolds, Jour. Diff.
Geom. 46 (1997) 181–235

[5] R Fintushel, R Stern, Knots, links, and 4–manifolds, Invent. Math. 134
(1998) 363–400

[6] R Fintushel, R Stern, Nonsymplectic 4–manifolds with one basic class, Pacific
J. Math. 194 (2000) 325–333

[7] R Fintushel, R Stern, Symplectic surfaces in a fixed homology class, J. Diff.
Geom. 52 (2000) 203–222

[8] R Fintushel, R Stern, Tori in symplectic 4–manifolds, Algebr. Geom. Topol.
(to appear) arXiv:math.SG/0311332

[9] R Gompf, A new construction of symplectic manifolds, Ann. Math. 142 (1995)
527–595

[10] M Hutchings, Y-J Lee, Circle-valued Morse theory, Reidemeister torsion,
and Seiberg–Witten invariants of 3–manifolds, Topology 38 (1999) 861–888

Geometry & Topology, Volume 8 (2004)



968 Ronald Fintushel and Ronald J Stern

[11] T Mark, Torsion, TQFT, and Seiberg–Witten invariants of 3–manifolds,
Geom. Topol. 6 (2002) 27–58

[12] G Meng, C Taubes, SW = Milnor Torsion , Math. Research Letters 3 (1996)
661–674

[13] J Morgan, T Mrowka, Z Szabo, Product formulas along T 3 for Seiberg–
Witten invariants, Math. Res. Letters 4 (1997) 915–929

[14] J Morgan, Z Szabo, C Taubes, A product formula for the Seiberg–Witten
invariants and the generalized Thom conjecture, Jour. Diff. Geom. 44 (1996)
706–788

[15] L Polterovich, New invariants of totally real embedded tori and a problem
Hamiltonian mechanics, from: “Methods of Qualitative theory and Bifurcation
Theory”, Gorki (1988) in Russian

[16] J Stallings, Constructions of fibred knots and links, from: “Algebraic and
geometric topology (Proc. Sympos. Pure Math. Stanford Univ. Stanford, Calif.
1976) Part 2”, Proc. Sympos. Pure Math. XXXII, Amer. Math. Soc. Providence,
RI (1978) 55–60

[17] C Taubes, The Seiberg–Witten invariants and 4–manifolds with essential tori,
Geom. Topol. 5 (2001) 441–519

[18] V Turaev, Torsions of 3–dimensional manifolds, Progress in Mathematics,
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