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1 Introduction

A 1–form α on a (2n− 1)–dimensional oriented manifold M is called a contact
1–form if it satisfies the contact condition:

α ∧ (dα)n−1 6= 0 everywhere. (1)

Its kernel ξ = {α = 0} is called a (co-orientable) contact structure. ξ is a
codimension 1 tangent distribution with maximal non-integrability. The pair
(M, ξ) is called a contact manifold. Sometimes we write (M,α) to stress the
contact 1–form α instead of the contact structure defined by α. Note that if α is
a contact 1–form then so is fα for any f ∈ C∞(M,R+), and ker(α) = ker(fα).
In this paper we assume ξ = kerα to be positive, ie, α∧(dα)n−1 > 0 is a volume
form of M . Two contact manifolds (M, ξ) and (M ′, ξ′) are contactomorphic
if there is a diffeomorphism φ : M → M ′ such that φ∗ξ = ξ′ . φ is called a
contactomorphism. Contact manifolds, which include many S1–bundles and
hypersurfaces of symplectic manifolds, and eventually every 3–manifold, were
first introduced in [25] and [26], and has been under study for decades.

By the contact version of Darboux’s theorem, all contact 1–forms are locally
isomorphic, which implies that there is no local invariant for a contact structure.
Moreover, it is proved by Gray in [16] that if two contact structures on a closed
contact manifold are homotopic as contact structures, then they are isotopic as
contact structures. Therefore there are also no local invariants of the space of
contact structures on a closed manifold. Note that the contact condition (1)
implies that dα restricts to a symplectic structure on ξ . The conformal class
of such symplectic structures is independent of the choice of a defining contact
1–form for ξ . Thus we can endow ξ with a dα–compatible almost complex
structure and the first Chern class c1(ξ) is an invariant of ξ .

On the other hand, there are many contact structures which are homotopic
as hyperplane distributions (hence have the same c1(ξ)) but not homotopic as
contact structures ([15], [22], [23], [32], [33], etc). This fact makes the classifica-
tion of contact structures an interesting and challenging problem. For contact
3–manifolds, many nice partial results have been obtained ([7], [15], [22], [23],
[24]). But much less is known for higher dimensional cases ([13], [32], [33]).

Contact Homology Theory ([10], see also [33], [1], [2]), introduced by Y Eliash-
berg and H Hofer in 1994 and has been expanded into a bigger framework
Symplectic Field Theory ([12], [3]) provides Floer–Gromov–Witten type of in-
variants to distinguish non-isomorphic contact structures on closed manifolds:
A contact 1–form α of M associates a unique vector field Rα which satisfies

α(Rα) = 1, dα(Rα, ·) = 0.
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Cylindrical contact homology of subcritical manifolds 1245

Rα is called the Reeb vector field (of α). (M, ξ := kerα) also associates a sym-
plectic manifold (R×M,d(etα)), the symplectization of (M, ξ), whose symplec-
tic structure d(etα) depends (up to an R–invariant diffeomorphism of R×M )
only on ξ . Then contact homology of (M, ξ) is defined by suitably counting in
R ×M (1 + s)–punctured pseudo-holomorphic spheres which converges expo-
nentially to good periodic Reeb trajectories at t = ±∞ at punctures. In some
favorable cases (see section 2) one can count only pseudo-holomorphic cylinders
connecting good contractible Reeb orbits and define cylindrical contact homol-
ogy HC(M, ξ) of (M, ξ). In this paper we consider only the c1(ξ) = 0 case,
then HC(M, ξ) is graded by the reduced Conley–Zehnder index of Reeb orbits.
The construction of HC(M, ξ) involves choices of a contact 1–form α and an
α–admissible almost complex structure. Yet the resulting contact homology is
independent of all these extra choices and is truly an invariant of isotopy classes
of contact structures. Though the full strength of contact homology is yet to
be explored, some interesting classification results have been obtained in the
spirit of (cylindrical) contact homology theory([4], [32], [33], see also [12], [1]).

Though contact homology is meant to distinguish non-isomorphic contact struc-
tures, itself is actually an subject of interest. One would like to know what
contact homology tells about a contact manifold. Thus it is important to com-
pute some concrete examples and develop computational mechanisms of contact
homology.

This paper focuses on the computation of cylindrical contact homology of sub-
critical Stein-fillable contact manifolds. A complex n–dimensional Stein domain
(V, J) is called subcritical if it admits a proper, strictly J –convex Morse func-
tion with finitely many critical points and all critical points have Morse index
< n. Such a function is called subcritical. A contact manifold is called sub-
critical Stein-fillable if it is the boundary of some subcritical Stein domain and
its contact structure is the corresponding CR–structure, ie, the field of maxi-
mal complex tangencies. Equivalently a subcritical Stein-fillable (M, ξ) can be
identified with a regular level set of a subcritical strictly J –convex function on
a Stein manifold. From now on we will often use the shorthand “SSFC” for
“subcritical Stein-fillable contact” and simply call a subcritical Stein-fillable
contact manifold a SSFC manifold, and similarly call a Stein-fillable contact
manifold a SFC manifold. In this paper we obtain the following result.

Main Theorem Let (M, ξ) be a (2n − 1)–dimensional SSFC manifold with
n ≥ 2, c1(ξ)|π2(M) = 0, and (V, J) a subcritical Stein domain such that ∂V =
M and ξ is the maximal complex subbundle of TM . Then

HCi(M, ξ) ∼= ⊕
m∈N∪{0}

H2(n+m−1)−i(V ).
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1246 Mei-Lin Yau

The Main Theorem results from the fact that, roughly speaking, counting
pseudo-holomorphic cylinders is equivalent to counting gradient trajectories
that connect critical points of consecutive indexes of a Morse function of a
Stein filling of (M, ξ). Hence the theorem shows that the contact homology
of a SSFC manifold (M, ξ) recovers in a way the homology of a Stein domain
bounded by M .

Here is a brief outline of this paper: After introducing cylindrical contact ho-
mology in Section 2 we study in section 3 Reeb dynamics on subcritical contact
handles, the building block of SSFC manifolds. Global dynamics on M is dis-
cussed in Section 4. It is shown there that, since (M, ξ) is subcritical, one
gets enough room to maneuver attaching handles and hence contact 1–forms to
show that contact homology of (M, ξ) is essentially generated by Reeb orbits
contained in cocores of contact handles. To compute HC(M, ξ) we introduce in
Section 5 (M ′, ξ′), the stabilization of (M, ξ). (M ′, ξ′) is a SSFC manifold con-
taining (M, ξ) as a codimension 2 contact submanifold with M ′ \M ∼= V × S1

a trivial S1–bundle over a Stein-filling V of M . By shaping contact handles
of (M ′, ξ′) one finds that cylindrical contact homologies of (M, ξ) and (M ′, ξ′)
can be represented by the same set of generators with degrees shifted by 2. In
Section 6 we prove HC∗(M, ξ) ∼= HC∗+2(M

′, ξ′). In Section 7 we prove that
the counting of pseudo-holomorphic cylinders in (M ′, ξ′) is equivalent to the
counting of gradient trajectories in a subcritical Stein-filling V of M and hence
deduce the Main Theorem. To this end we first show that for generic S1–
invariant admissible almost complex structure the linearized ∂–operator at an
S1–invariant solution is surjective. This is done by identifying it with the cor-
responding surjectivity problem in Floer Theory. Then by applying branched
covering maps on M ′ and the said surjectivity result to show that up to contact
isotopies there are only S1–invariant solutions to be counted.

2 Cylindrical contact homology

Before introducing the cylindrical contact homology we would like to give a brief
account on the reduced Conley–Zehnder index of a contractible Reeb orbit at
first.

Let Sp(2n) = Sp(2n,R) denote the group of symplectic 2n× 2n–matrices. For
a path Φ: [0, 1] → Sp(2n) a Conley–Zehnder index (also called µ–index) µ(Φ)
is defined in terms of crossing numbers ([30]). Here we refer readers to [30]
for a precise definition of µ and to [6] for the original definition and general
properties of µ. We point out here that if Φ′ is a path in Sp(2n′) and Φ′′ is

Geometry & Topology, Volume 8 (2004)
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a path in Sp(2n′′) then µ(Φ′ ⊕ Φ′′) = µ(Φ′) + µ(Φ′′), here Sp(2n′) ⊕ Sp(2n′′)
is identified as a subgroup of Sp(2n′ + 2n′′) in the obvious way. The following
example shows that when n = 1, µ/2 is roughly the winding number of Φ.

Example Fix T > 0 and A ∈ sp(2) = sl(2). Consider the path γ : [0, T ] →
etA ∈ Sp(2). Then

• µ(γ) = 0 if A =

(

0 b
a 0

)

for some constants a > 0, b > 0;

• if A =

(

0 −1
1 0

)

then µ(γ) = m, m = 2n + 1 if nπ < T < (n + 1)π ,

m = 2n if T = nπ .

For computational convenience we define the reduced Conley–Zehnder index
(also called µ–index) of a path Φ in Sp(2n − 2) to be

µ(Φ) = µ(Φ) + (n− 3).

Fix a contact 1–form α on a (2n−1)–dimensional contact manifold (M, ξ). Let
γ : [o, τ ] → M be a Reeb trajectory with γ̇(t) = Rα(γ(t)). Define the action
A(γ) of γ to be the number

T = A(γ) :=

∫

γ
α

The flow (Rα)t of Rα preserves ξ . Thus the linearized Reeb flow (Rα)t∗ , when
restricted on γ , defines a path of symplectic maps

Υ(t) = (Rα)t∗(γ(0)) : ξ|γ(0) → ξ|γ(t).

When γ is periodic with period T , Υ(T ) is called the linearized Poincaré return
map along γ . We call γ non-degenerate if 1 is not an eigenvalue of Υ(T ), simple
if γ is not a nontrivial multiple cover of another Reeb orbit. A contact 1–form
α is called regular if every (contractible) Reeb orbit of α is non-degenerate.
It is well-known that generic contact 1–forms are regular. If we identify ξγ(T )

with R2n−2 then Υ(T ) ∈ Sp(2n − 2) is a symplectic matrix. The eigenvalues
of a symplectic matrix comes in pairs ρ, ρ−1 .

Assume γ is a contractible periodic Reeb trajectory with action T . Let D be
a spanning disc of γ and Ψ: ξ|D → R2n−2 × D a symplectic trivialization of
ξ over D . Then (γ,Φ) defines a path (Ψ ◦ Υ ◦ Ψ−1)|γ : [0, T ] → Sp(2n − 2)
starting from Id. The µ–index of (γ,D) is defined to be

µ(γ, ξ,D) := µ(Ψ ◦ Υ ◦ Ψ−1|γ),

Geometry & Topology, Volume 8 (2004)



1248 Mei-Lin Yau

and the corresponding µ–index is

µ(γ, ξ,D) = µ(γ, ξ,D) + (n− 3).

Since D is contractible, µ(γ, ξ,D) does not depend on Ψ. Let D′ be another
spanning disc of γ . Then

µ(γ, ξ,D) − µ(γ, ξ,D′) = 2c1(A) (2)

where c1(A) := c1(ξ)(A), c1(ξ) is the first Chern class of ξ and A = [D ∪
D′] ∈ H2(M,Z). In this paper we will only consider c1(ξ) = 0 case, therefore
µ(γ, ξ) = µ(γ, ξ,D) is independent of the choice of a spanning disc and is
denoted as γ for notational simplicity.

For a Reeb orbit γ we denote by γm the m-th multiple of γ . Recall Υ(T )
the Poincaré return map of γ . Let n(γ) denote the number of real negative
eigenvalues of Υ(T ) from the interval (−1, 0). n(γ) does not depend on the
trivialization of ξγ(T ) .

Definition 2.1 A Reeb orbit σ is said to be good if

σ 6= γ2m for any γ with n(γ) =odd, m ∈ N. (3)

For the rest of the paper we will use the notation P = P(α) to denote the
set of all good contractible Reeb orbits of α. Good contractible Reeb orbits
with any positive multiplicity are included in P as individual elements. Those
contractible orbits not included in P are called bad. The exclusion of these bad
orbits is necessary in order to define coherent orientations of moduli spaces of
pseudo-holomorphic curves (see section 1.9 of [12] for more detail).

We now consider a class of almost complex structures on the symplectization

Symp(M,α) := (R ×M,d(etα))

of (M, ξ = kerα). An almost complex structure J : ξ → ξ on ξ is called
dα–compatible if

dα(x, Jx) > 0 for nonzero x ∈ ξ,

dα(Jx, Jy) = dα(x, y) for x, y ∈ ξ.

This compatibility property dose not depend on the choice of α. Note that
dα(·, J ·) is a Riemannian metric on ξ . A dα–compatible J can be extended
uniquely to a d(etα)–compatible almost complex structure on Symp(M,α),
also denoted by J by the abuse of language, such that

J(
∂

∂t
) = Rα, J(Rα) = − ∂

∂t
.

Geometry & Topology, Volume 8 (2004)



Cylindrical contact homology of subcritical manifolds 1249

Such J is called an α–admissible almost complex structure on Symp(M,α).
Observe that the Reeb vector field Rα satisfies ω(Rα, ·) = −d(et), hence is the
Hamiltonian vector field of of the function H : R ×M → R, H(t, p) = et .

Fix a contact quadruple (M, ξ, α, J) so that J is α–admissible. We assume
that α is regular. Fix a spanning disk Dγ ⊂ M of γ for each γ ∈ P = P(α).
Given two Reeb orbits γ− , γ+ we denote by MJ(M ; γ−, γ+) the moduli space
of maps (ũ, j) where

(1) j is an almost complex structure on Ṡ2 := S2 \ {0,∞} (here we identify
S2 with C ∪ {∞});

(2) ũ = (a, u) : (Ṡ2, j) → (R ×M,J) is a proper map and is (j, J)–holomor-
phic, ie, ũ satisfies dũ ◦ j = J ◦ dũ;

(3) ũ is asymptotically cylindrical over γ− at the negative end of R ×M at
the puncture 0 ∈ S2 ; and ũ is asymptotically cylindrical over γ+ at the
positive end of R ×M at the puncture ∞ ∈ S2 ;

(4) (ũ, j) ∼ (ṽ, j′) if there is a diffeomorphism f : Ṡ2 → Ṡ2 such that ṽ ◦f =
ũ, f∗j = j′ , and f fixes all punctures.

For generic choice of J , M(γ−, γ+) = MJ(M ; γ−, γ+), if not empty, is a smooth
manifold,

dimM(γ−, γ+) := γ+ − γ−

(recall that c1(ξ) = 0). Such a J is called regular. Note that since J is
R–invariant, the R–translation along the R–component of R ×M induces a
free R–action on M(γ−, γ+). If ũ = (a, u) ∈ M(M ; γ−, γ+) then u∗dα ≥ 0
pointwise. We have

0 ≤ E(ũ) :=

∫

Ṡ2

u∗dα = Aα(γ+) −Aα(γ−).

E(ũ) is called the dα–energy of ũ. E(ũ) = 0 iff γ− = γ+ , and in this case the
moduli space consists of a single element R × γ+ .

We now proceed to define the cylindrical contact homology of a contact manifold
(M, ξ). For a regular contact 1–form α defining ξ we define the associated
cylindrical contact complex C(α) = ⊕

k∈Z
Ck(α) to be the graded vector space

over Q generated by elements of P = P(α), where Ck(α) is the vector space
spanned by elements γ ∈ P with γ = k .

Now we fix a regular α–admissible almost complex structure and define the
boundary map ∂ : C∗(α) → C∗−1(α) as follows. Let m(γ) denote the multi-
plicity of γ ∈ P , then

∂γ := m(γ)
∑

σ∈P,σ=γ−1

nγ,σσ

Geometry & Topology, Volume 8 (2004)



1250 Mei-Lin Yau

where nγ,σ is the algebraic number of elements of M(σ, γ)/R, each element
C ∈ M(σ, γ)/R is weighted by 1

m(C) , where m(C) is the multiplicity of C .

Then extend ∂ Q–linearly over C(α). Note that since α is regular, σ and γ
are non-degenerate, M(σ, γ)/R is compact and hence a finite set. Moreover,
for any γ ∈ P there are only finitely many σ with Aα(σ) < Aα(γ). Thus ∂γ
is a finite sum.

We have the following theorem (see [33] and Remark 1.9.2 of [12]).

Theorem 2.1 Let (α, J) be a regular pair. Then ∂ ◦ ∂ = 0 if C1(α) = 0.

To prove ∂ ◦ ∂ = 0 one wants to show that if a 2–dimensional moduli space
M(γ−, γ+) has nonempty boundary, then its boundary consists of “broken
cylinders” C1#C2 , where C1 ∈ M(γ, γ+)/R, C2 ∈ M(γ−, γ)/R for some γ ∈ P
with γ = γ+−1. If this is not true then the boundary of M(γ−, γ+) will involve
holomorphic curves with more than one negative ends. Such curves are elements
of some 1–dimensional moduli space M(γ−, γ1, · · · , γj ; γ+) with j ≥ 1, and γ− ,
γ1 ,...,γj are Reeb orbits that form the negative ends of the holomorphic curves.
But

dimM(γ−, γ1, · · · , γj ; γ+) = γ+ − γ− −
j

∑

ν=1

γν = 2 −
j

∑

ν=1

γν

which is less than 1 if C1(α) = 0. So if C1(α) = 0 then ∂ ◦ ∂ = 0. We will
see later that every SSFC manifold with dim > 3 and c1(ξ) = 0 will have
C∗(α) = 0 for all ∗ ≤ 1.

When ∂ ◦ ∂ = 0 we define the The j -th cylindrical contact homology group of
the pair (α, J) to be

HCj(α, J) := ker(∂|Cj (α))/∂(Cj+1(α)).

The following theorem, analogous to its counterpart in Floer theory, asserts
that HC(α, J) is independent of regular pairs (α, J) satisfying C∗(α) = 0 for
∗ = −1, 0, 1, hence is an invariant of of (M, ξ) (see [33]).

Theorem 2.2 Let (α0 = f0α, J0), (α1 = f1α, J1) be two regular pairs. As-
sume Ci(α0) = Ci(α1) = 0 for i = −1, 0, 1. Then there exists a natural
isomorphism

φ10 : HCi(α0, J0) → HCi(α1, J1).

If (α2, J2) is a third regular pair then

φ20 = φ21 ◦ φ10, φ00 = id.

Geometry & Topology, Volume 8 (2004)
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The proof of Theorem 2.2 is similar to the proof of the corresponding theorem
in Floer theory. Here the required chain homotopies are guaranteed by the
existence of smooth functions f on R ×M such that d(etfα) is symplectic on
R ×M and etfα interpolates etα0 and etα1 . Moreover, in a similar fashion
one can show that HC(M, ξ0) ∼= HC(M, ξ1) for isotopic contact structures ξ0
and ξ1 on M .

We remark here that though the condition C∗(α) = 0 for ∗ = 1, 0,−1 looks
artificial, it (or similar conditions on µ) may impose restrictions on the topology
of M and even the type of ξ . For example, when dimM = 3 and c1(ξ)|π2(M) =
0 it is proved in [19] that if for some α γ ≥ 2 for all contractible Reeb orbits
of α, then π2(M) = 0 and ξ is tight, ie, there exists no embedded disc D in
M such that (i) ∂D is tangent to ξ , and (ii) D is transversal to ξ along ∂D
(see for example [7]).

3 Contact handles

In this section we describe some basic models of contact handles. These basic
models have been provided and discussed in detail in [34]. Since contact handles
are building blocks of SFC manifolds we present a similar discussion here but
with a focus on the dynamics of Reeb orbits.

The complex n–dimensional space Cn together with its standard complex struc-
ture i is a Stein manifold. Let (x, y, z) be the standard coordinates of Cn with
respect to the decomposition Cn = Rk × Rk × Cn−k , (k ≤ n). x = (x1, ..., xk),
y = (y1, ..., yk), z = (zk+1, ..., zn), zl = xl + iyl .

Fix 0 ≤ k ≤ n and define

fst(x, y, z) = |x|2 − 1

2
|y|2 +

1

4
|z|2.

fst is a strictly i–convex function on Cn . Note that the origin 0 is the only
critical point of fst , and its Morse index is k .

Define

Yst := (2x,−y, z
2
) =

k
∑

j=1

(2xj
∂

∂xj
− yj

∂

∂yj
) +

n
∑

l=k+1

1

2
(xl

∂

∂xl
+ yl

∂

∂yl
),

Yst = ∇fst , the gradient vector field of fst with respect to the Euclidean metric.
Denote by ωst the standard symplectic structure

∑n
j=1 dxj ∧ dyj on Cn . We

have LYst
ωst = ωst . Yst is a complete Liouville vector field on the symplectic

manifold (Cn, ωst).
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Define αst := ωst(Yst, ·). αst restricts to a contact 1–form on H for any hyper-
surface H ⊂ C transversal to Yst . Note that αst = −dfst ◦ i.
Consider a function f : Cn → R

f(x, y, z) = b|x|2 − b′|y|2 +

n
∑

k+1

|zl|2
c2l

; b > b′, cl : positive constants. (4)

0 is the only critical point of f .

Define Hc := {f = c}. Then Hc ⋔ Yst when c 6= 0. Denote the punctured
level set Hc=0 − {0} by H×

o . We have H×
o ⋔ Yst . So αst restricts to a contact

1–form on each of the level sets of f , except at the point of origin.

For c > 0 Hc contains two special submanifolds:

• a (2n − k − 1)–dimensional coisotropic ellipsoid S+
c := {|y| = 0} ∩ Hc ;

and

• a (2n− 2k− 1)–dimensional contact ellipsoid S∗
c := {|y| = |x| = 0}∩Hc .

When c < 0 there is a (k − 1)–dimensional isotropic sphere S−
c := {|x| = 0 =

|z|} ∩Hc on Hc . The normal bundle of S−
c has the decomposition

N (S−
c ,Hc) = CSN (S−

c ,Hc) ⊕ T ∗S−
c ⊕ RRf

where CSN (S−
c ,Hc) is the conformal symplectic normal bundle (see [34]) of

S−
c ⊂ Hc , Rf is the Reeb vector field of (Hc, αst).

Note that the vector bundle T ∗S−
c ⊕RRf

∼= S−
c ×Rk is trivial and has a natural

framing { ∂
∂x1

, ..., ∂
∂xk

}. The vector bundle CSN (S−
c ,Hc) is also trivial (of rank

2(n− k)), and has a natural framing Fk ={ ∂
∂xk+1

, ∂
∂yk+1

, ..., ∂
∂xn

, ∂
∂yn

}.

When c→ 0, S+
c (or S−

c ) degenerates to the point 0.

We denote by ξc (resp. ξo ) the corresponding contact structure on (Hc, αst)
(resp. (H×

o , αst)).

Proposition 3.1 Let f and f̄ be two quadratic (up to an addition of a con-
stant) functions of index k with respective coefficients (b, b′, cj) and (b̄, b̄′, c̄j)
satisfying conditions in (4). Then (12) implies that for any level sets Hc of f

and any level set H̄c̄ of f̄ the flow of Yst will induce

(1) a contact isotopy between (Hc, S
+
c , S

∗
c , ξc) and (H̄c̄, S̄

+
c̄ , S̄

∗
c̄ , ξ̄c̄) when c >

0 and c̄ > 0;

(2) a contact isotopy between (Hc, S
−
c , ξc) and (H̄c̄, S̄

−
c̄ , ξ̄c̄) when c < 0 and

c̄ < 0;

Geometry & Topology, Volume 8 (2004)
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(3) a contact isotopy between (Hc − S+
c , ξc) and (H̄c̄ − S̄−

c̄ , ξ̄c̄) when c > 0
and c̄ < 0.

In particular up to contact isotopy, the contact structures on (H±
c , αst) do not

depend on the choice of the coefficients b, b′ , and cj ; the flow of Yst will produce
the required contact isotopies that even preserve submanifolds like S±

c and S∗
c .

We hence have the freedom to adjust the values of b, b′ and cj to get Reeb
vector fields with desired dynamical behavior.

For notational simplicity we will from time to time use the following symbols:
(H+, S+, S∗, ξ+) to represent (Hc, S

+
c , S

∗
c , ξc) when c > 0; and (H−, S−, ξ−) to

represent (Hc, S
−
c , ξc) when c < 0. (H+, ξ+) is called (a standard model of) a

contact k–handle. It is subcritical if k < n.

We now study the Hamiltonian and Reeb dynamics on level sets H± , Ho , of
(Cn, ωst, Yst, f). Again αst is used as the preferred contact 1–form. Let Xf

denote the Hamiltonian vector field of f with respect to ωst ,

Xf =
k

∑

j=1

(2bxj
∂

∂yj
+ 2b′yj

∂

∂xj
) +

n
∑

l=k+1

2

c2l
(xl

∂

∂yl
− yl

∂

∂xl
). (5)

The Reeb vector fields on (H×
o , αst) and (H±, αst) are

Rf :=
Xf

αst(Xf)
(6)

where

αst(Xf) = 4b|x|2 + 2b′|y|2 +
n

∑

k+1

|zl|2/cl2 = 3b|x|2 + 3b′|y|2 + c (7)

is positive away from the point of origin. Rf and Xf have the same integral
trajectories up to a reparametrization. Let γ : [0, Th] → Cn be a periodic Xf –
trajectory such that γ̇(t) = Xf(γ(t)). Th is then called the Hamiltonian period
of γ . The Reeb period of γ can be defined similarly, and is actually its action
∫

γ αst .

Lemma 3.1 (i) There is no periodic Reeb trajectory on H×
o and H− .

(ii) On H+ all periodic Reeb trajectories are contained in S∗ .

(iii) If c2k+1, ..., c
2
n are linearly independent over Q then the Hamiltonian period

of a simple periodic trajectory on Hc with c > 0 is πc2l for some k < l ≤ n,
while its action is πc2l c.
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Proof Let ϕt(w) = ϕ(t, w) : R × Cn → Cn , ϕ(0, w)=id be the flow of Xf ,
γ(t) = (x(t), y(t), z(t)) an integral trajectory of Xf with γ̇(t) = Xf(γ(t)). Then
on γ

ẋj = 2b′yj, ẏj = 2bxj , for 1 ≤ j ≤ k (8)

ẋl = 2yl/c
2
l , ẏl = −2xl/c

2
l , for k + 1 ≤ l ≤ n (9)

We have


































xj(t) = xj(0) cosh(2
√
bb′t) + yj(0)

√

b′

b sinh(2
√
bb′t)

yj(t) = yj(0) cosh(2
√
bb′t) + xj(0)

√

b
b′ sinh(2

√
bb′t)

xl(t) = xl(0) cos(2t/c2l ) − yl(0) sin(2t/c2l )

yl(t) = yl(0) cos(2t/c2l ) + xl(0) sin(2t/c2l )

for 1 ≤ j ≤ k and k + 1 ≤ l ≤ n. (xj(t), yj(t)), if not identically zero, is
hyperbolic, while |zl(t)| is a constant along any γ . So γ is contained in S∗ if
it is periodic. Hence (i) and (ii) are true.

Assume γ ⊂ S∗ . The Hamiltonian period of the zl–component of γ is πc2l .
Hence if c2k+1, ..., c

2
n are linearly independent over Q then for any c > 0 there

are only n−k simple periodic trajectories on Hc . They are σl := {|zl|2 = c2l c},
l = k + 1, ..., n. The Hamiltonian period of σl is πc2l , which is independent of
the value of c, while the action of σl is πc2l c. This proves (iii).

Note that actions of simple Reeb orbits can be made as small as we want by
choosing c2l to be small enough.

Theorem 3.1 Let H+ be as above.

(I) All periodic Reeb orbits of H+ are “good” as defined in (3).

(II) If c2k+1 ,...,c2n are linearly independent over Q then all Reeb orbits of Hc

are non-degenerate.

(III) C∗(H+, αst) = 0 if ∗ < 2n− k − 2 or ∗ − (2n− k − 2) is odd.

(IV) Can choose (or deform) H+ for any given mo > 0 such that for ∗ ≤ mo

rk(C∗(H+, αst)) =

{

1 if ∗ = 2n− k − 4 + 2i for some i ∈ N;
0 otherwise.

We start with the following lemma:
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Lemma 3.2 Let γ be a contractible Reeb orbit of a contact manifold (M, ξ)
with contact 1–form α. Let D ⊂M be a spanning disc of γ . Then

µ(γ, ξ|D) = µ(γ, (CRα ⊕ ξ)|D)

where Rα is the Reeb vector field of α.

Proof of Lemma 3.2 Let ϕ : CRα|D→̃C ×D be the vector bundle isomor-
phism ϕ(λRα, p) = (λ, p) for λ ∈ C and p ∈ D . ϕ is a symplectic trivialization
of the vector bundle CRα|D . The action of the linearized Reeb flow on CRα|γ is
a constant path (ie, a point) in Sp(2) with respect to ϕ. Let Φ be any symplec-
tic trivialization of ξ over D , then ϕ⊕Φ is a symplectic trivialization of CRα⊕ξ
over D . The definition of ϕ implies that µ(γ, ξ|D; Φ)= µ(γ, (CRα⊕ξ)|D;ϕ⊕Φ).
Since the µ–index is independent of the choice of a symplectic trivialization over
a fixed spanning disc, we conclude that µ(γ, ξ|D)=µ(γ, (CRα ⊕ ξ)|D).

Proof of Theorem 3.1 Let Φ:=TCn→̃Cn×Cn be the standard trivialization
of the tangent bundle TCn of Cn . When restricted on H+ , Φ is a trivialization
of the stabilized contact bundle CR ⊕ ξ = TH+

Cn . Here R = Rf is the Reeb
vector field of αst on H+ .

By Lemma 3.2 we can use Φ to compute the µ–index of any Rf –orbit σ in
H+ . Moreover, π2(H+) = 0 if dimH+ > 3. When dimH+=3, π2(H+) is
generated by S+ . The inclusion H+ →֒ C2 implies that (ξ+ ⊕ CR)|S+

and
TS+

C ∼= C2 × S+ are isomorphic vector bundles over S+ . Since CR|S+
is a

trivial bundle over S+ , so is ξ+|S+
, which implies that c1(ξ+) = 0. Therefore

the index µ(σ,Dσ) is independent of the choice of the spanning disk Dσ in H+ .

Extend the linearized Reeb flow Rt
∗ of R to TH+

Cn by assigning Rt
∗(Yst) =

Yst ◦Rt . We have (with respect to Φ)

Rt
∗|σl

= etD =







etD1

. . .

etDn






∈ Sp(2n)

where

Dj =

(

0 2b′

2b 0

)

, Dℓ =
2

cc2ℓ

(

0 −1
1 0

)

∈ Gl(2,R)

for j = 1, ...k , ℓ = k + 1, ...n.

By easy computation one finds that for j = 1, ..., k ,
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etDj =





cosh 2
√

2bb′t
√

b′

b sinh 2
√
bb′t

√

b
b′ sinh 2

√
2bb′t cosh 2

√
bb′t





with det(I − etDj ) < 0 for all t 6= 0. Moreover, each etDj has two real pos-
itive eigenvalues cosh 2

√
bb′t ± sinh 2

√
bb′t for all t. Therefore etDj makes no

rotations to the (xj , yj)–plane, hence has no contribution to µ(σl).

For ℓ = k + 1, ..., n, we have

etDℓ =

(

cos θ − sin θ
sin θ cos θ

)

, where θ =
2t

cc2ℓ
.

Note that det(I − etDℓ) ≥ 0, the equality holds if and only if t is an integral
multiple of πcc2ℓ .

We have for a simple Reeb orbit σ in H+ :

(1) σ ≥ (n − k − 1) + 2 + (n − 3) = 2n − k − 2. The minimum is always
achieved by some σ .

(2) For m,m′ ∈ N with m > m′ , σm − σm′ is a positive even number, and is
≥ 2(m−m′). Here σm denotes the m-th multiple of σ .

This proves Part (I) and (III) of the theorem.

If we choose to have c2k+1 , c2k+2 , ..., c2n linearly independent over Q, then there
are exactly n − k simple Reeb orbits σk+1 ,...,σn as defined before. From the
computations above it is easy to see that these σl and their multiple covers are
all non-degenerate. So Part (II) is true.

To prove Part (IV) we consider the following perturbation of cl to compute
indexes. For any (large) integer no ∈ N, choose ck+1 , ..., cn such that c2k+1 ,
..., c2n are linearly independent over Q, and noc

2
n < c2l for l = k + 1, ..., n− 1.

Then

σm
n = 2n − k − 4 + 2m for 1 ≤ m ≤ no,

σm
n ≥ 2n − k − 4 + 2m for m > no,

σm
l ≥ 2n − k − 4 + 2(no +m) for l > k + 1, m ≥ 1.

(10)

Now choose no so that no > mo . This completes the proof of Part (IV).

Remark 3.1 We call the Reeb orbit σn corresponding to cn the principal
(Reeb) periodic trajectory or the principal (Reeb) orbit of (H+, αst) if (10) is sat-
isfied. When mo → ∞ the contact complex C∗(H+, αst) is essentially generated
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by σn and its positive multiples. We call each positive multiple of σn a prin-
cipal generator of C∗(H+, αst). We see that C(H+, αst) stabilizes as mo → ∞,
where C∗(H+, αst) is a vector space of rank 1 precisely when ∗ = 2n−k−4+2j
for some j ∈ N, ..., otherwise it is 0.

We now proceed to study the local index of a non-periodic Reeb trajectory γ on
H+ . Recall that our contact k–handle is modelled on the following hypersurface
in Cn :

b|x|2 − b′|y|2 +

n
∑

k+1

|zl|2
c2l

= c > 0

Since later we will see that a SSFC manifold can be constructed by attaching
thin subcritical contact handles to a tiny tubular neighborhood of attaching
isotropic spheres, we are mainly interested in the domain U+ ⊂ H+ (a tubular
neighborhood of the belt sphere of H+ ) where b′|y|2 ≤ C for some constant
C > 0, |x|2 + |z|2 is small.

Recall the Hamiltonian vector field Xf and Reeb vector field Rf = Xf/αst(Xf)
from (5), (6) and (7). Recall that the standard trivialization of the tangent
bundle TCn induces a symplectic trivialization (with respect to ωst) Φ of the
stabilized bundle CRf ⊕ ξ+ of ξ+ .

View γ as a non-periodic Xf –trajectory on U+ with Hamiltonian period Th ,
and reparametrize γ so that γ̇(t) = Xf(γ(t)). Since H+ is subcritical, given
any positive number No we can have

µ(γ(t), ξ̃,Φst) > NoTh

by thinning U+ , ie, by choosing to have c2l small enough.

Now we parametrize γ as an Rf –trajectory, ie, γ̇(τ) = Rf(γ(τ)). Since on U+

αst(Xf) = 3b|x|2 + 3b′|y|2 + c ≤ 6C + 4c

the action T of γ satisfies

T ≤ CoTh, Co = 6C + 4c.

Denote by ψ the flow of Rf , and ϕ the flow of Xf . We have

ψ(τ, w) = ϕ(t(τ, w), w)

Both flows preserve ξ and have the following relation between their linearized
flows:

dψ(τ, w) = dϕ(t(τ, w), w) +
dϕ

dt
(t(τ, w), w) ⊗ dt (11)
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where dϕ
dt (t, w) = Xf ◦ϕ(t, w). The term dϕ

dt ⊗ dt = Xf ⊗ dt is a path of 2n× 2n
matrices of rank 1 and has µ–index equal to 0. Hence by [32] we have

|µ(γ(τ), ξ̃,Φst) − µ(γ(t), ξ̃,Φst)| ≤ 2n,

µ(γ(τ), ξ,Φst) = µ(γ(τ), ξ̃,Φst) ≥ µ(γ(t), ξ̃,Φst) − 2n > NoTh − 2n.

So we obtain a linear inequality relating the action T of a Reeb trajectory γ
and its µ–index:

µ(γ(τ), ξ,Φst) > NT − 2n, N = C−1
o No

N can be made very large by thinning the subcritical handle. Here the fact
that H+ is subcritical is essential to the largeness of N . We summarize the
above discussion about non-periodic trajectories in the following lemma:

Lemma 3.3 Let U+ be a tubular neighborhood of the belt sphere of a (2n−1)–
dimensional subcritical contact k–handle H+ . Let N be any positive number.
Then by thinning U+ , ie, by choosing to have c2l (l = k+1, ..., n) small enough,
we have

µ(γ, ξ,Φst) > NT − 2n

for any non-periodic Reeb trajectory of αst on U+ with action T .

4 Reeb dynamics on SSFC manifolds

A closed, orientable (2n − 1)–dimensional contact manifold (M, ξ) is called
Stein-fillable if there is a 2n–dimensional Stein domain (V, J) such that ∂V =
M and ξ is the maximal complex subbundle of TM . (V, J) is called a Stein
filling of (M, ξ). Let f be a strictly J –convex function on V that extends
smoothly to the boundary ∂V = M as a constant function, then ωf :=
−ddJf = −d(df ◦ J) is a symplectic 2–form on V (the nondegeneracy of ωf is
ensured by the strict J –convexity of f ), and ξ is the kernel of the restriction
of the 1–form αf := ω(∇f, ·) on TM . Here ∇f is the gradient vector field
of f with respect to the Riemannian metric g(·, ·) := ωf (·, J ·), and hence is
a Liouville vector field of ωf . Without loss of generality we may assume that
f is also a Morse function. We call a Stein-fillable (M, ξ) subcritical if the
corresponding f is subcritical, ie, has no critical points of index ≥ n. Notice
that (V, ωf ,∇f, f) is actually an open domain of a Weinstein manifold. In the
following we will study the Reeb dynamics of SSFC manifolds in the setup of
Weinstein manifolds.

A Weinstein manifold is a quadruple (W,ω, Y, f) where
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• (W,ω) is a symplectic manifold,

• Y is a complete smooth vector field on W , and Y is a Liouville vector
field of (W,ω), ie,

LY ω = ω

where LY ω denotes the Lie derivative of ω with respect to Y ,

• f is an exhausting Morse function on W , and Y is gradient-like with
respect to f , ie, df(Y ) > 0 except at critical points of f .

In this paper we are interested in Weinstein manifolds of finite type where the
function f has only finitely many critical points, and Y has only finitely many
zeros accordingly.

A Weinstein manifold (W,ω, Y, f) associates a 1–form α := ω(Y, ·) which is
a primitive of ω . Let S ⊂ W be a hypersurface transversal to Y , then α
restricts to a contact 1–form on S . Let X be a nonvanishing vector field which
span the line field LS ⊂ TS on which ω degenerates. Then the Reeb vector
field of (S,α|TS) is R := X/α(X). If S is also a level set of a function h,
then R = Xh/α(Xh), where Xh , satisfying ω(Xh, ·) = −dh, is the Hamiltonian
vector field associated to h.

Let S′ ⊂W be another hypersurface transversal to Y . Let ζ and ζ ′ be contact
structures on S and S′ defined by α respectively. If a reparametrized flow of
Y induces a diffeomorphism ϕ : S → S′ then we have ϕ∗ζ = ζ ′ , hence (S, ζ)
and (S′, ζ ′) are contactomorphic. This is because for any two smooth functions
h1 , h2 > 0 on W , we have

Lh1Y h2α = h1(dh2(Y ) + h2)α. (12)

Note that we have α(Y ) = 0 by definition.

Now let f be a subcritical strictly JW –convex Morse function on a Stein mani-
fold (W,JW ). If W is of finite type, then ω := ωf is independent of the choice
of f up to a diffeomorphism of W . Let Yf = ∇f . The quadruple (W,ωf , Yf , f)
is then a Weinstein manifold. It is easy to see that a contact manifold (M, ξ)
is subcritical Stein-fillable (up to contact isotopy) iff it can be realized as a
hypersurface in some subcritical (W,ωf , Yf , f) that is also transversal to Yf , or
equivalently, a regular level set of f . For any level set Q of f , αf := ω(Yf , ·)
restricted to a contact 1–form on Q away from critical points of f . Moreover
the Reeb vector field associated to α and the Hamiltonian vector field of f have
the same integral trajectories.

We now proceed to study the Reeb dynamics on level sets of (W,ωf , Yf , f).
First of all, a theorem of Eliashberg [9] states that one can manipulate critical
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points f as freely as in the smooth case. Thus f can be assumed to has only one
critical point of index 0 (we assume that W is connected), and f(p) < f(q)
for p, q ∈ Crit(f) if the Morse index of p is less than the Morse index of
q ; f(p) = f(q) if p, q ∈ Crit(f) are of the same index. Also, following [8]
a subcritical Stein manifold W of dimension 2n ≥ 4 can reconstructed by
attaching handles of index < n. Therefore, once a subcritical J –convex Morse
function f on (W,JW ) (of finite type) is chosen, (W,JW ) can be decomposed
into a (finite) union of handlebodies of subcritical indexes accordingly. A critical
point of Morse index k corresponds to exactly a handlebody of of index k ,
and (W,JW ) can be constructed by attaching back these handlebodies along
isotropic spheres with specified framings in the order of handle indexes.

A 2n–dimensional handlebody of index k is diffeomorphic to Dk ×D2n−k with
boundary Sk−1 ×D2n−k ∪Dk ×D2n−k−1 . Sk−1 ×D2n−k is to be glued, while
Dk×S2n−k−1 is a contact k–handle. Thus a SSFC manifold can be constructed
by attaching subcritical contact handles modelled on a tubular neighborhood
U+ of the belt sphere of H+ = {b|x|2 − b′|y|2 +

∑n
l=k+1 |zl|2/c2l = c} (see [5] for

more detail). We may assume that contact handles of (M, ξ) of the same index
are pairwise disjoint.

Recall that each subcritical contact k–handle has only n−k simple Reeb orbits.
We may assume that all attaching (k−1)–spheres miss all the simple Reeb orbits
in the middle of contact handles of lower indexes. Thus a SSFC manifold has
two types of contractible Reeb orbits. Type I Reeb orbits are those contained
in the middle of subcritical contact handles; Reeb orbits which are not of type
I are called Type II. Type II orbits run through different handles.

Lemma 4.1 (See Lemma 3 of [5]) Let (M, ξ) be a SSFC manifold with a
contact handle decomposition. Let T be any positive number. Then up to
a contact isotopy there is a defining contact 1–form of (M, ξ) so that any
Reeb trajectory which leaves a contact k–handle and return to possibly another
contact k–handle has action ≥ T .

Here is a brief explanation of why Lemma 4.1 is true. The attaching isotropic
spheres of subcritical contact k–handles are of dimension less than (dimM −
1)/2, hence after isotopy we may assume that there are no Reeb chords con-
necting these spheres. So for any T > 0, there is a neighborhood Uk of these
spheres such that any Reeb trajectory leaves Uk at time 0 will not meet Uk

again before time T . Now we glue the contact k–handles to the interior of Uk .

By combining the proof of Proposition 1 in [5] and an estimate of µ̄–index
based on Lemma 4.4 and the analysis on handles in the previous section we

Geometry & Topology, Volume 8 (2004)



Cylindrical contact homology of subcritical manifolds 1261

can derive the following lemma concerning the µ̄–index of contractible Type II
Reeb orbits.

Lemma 4.2 Let (M, ξ) be a SSFC manifold with a subcritical contact handle
decomposition. Let K be any positive number. Then up to contact isotopy (by
thinning handles) every Type II contractible Reeb orbit has µ̄–index greater
than K .

The rest of this section is devoted to proving Lemma 4.2.

We have shown that over each subcritical contact handle there is a linear in-
equality relating the action T of a Reeb trajectory γ and its µ–index. Namely
µ(γ) ≥ N ·T−2n, C is independent of γ , N can be made very large by shaping
the subcritical handle. In the following we will estimate the actual µ–index of
a contractible Type II orbit, which is related to local indexes, the number of
times the orbit crosses different handles, the framings of the symplectic nor-
mal bundles of the attaching isotropic spheres, and the gluing process. We will
prove that there is a linear relation between the action of a contractible Type II
orbit and the number of times it crosses different handles. This linear relation,
together with the said linear inequality and the largeness of the action of any
Type II orbit, enable us to prove Lemma 4.2.

We now make a digression here to prepare for the statement of the inequality
that links all local estimates together and guarantees the largeness of µ– (and
hence µ̄–) indexes of Reeb orbits of Type II.

Let Sn := {0, 1, 2, ..., n − 1} be a set of n “letters”, n ≥ 2. Define Wn to be
the set of “words” of finite length whose letters are elements of Sn .

Definition 4.1 Given w = l1 · · · lm ∈ Wn , li ∈ Sn , w is called jumpy if
li 6= li+1 for all 1 ≤ i < m.

Definition 4.2 Given w ∈ Wn , w = l1l2l3 · · · lm , w contains a basin or has
a basin if there is an k , 0 < k < n and a subword w′ ⊂ w , w′=li · · · lj ,
1 < i ≤ j < m, such that li−1 = lj+1 = k > lν for i ≤ ν ≤ j . w′ is called a
basin of w .

Lemma 4.3 (Word Lemma) Any jumpy word w ∈ Wn of length 2n must
contain a basin (n ≥ 2).

Corollary 4.1 Any jumpy word w ∈ Wn of length m must contain at least
[ m
2n ] disjoint basins.
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Proof of the Word Lemma By mathematical induction. When n = 2,
there are only two jumpy words of length 4: 0101 and 1010. Both contain
a basin “0” with k = 1. Hence the lemma is true for n = 2. Assume the
lemma holds for n = s. Let w ∈ Ws+1 be jumpy of length 2s+1 . If the largest
letter appearing in w is less than s, then it reduces to the case n = s and the
statement holds again. If the letter s appears in W at least twice then we are
done. If not, then w=w1sw2 . w1 , w2 ∈ Ws are jumpy. Observe that one of
them is of length ≥ 2s and hence contains a basin by assumption. This basin
is also a basin of w . So the lemma is true for n = s + 1. By induction we
conclude that the lemma is true for all n greater than 1.

Now let ko be the highest index of contact handles of (M, ξ). We may assume
that Lemma 4.1 holds true for (M, ξ).

Let H(k) denote th union of all contact k–handles of (M, ξ). Define

H(k) := H(k) \
⋃

k′>k

H(k′).

Let γ be a simple Reeb orbit of Type II. γ associates a jumpy word w(γ) ∈ Wn

constructed as follows.

The codimension 1 boundaries of H(k), k = 0, ..., ko , cut γ into m−1 connected
curves with boundaries. Let k̄ > 0 be the maximal value of k such that
γ ∩ H(k) is not empty. Fix a connected component of γ ∩ H(k̄) and call it
γ1 . Following the Hamiltonian flow starting from γ1 we write γ as the ordered
union γ = ∪m−1

j=1 γj of these connected curves γj . Define for j = 1, ..,m−1 that
lj := k if γj ⊂ H(k), and lm := l1 . Then define w(γ) to be w(γ):=l1l2 · · · lm .
w(γ) is well-defined up to a choice of γ1 . Clearly w(γ) is jumpy and contains
at least one basin. By the Word Lemma w(γ) contains at least [ m

2n ] disjoint
basins. Also, following Lemma 4.1 we have the property that, if li · · · lj is a
basin of w(γ) then the action of γi ∪ · · · ∪ γj must be greater that T for any
prescribed number T > 0. We then have the following lemma:

Lemma 4.4 For any T > 0, one can modify a subcritical Stein manifold
(W,ω, Y, f) such that any simple Type II Hamiltonian orbit γ with a word
w(γ) of length m must have action A(γ) > Cm · T , where Cm = max{1, [ m

2n ]}.

Recall that each handle is attached along an isotropic (k− 1)–sphere modelled
on S− with a specified framing F of the normal bundle of the sphere. According
to Weinstein [34] there is a neighborhood U of S in W , a neighborhood U− of
S− in Cn , and an isomorphism of isotropic setups

φ : (U,ω, Y,M ∩ U,S) → (U−, ωst, Yst,H− ∩ U−, S−).
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This isomorphism identifies the chosen framing F of N (S,M) with the stan-
dard framing of N (S−,H−). The reparamertized flow of Yst induces a contac-
tomorphism

η : U− \ S− → U+ \ S+ ⊂ H+,

H+ is a contact k–handle as described in Proposition 3.1. Via the contacto-
morphism η the framing F induces a symplectic trivialization ΦF of ξ over
H+ \S+ . Recall also that ξ on H+ has a symplectic trivialization Φst induced
by the standard symplectic trivialization of TCn . We can choose cl so that for
any Hamiltonian trajectory γ in some H(p) with A(γ) = τ ,

µ(γ, ξ̃k,ΦF ) > (N1(c) +N2(c))τ − 2n (13)

where N(c) is a constant depending only on cl ’s and is big enough so that
N(c)τ exceeds any of the Conley–Zehnder indexes rising from the ambiguities
caused by the different symplectic trivializations ΦF and Φst . N2(c) is also a
very large constant.

Now let γ be a simple contractible Type II orbit of M . Let D ⊂ M be a
closed spanning disc of γ . By perturbing the interior of D we may assume the
following condition on D .

Condition 4.1 Each connected component of the intersection D ∩H(k) con-
tains a part of γ if it is not empty.

Let w(γ) = l1 · · · lm be the word associated to γ . Write D = ∪m−1
j=1 Dj , where

Dj is the intersection of D with the j–th handle that γ crosses. On each
Dj we use the symplectic trivialization Φj = Φst on ξ̃ and compute the local
µ–index µj = µ(γj , ξ̃,Φj) of γj . We denote by µ′(γ) the sum of these local
indexes. Unfortunately, µ′(γ) is not the Conley–Zehnder index that we want
because the local trivializations of ξ̃ by Φj do not match up to a symplectic
trivialization of ξ̃|D . There are two types of factors which cause mismatches of
these local trivializations:

(1) The choices of a framing of the normal bundle of the attaching isotropic
spheres.

(2) The gluing of a k–handle (using the flow of Yst).

Type 1 can be overcome by choosing suitable c’s (to produce large N1(c)).
Type 2 happens each time γ crosses from one H(k) to another. The gluing map
η preserves contact structure ξ but not contact forms. Let α′ := η∗α = e−hα,
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and let R denote the Reeb vector field of α, then the Reeb vector field R′ of
α′ is

R′ = eh(R+Xξ
h)

where Xξ is the vector field tangent to ξ and satisfying

dα(Xξ
h, ·) = −dh|ξ

Since the actual gluing take place in a thin collar of ∂U− , we may assume that
h ∼ const and R′ ∼ ehR on the collar. Then by mimicking the comparison of
Hamiltonian flow and Reeb flow in the previous section, we conclude that each
Type 2 error is bounded by ±2n.

Let τj be the action of γj and τ =
∑m−1

j=1 τj be the action of γ . By Lemma 4.4
we have

τ > CmT

which together with (13) shows

µ′(γ) >

m−1
∑

j=1

N1(c) · τj +N2(c) · CmT − 2nm.

Then the actual Conley–Zehnder index µ(γ) = µ(γ, ξ̃,D) satisfies the inequality

µ(γ) >





m−1
∑

j=1

N1(c) · τj − (error of Type 1)



 +N2(c) · CmT − 4mn (14)

The first term on the right hand side of (14) can be made positive and very
large by choosing suitable cl as discussed before. For the second term, recall
Cm = max{1, [ m

2n ]}, then N2(c) ·CmT − 4mn can be very large if we choose to
have N2(c) ≫ 2n (by choosing suitable cl ) and T ≫ 4n. Note that none of
these N1(c), N2(c) and T depend on m or on γ . This completes the proof of
Lemma 4.2.

5 Stabilization of (M, ξ)

Let (M, ξ) be a (2n− 1)–dimensional contact manifold. Let (W,ω, Y, f) be an
Weinstein manifold associated to (M, ξ) as discussed in the previous section.
We many assume that M = {f = c} for some suitable constant c. We also
assume that dimM > 3 for the moment. This condition on dimension is to
ensure that ∂ ◦ ∂ = 0 because C∗(M,α) = 0 for ∗ ≤ 1 when dimM > 3. Later
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we will show that ∂ ◦∂ = 0 also holds true when dimM = 3 despite of the fact
that C1(M,α) 6= 0 when dimM = 3.

By now we have seen that simple Type I Reeb orbits of a SSFC manifold
(M, ξ) are in one-one correspondence with critical points of f on W . One might
expect that the counting of 1–dimensional moduli of holomorphic cylinders here
is equivalent to the counting of gradient trajectories of f connecting critical
points of consecutive Morse indexes. Let p ∈ Crit(f) be of index k < n
(2n = dimW ), and let

Sc(p) ∼= {f = c} ∩ {|y| = 0} ( see (4))

be the (2n−k−1)–dimensional coisotropic ellipsoid in the corresponding contact
k–handle. We may identify γp with {|zn|2 = c2nc} ∩ Sc(p). S1 acts on Sc(p)
by rotating the zn–plane, giving Sc(p) an open book structure with binding
B := Sc(p) ∩ {zn = 0} ∼= S2n−k−3 , pages diffeomorphic to a (2n − k − 2)–
dimensional disc D2n−k−2 , and Sc(p) \B ∼= S1 ×D2n−k−2 . Then by following
the discussion in Section 7 on S1–invariant holomorphic curves, one can see
that Sc(p) \ γp is foliated by 2–dimensional discs bounding γp and all such
discs are images of some element of M(γp)/R before contact handles of higher
indexes are attached. In particular B is the parameter space of a connected
component of M(γp)/R.

Suppose now that a contact (k + 1)–handle (assuming k + 1 < n) correspond-
ing to q ∈ Crit(f) is attached along an isotropic k–sphere which intersects
transversally with Sc(p) \ γp at finitely many points. Assume that these inter-
section points are on distinct elements of M(Sc(p); γp)/R. Intuition suggests
these “marked” (by the intersection points) elements in M(Sc(p); γp)/R may
correspond to elements in M(γq, γp)/R of the resulting manifold. This is where
we get the speculation that perhaps the counting of holomorphic cylinders is
equivalent to the counting of gradient trajectories. Of course many works have
to be done to verify (or disprove) such a naive speculation.

On the other hand, if the above guess is true for (M, ξ) viewed as a regular
level set of a subcritical Weinstein manifold (W,ω, Y, f), then it is also true for
(M ′, ξ′) which is the corresponding regular level set of f + κ|z|2 : W × C → R

with κ > 0. It turns out that (M ′, ξ′) has several nice features which allow
an alternative approach of computing HC∗(M, ξ) and establishing a relation
between HC∗(M, ξ) and H∗(W ) as one has expected. The rest of this section
consists of more discussion on (M ′, ξ′), which serves as preparation for the next
two sections.

Recall that from (W,ω, Y, f) we can define a new Weinstein manifold

(W ′, ω′, Y ′, f ′) := (W × C, ω + ωo, Y + Yo, f + κ|z|2)
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where ωo = dx ∧ dy is the standard symplectic structure on C; Yo := 1
2(x∂x +

y∂y) is a Liouville vector field with respect to ωo ; and κ > 0 is a constant.
Here z = x + iy is the complex coordinate of C. (W ′, ω′, Y ′, f ′) is called a
stabilization of (W,ω, Y, f).

Consider on W ′ the hypersurface

M ′ := {f ′ = c}.
M ′ is a regular level set of f ′ . The 1–form α′ := ω′(Y ′, ·) restricts to a contact
1–form on M ′ . Denote by ξ′ the associated contact structure on M ′ . It is easy
to see that (M, ξ) is a codimension 2 contact submanifold of (M ′, ξ′). If M
is subcritical, then so is M ′ . Note that the rotation in C centered at z = 0
induces an S1–action on M ′ that acts freely on M ′ \M and fixes M . Indeed,
we can view M ′ as an open book with binding M , pages diffeomorphic to V ,
and trivial monodromy id : V → V . Here V := {f < c} ⊂ W is called a
subcritical Stein-filling of M .

We can smoothly embed R ×M ′ into W ′ by identifying {0} ×M ′ with M ′ ⊂
W ′ , and the vector field ∂

∂t with Y ′ . The image of R × M ′ in W ′ is then
W ′

o := W ′ \ L, where L is the closure of the stable submanifolds of the flow of
Y ′ . The image of R ×M is Wo := W \ L.

Lemma 5.1 c1(ξ;M)|π2(M) = 0 if and only if c1(ξ
′;M ′)|π2(M ′) = 0.

Proof Let ι : M →֒ M ′ be the inclusion map and S represent an element of
π2(M

′). Since M ′ ∼= M×D2∪M×S1 V ×S1 , dimV = 2n ≥ 4 and H2n−2(W ) =
0, S can be pushed into M , ie, S represents an element of π2(M). On the other
hand an element of π2(M) is also an element of π2(M

′). Since ι∗c1(ξ
′) = c1(ξ)

we conclude that c1(ξ;M)|π2(M) = 0 ⇔ c1(ξ
′;M ′)|π2(M ′) = 0.

Although α′ may not be regular in the usual sense (α′ may have S1–families
of Reeb orbits), the above properties ensure that cylindrical contact homology
of (ξ′, α′) is still defined.

The Reeb vector field of (M ′, α′) is

R′ :=
Xf + 4κiYo

α(Xf ) + κ|z|2 .

We may assume that each critical point of f is standard, then so are the critical
points of f ′ (note that f and f ′ have the same set of critical points with the
same Morse indexes). Since there are only finitely many critical points, κ can
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be chosen so that {c2k+1, ..., c
2
n, κ

−1} is linearly independent over Q for any
{c2k+1, ..., c

2
n} associated to some critical point of index k of f .

When κ is much smaller than any of those cj then the principal Reeb orbits
of (M ′, α′) are exactly principal Reeb orbits of (M,α). On the other hand, if
κ is much bigger than any of those cl then the simple principal Reeb orbits of
(M ′, α′) are

γp := {(p, z) ∈M ′|p ∈ Crit(f)}
they are in one-one correspondence with critical points of f . Certainly the
contact homology of (M ′, ξ′) does not depend on the choice of κ. In fact,
we will show that, up to a degree shifting by 2, HC(M, ξ) and HC(M ′, ξ′) are
isomorphic. Thus we know about HC∗(M, ξ) once we know about HC∗(M

′, ξ′).

6 HC∗(M, ξ) = HC∗+2(M
′, ξ′)

Recall that Yo = 1
2 (x∂x+y∂y). Let Y ⊂ TW be a gradient-like vector field with

respect to f and let b > 0 be a constant. The vector field Y ′ := Y +bYo ⊂ TW ′

is gradient-like with repsect to f ′ . Let Y ′t denote the time t map of the flow
of Y ′ . We can embed R×M ′ into W ′ by identifying {t} ×M ′ ⊂ R×M ′ with
Y ′t(M ′) ⊂W ′ . In particular the vector field ∂t ⊂ T (R ×M ′) is identified with
Y ′ . Note that R ×M ⊂W × {0} under this identification.

We need to know how to count pseudo-holomorphic curves in Symp(M) =
R × M and Symp(M ′) = R × M ′ . To achieve our goal, we first choose a
class of admissible almost complex structures. First of all observe that the
group S1 acts on W × C by rotations on C, sending (p, z) to (p, eiθz) for
θ ∈ S1 ∼= R/(2πZ). It restricts to an S1–action on M ′ that fixes M , acts freely
on M ′ \M , and preserves α′ . Let ΠC denote the projection W × C → C, and
Π the the projection W ×C →W . One might expect to find an α′–admissible
almost complex structure which splits and preserves the subbundles Π∗TW and
Π∗
C
TC of TW ′ . This is however, not true in general.

On the other hand, since

ξ′|M = ξ ⊕ C (15)

we consider an dα′–admissible almost complex structure J ′ on ξ′ ⊂ TM ′ such
that J ′ preserves the decomposition (15), and J ′ = i when restricted to the
second factor of (15), here i denote the standard complex structure on C. It is
easy to see that there are plenty of dα′–compatible almost complex structures
satisfying the above condition. Then we extend J ′ to become an admissible
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almost complex structure on Symp(M ′) ⊂W ′ via the flow of Y ′t . In particular,
J ′(Y ′) = Y ′t

∗R
′ on Y ′t(M ′). We have

J ′ =

[

J O
O i

]

+Q, Q→ O as |z| → 0, z ∈ C. (16)

Theorem 6.1 HC∗(M, ξ;α, J) ∼= HC∗+2(M
′, ξ′;α′, J ′).

Proof Fix any large positive integer mo . M can be constructed as a level set
of the Weinstein manifold (W,ω, Y, f) such that the following action condition
is satisfied: Let γm

p denote the principal generator corresponding to the critical
point p of f and with multiplicity m. Then A(γ1

p) > A(γm
q ) when the index

of p is greater than the index of q and m ≤ mo .

Let κ be small enough then the principal generators of the contact complex
C∗(M,α) are principal generators of C∗(M

′, α′). Let γ+ and γ− be two such
principal generators, then

M := M′
J(M ; γ−, γ+) ⊂ M′ := MJ ′(M ′; γ−, γ+).

Given u′ ∈ M′ , write u′ = (u1, u2) according to the splitting W ′ = W × C.
Assume u′ 6∈ M, then u2 6≡ 0. The u2–component of u′ associates two winding
numbers (recall that Symp(M) ⊂W )

n− := wind(u′ ∩ {t ≪ 0}, Symp(M)),

n+ := wind(u′ ∩ {t ≫ 0}, Symp(M)).

Since u′(C∗) and Symp(M) are pseudo-holomorphic submanifolds of comple-
ment dimensions, u′(C∗) intersects with Symp(M) positively at every point of
the intersection u′(C∗) ∩ Symp(M). Thus we have

n+ − n− = #
(

u′(C∗) ∩ Symp(M)
)

≥ 0. (17)

Write u2 = u2(w) where w denotes the complex coordinate of C. u2 : C∗ → C

is a smooth function. Recall that we embed Symp(M ′) = R ×M ′ into W ′ =
W × C by identifying ∂t with Y ′ = Y + bYo for some constant b > 0. The
integral trajectories of Y ′ perserves the value |z|−b/2 . Since u′(w) approaches
Symp(M) ⊂W × {0} asymptotically as w approaches either 0 or ∞ we have

u2(w) is asymptotically holomorphic as |w| → 0 or ∞, (18)

|u2(w)|−b/2 → 0 as |w| → 0 or ∞. (19)

u2 can be continuously extended to C by defining u2(0) := 0. The extended
function is still denoted by u2 for simplicity.
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Now by (18) and (19) we have that near w = 0,

u2(w) ∼ wn− for some n− ∈ N, n− > b/2.

Here n− is exactly the earlier defined winding number of u′(C∗) to Symp(M)
near t = −∞. Similarly, near w = ∞ we have

u2(w) ∼ wn+ for some n+ ∈ N, n+ < b/2,

where n+ is the winding number of u′(C∗) to Symp(M) near t = ∞. Then we
have n+ < b/2 < n− and in particular n+ − n− < 0, which contradicts with
(17). So u2 ≡ 0. We conclude that M = M′ . The degree 2 shift is an easy
observation. This completes the proof.

7 Finding HC(M, ξ)

We now proceed to compute the cylindrical contact homology of (M ′, ξ′) (again
we assume that dimM > 3). This time we choose to have κ ≫ 1 so that the
principal Reeb orbits are in M ′ \M and they are in one-one correspondence
with elements of Crit(f). More precisely they are

γp := {(p, z)} ⊂M ′, p ∈ Crit(f)

with index γp = 2n − ind(p).

Let J ′ be the same as in the previous section. To determine the boundary
operator of the contact complex we first need to characterize all moduli of the
form M′(γ−, γ+) of formal dimension equal to 1.

Lemma 7.1 Fix mo > 0 then there are contact 1–forms on (M ′, ξ′) with
nondegenerate Type I Reeb orbits such that if are of Type I with multiplicity
≤ mo and if the formal dimension of M′

J ′(γ−, γ+) is 1 then γ± = γm
p± for some

p± ∈ Crit(f) with ind(p−) = ind(p+) + 1 and γ± have the same multiplicity
m.

Proof Let M′ = M′
J ′(γ−, γ+) be nonempty and its formal dimension is γ+ −

γ− = 1. γ+ = γ
m+
p+ for some p+ ∈ Crit(f) with ind(p+) = k+ , γ− = γ

m−

p− ,
where γp− , m− , and k− are defined similarly, and m± ≤ mo . We have

1 = 2n− k+ + 2(m+ − 1) − (2n − k− + 2(m− − 1))

= k− − k+ + 2(m+ −m−),

therefore k− 6= k+ . If k− < k+ then A(γ+) < A(γ−) which is impossible, so
k− > k+ .
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Assume k− > k+ + 1 then m+ < m− . Note that m± = n± are the winding
numbers of u′ around Symp(M) = R ×M near t = ±∞ respectively. Since
n+ ≥ n− it cannot happen that k− > k+ + 1. So we must have k− = k+ + 1
and hence m+ = m− .

By using n+−n− = #(u′(C∗)∩Symp(M)) and the positivity of the intersection
u′(C∗) ∩ Symp(M) we have the following simple lemma:

Lemma 7.2 Let M′ = M′
J ′(γ−, γ+) be as in the previous lemma and let

u′ ∈ M′ . Then the curve u′(C∗) does not intersect R ×M .

Since all curves that we are going to count are in the symplectization of M ′ \M
we can use the diffeomorphism M ′ \M ∼= V × S1 to simplify the computation.

Consider the diffeomorphism :

Φ: V × S1 →M ′ \M, Φ(x, θ) = (x,

√

c− f

κ
θ)

Then Φ∗(α′) = e−hdθ + α. Write Φ∗(α′) = e−h(dθ + ehα) then by using the
fact that e−h(dθ+ ehα) is contact one sees that d(ehα) is symplectic on V . So
by abusing notations we redenote ehα as α and denote λ := dθ + α.

λ is a connection 1–form on the trivial principal bundle

V × S1 π→ V,

dλ = π∗ω, ω := dα

and h is a smooth Morse function on V with Crit(h) = Crit(f) and the same
corresponding Morse indexes.

With the above isomorphism understood we will from now on work with the
contact manifold (V × S1, e−hλ). We denote the corresponding contact struc-
ture by ξ′ . ξ′ is the horizontal lifting of TV with respect to the connection
1–form λ. Let Xh be the Hamiltonian vector field of h with respect to the
symplectic 2–form ω , ie, ω(Xh, ·) = −dh. Then the Reeb vector field of e−hλ
is

R′ =
eh

1 + α(Xh)
(∂θ +Xh)

with 1 + α(Xh) > 0 on V × S1 .

S1 acts freely on V ×S1 by rotation along S1 fibers. Let J ′ be an S1–invariant
e−hλ–admissible almost complex structure. Since ξ′ is transversal to the fibers,
Jξ′ := J ′|ξ′ induces an ω–compatible almost complex structure J̄ on V by

J̄(π∗η) := π∗J
′η η ∈ ξ′.
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Conversely an ω–compatible almost complex J̄ structure on V induces an
S1–invariant dλ–compatible almost complex structure Jξ′ on ξ′ which extends
to be an S1–invariant e−hλ–admissible almost complex structure J ′ on the
symplectization of V × S1 .

Let γ± = γm
p± for some p± ∈ Crit(h) and u′ ∈ MJ ′(γ−, γ+) be with S1–

invariant image. Let

u = (ū, θ) : R × S1 → V × S1

be the corresponding map into V × S1 . Since C := u(R × S1) is S1–invariant
and ξ′ is transversal to the S1–fibers, ξ′ induces a nonsingular foliation on C
generated by ξ′ ∩ TC . We can reparametrize u′ so that

λ(us) = 0, λ(ut) = m. (20)

Here (s, t) are coordinates for R×S1 (so z = s+ it is the complex coordinate),

and us :=
∂u

∂s
, ut :=

∂u

∂t
.

Let π1 : T (V ×S1) → ξ′ be the projection along the Reeb vector field R′ . Since
u′ is J ′–holomorphic we have

π1us + J ′π1ut = 0, (21)

ie,

us −
λ(us)

1 + α(Xh)
(∂θ +Xh) + J ′

(

ut −
λ(ut)

1 + α(Xh)
(∂θ +Xh)

)

= 0,

which by (20) is reduced to

us + J ′
(

ut −mρ(∂θ +Xh)
)

= 0, (22)

where ρ = (1 + α(Xh))−1 . Write us = (ūs, θs), ut = (ūt, θt). Apply π∗ to (22)
and we have

ūs + J̄(ūt −mρXh) = 0. (23)

Hence ū is a finite-energy solution to the Cauchy-Riemann type equation as in
Floer Theory with

ūs = mJ̄(ρXh), ūt = 0.

Note that the flow of the vector field mρJ̄Xh is of Morse-Smale type for generic
J̄ hence by [31] the linearization of (23) at an S1–invariant solution ū

Fūη̄ = ∇̄sη̄ + J̄∇̄tη̄ −m∇̄η̄(J̄(ρXh)) (24)

is onto for generic J̄ . Here ∇̄ is the Levi-Civita connection associated to the
Riemannian metric ḡ := dα ◦ (Id× J̄).
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Conversely an S1–invariant solution ū to (23) can be “lifted” to an S1–invariant
J ′–holomorphic map u′ = (a, u) into Symp(V × S1) as follows. First we lift ū
to a map u = (ū, θ) into V × S1 with θ = θ(s, t) : R × S1 → S1 satisfying

θs = −α(ūs), θt = m− α(ūt) = m.

Such θ exists and is unique up to the addition of a constant rotation. The
resulting map u satisfies (21) and (20).

Now solve for the function a = a(s, t) : R × S1 → R which satisfies

as = e−hλ(ut) = me−h, at = −e−hλ(us) = 0. (25)

Since R × S1 is a noncompact Riemann surface, there exists a complex-valued
function b : R × S1 → C such that

bs = e−hλ(ut) = me−h, bt = −e−hλ(us) = 0.

b is unique up to an addition of a holomorphic function. Write b1 for the real
part of b, and b2 for the imaginary part of b. We have

(b2)ss + (b2)tt = −us(e
−hλ(us)) − ut(e

−hλ(ut)) = 0

ie, b2 is harmonic, hence the imaginary part of a holomorphic function b̃. Define
a := b − b̃. a is a real-valued function on R × S1 and satisfies (25). Moreover
a is unique up to the addition of a real constant. The resulting map u′ is
S1–invariant, J ′–holomorphic with multiplicity m, unique up to the rotation
by a constant angle and the addition of a real constant and satisfies

u(s, ·) → γ± as s→ ±∞,

0 <

∫

R×S1

u∗d(e−hλ) =

∫

γ+

e−hλ−
∫

γ−

e−hλ = m(e−h(p+) − e−h(p−)) <∞.

Hence u′ ∈ M′
J ′(γ−, γ+).

Now that we have establishes for each fixed m ∈ N (and m ≤ mo for some large
mo ) a one-one correspondence between (i) the (gradient-like) J̄Xh–trajectories
in V that connecting critical points p± with ind(p+) = ind(p−) = 1 and (ii)
the S1–invariant elements in the moduli M′

J ′(γ−, γ+)/R with γ± = γm
p± . We

proceed to show that the linearization of the operator ∂ := ∂J ′ at an S1–
invariant solution u′ ∈ M′

J ′(γ−, γ+) is surjective for generic J ′ .

Recall that

∂(u′) = u′s + J ′u′t.
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Let π1 , π2 be the projections with respect to the orthogonal decomposition
T (Symp(V × S1)) → ξ′ ⊕ E , E is the vector bundle spanned by ∂t and R′ .
Write ∂ = ∂1 + ∂2 where

∂1(u
′) = π1u

′
s + J ′π1u

′
t, (26)

∂2(u
′) = π2u

′
s + J ′π2u

′
t. (27)

Let D1 , D2 denote the linearizations of ∂1 and ∂2 at u′ respectively.

Lemma 7.3 π1D1 : W 1,2(R × S1, u′∗ξ′) → L2(R × S1, u′∗ξ′) is surjective for
generic S1–invariant J ′ .

Proof Let η ∈ W 1,2(R × S1, u′∗ξ′). Let ∇ be the Levi-Civita connection on
Symp(V × S1) with respect to the Riemannian metric g′ := e−t+hd(et−hλ) ◦
(Id× J ′). Note that g′|ξ′ = g|ξ′ where g is the Riemannian metric on V × S1

induced by ḡ and the connection 1–form λ of the S1–bundle V × S1 over V .
Then

D1(η) = π1∇sη − (∇ηλ)(u′s)e
−hR′ + J ′π1∇tη

+ π1(∇ηJ
′)π1u

′
t −mJ ′∇η(e

−hR′).
(28)

Write e−hR′ =
∂θ +Xh

1 + α(Xh)
= ζ + ∂θ with ζ ∈ ξ′ ,

ζ =
−α(Xh)∂θ +Xh

1 + α(Xh)
=

−1

m
· π1u

′
t

and apply π1 to (28) we get

π1D1(η) = π1∇sη + J ′π1∇tη −mπ1(∇ηJ
′)ζ −mJ ′π1(∇η(ζ + ∂θ)).

Let η̄ := π∗η , ζ̄ := π∗ζ . Since π1(∇η(J
′|E))ζ = 0 and

π1∇ηζ = π∗∇̄η̄ ζ̄ (π∗ means “horizontal lifting”)

∇η∂θ = ∇∂θ
η + [η, ∂θ ] = ∇∂θ

η − L∂θ
η = 0

and ζ̄ = ρXh with ρ = (1 + α(Xh))−1 we have

π∗π1D1(η) = ∇̄sη̄ + J̄∇̄tη̄ −m(∇̄η̄J̄)ζ̄ −mJ̄∇̄η̄ζ̄

= ∇̄sη̄ + J̄∇̄tη̄ −m∇̄η̄(J̄(ρXh))

= Fū(η̄) (see (24)).

(29)

Since Fū : W 1,2(R×S1, ū∗TV ) is surjective for generic J̄ [31] we conclude that
π1D1 is surjective for generic S1–invariant J ′ .
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Recall that E denote the vector bundle over Symp(V ×S1) spanned by ∂t and
the Reeb vector field R′ .

Lemma 7.4 D2 : W 1,2(R × S1, u′∗E) → L2(R × S1, u′∗E) is surjective for all
J ′ .

Proof Let η ∈ W 1,2(R × S1, u′∗E) and let ∇ be the Levi-Civita connection
defined in proof of Lemma 7.3. Then

D2(η) = π2∇sη + J ′π2∇tη +m(∇ηJ
′)(e−hR′) +mJ ′∇η(e

−hR′).

Since ∇ηJ
′ ∈ End(ξ′), ∇R′R′ = 0, ∇R′e−h = 0 and ∇η(e

−hR′) = 0 we have

D2(η) = π2(∇sη + J ′∇tη).

Write η = η1∂t + η2R
′ then

D2((η1, η2)) = (∇sη1 −∇tη2,∇sη2 + ∇tη1)

is the standard d–bar operator on W 1,2(R×S1, u′∗E) with respect to the almost
complex structure u′∗(J ′|E) on the trivial complex line bundle u′∗E , hence is
surjective because R × S1 is a noncompact Riemann surface.

Lemma 7.3 and Lemma 7.4 together imply the following:

Lemma 7.5 Let J ′ be an S1–invariant α′–admissible almost complex struc-
ture on Symp(M ′). Then for generic J ′ the linearized operator D = D1 +D2

of ∂J ′ is surjective at every S1–invariant element of MJ ′(γ−, γ+) provided that
the multiplicity of γ± is small.

In the following we would like to show that up to a homotopy of contact 1–forms
there are no elements of MJ ′(γ−, γ+) which are not S1–invariant. Our proof is
based on results from [31] concerning finite energy solutions with small periods
of Cauchy-Riemann type equations and the following construction.

Recall that the stabilization M ′ can be identified with the following hypersur-
face in W × C:

{f + κ|z|2 = c}, κ≫ 1 fixed,

with contact structure defined by the 1–form α′ = α+αo , where αo := ωo(Yo, ·),
ωo is the standard symplectic 2–form on C. For each k ∈ N with k > 1 the
finite group

Zk := {θ ∈ S1|θk = 1} ⊂ S1
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acts on (M ′, α′) via rotation in the C–plane. The action preserves α′ and
induces a branched k–covering map

Φk : M ′ →M ′.

Φk : M ′ \M → M ′ \M is a k–covering map, and Φk fixes M pointwise. Φk

induces a contact 1–form αk := (Φk)∗α
′ = α + αo/k on M ′ . Let ξk denote

the contact structure defined by αk . αk and α′ can be included into a smooth
family of contact 1–forms of M ′ so ξk and ξ′ are isotopic as contact structures.
Moreover (Φk)∗ξ

′ = ξk .

Let Jk denote the S1–invariant αk–admissible almost complex structure on
Symp(V × S1) such that

Jk = (Φk)∗J
′(Φ−1

k )∗ on ξk.

Clearly Lemma 7.5 also holds for generic Jk , 1 < k ∈ N.

For v′k ∈ MJk
(M ′; γ−, γ+) let ṽk ∈ MJk

(γk
−, γ

k
+) be the k–fold cover of v′k .

Then ṽk(s, t+ 1
k ) = ṽk(s, t) and the pullback by Φk of ṽk is a J ′–holomorphic

map u′k ∈ MJ ′(M ′; γ−, γ+) which also satisfies

u′k(s, t+
1

k
) = ϑ · u′k(s, t), (30)

where ϑ is the generator of Zk which represents the 2π/k–rotation. Conversely
if u′k ∈ MJ ′(M ′; γ−, γ+) satisfies (30) then Φk(u

′
k) ∈ MJk

(M ′; γk
−, γ

k
+) is a k–

cover of some v′k ∈ MJk
(M ′; γ−, γ+).

Lemma 7.6 Assume that ind(p−) − ind(p+) = 1 and γ± = γm
p± . Then there

exists ko ∈ N such that for all k ≥ ko all elements of MJk
(M ′; γ−, γ+) are

S1–invariant.

Proof Suppose not. Then there exists an infinite sequence kν of positive in-
tegers, lim

ν→∞
kν = ∞, such that for each kν the moduli space MJkν

(M ′; γ−, γ+)

has an element say v′kν
which is not S1–invariant. Let u′kν

:= Φ∗
kν
ṽkν

where Φkν

is defined as before, ṽkν
is a kν –cover of v′kν

. Then u′kν
∈ MJ ′(M ′; γ−, γ+).

Since all u′kν
have the same contact energy Aα′(γ+) − Aα′(γ−), there is an

infinite subsequence of u′kν
, also denoted by u′kν

, such that up to translations
in R–direction, u′kν

converge to a J ′–holomorphic curve u′ as ν → ∞. u′ is
S1–invariant.

All u′kν
and u′ have the same winding numbers n± around Symp(M) near

t = ±∞. Moreover we have n+ = n− because none of the u′kν
’s intersect with

Symp(M), so neither does u′ . u′ is therefore a finite union of S1–invariant

Geometry & Topology, Volume 8 (2004)



1276 Mei-Lin Yau

curves so that the image in V × S1 of each connected component is either a
cylinder bounding a pair of type I Reeb orbits. The closure of the image of u′

in V is a connected tree formed by trajectories of a gradient-like vector field.
This tree contains a (perhaps broken) trajectory with endpoints p± = π(γ±).
Moreover, p± are vertices of valent 1 of the tree, here the valent of a vertex
is the number of edges coming out from this vertex as an endpoint. Suppose
that the this trajectory contains other critical points. Then there is a critical
point p 6= p± such that a trajectory between p and p+ is contained in the said
broken trajectory from p− to p+ . The corresponding preimage of p in V × S1

is the Reeb orbit γ := γm
p . Since we must have the action inequalities

A(γ−) < A(γ) < A(γ+),

and since γ , γ− , γ+ have the same multiplicity we have

ind(p−) > ind(p) > ind(p+).

But ind(p−) − ind(p+) = 1, there exists no such p. So the trajectory between
p± is unbroken and hence is equal to the tree.

Now that the projection of the image of u′ in V is a trajectory of a gradient-
like vector field connecting critical points p− = π(γ−) to p+ = π(γ+), so the
linearized operator Du′ is surjective for generic J ′ , hence u′ is an isolated
element of MJ ′(M ′; γ−, γ+). Thus u′kν

and hence v′kν
have to be S1–invariant

for all ν large enough, which contradicts with the assumption that there are
non-S1–invariant u′kν

for infinitely many kν . Hence the lemma holds.

Lemma 7.7 Let (α′, J ′) be a regular pair. For p ∈ Crit(f) with ind(p) = k ,
denote by γm

p ∈ C2(n+m−1)−k(α′) the corresponding principal generator with
multiplicity m ≤ mo . Then

∂γm
p = m

∑

ind(q)=k+1

aq

m
γm

q ,

where aq is the algebraic number of trajectories of J̄Xh running from q and p.

Now let mo → ∞. After an easy computation on index we obtain the following:

Theorem 7.1 Let (M ′, ξ′) be a stabilization of a (2n + 1)–dimensional sub-
critical Stein-fillable contact manifold (M, ξ), n > 2, and (V, J) a subcritical
Stein-filling of (M, ξ). Then

HCi(M
′, ξ′) ∼= ⊕

m∈N∪{0}
H2(n+m)−i(V ).
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Combining Theorem 7.1 with Theorem 6.1 we have the following:

Theorem 7.2 Let (M, ξ) be a (2n− 1)–dimensional subcritical Stein-fillable
contact manifold with n > 2, and V a subcritical Stein-filling of (M, ξ). Then

HCi(M, ξ) ∼= ⊕
m∈N∪{0}

H2(n+m−1)−i(V ).

When n = 2 (M, ξ) is the union of S3 (3–dimensional contact 0-handle) and a
finite number of 3–dimensional contact 1–handles diffeomorphic to R×S2 . We
write s for the number of contact 1–handles of M . Let γ0 denote the principal
Reeb orbit in the 0-handle, and γ1 , γ2 , ..., γs the principal Reeb orbits in each
of the s’ contact 1–handles. These 1–handles can be attached to S3 pairwise
disjoint. Recall that when n = 2 c1(ξ) = 0 so the µ̄–index of contractible Reeb
orbits are independent of the spanning discs and hence are well-defined.

Let mo ≫ 1 be a fixed positive integer, then by deforming 0- and 1–handles we
can obtain a suitable regular contact 1–form α and assume the following:

Condition 7.1

γm
j =

{

2m j = 0,
2m− 1 j = 1, 2, ..., s

for m ≤ mo (31)

A(γ1) = A(γ2) = · · · = A(γs) ≪ A(γ0) (32)

Let J be a regular α–admissible almost complex structure.

Proposition 7.1 Assume M := MJ(γ−, γ+) is not empty and γ± ≤ 2mo .

(1) If dimM = 1 then γ− = γm
j , γ+ = γm

0 for some m ≤ mo , 1 ≤ j ≤ s.

(2) If dimM = 2 then γ− = γm−1
o , γ+ = γm

0 for some m ≤ mo .

Note that C1(α) is nontrivial, it is generated by γj , 1 ≤ j ≤ s. Neverthe-
less Proposition 7.1 and Condition 7.1 together imply that for 1 < m ≤ mo ,
the boundary of M(γm−1

0 , γm
0 ) does not contain any element of M(γm

j , γ
m
0 ).

Also when m = 1 the boundary of M(γ0), where M(γ0) consists of holomor-
phic planes converging exponentially to γ0 at t = ∞ at z = ∞, contains no
holomorphic curves with more than one negative ends. Moreover, we have the
following result:

Lemma 7.8 The boundary operator ∂ : C∗(α) → C∗−1(α) satisfies ∂ ◦ ∂ = 0,
at least when ∗ ≤ 2mo .
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Proof Condition 7.1 implies that for 1 < m ≤ mo ,

∂γm
j = 0 ∀j = 1, 2, ..., s,

and hence

∂2γm
0 = ∂(

s
∑

j=1

ajγ
m
j ) = 0 ∀j = 1, 2, ..., s.

Now consider the m = 1 case. Observe that ∂2(γj) = 0 for j = 1, ..., s because
C−1(α) = 0. Also ∂2(γ0) = 0 since ∂γo =

∑s
j=1 bjγj and ∂γj = 0 for j =

1, ..., s. Thus ∂2 = 0 at least on C∗(α) with ∗ ≤ 2mo .

Therefore we can apply to M the stabilization technique as before and obtain
the n = 2 version of Theorem 7.2.

Theorem 7.3 Let (M, ξ) be a 3–dimensional subcritical Stein-fillable contact
manifold, and (V, J) a subcritical Stein domain such that ∂V = M and ξ is
the maximal complex subbundle of TM . Then

HCi(M, ξ) ∼= ⊕
m∈N∪{0}

H2(n+m−1)−i(V ).

This completes the proof of the Main Theorem.
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