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Abstract

We study the growth of the genus zero Gromov–Witten invariants GWnD of
the projective plane P 2

k blown up at k points (where D is a class in the second
homology group of P 2

k ). We prove that, under some natural restrictions on D ,
the sequence log GWnD is equivalent to λn log n, where λ = D · c1(P

2
k ).
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1 Introduction

In this note we treat the asymptotic behavior of the genus zero Gromov–Witten
invariants on 4–dimensional symplectic manifolds. In this setting such an in-
variant can be seen as a count of connected rational J –holomorphic curves
in a given homology class under a choice of a generic tamed almost complex
structure, see, for example, [12].

Our interest to logarithmic asymptotics is motivated by a comparison of Grom-
ov–Witten invariants with their real analogs introduced by J-Y Welschinger
(see [5] and the conjecture in Section 4) and by a relation of the logarithmic
asymptotics with the convergency properties of the Gromov–Witten potential
(see [5]).

As is known, already the existence of homology classes with a nontrivial in-
variant which are distinct from the homology classes of (−1)–curves is a very
restrictive condition. It implies that the 4–dimensional symplectic manifold
in question is a blow-up of a rational or ruled manifold (precise statements,
details, and references can be found in [12], Section 9.4). We exclude irrational
ruled manifolds (that is, symplectic S2–bundles over Riemann surfaces of genus
g > 0) since they have only one homology class with a nontrivial invariant, the
class represented by the fiber. Furthermore, since the Gromov–Witten invari-
ants are preserved under variations of the symplectic structure, for the study of
their asymptotic properties it is sufficient to consider the product of complex
projective lines, P

1 × P
1 , and the blow-ups of the complex projective plane.

Let us denote by P
2
k the complex projective plane P

2 blown up at k points. Pick
a homological class D in H2(P

2
k; Z) such that the Gromov–Witten invariant

GWD(P2
k) is non-zero, and either D ·c1(P

2
k) > 2, or D ·c1(P

2
k) = 2 and D2 > 0.

Under the above hypotheses on D , the Gromov–Witten invariants of nD,n ≥ 1,
are enumerative, that is, the invariant GWnD(P2

k), n ≥ 1, is equal to the number
NnD(P2

k) of immersed irreducible rational curves passing through nD ·c1(P
2
k)−1

given generic points in P
2
k under the additional assumption that the blown up

points are also generic, see [2].

In the case of P
2
0 = P

2 the Kontsevich recursive formula for NnL(P2) [9] (L
being a line in P

2 ) allows one to get successive values of these invariants and to
find their asymptotics. In particular, one has log NnL(P2) = 3n log n + O(n) as
n → +∞ (see [1]). There exist recursive formulas for the Del Pezzo surfaces,
see [9], and for P

2
k with any k , see [2]. However, these formulas are not easy to

analyze specially for large k . In [5] working with the corresponding counts of
real curves we observed, by means of Mikhalkin’s theorem [13, 14] (see also [16])
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on the enumeration of nodal curves on toric surfaces via lattice paths in convex
lattice polygons, that the relation

log NnD(Σ) = λn log n + O(n), λ = D · c1(Σ),

holds for any ample divisor D on a toric Del Pezzo surface Σ, in particular, on
the plane with blown up one, two, or three points, and on P

1 × P
1 .

The present note is devoted to a proof of the following theorem.

Theorem 1 Let P
2
k be the plane blown up at k ≥ 1 points, and D ∈ H2(P

2
k; Z)

a homology class such that GWD(P2
k) 6= 0 and either D · c1(P

2
k) > 2, or D ·

c1(P
2
k) = 2 and D2 > 0. Then

log GWnD(P2
k) = λn log n + O(n), λ = D · c1(P

2
k) . (1)

As a consequence we get the following enumerative statement.

Corollary 1 Let P
2
k be the plane blown up at k ≥ 1 generic points, and

D ∈ H2(P
2
k; Z) is as in Theorem 1. Then

log NnD(P2
k) = λn log n + O(n), λ = D · c1(P

2
k) . (2)

Furthermore, if k ≤ 9, then (2) holds for any ample divisor D on P
2
k .

Let us notice that the hypotheses of Theorem 1 are in a sense optimal. For
example, GWnD = 0 if n ≥ 2 and D is an embedded curve with D · c1 ≤ 2.

2 Rational curves on rational geometrically ruled

surfaces

Here we prove two auxiliary statements.

Lemma 1 Let Σs , s > 0, be a rational geometrically ruled surface with the

exceptional section E , E2 = −s, and a fibre F . Then,

log Nn(sF+E)(Σs) ≥ (s + 2)n log n + O(n) . (3)

Proof We follow the ideas of the proof of Lemma 5 in [5].

First, we observe that the case s = 1 corresponds to curves on Σ = P
2
1 disjoint

from E , and since s + 2 = (sF + E) · c1(Σ), this case is settled in Theorem 3
of [5] applied to P

2 . Then, we assume that s ≥ 2 and prove the inequality

Nn(sF+E)(Σs) ≥ n! · Nn((s−1)F+E)(Σs−1) , (4)
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Figure 1: Correspondence between rational curves on Σs−1 and Σs

which immediately implies

log Nn(sF+E)(Σs) ≥ log NnL(P2) + (s − 1) log n! ,

and hence the inequality (3) in view of log NnL(P2) = 3n log n + O(n).

To prove (4), notice that the number Nn((s−1)F+E)(Σs−1) of rational curves in
the linear system |n((s−1)F +E)| passing through (s+1)n−1 generic points in
Σs−1 can be viewed as the number of rational curves in the linear system |n(sF+
E)| on Σs which pass through (s+1)n−1 generic points and have an ordinary
n–fold singularity at some fixed point z (this correspondence is provided by the
birational transformation Σs−1 → Σs given in suitable affine toric coordinates
x, y in Σs−1 and u, v in Σs by u = x, v = xy ; the correspondence reflects
an affine transformation of Newton polygons as shown in Figure 1). Choose
now generic points in a small neighborhood of z . The argument of the proof
of Lemma 5 in [5] confirms that any rational curve C ∈ |n(sF + E)| as above
can be deformed inside the class of rational curves passing through the initial
(s + 1)n − 1 fixed points, so that the n local branches of C at z freely move
in transverse directions, and hence can be traced through the newly chosen n
fixed points in an arbitrary order. Thus, (4) follows.

Remark 1 Lemma 1 can also be proved using the tropical count. The proof is
completely similar to the proof of Theorem 3 (case of P

2 ) in [5]. One should just
adapt the corresponding lattice path constructed in [5] to a triangle representing
the linear system |n(sF + E)| on Σs .

Lemma 2 Fix an integer s ≥ 1. Then, there exists an integer sequence (Tn)
which verifies the following properties: log Tn = (s + 2)n log n + O(n) and for
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any n there is a generic collection z1, . . . z(s+2)n−1 of (s + 2)n − 1 points in Σs

such that among the rational curves belonging to the linear system |n(sF +E)|
and passing through zi , i = 1, ..., (s + 2)n − 1, at least Tn curves have only

ordinary nodes as singular points and intersect each other transversally outside

of the points zi , i = 1, ..., (s + 2)n − 1.

Proof For s = 1 the statement on ordinary nodes is classical and holds for all
the interpolating curves in the linear system (see, for example [15] for a modern
exposition). For s > 1 one can apply the construction described in the proof
of Lemma 1 and observe that it preserves the statement on ordinary nodes.
To eliminate one by one eventual non-transversal intersections of interpolating
rational curves outside of the chosen points, it suffices to move one of the chosen
points along an interpolating curve having a non-transversal intersection with
another curve.

3 Proof of Theorem 1 and Corollary 1

Proof of Theorem 1 Let us first note that under the hypotheses on D made
in Theorem 1, the Gromov–Witten invariants are enumerative. More precisely,
deforming the complex structure of P

2
k to a generic almost complex one we

observe, first, that, due to GWD(P2
k) 6= 0 and the stability of the exceptional

divisors E1, . . . , Ek of P
2
k → P

2 , the non-negativity of intersections, D ·Ei ≥ 0,
holds, and then, by Theorem 4.1 in [2], we obtain that due to D · c1(P

2
k) > 1,

for a generic choice of the k blown-up points the number GWnD(P2
k), n ≥ 1, is

equal to the number NnD(P2
k) of immersed irreducible rational curves passing

through nD · c1(P
2
k) − 1 given generic points in P

2
k .

The upper bound, log NnD(P2
k) ≤ (D ·c1(P

2
k))n log n+O(n), is given by Lemma

5 in [5].

To prove the lower bound, assume, first, that D · c1(P
2
k) > 2. By [2], Theorem

4.1, we can represent D by an immersion ϕ : P
1 → P

2
k . We consider the

bundle NP1 = ϕ∗(T P
2
k)/T P

1 over P
1 and compactify it into the rational ruled

surface X = Proj(NP1 ⊕ OP1). Pick Kähler structures on P
2
k and X with

the same periods on, respectively, D in P
2
k and P

1 in X , and fix a symplectic
immersion Φ of a small neighborhood N(P1) ⊂ X into P

2
k which extends ϕ.

Such an immersion Φ exists due to the symplectic neighborhood theorem (see,
for example, [11], Theorem 3.30) Notice that D ·c1(P

2
k) = P

1 ·c1(X). Therefore,
applying Lemma 2 to the linear system |nP

1| we find in it Tn , Tn = D ·
c1(P

2
k)n log n+O(n), immersed rational curves which pass through D·c1(P

2
k)−1
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generic fixed points, have only ordinary nodes as singular points, and intersect
transversally outside of the fixed points. Choose 0 and ∞ in P

1 so that the
fibers over them are transversal to each of these Tn curves Ci and do not
contain any of the fixed D · c1(P

2
k) − 1 points. Now by vertical and horizontal

(toric) rescaling in X we can make all the curves Ci to be C0–close to P
1 and,

moreover, C1–close to it outside an arbitrary small neighborhood of 0 ∈ P
1 .

As a consequence, we get Tn immersed symplectic surfaces Φ(Ci) which pass
through some common D·c1(P

2
k)−1 points, have only ordinary nodes as singular

points, and are transversal to each other outside of the common D · c1(P
2
k)− 1

points. Proceeding as in [10], Lemma 3.2, we construct a tamed almost complex
structure J on P

2
k for which all the surfaces Φ(Ci) are J –holomorphic (we start

from neighborhoods of the common points, where we retrieve a suitable almost
complex structure from X ). Due to [7], the constructed J –holomorphic curves
represent discrete regular solutions of the interpolating problem. Thus, to get
the desired below bound it remains to notice that, as it follows from [7] and
[6] (Corollaries 1.6 and 2.7), the space of generic almost complex structures is
connected and dense, and each regular solution counts for +1.

In the remaining case, D · c1(P
2
k) = 2 and D2 > 0, the conditions D2 > 0 and

GWD(P2
k) 6= 0 imply, by the standard gluing argument, that GW2D(P2

k) 6= 0.
Therefore, the preceding case applies to D′ = 2D and the lower bound now
follows from the monotonicity relation

N(n+1)D(P2
k) ≥ NnD(P2

k) , n ≥ 1. (5)

To get (5) we use again the gluing of rational curves. Namely, we construct an
injective map from the set of rational curves in |nD| passing through 2n− 1 =
nD · c1(P

2
k) − 1 fixed generic points to the set of rational curves in |(n + 1)D|

passing through 2n + 1 generic points. Pick 2n generic points pi , i = 1, ..., 2n,
in P

2
k , and a rational curve C1 ∈ |D| passing through p2n . We can assume that

for any curve C chosen among the rational curves belonging to |nD| and passing
through p1, ..., p2n−1 , there is a point zC ∈ C ∩C1 which is singular neither for
C no for C1 and where the curves C and C1 intersect transversally. Pick a
generic point p′ ∈ C1 and a point p2n+1 6∈ C1 in a small neighborhood of p′ .
Then, there exists a one-parameter deformation of C∪C1 consisting of rational
curves in |(n + 1)D| and such that the point zC smoothes out and the points
p1, ..., p2n remain fixed (see, for example, [3], Proposition 5.2, or [8], Ch. II,
Theorem 7.6). This family sweeps a neighborhood of p′ , and hence we obtain
a rational curve C ′ ∈ |(n + 1)D| passing through p1, ..., p2n−1, p2n, p2n+1 .

Remark 2 The relation (1) of the statement of Theorem 1 is also valid for a
homology class D ∈ H2(P

2
k; Z) such that GWD(P2

k) > 1, D · c1(P
2
k) = 1, and
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D2 > 0. Indeed, putting D′ = 2D , we have D′ · c1(P
2
k) = 2 and (D′)2 > 0. By

[2], Theorem 4.1, we can find in the linear system |D| two distinct immersed
rational curves. Then, deforming these curves as in the proof of Theorem 1, we
get GWD′(P2

k) > 0. Thus, the relation (1) holds for D′ , and we can prove this
relation for D using the inequality (5) as is done in the proof of Theorem 1.

Proof of Corollary 1 The first statement immediately follows from Theorem
1 and the equality GWnD(P2

k) = NnD(P2
k) explained in the beginning of the

proof of Theorem 1.

To prove the second statement, we observe first that any ample divisor D on P
2
k ,

k ≤ 9, is represented by a nodal rational curve. For k = 1 or 2 this is trivial.
For 3 ≤ k ≤ 9 this follows from Theorem 5.2 in [4], which states the existence of
rational nodal curves in certain linear systems in P

2
k . Indeed, given an expansion

D = dL − d1E1 − ... − dkEk for any base (L,E1, ..., Ek) of Pic(P2
k) satisfying

L2 = −E2
1 = ... = −E2

k = 1, the ampleness of D yields that d, d1, ..., dk > 0.
Furthermore, by base changes in Pic(P2

k) induced by Cremona transformations
(see [4], section 5.1), we can achieve d ≥ maxi6=j 6=l(di + dj + dl), which is the
minimality condition of Theorem 5.2 in [4]. At last, the remaining condition of
this theorem, 3d > d1 + ... + dk (which can be also written as D · c1(P

2
k) > 0),

follows from the positivity of intersection with the strict transform of a plane
cubic passing through the blown-up points.

Since the existence of a nodal rational curve in |D| implies GWD(P2
k) 6= 0,

and since, in addition, D2 > 0 for any ample D , the second statement of the
corollary is proved for ample divisors D satisfying D · c1(P

2
k) ≥ 2.

Now let us consider the case D · c1(P
2
k) = 1, and put D′ = 2D . We have

D′ · c1(P
2
k) = 2 and (D′)2 > 0, and once more by Theorem 5.2 in [4] we get

GWD′(P2
k) 6= 0. Hence, the relation (2) holds for D′ , and finally we deduce this

relation for D using the inequality (5) as is done in the proof of Theorem 1.

4 Welschinger invariants of real rational surfaces

Recall that the Welschinger invariants depend not only on a homology class,
but also on a number of non-real points in a real configuration of points (see
[17, 18] for the definition and properties of the Welschinger invariants). Denote
by WnD(P2

k) the Welschinger invariant which counts, with weights ±1, the
real rational curves belonging to the linear system |nD| and passing through
nD · c1(P

2
k)− 1 given generic real points in P

2
k . As is proved in [5], in the cases
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k = 1, 2, 3, the same relation as (1) holds for WnD(P2
k) (instead of GWnD(P2

k)).
This motivates the following conjecture.

Conjecture 1 Assume that P
2
k is obtained from P

2 by blowing up k generic

real points and is equipped with its natural real structure. Let D ⊂ P
2
k be a real

ample divisor. Then, the Welschinger invariants WnD(P2
k) satisfy the relation

lim
n→+∞

log WnD(P2
k)

n log n
= D · c1(P

2
k) .

One could try to prove Conjecture 1 using the same construction as in the proof
of Theorem 1. However, this approach does not give immediately the result,
since a real regular solution to the interpolation problem contributes ±1 to
the Welschinger invariant. Thus, to get an asymptotic lower bound, it is not
enough to present an appropriate number of interpolating real rational curves.
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