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Abstract
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complete intersection singularity. We describe a broad generalization: First, one
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possible topologies of singularities with Q–homology sphere links. As quotients
of complete intersections, they are necessarily Q–Gorenstein, and many Q–
Gorenstein singularities with Q–homology sphere links are of this type. We
conjecture that rational singularities and minimally elliptic singularities with
Q–homology sphere links are splice-quotients. A recent preprint of T Okuma
presents confirmation of this conjecture.
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1 Introduction

The possible topologies for a normal singularity of a complex surface are classi-
fied (eg, [6]), but it is very rare that much is known about possible analytic types
for given topology. Locally, the topology is the cone on an oriented 3-manifold
Σ, called the link of the singularity. Via the configuration of exceptional curves
on a good resolution (Ỹ , E) → (Y, o), one can construct Σ via plumbing ac-
cording to the negative-definite dual resolution graph Γ. In this paper we will
restrict to the case Σ is a rational homology sphere, or QHS, ie, one for which
H1(Σ; Z) is finite; equivalently, the exceptional configuration is a tree of smooth
rational curves.

The universal abelian covering Σ̃ → Σ is finite, and can be realized by a finite
map of germs (X, o) → (Y, o); the covering (or discriminant) group H1(Σ) is
easily computed from the dual graph Γ. Given Σ, or (equivalently, by [6])
a graph Γ, our goal is to construct an explicit singularity (X, o) whose link
is Σ̃, and an action of the discriminant group which is free off o, so that the
quotient (Y, o) has graph Γ. We will achieve this under certain conditions on
Γ (Theorem 7.2).

Suppose first that Σ is Seifert fiberable. Then it has been known for some time
that the universal abelian cover of Σ is diffeomorphic to the link of a Brieskorn
complete intersection singularity1 ([6, 7]). Thus a possible analytic type is as
an abelian quotient of a Brieskorn complete intersection. From another point
of view, consider a quasi-homogeneous (Y, o) with QHS link; the resolution
diagram is star-shaped, and from it one can read off easily the data needed
to write down a Brieskorn complete intersection and a diagonal action of the
discriminant group. A look at the Seifert data shows that the quotient has
the same topology as (Y, o). As a bonus, one can even arrange to recover the
analytic type of Y , because one knows the exact ingredients needed to make a
quasi-homogeneous singularity.

At this point, to handle more general links, one might wonder what kinds of
equations could generalize Brieskorn complete intersections.

Three-manifold theory gives a natural minimal decomposition of Σ along em-
bedded tori into pieces that are Seifert fiberable (a version of the JSJ-decompos-
ition, [8]). When this set of tori is empty, Σ is the only piece in the decompos-
ition—the aforementioned Seifert case. More generally, associated to the JSJ

1In this paper diffeomorphisms are always assumed to preserve orientation; and,
since we are interested in singularities, complete intersections are local complete inter-
sections in the usual sense – eg, [2], p. 185.
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decomposition of Σ is a certain weighted tree called a splice diagram. This is a
tree with no valence two vertices, and for each node (vertex of valence ≥ 3) it
has a positive integer weight associated with each incident edge. The pieces in
the JSJ decomposition of Σ are in one-one correspondence with the nodes of
the splice diagram. The splice diagram does not necessarily determine Σ but
it does determine its universal abelian cover.

As indicated, the link Σ determines the topology of the minimal good resolu-
tion of the singularity, and the splice diagram ∆ can easily be computed from
the resolution dual graph Γ (see, eg, Section 12). ∆ has the same general shape
as Γ, but degree two vertices are suppressed. Resolution graphs satisfy a nega-
tive definiteness condition which translates into a “positive edge determinants”
condition for the splice diagrams of singularities.

Under a certain natural condition on ∆, called the “semigroup condition,” we
associate a collection of t − 2 equations in t variables, where t is the num-
ber of leaves of ∆. There is some choice allowed in these “splice diagram
equations.” They generalize Brieskorn complete intersections as follows. A
Brieskorn complete intersection, corresponding to a splice diagram with a sin-
gle node of valence t, is defined by a system of t − 2 weighted homogeneous
equations. For a splice diagram with more than one node, one associates to
each node a collection of δ − 2 equations (δ the valence of the node) which
are weighted homogeneous with respect to a system of weights associated to
the node. This gives a total of t − 2 equations. (We also allow higher weight
perturbations of these equations.)

We also formulate the “congruence conditions,” which depend on Γ, which
guarantee that the discriminant group of the resolution acts on a set of splice
diagram equations for ∆. Our main results (Theorems 2.6 and Theorem 7.2)
can be summarized:

Theorem The splice diagram equations associated to a splice diagram ∆ with
semigroup condition always describe a normal complete intersection singularity.

If splice diagram equations have been chosen equivariantly with respect to the
action of the discriminant group for Γ, then the action is free away from the
singular point, the quotient is a singularity with resolution graph Γ (and hence
with link Σ), and the covering is the universal abelian cover.

Thus for a large family of topologies — those that satisfy the semigroup and
congruence conditions — we find explicit (and attractive) analytic descriptions
of singularities with the given topology. Put another way, in such cases we can
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write down explicit equations for singularities with given topology (of course,
modulo writing down invariants for the group action).

As finite quotients of complete intersections, these “splice-quotient singulari-
ties” are necessarily Q–Gorenstein. Although splice diagram equations depend
on choice of certain “admissible monomials,” the family of analytic types for the
resulting splice-quotient singularities is independent of these choices (Theorem
10.1). We had earlier (rashly) conjectured that every Q–Gorenstein singularity
with QHS link should be a splice-quotient, and though this appears to be true
surprisingly often (eg, quasihomogeneous singularities [7] and quotient-cusps
[10]), counterexamples are now known [5]. In fact, weakly equisingular defor-
mations (in the sense of weak simultaneous resolution) of a splice-quotient need
not be of that type. Nevertheless, we conjectured in the original version of this
paper that rational singularities and minimally elliptic singularities with QHS
link should be splice quotients (Conjecture 11.3). The recent preprint [13] of
T. Okuma now offers a proof of this Conjecture (see Section 13).

In the important case that Σ is a Z–homology sphere (these are classified by
splice diagrams with pairwise prime weights at each node), no abelian quotient
is needed; so, the semigroup condition then implies one can write down directly
complete intersection splice equations with given topology. We know of no
complete intersection with Z–homology sphere link which does not satisfy the
semi-group conditions, or is not of splice type. (See [11].)

The leaves of the splice diagram correspond to knots in Σ, and we show that
they are cut out (in the universal abelian cover) by setting the corresponding
variable equal to zero. In [11] we show in the Z–homology sphere case that the
existence of functions cutting out these knots is equivalent to the singularity
being of splice type, and we conjecture that this holds more generally. This
point of view is useful beyond the question of existence of singularities with
given topologies—it applies as well to analytic realization of germs of curves
in complex surfaces (especially with Z–homology sphere links). For instance,
embedded resolution of a plane curve singularity gives rise to a (non-minimal)
Γ and ∆, and one writes down an explicit equation of the curve by setting a
variable equal to 0, as in [11], Section 5. More generally, consider the following
illustration. Let X be the Brieskorn variety x2 + y3 + z13 = 0, and let K
be the knot in its link cut out by z = 0 (this is the degree 13 fiber of the
Seifert fibration of Σ). Form K(p, q), the (p, q)–cable on K , a new knot on
Σ. Then the positive edge determinant condition says that K(p, q) is the link
of a complex curve through the origin in X if and only if 13q > 6p, and the
semigroup condition says that this curve can be cut out by a single equation
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f(x, y, z) = 0 if (and in this case only if) q ≥ 2. We will return to this theme
elsewhere.

Let us explain the steps needed to get to the main result. First, given a splice
diagram ∆ satisfying the semigroup conditions, we write down an explicit set
of equations, and our first goal is to show (Theorem 2.6) that these splice dia-
gram equations define an isolated complete intersection singularity. Every node
of ∆ defines a weight filtration, and one needs to prove that each associated
graded is a reduced complete intersection, defined by the leading forms of the
given equations. This step (Section 3) involves understanding curves defined by
analogs of splice diagram equations and some detailed combinatorics involving
the diagram weights. Then, to show the singularity is isolated (Section 4), one
does a weighted blow-up at an “end-node” of ∆, and examines singularities
along the exceptional fiber. The key is to show one now has equations for a
“smaller” ∆̃, which by induction has an isolated singularity; a difficulty is that
the new weights are related to the old ones in a rather complicated way.

We next consider the resolution diagram Γ. The discriminant group D(Γ) is
computed, and shown to act naturally (and without pseudoreflections) on Ct ,
the space on which the splice diagram equations for ∆ are defined (Section 5).
To proceed, one needs to be able to choose splice diagram equations on which
D(Γ) acts equivariantly; this is the “congruence condition” which we need. In
particular, if the semigroup and congruence conditions are satisfied for Γ, then
we have an action of the discriminant group on the splice diagram equations.
Our main theorem, Theorem 7.2, asserts that the quotient map is the universal
abelian cover of a normal singularity whose resolution dual graph is Γ.

Finally, we have to prove Theorem 7.2, which we do by induction on the number
of nodes. A key point is to explicitly lift the generators of D(Γ) to a weighted
blow-up of the singularity at an “end-node”. We then have to identify the
exceptional fiber and singularities that arise after factoring by the lifted group.
We show that at the “worst” singular points one has (after analytic change
of coordinates) a splice-quotient for a subgraph Γ̃ of Γ. Again, this involves
some complicated numerics, some of which are proved in the Appendix. The
one-node case is done in Section 8 and the inductive step in Section 9.

We also show, as part of the main theorem, that for any node of the splice
diagram, the grading on the splice-quotient induced by the weight filtration on
Ct is, up to a multiple, just order of vanishing on the corresponding curve of
the resolution. Using this we can deduce (Theorem 10.1) that the concept of
splice-quotient singularity is a canonical concept (independent of choices).
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In Section 11, we take a two-node minimal resolution graph, and write down
explicitly the semigroup and congruence conditions.

The first Appendix (Section 12) proves some results about resolution and splice
diagrams that are needed in the paper, as well as a topological description of
splice diagrams.

A second Appendix, added April 2005, discusses Okuma’s recent preprint on
the conjecture that rational and QHS-link minimally elliptic singularities are
always splice quotients.

Acknowledgements The first author’s research is supported under NSF
grant DMS-0083097 and the second author’s under NSA grant MDA904-02-
1-0068.

2 Semigroup conditions and splice equations

We first recall the concept of “splice diagram,” a certain kind of weighted tree.
Given a finite tree, the valency of a vertex is the number of incident edges. A
node is a vertex of valency ≥ 3 and a leaf is a vertex of valency 1.

A splice diagram ∆ is a finite tree with no valence 2 vertices, decorated with
integer weights as follows: for each node v and edge e incident at v an integer
weight dve is given (see Section 12 for examples and more detail). Thus an
edge joining two nodes has weights associated to each end, while an edge from
a node to a leaf has just one weight at the node end. The edge determinant

of an edge joining two nodes is the product of the two weights on the edge
minus the product of the weights adjacent to the edge. Splice diagrams that
arise in the study of links of complex singularities always satisfy the following
conditions:

• All weights are positive.

• All edge determinants are positive.

• One has the “ideal condition” on weights (see below).

To explain the third of these, we need more notation.

Notation 2.1 For a node v and an edge e at v , let dve be the weight on
e at v , and dv the product of all edge-weights dve at v . For any pair of
distinct vertices v and w , let ℓvw (the linking number) be the product of all
the weights adjacent to, but not on, the shortest path from v to w in ∆. Define
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ℓ′vw similarly, except one excludes weights around v and w . (Thus ℓ′vw = 1 if
v and w are adjacent, and ℓvw = ℓ′vw if v and w are both leaves.) Finally, let
∆ve be the subgraph of ∆ cut off from v by e (ie, on the “e–side of v”).

Definition 2.2 Ideal Condition For each node v and adjacent edge e of ∆,
the edge-weight dve is divisible by the GCD of all ℓ′vw with w a leaf of ∆ in
∆ve ; in other words, dve is in the following ideal of Z:

dve ∈
(
ℓ′vw : w a leaf of ∆ in ∆ve

)
.

We are interested in splice diagrams that satisfy the stronger condition:

Definition 2.3 Semigroup Condition The semigroup condition says that for
each node v and adjacent edge e of ∆, the edge-weight dve is in the following
sub-semigroup of N:

dve ∈ N〈ℓ′vw : w a leaf of ∆ in ∆ve〉 .

For each edge e at v the semigroup condition lets us write

dve =
∑

w a leaf in ∆ve

αvwℓ′vw , with αvw ∈ N ∪ {0}. (1a)

It is easy to see that this is equivalent to

dv =
∑

w

αvwℓvw. (1b)

Assume from now on that ∆ satisfies the semigroup condition. To each leaf w
we associate a variable zw .

Definition 2.4 v–weighting; admissible monomials Fix a node v . Then the
v–weighting, or v–filtration, of the polynomial ring in the zw ’s is defined by
assigning weight ℓvw to zw .

An admissible monomial (associated to the edge e at the node v) is a monomial
Mve =

∏

w zαvw
w , the product over leaves w in ∆ve , with exponents satisfying

the above equations (1). In particular, each admissible monomial Mve is v–
weighted homogeneous, of total v–weight dv .

Definition 2.5 Splice diagram equations Let ∆ be a splice diagram with t
leaves satisfying the semigroup condition. To each leaf w associate a variable
zw ; for each node v and adjacent edge e, choose an admissible monomial Mve .
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Then splice diagram equations for ∆ consist of a collection of equations of the
form

∑

e

avieMve + Hvi = 0, v a node, i = 1, . . . , δv − 2 ,

where

• for every v , all maximal minors of the ((δv − 2)× δv)–matrix (avie) have
full rank

• Hvi is a convergent power series in the zw ’s all of whose monomials have
v–weight > dv .

It is easy to see one has exactly t − 2 equations in the t variables. The corre-
sponding subscheme X(∆) ⊂ Ct is a splice diagram surface singularity.

Theorem 2.6 Let X = X(∆) ⊂ Ct be a splice diagram surface singularity.
Then:

(1) X is a two-dimensional complete intersection with an isolated singularity
at the origin.

(2) For any node v , the corresponding weight filtration has associated graded
ring a reduced complete intersection, defined by the v–leading forms of
the splice equations.

The theorem will be proved partly by induction on the number of nodes of ∆.
Once we know the singularities are isolated, one can recover all the analytic
types by restricting to polynomials Hvi in the definition. We allow splice dia-
grams in which an edge-weight leading to a leaf may be 1, as the “minimality”
assumption which avoids this could be lost in our inductive process.

One could define a more general class of equations by allowing, for each node
v and edge e, linear combinations of admissible monomials, rather than mul-
tiples of a fixed one. It follows from the theorem (and proof) that for generic

coefficients, these give isolated singularities with the same properties. But, in
the situation of most interest to us here (Theorem 7.2), where the monomial
Mve also satisfies an equivariance condition, this is not a generalization, since
we will show (Theorem 10.1) that any other allowed monomial M ′

ve for v, e
then differs from some multiple of Mve by something of higher weight.

Given that the maximal minors of the coefficient matrix (avie) have full rank,
one may apply row operations to the matrix (which is the same as taking linear
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combinations of the corresponding equations), to put the (δv−2)×δv coefficient
matrix in the form 






1 0 . . . 0 a1 b1

0 1 . . . 0 a2 b2
...

...
. . .

...
...

...
0 0 . . . 1 aδv−2 bδv−2








with aibj − ajbi 6= 0 for all i 6= j , and all ai and bi nonzero. We will often
assume we have done so. In this way, the defining equations are sums of three
monomials, plus higher order terms. (Sometimes — for instance the next section
— it will be more convenient to move the last two columns of the above matrix
to the first two columns.)

3 Splice diagram curves and associated gradeds

As in [11], one can define curves using a modified version of splice diagrams.
Let (∆, w′) be a splice diagram with distinguished leaf w′ . But now, at any
node, the edge weight in the direction of w′ is irrelevant and should be omitted
or ignored. (∆, w′) satisfies the semigroup condition if for every node v and
adjacent edge e pointing away from w′ , the edge-weight dve is in the semigroup
generated by all the ℓ′vw with w in ∆ve . This condition is automatic if ∆ is
a splice diagram that satisfies the semigroup condition and (∆, w′) is obtained
by ignoring edge weights in the direction of w′ .

As before, associate a variable zw to each leaf different from w′ ; and, for every
node v and adjacent edge e pointing away from w′ , choose an admissible mono-
mial Mve . One can define a splice diagram curve C = C(∆, w′) via equations
for all nodes v : ∑

e

avieMve = 0, i = 1, . . . , δv − 2 ,

where for all v the (δv − 2) × (δv − 1) matrix (avie) is required to have full
rank. (Note that we now don’t allow higher order terms.) Enumerating the
admissible monomials at v as Mvj , 1 ≤ j ≤ δv − 1, one can always write the
system of equations as

Mvj = avjMv1, j = 2, . . . , δv − 1 ,

where all avj 6= 0. Assign to the variable zw the weight ℓw′w ; then the equations
at v are weighted homogeneous, of total weight ℓw′v .

Theorem 3.1 Let C be a splice diagram curve as above.
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(1) At a point of C for which one coordinate is 0, all coordinates are 0.

(2) Except at the origin, C is a smooth curve.

(3) The number of components of C is the GCD of the weights of the vari-
ables.

(4) C is a reduced complete intersection curve, and every irreducible compo-
nent is isomorphic to a monomial curve.

(5) For each leaf w 6= w′ , let αw be an integer ≥ 0, not all equal 0. Then
for b 6= 0, the intersection C ∩{

∏
zαw
w = b} is everywhere transverse and

consists of
∑

αwℓw′w points.

Proof Denote by v′ the node adjacent to the distinguished leaf w′ .

One can use induction in several ways: for instance, remove v′ from the diagram,
then reinsert a distinguished leaf in its place for δv′ − 1 splice subdiagrams
pointing away from w′ . The splice type equations for the subdiagrams are
among the equations we started with. Combining with the equations at v′ , one
easily gets the first claim.

For the second assertion, it is easier to use a different induction. Let v be an end-
node, adjacent to σ := δv−1 leaves, say w1, . . . , wσ , with associated coordinates
z1, . . . , zσ . Then some splice equation at v is of the form zm2

2 − azm1

1 = 0
(a 6= 0); this polynomial has k irreducible factors, where k is the GCD of
m1 and m2 . In a neighborhood of the point in question, exactly one of these
factors vanishes, so we can solve z1 = tm2/k, z2 = a′tm1/k . Plug these into
all the remaining equations. One then recognizes splice diagram equations
associated to a diagram with one less leaf. When σ ≥ 3, replace w1 and
w2 by one leaf, with edge-weight m1m2/k , and then divide all edge weights
pointing towards the node v by h (they are divisible by k , by the semigroup
condition). When σ = 2, drop the two leaves, making v into a new leaf, and
again divide the same edge-weights by k . It is straightforward to check that
one has equations associated to a new splice diagram. This process gives the
inductive step necessary to prove the claim.

The third assertion uses the same induction. Number the leaves w1, . . . , wτ and
abbreviate the weight ℓw′wi

of the i-th variable by ℓi . Then the weights of the
variables in the new splice diagram in the induction are ℓ := ℓ1/m2 = ℓ2/m1 ,
and ℓ3/k, . . . , ℓτ/k . The inductive step thus follows from the equation

gcd(m1ℓ,m2ℓ, ℓ3, . . . , ℓτ ) = k. gcd(ℓ, ℓ3/k, . . . , ℓτ/k) .

Since C is a curve with one singularity, and is defined by the appropriate number
of equations, it is a complete intersection (necessarily reduced). Since C is
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weighted homogeneous, it has a C∗–action. Any irreducible component still has
a C∗–action, hence is a monomial curve. In fact, let h denote the GCD of all the
weights ℓi of the variables, and consider “reduced weights” ℓ̄i := ℓi/h. Then for
any (p1, . . . , pτ ) 6= (0, . . . , 0) on C , one sees that (z1, . . . , zτ ) = (p1t

ℓ̄1 , . . . , pτ tℓ̄τ )
defines an irreducible monomial curve contained in C through the point, hence
gives an irreducible component.

As for the last count of solutions, the function f :=
∏

zaw
w , restricted to the

component (p1t
ℓ̄1, . . . , pτ t

ℓ̄τ ) of C , has the form pt
P

ai ℓ̄i for some p 6= 0, so
it has exactly

∑
aiℓ̄i inverse images over any b 6= 0. Thus, the intersection

of C with f(z1, . . . , zτ ) = b is transversal for any b 6= 0 and the number of
intersection points is

∑
aiℓ̄i on each of the h components of C , so there are

h
∑

aiℓ̄i =
∑

aiℓi intersection points in all.

From the preceding result one derives the second part of Theorem 2.6 concerning
X(∆).

Proof of Theorem 2.6 (2) Enumerate the chosen admissible monomials at
v as Mi , 1 ≤ i ≤ δv ; these are weighted homogeneous of degree dv with respect
to the v–weighting. So the leading forms of the equations at v may be written

Mi − aiM1 − biM2 = 0, 3 ≤ i ≤ δv .

Lemma 3.2 At a node v′ 6= v , consider an admissible monomial Mv′e .

(1) If e does not point towards v , then the v–weight of Mv′e is ℓv′v .

(2) If e points towards v , then the v–weight of Mv′e is strictly greater than
ℓv′v .

(3) If a monomial has v′–weight > dv′ , then its v–weight is strictly greater
than ℓv′v .

Proof (Cf. Theorem 7.3 in [11].) One checks directly that for any w

ℓvw

ℓv′w
=

ℓv′v

dv′
De′

1
. . . De′k

where:

• e′1, . . . , e
′
k are the edges that are on the path from v′ to v but not on the

path from w to v ;

• for any edge e, De is the product of the edge weights on e divided by the
product of edge weights directly adjacent to e (so De > 1 by the edge
determinant condition).
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Thus ℓvw/ℓv′w takes its minimum value (namely ℓv′v/dv′ ) if and only if w is
beyond v′ from the point of view of v . It follows that the admissible monomials
at v′ all have the same v–weight except for the near monomial for v , which
has higher v–weight. One has the last assertion of the lemma as well.

It follows from the lemma that the v–leading form of a splice diagram equation
at v′ is given by the combination of the admissible monomials pointing away
from v ; all other terms have higher v–weight. We prove that these equations,
plus the ones at v , together define a two-dimensional complete intersection,
whence they define the full associated graded ring associated to the v–filtration.

The vertices 6= v of ∆ divide into δv groups, depending upon the ∆ve to
which a v′ belongs. In a sector consisting of more than one leaf, consider
the v–leading forms of the splice equations corresponding to vertices in that
sector. Using Lemma 3.2, these forms can be seen to provide a complete set
of splice diagram curve equations for the corresponding set of variables (where
v is viewed as a “root” of the sector). Therefore, in any sector, if one of the
zw vanishes at a point, so do all the other leaf variables (by Theorem 3.1).
In particular, at a point of vanishing of two variables, one from each of the
first two edge directions, one has the vanishing as well of M1 and M2 . This
implies that every Mi vanishes, whence one variable in every group vanishes, so
every variable vanishes. Consequently, the locus of the particular t− 2 leading
forms plus these two variables is 0-dimensional, hence must be a 0-dimensional
complete intersection. Equivalently, those leading forms and two variables form
a regular sequence. Now recall the following well-known result in commutative
algebra:

Lemma 3.3 Let f1, . . . , fr be a sequence of elements in a positively graded
polynomial ring P , generating an ideal I . Suppose that the leading forms
f̄1, . . . , f̄r form a regular sequence. Then the fi form a regular sequence, and
the ideal of leading forms of I is generated by the f̄i .

We conclude that the associated graded ring of the v–filtration of X(∆) is a
two-dimensional complete intersection, defined by the t − 2 leading forms as
above. In addition, X(∆) is a complete intersection at the origin.

Corollary 3.4 Let X(∆) be a splice diagram singularity as above. Then for
any two variables z, z′ , the locus

X(∆) ∩ {z = z′ = 0}

contains the origin as an isolated point.
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Proof Choose v the node adjacent to the leaf corresponding to z . In Spec
of the associated graded, the locus {z = z′ = 0} is exactly the origin, so the
associated graded modulo z and z′ is a 0-dimensional complete intersection.
Thus, the local ring of X at the origin modulo these two variables is also 0-
dimensional.

One can also see that any of these associated graded rings is reduced; it suffices
to show generic reducedness. Choose a point all of whose coordinates are non-
zero. Then in every sector, one can solve the splice equations around that point
and set each variable z equal to a constant times a power of a new variable t.
This transforms that sector’s admissible monomial into a power of one variable
t. This puts the equations corresponding to v into the form of a Brieskorn
complete intersection. In particular, Spec of the associated graded is smooth at
points for which all coordinates are non-0; the only singular points occur along
the curves obtained by setting a variable equal to 0.

To show the singularity of X(∆) is isolated, and to get a handle on resolution
diagrams, we do a weighted blow-up.

4 Weighted blow-up and the proper transform

Let z1, . . . , zt be coordinates on an affine space Ct , where zi has positive integer
weight mi . Blowing-up the corresponding weight filtration gives the weighted

blow-up Z → Ct , an isomorphism off the inverse image of the origin. Z is
covered by t affine varieties Ui , each of which is a quotient of an affine space
Vi by a cyclic group of order mi . V1 has coordinates A1, . . . , At , related to the
zi via

z1 = Am1

1 , z2 = Am2

1 A2, . . . , zt = Amt

1 At;

U1 equals V1 modulo the action of the cyclic group generated by

S = [−1/m1,m2/m1, . . . ,mt/m1] ,

where we are using the notation

[q1, . . . , qt] := (exp(2πiq1), . . . , exp(2πiqt)) .

Consider now a splice diagram singularity X = X(∆), where as usual t is the
number of leaves. Let v∗ be an end-node of ∆, ie, a node all but one of whose
edges is adjacent to a leaf. Putting this node on the left side of ∆, we write

◦
... v∗

◦
n1

PPPPPPPPP

nσ
nnnnnnnnn

r ◦

n
n

n
n

n

P
P

P
P

P
...

◦
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(As the one-node case is easy and is revisited below, we assume there are at
least two nodes). Blow-up the corresponding weight filtration, where zw has
weight ℓv∗w . Since the associated graded of X with respect to the filtration is
a complete intersection, the proper transform of X in Z or the Vi is defined
by the proper transform of the splice equations. Further, since the origin is the
only point of X at which two coordinates vanish, one sees the full transform of
X by considering the proper transforms Xi on Vi for i = 1, 2.

Denote by σ the number of leaves adjacent to v∗ , τ = t − σ the number of
remaining leaves and number these leaves w1, . . . , wσ+τ . Call the corresponding
variables x1, . . . , xσ, y1, . . . , yτ . Write N = n1n2 . . . nσ,Ni = N/ni . Then the
weight of xi is rNi , while that of yk is Nℓ′k , where ℓ′k := ℓ′v∗wσ+k

. We write
the splice diagram equations in two groups.

First, one has

xni

i + aix
nσ
σ = biy

α + Hi(x, y), 1 ≤ i ≤ σ − 1 . (2a)

Here, yα :=
∏τ

k=1 yαk

k is an admissible monomial for v∗ , so
∑

αkℓ
′
k = r . The

term Hi(x, y) (shorthand for Hi(x1, . . . , xσ, y1, . . . , yτ )) contains monomials of
higher v∗–weight.

Second, for each node v 6= v∗ , order the admissible monomials Mvj , j =
1, . . . , δv so that Mv1 corresponds to the edge pointing in the direction of v∗

(thus only Mv1 can involve any xi variables). The corresponding equations are
of the form

δv∑

j=1

avijMvj = Hvi(x, y) , i = 1, . . . , δv − 2 . (2b)

The transforms of the first group of equations (2a) on V1 have the form

1 + a1A
nσ
σ = b1B

α + A1J1(A,B)

Ani

i + aiA
nσ
σ = biB

α + A1Ji(A,B) , 2 ≤ i ≤ σ − 1 .
(3a)

For equations (2b) corresponding to another node v , it follows from Lemma 3.2
that the transforms of such equations take the form

δv∑

j=2

avijMvj(B) = A1H
′
vi(A,B), i = 1, . . . , δv − 2 . (3b)

Here, Mvj (for j > 1) is the same monomial as before, but evaluated on the
Bk instead of the yk . These equations are obtained from the ones above by
substituting for the xi and yk , and then dividing through by the highest power
of A1 that occurs, which is A

ℓv∗v
1 by Lemma 3.2.
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One needs to get a handle on the singular locus of X1 . First, the exceptional
divisor is the subscheme of X1 defined by A1 = 0; it is given by equations

1 + a1A
nσ
σ = b1B

α ,

Ani

i + aiA
nσ
σ = biB

α , 2 ≤ i ≤ σ − 1 ,

δv∑

j=2

avijMvj(B) = 0 , v 6= v∗ a node, i = 1, . . . , δv − 2 .

Lemma 4.1 The curve defined above has singularities only at the n2 . . . nσ

points for which all Bk = 0 (hence no Ai = 0 for i > 1). Every connected
component of the curve contains such a point. At a point for which A2 = 0,
A2 is a local analytic coordinate; there are n3 . . . nσr such points.

Proof The equations arising from v different from v∗ are splice diagram curve
equations for the splice diagram obtained by removing from ∆ the σ edges and
leaves adjacent to v∗ , which is now viewed as a root. By Theorem 3.1, these
define a reduced complete intersection curve C in the variables Bk , with one
singularity at the origin. Adding in the first σ − 1 equations (and variables
A2, . . . , Aσ ) defines a branched cover of this curve, which by the Jacobian crite-
rion is unramified except when one of the Ai is 0. There are thus N1 = n2 . . . nσ

singular points lying above the origin. The image of any connected component
under the finite cover must contain the origin, whence each component contains
at least one of the N1 points.

Next consider a point where A2 = 0. The genericity condition on the coefficients
implies all other Ai 6= 0. Some Bj 6= 0, hence all Bk 6= 0, by Theorem 3.1.
In a neighborhood of such a point, we can write Bi = cit

ℓi , as in the proof of
Theorem 3.1, and so replace the term Bα by a constant times tr . So the curve
is now defined by σ − 1 equations in the variables A2, . . . , Aσ , t. Again the
Jacobian criterion implies that A2 is a coordinate at any point where all the
other coordinates are non-zero (one needs again the precise genericity of the
coefficients). To count the points we note that the value of Bα is determined,
so part 5 of Theorem 3.1 gives us exactly r points on the curve in the variables
Bk , and above each of these there are n3 . . . nσ points when one adds in the
variables A2 = 0, A3, . . . , Aσ .

Thus, the singular locus of X1 intersects the exceptional divisor only at the
N1 singular points described above. We show these are isolated singular points
of X1 . Repeating for X2 will imply that X has an isolated singularity. In
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addition, we will have the necessary set-up to study singular points on X1 and
on its quotient by finite groups (as needed in Section 9).

Choose a point where A1 and all the Bk are 0; thus, all Ai are non-zero
for i > 1. Now, the matrix of Ai–partial derivatives (2 ≤ i ≤ σ) of the
σ − 1 equations (3a) is easily seen to be invertible at such a point. So, by the
implicit function theorem one can, in a neighborhood of such a point, solve
uniquely these equations, and write each Ai as a convergent power series in
A1, B1, . . . , Bτ , with non-zero constant term. Plug these convergent power
series into the second group of equations (3b). We show one now has a set of
splice diagram equations for a smaller diagram ∆̃, which by induction represents
an isolated singularity. This will complete the proof of Theorem 2.6.

Let ∆̃ be the splice diagram whose underlying graph is ∆ less the σ edges and
leaves adjacent to v∗ ; thus v∗ is now replaced by a leaf w∗ . Edge-weights not
pointing towards v∗ are defined to be the same as before. For a node v and
the edge at v pointing towards v∗ , define a new edge-weight by

d̃v1 = rdv1 − N(dv/dv1)(ℓ
′
vv∗ )

2 (4)

This is an integer, and its positivity is easily seen by multiplying all the edge-
determinant inequalities between v∗ and v . One readily checks by induction
over distance of an edge from v∗ that each edge determinant of ∆̃ is r times
the corresponding edge-determinant of ∆, hence positive.

Lemma 4.2 Assign the variables A1 to w∗ and Bk to corresponding other
leaves of ∆̃. Then the proper transforms of the second group of equations for
∆, with substitutions for A2, . . . , Aσ , are (in a neighborhood of the point in
question) splice diagram equations for ∆̃ (which in particular must satisfy the
semigroup condition).

Proof Choose a node v of ∆̃. Since the edge-weights of ∆̃ are the same as
the corresponding ones of ∆ except on edges pointing to w∗ , one sees that the
old admissible monomials Mvi(y) for i > 1 and ∆ yield admissible monomials

Mvi(B) for ∆̃. One must check the replacement for Mv1(x, y) in the new
equations.

More generally, consider any monomial
∏

i

xβi

i

∏

k

yγk

k

appearing in an equation associated to the node v . Going up to X1 means
substituting for xi and yk in terms of the Ai and Bk ; taking proper transform
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means subtracting ℓv∗v from the exponent of A1 . This gives a monomial of the
form

AQ
1 Aβ2

2 . . . Aβσ
σ

∏

Bγk

k .

Here, one has

Q = r
∑

βiNi + N
∑

γkℓ
′
k − ℓvv∗ .

In a neighborhood of the singular point, Ai for i > 1 is a power series in the
variables A1, Bk with non-zero constant term; so we are really considering (up
to a fixed factor plus higher-order terms) the transformed monomial

AQ
1

∏

Bγk

k .

If the original monomial is the particular admissible Mv1 for ∆, one has

σ∑

i=1

βiℓvwi
+

τ∑

k=1

γkℓvwσ+k
= dv , (5)

the second sum being over leaves on the v∗ side of v . Let us put a ˜ over a
linking number or degree computed in ∆̃. To prove the transformed monomial
is admissible for ∆̃, one must prove

Qℓ̃vv∗ +
τ∑

k=1

γk ℓ̃vwσ+k
= d̃v . (6)

We claim that, in fact,

Qℓ̃vv∗ +
τ∑

k=1

γk ℓ̃vwσ+k
− d̃v = r

(
σ∑

i=1

βiℓvwi
+

τ∑

k=1

γkℓvwσ+k
− dv

)

, (7)

so (6) is equivalent to (5). We postpone the proof of (7), which holds even if
some of the leaves wσ+k are beyond v from v∗ (we need this later).

We conclude that our equations have appropriate admissible monomials; in
particular, ∆̃ satisfies the semigroup condition. Further, the coefficients at
each node satisfy the appropriate genericity condition, since they are the same
as before except for a multiple of the fixed factor just mentioned.

Next, one must show a monomial of v–weight > dv gives rise to a transformed
monomial of weight > d̃v with respect to the new ṽ–valuation. Thus, for
non-negative integers βi , γk , the inequality

σ∑

i=1

βiℓvwi
+

τ∑

k=1

γkℓvwσ+k
> dv
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should imply the inequality

Qℓ̃vv∗ +

τ∑

k=1

γk ℓ̃vwσ+k
> d̃v .

The equivalence of these inequalities also follows from equation (7).

To complete the proof we must thus prove equation (7). First note that multi-
plying equation (4) by dv/dv1 gives

d̃v = rdv − N(
dv

dv1
ℓ′vv∗)

2 = rdv − ℓ̃vv∗ℓvv∗ .

Hence

Qℓ̃vv∗ +
∑

γkℓ̃vwσ+k
− d̃v

=
(

r
∑

βiNi + N
∑

γkℓ
′
k − ℓvv∗

)

ℓ̃vv∗ +
∑

γk ℓ̃vwσ+k
−
(

rdv − ℓ̃vv∗ℓvv∗

)

= r
∑

βiNiℓ̃vv∗ +
∑

γk

(

Nℓ′k ℓ̃vv∗ + ℓ̃vwσ+k

)

− rdv

= r
∑

βiℓvwi
+ r

∑

γkℓvwσ+k
− rdv ,

where the equality Nℓ′k ℓ̃vv∗ + ℓ̃vwσ+k
= rℓvwσ+k

is seen as follows: Denote by vk

the vertex where the paths from v to v∗ and wσ+k diverge (so vk = v iff wσ+k

is beyond v from v∗ ). Then

Nℓ′kℓ̃vv∗ + ℓ̃vwσ+k
= ℓ′kℓvv∗ +

ℓvwσ+k

dvk

d̃vk
= ℓ′kℓvv∗ +

ℓvwσ+k

dvk

(

rdvk
− ℓ̃vkv∗ℓvkv∗

)

= rℓvwσ+k
+ ℓ′kℓvv∗ − ℓvwσ+k

ℓ̃vkv∗ℓvkv∗/dvk
= rℓvwσ+k

,

since it is easy to check that ℓ′kℓvv∗ = ℓ′v∗wσ+k
ℓvv∗ and ℓvwσ+k

ℓ̃vkv∗ℓvkv∗/dvk

represent the same product of weights. This completes the proof of Lemma 4.2,
and hence also of Theorem 2.6.

5 The discriminant group and its natural represen-

tation

We consider the dual resolution graph Γ of a good resolution of a normal
surface singularity with rational homology sphere link (definitions relating to
dual resolution graph, minimal good resolution, etc., are recalled in Section
12). A vertex v in Γ corresponds to an exceptional curve Ev , and an edge
corresponds to an intersection of two exceptional curves. A vertex v is called a
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leaf (or end) if its valency is 1, a node if its valency is ≥ 3. Each vertex v is
weighted by self-intersection number of its associated curve Ev .

Let

E :=
⊕

v∈vert(Γ)

Z · Ev

be the lattice generated by the classes of these curves (so E can be identi-
fied with the homology H2(X̄ ; Z) of the resolution). Via the negative-definite
intersection pairing A(Γ), one has natural inclusions

E ⊂ E⋆ = Hom(E, Z) ⊂ E ⊗ Q .

The discriminant group is the finite abelian group

D(Γ) := E⋆/E ,

whose order is det(Γ) := det(−A(Γ)). There are induced symmetric pairings
of E ⊗ Q into Q and D(Γ) into Q/Z.

To calculate the discriminant group, let {ev} ⊂ E⋆ be the dual basis of the Ev ,
ie,

ev(Ev′) = δvv′ .

We claim that the images of those ew for which w is a leaf of the graph generate
D(Γ). In fact, more is true:

Proposition 5.1 Consider a collection ew , where w runs through all but one
leaf of the graph Γ. Then D(Γ) is generated by the images of these ew .

Proof Let Ev be any exceptional curve, with neighbors E1, . . . , Er (r ≥ 1).
Then in E⋆ , one verifies by dotting with any curve that

Ev = (Ev · Ev)ev +
r∑

i=1

ei.

Thus, in D(Γ) any ei can be completely expressed in terms of the ev cor-
responding to one neighbor and all the other curves on the far side of that
neighbor. Choose any one end curve Ew ; then every curve Ev , except for the
remaining end curves, has a neighbor away from Ew , and so the corresponding
ev may be expressed in terms of outer curves. Eventually, all are expressed in
terms of the remaining end curves.
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Proposition 5.2 Let e1, . . . , et be the elements of the dual basis of E⋆ cor-
responding to the t leaves of Γ. Then the homomorphism E⋆ → Qt defined
by

e 7→ (e · e1, . . . , e · et)

induces an injection

D(Γ) = E⋆/E →֒ (Q/Z)t.

In fact, each non-trivial element of D(Γ) gives an element of (Q/Z)t with at
least two non-zero entries.

Proof It suffices to show that if e · ei ∈ Z for 1 ≤ i ≤ t − 1, then e ∈ E. But
then the set of e′ ∈ E⋆ for which e · e′ ∈ Z is a subgroup containing E and
these ei , so by the last proposition must be all of E⋆ . Write e =

∑
rvEv as

a rational combination of exceptional curves; then for every exceptional curve
Ev one has e · ev = rv ∈ Z, as desired.

It will be convenient to exponentiate, and to consider

(Q/Z)t →֒ (C⋆)t

via

(. . . , r, . . . ) 7→ (. . . , exp(2πir), . . . ) =: [. . . , r, . . . ] .

Keeping in mind the last proposition, we summarize in the

Proposition 5.3 If the leaves of Γ are numbered w1, . . . , wt , then the discrim-
inant group D(Γ) is naturally represented by a diagonal action on Ct , where
the entries are t–tuples of det(Γ)-th roots of unity. Each leaf wj corresponds
to an element

[ewj
· ew1

, . . . , ewj
· ewt ] :=

(
exp(2πi ewj

· ew1
), . . . , exp(2πi ewj

· ewt)
)

,

and any t− 1 of these generate D(Γ). The representation contains no pseudo-
reflections, ie, non-identity elements fixing a hyperplane.

6 Resolution graphs and the congruence condition

Non-minimal resolutions are needed later in our inductive arguments, so we
do not want to insist that Γ corresponds to the minimal good resolution. We
therefore make the following purely technical definition.
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Definition 6.1 Quasi-minimality The resolution tree Γ is quasi-minimal if
any string in Γ either contains no (−1)–weighted vertex, or consists of a unique
(−1)–weighted vertex (a string is a connected subgraph that includes no node
of Γ).

Associated to a string

E =
−b1
◦

−b2
◦ ___ ___

−bk
◦

in a resolution diagram is a continued fraction

n/p = b1 − 1/b2 − 1/ · · · − 1/bk .

The continued fraction 1/0 is associated with the empty string. We will need
the following standard facts about this relationship, whose proofs are left to the
reader.

Lemma 6.2 Reversing a string with continued fraction n/p gives one with
continued fraction n/p′ with pp′ ≡ 1 (mod n). Moreover, the following hold:

n = det (
−b1
◦

−b2
◦ ___ ___

−bk
◦ )

p = det (
−b2
◦ ___ ___

−bk
◦ )

p′ = det (
−b1
◦ ___ ___

−bk−1
◦ ) ,

and the continued fraction in the last case is p′/n′ with n′ = (pp′ − 1)/n.

There is a unique directed quasi-minimal string for each n/p ∈ [1,∞], and in
this case the reversed string has continued fraction n/p′ with p′ the unique
p′ ≤ n with pp′ ≡ 1 (mod n).

Associate to a (not necessarily minimal) resolution graph Γ a splice diagram
∆, as in [9] (see also section 12): First, suppress all vertices of valency two in Γ,
yielding a tree of the same general shape, but now with only leaves and nodes.
Second, to every node v and adjacent edge e of ∆ (or Γ), associate an edge-
weight dve as follows: removing the node from Γ, take the positive determinant
dve := det(Γve) of the remaining connected graph Γve in the direction of the
edge. The splice diagram has positive edge-determinants and satisfies the ideal
condition (Definition 2.2; this is proved in section 12). In the unimodular case,
with det(Γ) = 1, the weights around a node are relatively prime; but this is no
longer true in general.

The discriminant group D(Γ) acts diagonally on Ct , as in Proposition 5.3.
Viewing the zw ’s as linear functions on Ct , D(Γ) acts naturally on the poly-
nomial ring P = C[. . . , zw, . . . ]; e acts on monomials as

Πzαw
w 7→

[

−
∑

(e · ew)αw

]

Πzαw
w .
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In other words, the group transforms this monomial by multiplying by the
character

e 7→ exp
(

−2πi
∑

(e · ew)αw

)

.

If ∆ satisfies the semigroup condition, one has the notion of admissible mono-
mials (Definition 2.4).

Definition 6.3 Congruence Condition Let Γ be a resolution diagram, yield-
ing a splice diagram ∆ satisfying the semigroup condition. We say Γ satisfies
the congruence condition if for each node v , one can choose for every adjacent
edge e an admissible monomial Mve so that D(Γ) transforms each of these
monomials according to the same character.

We can write down this condition explicitly in terms of Γ and ∆.

Lemma 6.4 The matrix (ev · ev′) (v, v′ vertices of Γ) is the inverse of the
matrix A(Γ) = (Ev · Ev′).

Proof By elementary linear algebra, the matrix of the dual basis in an inner
product space (such as E ⊗ Q) is the inverse of the matrix of the original
basis.

Proposition 6.5 Let w,w′ be distinct leaves of Γ, corresponding to distinct
leaves of ∆, and let ℓww′ denote their linking number. Then

ew · ew′ = −ℓww′/det(Γ).

Proof This is immediate by the preceding lemma and Theorem 12.2.

This proposition implies that for distinct leaves w,w′ the number ew · ew′ de-
pends (except for the denominator det(Γ)) only on the splice diagram ∆. For
a leaf w , the number (ew · ew) det(Γ) is not determined solely by ∆.

Proposition 6.6 Suppose we have a string from a node v to an adjacent
leaf w1 in Γ with associated continued fraction d1/p, so d1 is the weight at v
towards w1 . Let p′ be the determinant of the same string with the last vertex
w1 deleted, so pp′ ≡ 1 (mod d1) (see Lemma 6.2). Then (with dv the product
of weights at v)

ew1
· ew1

= −dv/
(
d2
1 det(Γ)

)
− p′/d1 .

(Compare this with ew1
· ew2

= −dv/ (d1d2 det(Γ)) for two leaves adjacent to
v .)
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Proof Lemma 6.4, Theorem 12.2, and Lemma 12.5.

Corollary 6.7 The class of ew′ (w′ a leaf) transforms the monomial Πzαw
w by

multiplication by the root of unity
[∑

w 6=w′

αwℓww′/det(Γ) − αw′ew′ · ew′

]

.

These formulas allow a direct way to check the congruence condition.

Proposition 6.8 Let Γ be a graph whose splice diagram ∆ satisfies the semi-
group condition. Then the congruence condition is equivalent to the follow-
ing: for every node v and adjacent edge e, there is an admissible monomial
Mve = Πzαw

w (w running through the leaves in ∆ve ) so that for every leaf w′

of ∆ve ,
[∑

w 6=w′

αwℓww′/det(Γ) − αw′ew′ · ew′

]

= [ ℓvw′/det(Γ) ] .

Proof We first claim that if ē 6= e is another edge of v , then ew′ transforms
any admissible polynomial Mvē by the root of unity

[ ℓvw′/det(Γ) ] .

To see this, one checks (via the definition of linking numbers) that for w̄ ∈ ∆vē ,
one has

ℓw′w̄ = ℓw′vℓ
′
vw̄/dvē .

In particular, if

dvē =
∑

βw̄ℓ′vw̄ ,

then ∑

βw̄ℓ′w′w̄ = ℓvw′ .

The claim follows.

In particular, at each node v , checking the congruence condition on the Mve ’s
imposed by one ew involves only the stated equality, involving the edge in the
direction of w .

Note that there is nothing to check for edges leading to leaves. In case Γ is
star-shaped (ie, ∆ has only one node), there are no semigroup conditions, hence
no congruence conditions. We will later explain these conditions completely in
the two-node case. But we give one example.
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Example 6.9 [9] Consider the resolution diagram

−3
◦

−3
◦

Γ =
−7
◦

QQQQQQ

mmmmmm
−1
◦

nnnnnn

PPPPPP
−3
◦

−3
◦

.

The corresponding splice diagram is

◦ ◦
∆ = ◦

3
QQQQQQ

3mmmmmm
3 57

◦
3 nnnnnn

3 PPPPPP

◦ ◦

Labeling the variables x, y, u, v clockwise from the bottom left leaf, one checks
that an admissible monomial uαvβ at the left node satisfies the condition of
Proposition 6.8 if and only if α and β are both ≡ 2 (mod 3). This is incom-
patible with the admissibility condition α + β = 1, so Γ does not satisfy the
congruence condition.

7 Splice diagram equations with discriminant group

action

Let Γ be a quasi-minimal resolution tree (Definition 6.1). Assume Γ satisfies
the semigroup and congruence conditions (2.3, 6.3). Let ∆ be the corresponding
splice diagram, and zw a variable associated to each leaf w . The discriminant
group D(Γ) acts on the monomials in the variables zw .

For each node v , choose admissible monomials Mve for all the adjacent edges
which transform equivariantly with respect to the action of D(Γ). Then D(Γ)
acts on the associated equations of splice type so long as the higher order terms
in these equations transform appropriately under the action of the group.

Definition 7.1 Let Γ be a quasi-minimal resolution tree satisfying the semi-
group and congruence conditions. Let ∆ be the corresponding splice diagram,
zw a variable associated to each leaf w , Mve an admissible monomial for each
node v and adjacent edge e satisfying the D(Γ)–equivariance condition. Then
splice diagram equations for Γ are equations of the form

∑

e

avieMve + Hvi = 0, i = 1, . . . , δv − 2, v a node ,

where
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• for every v , all maximal minors of the matrix (avie) have full rank;

• Hvi is a convergent power series in the zw ’s all of whose monomials have
v–weight > dv ;

• for each v , the monomials in Hvi transform under D(Γ) in the same way
as do the Mve ’s.

We are ready for the careful statement of the main result of this paper.

Theorem 7.2 (Splice-quotient singularities) Suppose Γ is quasi-minimal and
satisfies the semigroup and the congruence conditions. Then:

(1) Splice diagram equations for Γ define an isolated complete intersection
singularity (X, o).

(2) The discriminant group D(Γ) acts freely on a punctured neighborhood
of o in X .

(3) Y = X/D(Γ) has an isolated normal surface singularity, and a good
resolution whose associated dual graph is Γ.

(4) X → Y is the universal abelian covering.

(5) For any node v , the v–grading on functions on Y (induced by the v–
grading on X ) is det(Γ) times the grading by order of vanishing on the
exceptional curve Ev .

(6) X → Y maps the curve zw = 0 to an irreducible curve, whose proper
transform on the good resolution of Y is smooth and intersects the excep-

tional curve transversally, along Ew . In fact the function z
det(Γ)
w , which

is D(Γ)–invariant and hence defined on Y , vanishes to order det(Γ) on
this curve.

The first assertion of the theorem has already been proved in Theorem 2.6. For
the second, recall (Proposition 5.3) that the fixed locus of a non-identity element
of D(Γ) is contained in some subspace zw = zw′ = 0, which intersects the germ
of X only at the origin (Corollary 3.4). It follows that Y has an isolated normal
singularity, and the main point is to show the resolution dual graph equals Γ.
Once that is achieved, the link of Y will be a rational homology sphere whose
universal abelian covering has order det(Γ), hence must be given by the abelian
covering provided by the link of X ; this gives the fourth assertion.

The fifth assertion follows immediately from the sixth if one restricts to mono-
mials (although its general proof will involve more work).
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Lemma 7.3 Let d = det(Γ). Assuming assertion (6) of the theorem, if zw is
the variable corresponding to a leaf then the order of vanishing of zd

w on Ev is
ℓvw (zd

w is D(Γ)–invariant, so it is defined on Y ).

Proof The divisor of the function zd
w on Ȳ has the form

(zd
w) = dD +

∑

ruEu , sum over vertices u of Γ other than w ,

Where D is the proper transform of the curve given by zd
w = 0 in Y . This

divisor dots to zero with each Ev , whence rv is the vw entry of −dA(Γ)−1 .
Theorem 12.2 then says rv = ℓvw ; the v–weight of zw .

By taking a closer look at the weighted blow-up as in Lemma 4.2 we will first
check the theorem in the one-node case of [7] (giving a new proof for this case),
and then proceed by induction on the number of nodes. This induction involves
choosing an end-node v∗ of Γ (or ∆), and reducing to Γ̃, obtained by removing
v∗ and its adjacent strings leading to leaves. But if there are no curves between
v∗ and the node in the remaining direction, then we must first blow-up between
these nodes, and create a new −1 curve. This will guarantee that the new Γ̃ is
also quasi-minimal (and that there is a leaf corresponding to the removed v∗ ).
It is easy to check the following:

Lemma 7.4 Suppose Γ satisfies the semigroup and congruence conditions, and
has adjacent nodes. Let Γ′ be the graph obtained from blowing-up between the
adjacent nodes. Then Γ and Γ′ have the same splice diagram and representation
of the discriminant group on the space of ends. In particular, splice diagram
equations for Γ are the same for Γ′ .

We also need the quasi-minimal version of a well known and classical lemma:

Lemma 7.5 Consider a negative-definite string of rational curves

−b1
◦

−b2
◦ ___ ___

−bk
◦

where either bi > 1 for i = 1, . . . , k , or k = 1 and b1 = 1. Write the continued
fraction

n/p = b1 − 1/b2 − 1/ · · · − 1/bk .

Then the cyclic quotient singularity C2/〈T 〉, where

T (x, y) =
(
exp(2πi/n)x, exp(2πip/n)y

)
,

has a resolution with the above string of exceptional curves. The proper trans-
form of the image of x = 0 on this resolution intersects once transversally on
the right.
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Reading the string in the other direction yields n/p′ , where pp′ ≡ 1 (mod n).
Note n = p = p′ = 1 is allowed; in all other cases, n > 1 and p < n.

8 The case of one node

Recall that if Ct has coordinates zi of weight mi , the weighted blow-up Z → Ct

has an open covering Ui , each of which is a quotient of an affine space Vi by a
cyclic group of order mi . V1 has coordinates A1, . . . , At , related to the zi via

z1 = Am1

1 , z2 = Am2

1 A2, . . . , zt = Amt

1 At;

U1 equals V1 modulo the action of the cyclic group generated by

S = [−1/m1,m2/m1, . . . ,mt/m1] .

A finite group D of diagonal matrices acting on Ct preserves the weight fil-
tration, so it lifts to an action on Z , and one has a proper birational map
Z/D → Ct/D . A diagonal [β1, . . . , βt] acting on Ct may be lifted to one acting
on V1 via

−β1S + [0, β2, . . . , βt];

this lift depends on the choice of β1 . The naturally defined group D1 , generated
by S and all lifts of elements of D , acts on V1 , and induces an isomorphism
V1/D1 ≃ U1/D onto an open subset of Z/D . In our situation, D1 will contain
a pseudo-reflection of the form [1/d, 0, . . . , 0]. Dividing V1 first by this action
produces another affine space V̄1 , with coordinates Ā1, A2, . . . , At , where Ā1 =
Ad

1 ; the quotient group D̄1 acts on V̄1 with quotient U1/D . Note that the
image of the exceptional divisor is given by Ā1 = 0.

Consider now a quasi-minimal resolution graph Γ with one node, given by the
diagram

n2/p2 ◦

TTTTTT ..
. . . . . .. nt−1/pt−1◦

k k k k k k

◦
TTTTTT ◦

jjjjjj

n1/p1 ◦ ______ ◦
−b
◦ ◦ _____ nt/pt◦

The strings of Γ are described uniquely by the continued fractions shown, start-
ing from the node (by the quasi-minimality condition of Definition 6.1). Set
N = n1n2 . . . nt , Ni = N/ni ; then d = N(b −

∑t
i=1 pi/ni) = det(Γ) is the

determinant. The splice diagram produces leaf variables zi of weight Ni for
1 ≤ i ≤ t.
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The affine space V1 above has coordinates Ai , 1 ≤ i ≤ t related to the zi via

z1 = AN1

1 , zi = ANi
1 Ai, 2 ≤ i ≤ t .

The quotient V1 → U1 comes from dividing by

S = [−1/N1,N2/N1, . . . ,Nt/N1] .

The discriminant group D(Γ) acts on Ct and the weighted blow-up Z . D(Γ)
is generated by

[N1/(n1d) + p′1/n1, N2/(n1d), . . . , Nt/(n1d)] ,

[N1/(n2d), N2/(n2d) + p′2/n2, . . . , Nt/(n2d)] ,

· · · · · · · · · .

A simple calculation verifies the following lifts of these elements to V1 :

T1 = [1/(n1d) + p′1/N, − p′1/n2, . . . , − p′1/nt]

T2 = [1/(n2d), p′2/n2, 0, . . . , 0]

· · · · · ·

Tt = [1/(ntd), 0, . . . , 0, p′t/nt] .

Consider the lifted group D1 generated by S and these Ti . Writing p1p
′
1 =

kn1 + 1, we may replace S and T1 by

S̄ = Sp′1T n1

1 = [1/d, 0, . . . , 0]

T̄ = SkT p1

1 = [1/N + p1/(n1d), − 1/n2, . . . , − 1/nt] ,

and then replace T̄ by

T̃ = T̄ T p2

2 . . . T pt

t =
[
1/N +

t∑

i=1

pi/(nid), 0, . . . , 0
]

= [b/d, 0, . . . , 0] .

Since T̃ is a power of S̄ , D1 is generated by the pseudoreflection S̄ and the
Ti, i > 1. Dividing V1 by S̄ gives the affine space V̄1 , with coordinates Ā1 =
Ad

1, A2, . . . , At , and group action generated by

T̄2 = [1/n2, p′2/n2, 0, . . . , 0]

· · ·

T̄t = [1/nt, 0, . . . , 0, p′t/nt] .

In this one-node case, the admissible monomials are zni

i , i = 1, . . . , t, and the
splice diagram equations are of the form

t∑

j=1

aijz
nj

j + Hi(z) = 0, i = 1, . . . , t − 2 .
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A monomial
∏

z
αj

j is allowed to appear in one of the convergent power series
Hi iff it transforms under D(Γ) as do the admissible monomials, and if the
v–weight

∑
αjNj is > N . By the assumption on the coefficient matrix (aij),

one may take linear combinations of the series and rewrite as

zni

i + aiz
nt−1

t−1 + biz
nt
t + Hi(z) = 0, 1 ≤ i ≤ t − 2

with aibj − ajbi 6= 0 for all i 6= j , and all ai and bi nonzero. The associ-
ated graded ring with respect to the weight filtration is the familiar Brieskorn
complete intersection (except that some ni = 1 is possible).

As in Section 4, one finds the proper transform X1 on V1 defined by:

1 + a1A
nt−1

t−1 + b1A
nt
t + A1J1(A) = 0

Ani

i + aiA
nt−1

t−1 + biA
nt
t + A1Ji(A) = 0, 2 ≤ i ≤ t − 2 .

Here one has used the weight condition on the Hi to define

Hi(A
N1

1 , AN2

1 A2, . . . , A
Nt

1 At) = AN+1
1 Ji(A) .

Intersecting with the exceptional divisor A1 = 0 gives the polynomials equa-
tions

1 + a1A
nt−1

t−1 + b1A
nt
t = 0 ,

Ani

i + aiA
nt−1

t−1 + biA
nt
t = 0 , 2 ≤ i ≤ t − 2 .

(8)

This is a smooth curve, so X1 is smooth. Since S̄ leaves A2, . . . , At invariant
and acts equivariantly on the equations, it follows that each term A1Ji(Ak)
must be invariant, and hence is a power series Ā1J̄i in Ā1, A2, . . . , At . So the
quotient X̄1 of X1 by S̄ is defined on V̄1 via

1 + a1A
nt−1

t−1 + b1A
nt
t + Ā1J̄1 = 0 ,

Ani

i + aiA
nt−1

t−1 + biA
nt
t + Ā1J̄i = 0 , 2 ≤ i ≤ t − 2 .

(9)

We divide X̄1 by the action of D̄1 := D1/S̄ , which is generated by the images of
T̄i, i = 2, . . . , t. First, the group acts transitively on the connected components
of Ā1 = 0, since, eg, every component contains a point with At = 0 (cf. Lemma
4.1); since A1 = 0 in X1 is smooth, the image of the exceptional divisor Ā1 = 0
is irreducible. Next, the action is free off Ā1 = 0, and fixed points occur exactly
when another coordinate is 0. At a point of X̄1 where Ā1 = A2 = 0, the above
equations (9) determine Ank

k for k = 3, . . . , t uniquely. Thus there are n3 . . . nt

such points, and they are permuted by the subgroup generated by T̄3, . . . , T̄t .
So, there is one orbit of such fixed points, and the stabilizer is generated by T̄2 .
The equations imply that Ā1, A2 are local coordinates at such a point.

We have now a familiar local picture as described in Lemma 7.5 and following
comments: divide C2 by the action [1/n2, p

′
2/n2], resolve the cyclic quotient
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singularity according to the corresponding string in Γ (if n2 = 1 we blow-up
once), and consider the proper transforms of the images of the two coordinates
axes on C2 . We get a string of curves

C CC
CC

CC
CC

CC
CC

jjjjjjjjjjjj
P

. . . . . . . . .

E1
mmmmmmmmmm

The left-hand curve C corresponds to the transform of Ā1 = 0 (which will
thus be a central exceptional curve in a resolution of X ), the right curve P is
the proper transform of A2 = 0, and the remaining curves form the string of
exceptional curves that resolve the cyclic quotient singularity. The continued
fraction expansion from left to right is n2/p2 . An2

2 vanishes n2 times along P
and p′2 times along the adjacent exceptional curve E1 ; and, Ān2

1 vanishes once
along E1 .

Putting this all together for the other Ui and Vi , we conclude that the quotient
variety X/D(Γ) has a resolution consisting of a smooth central curve, and t
rational strings emanating from it corresponding to ni/pi, 1 ≤ i ≤ t. It remains
to show the central curve is rational, and its self-intersection is −b (equivalently,
the determinant d̄ of the intersection pairing equals d).

Restricting to the exceptional divisor Ā1 = 0 in X̄1/D̄1 = X1/D1 gives new
variables Ci = Ani

i , 2 ≤ i ≤ t, in which the defining equations in (8) become
linear. So, the quotient is a line in the coordinate space, hence is rational.

Finally, note that zdn2

2 is invariant under the discriminant group, hence is a
function on X/D(Γ); we consider its proper transform in the minimal resolution
of V̄1/D̄1 . (The proper transform misses V2 , so is completely contained in V1 .)
Note first that

zdn2

2 = AdN
1 Adn2

2 = ĀN
1 Adn2

2 .

By an earlier remark, zdn2

2 vanishes N/n2 +dp′2 times along E1 , and dn2 times
along P . Thus the divisor of the function zdn2

2 has the form

(zdn2

2 ) = dn2P +
(
N/n2 + dp′2

)
E1 +

∑

i>1

riEi (10)

the last sum being over all the other exceptional curves in the quasi-minimal
resolution. Since the divisor of a function dots to zero with each Ei , we see
that

−
1

dn2

((
N/n2 + dp′2

)
E1 +

∑

i>1

riEi

)
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represents the element e1 in the dual E∗ of E =
⊕

Z ·Ev . On the other hand,
e1 =

∑

i(e1 · ei)Ei , so

e1 · e1 = −
(
N/n2 + dp′2

)
/(dn2) .

Comparing this with the value e1 · e1 = −N/(n2
2d̄) − p′2/n2 of Proposition 6.6

yields that d̄ = d, as desired.

So, the constructed singularity has a resolution with dual graph our original
Γ. Since we have constructed an abelian covering of degree d equal to the
discriminant of our singularity, the map X → X/D(Γ) must be the universal
abelian covering.

To prove the assertion (6) of the main theorem, note that the proper transform
of znid

i on the given quasi-minimal resolution intersects the i-th quotient string,
once transversally on the end, with multiplicity nid.

Finally, for assertion (5) of the main theorem, the central exceptional curve in
the resolution of X maps to the central curve Ev in the resolution of Y , so
the gradings on functions on Y (ie, D(Γ)–invariant functions on X ) given by
order of vanishing on these curves agree up to a constant multiple. Since the
central curve of the resolution of X is the curve obtained by blowing up the
v–grading, order of vanishing on it is given by the v–grading. This proves (5)
up to a multiple; that the multiple is correct is confirmed in Lemma 7.3.

9 The inductive procedure

Assume we have a set of splice diagram equations for a quasi-minimal Γ, which
is assumed to have more than one node. The inductive assumption is that the
theorem is true for a graph with fewer nodes. As mentioned, we may assume
(after blowing-up) that any two nodes of Γ have at least one curve between
them. Let ∆ be the splice diagram and v∗ an end-node, viewed on the left side
of the diagrams:

nσ/pσ ◦
VVVVV

◦
QQQQQQ n/p → ◦

mmmmmm

iii

Γ =
...

v∗

−b
◦ _____ ◦ ...

◦
kkkkkk ◦

SSSSSS
WWW

n1/p1 ◦

ggggg

◦
nσ

VVVVVVVVVVVVV hhhh

∆ =
...

v∗
◦ r s ◦

mµ iiiiiii

m1
UUUUUUU ...

VVVV

◦
n1

hhhhhhhhhhhhh
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The continued fractions from v∗ to the leaves are given by ni/pi, 1 ≤ i ≤ σ ,
and from v∗ to the adjacent node by n/p. Let N = n1 . . . nσ,Ni = N/ni,M =
m1 . . . mµ . One has the determinant calculation

s = Nn(b −

σ∑

i=1

pi/ni − p/n) . (11)

Moreover, if d = det(Γ) = det(−A(Γ)), we have the relation (see Proposition
12.3)

rs − MN = dn . (12)

Induction will involve Γ̃, obtained by removing from Γ the vertex corresponding
to v∗ plus the σ strings of rational curves to the leaves. The corresponding
splice diagram ∆̃ has a new leaf w∗ in the location of v∗ , but one loses the σ
leaves of ∆ adjacent to v∗ . The left sides of Γ̃ and ∆̃ are

n/p → ◦
oooooo

iii

Γ̃ = ◦ ___ ◦ ...
◦

QQQQQQ
WWW

eeee

∆̃ =
w∗

◦ n ◦

mµ jjjjjjj

m1
TTTTTTT

...
YYYY

For edges of ∆̃ which point away from w∗ , the weights are the same as they
were for ∆. For the edge pointing toward w∗ at a node v the new edge weight
is now given by (see Lemma 12.7):

d̃v1 =
1

d

(
rdv1 − N(dv/dv1)(ℓ

′
w∗v)

2
)

. (13)

Note also that

r = det(Γ̃) = det(−A(Γ)) . (14)

We use exactly the same notation as in Section 4 for the variables and equations
for the singularity X(∆), including the v∗–blow-up to X1 ⊂ V1 . The coordi-
nates corresponding to the left leaves are x1, . . . , xσ and those corresponding to
the right leaves are y1, . . . , yτ . The coordinate space V1 has coordinates Ai, Bj ,
related to the xi, yj by

x1 = AN1r
1 ; xi = ANir

1 Ai, i = 2, . . . , σ; yj = A
Nℓ′j
1 Bj, j = 1, . . . , τ ,

(15)
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where we are abbreviating ℓ′j := ℓ′v∗wσ+j
(the reduced linking number of v∗ and

one of the τ outer leaves; similarly, we will write ℓjk for the linking numbers
between two such leaves). On V1 , the cyclic group action is generated by

S = [−1/rN1, n1/n2, . . . , n1/nσ; n1ℓ
′
1/r, . . . ] .

We lift the discriminant group D(Γ) to a group D1 (of order dN1r) acting on
V1 and, by equivariance of the action, on X1 .

The leaf-generators of D(Γ) acting in xi, yj coordinates are written as follows,
where a semi-colon distinguishes the first σ entries from the last τ :

[rN1/(n1d) + p′1/n1, rN2/(n1d), . . . , rNσ/(n1d); ℓ′1N1/d, . . . ]

[rN1/(n2d), rN2/(n2d) + p′2/n2, . . . , rNσ/(n2d); ℓ′1N2/d, . . . ]

· · · · · ·

[rN1/(nσd), rN2/(nσd), . . . , rNσ/(nσd) + p′σ/nσ; ℓ′1Nσ/d, . . . ]

[ℓ′1N1/d, . . . , ℓ′1Nσ/d; ℓ11/d, ℓ12/d, . . . ]

· · · · · ·

[ℓ′τN1/d, . . . , ℓ′τNσ/d; ℓτ1/d, ℓτ2/d, . . . ]

One verifies by substituting from (15) that the following give lifts of these
generators of D(Γ) to the coordinates of V1 :

T1 = [1/(n1d) + p′1/(rN), − p′1/n2, . . . , − p′1/nσ; − p′1ℓ
′
1/r, . . . ]

T2 = [1/(n2d), p′2/n2, 0, . . . , 0; 0, . . . ]

· · · · · ·

Tσ = [1/(nσd), 0, . . . , 0, p′σ/nσ; 0, . . . ]

R1 = [ℓ′1/(rd), 0, . . . , 0; ℓ11/d − N(ℓ′1)
2/(rd), ℓ12/d − Nℓ′1ℓ

′
2/(rd), . . . ]

· · · · · ·

Rτ = [ℓ′τ/(rd), 0, . . . , 0; ℓτ1/d − Nℓ′τ ℓ
′
1/(rd), ℓτ2/d − Nℓ′τ ℓ

′
2/(rd), . . . ]

The lifted discriminant group D1 is generated by S and the Ti and Rj . Writing
p1p

′
1 = kn1 + 1, replace the generators S and T1 by new generators

S′ = Sp′
1T n1

1 = [1/d, 0, . . . , 0; 0, . . . ]

T ′ = SkT p1

1 = [1/(rN) + p1/(n1d), − 1/n2, . . . , − 1/nσ; − ℓ′1/r, . . . ] .

Also replace T ′ by T̃ , where

T̃−1 = T ′T p2

2 . . . T pσ
σ = [1/(rN) +

σ∑

i=1

pi/(dni), 0, . . . , 0; − ℓ′1/r, . . . ] .

Geometry & Topology, Volume 9 (2005)



732 Walter D Neumann and Jonathan Wahl

Recall (Lemma 4.1) that X1 is smooth save for the N1 points on the exceptional
curve A1 = 0 where all Bk are 0; note that the group generated by T2, . . . , Tσ

acts transitively on them, so dividing by the action will give a connected ex-
ceptional curve. D1 also acts on X1 .

Divide V1 by the pseudo-reflection S′ , giving a degree d covering V1 → V̄1 ,
which is unramified off the divisor A1 = 0. In the new affine space V̄1 , we have
coordinates Ā1 = Ad

1, A2, . . . , Aσ, B1, . . . , Bτ .

The action of the quotient D̄1 = D1/〈S
′〉 on V̄1 is generated by multiplying

the first entries of the old generators by d, yielding new generators

T̄ = [−d/(rN) −

σ∑

i=1

pi/ni, 0, . . . , 0; ℓ′1/r, . . . ]

T̄2 = [1/n2, p′2/n2, 0, . . . , 0; 0, . . . ]

· · · · · ·

T̄σ = [1/nσ , 0, . . . , p′σ/nσ; 0, . . . ]

R̄1 = [ℓ′1/r, 0, . . . , 0; ℓ11/d − N(ℓ′1)
2/(rd), ℓ12/d − Nℓ′1ℓ

′
2/(rd), . . . ]

· · · · · ·

Equations (11) and (12) imply

−d/(rN) −
σ∑

i=1

pi/ni = M/(rn) + p/n − b ,

whence the generator T̄ above may be rewritten as

T̄ = [M/(rn) + p/n, 0, . . . , 0; ℓ′1/r, ℓ′2/r, . . . ] .

The quotient X̄1 of X1 by S′ is defined by the same equations as X1 (see
equations (3)), except that Ad

1 is replaced by Ā1 . X̄1 and the exceptional
divisor are smooth except at the N1 points with all Bk = 0, and they form one
D̄1–orbit. As in Section 4, at such a point, the coordinates Ai for i > 1 are
non-zero, and can be solved locally as convergent power series in Ā1, B1, . . . , Bτ

with non-zero constant term. Thus, around each one of these singular points
X̄1 is described by equations in those variables.

Lemma 9.1 These equations are splice diagram equations for ∆̃.

Proof The proof is essentially the same as Lemma 4.2: we verify that the
equations have appropriate admissible monomials at every node, and all the
other terms have higher order. The edge-weights of ∆̃ are the same as those
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for ∆ in directions away from v∗ , while at a node v , the new edge weight d̃vi

is 1/d times the value it had in Section 4 (compare equations (4) and (13)).
Monomials involve powers of Ā1 rather than A1 , so the “Q” term in the proof
of Lemma 4.2 is also divided by d. The right side of equation (7) is therefore
now also divided by d; otherwise the proof goes through almost verbatim.

Still considering one such singular point of X̄1 , the stabilizer is the subgroup
G of D̄1 generated by T̄ , R̄1, . . . , R̄τ . This group acts effectively on the space
whose coordinates are Ā1, B1, . . . , Bτ . Rewrite the group generators as τ + 1–
tuples:

[M/(rn) + p/n, ℓ′1/r, ℓ′2/r, . . . ] ,

[ℓ′i/r, ℓi1/d − Nℓ′1ℓ
′
i/(rd), ℓi2/d − Nℓ′2ℓ

′
i/(rd), . . . ] , i = 1, . . . , τ .

Lemma 9.2 The τ + 1 generators above are exactly the leaf generators for
the discriminant group associated to the resolution diagram Γ̃. In particular,
G maps isomorphically onto D(Γ̃), viewed as a diagonal subgroup of (C∗)τ+1 .

Proof The only “new” weights on edges of ∆̃ are those pointing towards
w∗ ; other edge-weights are the same for ∆ and ∆̃. Recall that r = det(Γ̃).
By Proposition 6.6 and Corollary 6.7, the first generator above is exactly the
leaf generator of D(Γ̃) corresponding to w∗ . Similarly, the first entries of
the remaining τ generators above are exactly those of the corresponding leaf
generators for D(Γ̃).

So, we need to compute the last τ entries for the last τ generators. Denote
the linking numbers for ∆̃ between pairs of these as ℓ̃ij (keeping in mind the
special definition when i = j as in Proposition 6.6). To prove the lemma, we
must show that for all i and j

ℓ̃ij/r = ℓij/d − Nℓ′iℓ
′
j/rd .

When i = j this equation is just a special case of Lemma 12.7, so assume i 6= j .
Denote by v the vertex where the paths from w∗ to wi and wj diverge. Then

ℓ̃ij =
ℓij

dv1
d̃v1 =

ℓij

ddv1

(
rdv1 − N(dv/dv1)(ℓ

′
w∗v)

2
)

.

Substituting this in the equation to be proved reduces it to the equation ℓ′iℓ
′
j =

ℓij

dv1
(dv/dv1)(ℓ

′
w∗v)

2 . This is an easily checked equation between products of
splice diagram weights.
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The last two lemmas together imply that Y1 := X̄1/D̄1 has a singular point
which is a quotient of splice diagram equations for ∆̃ by D(Γ̃). By induction,
this singularity has a resolution dual graph Γ̃, and one knows where the proper
transform of the exceptional fiber intersects the diagram (ie, in the location of
w∗ ). The only other singular points of Y1 come from fixed points of the group
action.

Lemma 9.3 D̄1 acts transitively on the points of X̄1 with Ā1 = A2 = 0.
At such a point, Ā1 and A2 are local analytic coordinates, the stabilizer is
generated by T̄2 , and the image of the point on Y1 is an n2/p2 cyclic quotient
singularity.

Proof As before, the equations (3) (in which now A1 only occurs to d-th
powers which have been replaced by Ā1 ) show that no other coordinates can
be 0, and that Ā1 and A2 are local coordinates (see also Lemma 4.1).

Recall that the order of D̄1 is drN1/d = rN1 and that the order of G is
det(−A(Γ̃)) = r . The subgroup G of D̄1 , viewed as acting on the coordi-
nates Ā1, B1, . . . , Bτ , contains no pseudoreflections (it is a discriminant group,
so apply Proposition 5.3); therefore, no element of G stabilizes the point in
question. Further, the subgroup generated by T̄3, . . . , T̄σ , which has order
n3 . . . nσ = N/n1n2 , acts on the points in question but only changing their
entries in the slots A3, . . . , Aσ . In particular, G and the T̄i for i > 2 generate
a subgroup of index n2 in D̄1 which acts freely on the points, and the stabilizer
of the point is generated by T̄2 . Thus there are rn3 . . . nσ points in the orbit,
and their image is an n2/p2 cyclic quotient singularity. Finally, to see that D̄1

acts transitively on the points in question, we must show there are rn3 . . . nσ

points with Ā1 = A2 = 0; but this is given in Lemma 4.1.

Now, the exceptional divisor of Y1 is connected, and the last two lemmas show
it is analytically irreducible at the singular points; thus, the exceptional divisor
is itself irreducible. Take the resolution of the above n2/p2 cyclic quotient
singularity on Y1 (if n2 = 1, this means blow-up a smooth point); then, as in
section 8, we get a string of rational curves starting from the curve Ā1 = 0
with continued fraction n2/p2 , and the proper transform of the curve A2 = 0
is smooth and intersects transversally in one point the end curve of this string.
Since the curve A2 = 0 arises from the curve x2 = 0, this agrees with the last
part (6) of Theorem 7.2.

The action of D̄1 on the curve Ā1 = 0 reduces to the direct product of G acting
in the B coordinates and the group generated by T̄2, . . . , T̄σ acting in the A
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coordinates. It thus acts freely except on the orbit of ∆̃ splice diagram singu-
larities (which occur at the points where all the Bk are zero), and except on
points where some Ai = 0 (i > 1). The latter lead to cyclic quotient singulari-
ties on dividing by D̄1 . The quotient Y1 = X̄1/D̄1 thus has one splice-quotient
singularity and, for each i = 2, . . . , σ , one ni/pi cyclic quotient singularity, and
is otherwise smooth along its (irreducible) exceptional divisor. We have already
verified that the image of xi = 0 (for i > 1) on Y has proper transform on Y1

vanishing correctly on the desired end-curves.

One can see the rest of the v∗ blow-up of X by inverting x2 , since the origin
is an isolated point in the locus x1 = x2 = 0 (Corollary 3.4). The resulting
space Y2 adds an n1/p1 cyclic quotient (but misses the n2/p2 one). Denote
by Ȳ the union of Y1 and Y2 . There is a partial resolution Ȳ → X/D(Γ)
whose exceptional curve is irreducible, and along which sit (in a known way) σ
cyclic quotient singularities and a splice-quotient corresponding to Γ̃. Taking
the resolutions of all the quotient singularities as well as the splice-quotient
(which by the induction assumption has resolution graph Γ̃) gives a resolution
Ỹ → Ȳ → X/D(Γ), with resolution dual graph almost guaranteed to be exactly
Γ. The only point to check is that the proper transform of the exceptional curve
of Ȳ in Ỹ is a smooth rational curve of the correct self-intersection. But that
is achieved simply by repeating the entire procedure at a different end-node v′

of Γ; the curve in question is then seen as a part of the resolution dual graph of
type Γ′ (Γ minus v′ and its adjacent strings), hence has the desired properties.

The assertion about the proper transform on Ȳ of the image of yj = 0 fol-
lows by induction, by considering the role of Bj = 0 for the splice-quotient
corresponding to Γ̃.

We have proved all but part (5) of Theorem 7.2. For the node v∗ that we
just blew up, this part follows by the same argument as in Section 8 for the
one-node case. For any other node v , we proceed by induction, comparing the
factorizations X1 → X → Y and X1 → X̄1 → Y1 → Y , and the relevant
valuations and weightings at various points. Recall (Lemma 4.2) that X1 has
N1 splice-type singularities for the splice diagram ∆′ , obtained by deleting from
∆ the node v∗ and its outer leaves, replacing by a new leaf w∗ , and adjusting
weights as in equation (4). (We had previously denoted this diagram by ∆̃; but
in the current proof, that notation is already being used, and means that the
weights in (4) are divided by d, as in equation (13).)

Start with a function g on Y which vanishes to order k along Ev . Viewed on
the partial resolution Y1 , g vanishes to the same order in the resolution of the
singular point, which is a splice-quotient for Γ̃. Lifting further via X̄1 → Y1 ,
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by induction g is in the rkth piece of the filtration (corresponding to the node
v in the splice diagram ∆̃) at each of the N1 splice-type singularities; we use
r = det(Γ̃). Finally, pulling back leaf variables under the pseudo-reflection
quotient map X1 → X̄1 multiplies v–weights by d, via comparison of ∆̃ and
∆′ ; since the map on the associated gradeds of corresponding singular points is
easily seen to be injective (simply replace Ā by Ad

1 ), the pullback of g to X1

now has weight drk in each of the N1 associated gradeds.

We next look at pulling back a function h from X to X1 , and show that the
induced map from the v–associated graded of X to the direct sum of the N1

associated gradeds on X1 multiplies by degree r and is injective. Once this
claim is established, we see that the pull-back of our original g to X must have
v–filtration weight equal to dk , in order to get the correct weight at each point
of X1 . The following lemma thus completes part (5) of the theorem for these
nodes.

Lemma 9.4 The map X1 → X induces a natural map from the v–associated
graded of X to the direct sum of N1 associated gradeds for the splice singular-
ities on X1 . This map is injective and multiplies degrees by r .

Proof The map on polynomial rings

R = C[xi, yj] → R1 = C[Ai, Bj ]

given by equation (15) gives X1 → X , which is exactly rN1–to-one off the
locus x1 = 0. The ideal I ⊂ R generated by the v–leading forms of the splice
equations includes the forms xni

i + aix
nσ
σ , 1 ≤ i ≤ σ − 1. Let J ⊂ R1 be

the ideal generated by the proper transforms of the elements of I (ie, factor
out by the highest power of A1 occurring in any equation). Then the induced
map R/I → R1/J gives a map on spectra which is surjective off the image of
the locus x1 = 0. But the v–associated graded R/I defines a reduced two-
dimensional complete intersection, and x1 = 0 is a curve on it (Theorem 2.6);
thus, R/I → R1/J must be injective.

Next, assign “v′–weights” to the variables of R1 :

v′(A1) = ℓvv∗/N ; v′(Ai) = 0, i > 1; v′(Bj) = rℓvwj
− ℓ′v∗wj

ℓvv∗ ,

where wj is the leaf corresponding to yj or Bj . It is easy to check that under
R → R1 , v–weights give r times v′–weights. The same is true for the graded
injection R/I → R1/J .
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Finally, the variety corresponding to J has the equations

1 + a1A
nσ
σ = 0

Ani

i + aiA
nσ
σ = 0, i ≥ 2 ,

which define N1 reduced points c̄ = (c2, . . . , cσ). Thus, R1/J is a direct sum
of N1 graded quotients R1/Jc̄ , where Jc̄ is obtained by replacing Ai by ci (for
i > 1) in the defining equations of J . It follows as in the discussion of 4.2 that
each such quotient is the associated graded of the ∆′–splice diagram singularity
corresponding to the node v (or equivalently the weight v′ ) at the point of X1

corresponding to c̄, ie, at the point A1 = Bj = 0 (all j ) and Ai = ci (i ≥ 2).
This completes the proof of the lemma.

10 Naturalness of splice diagram equations

The definition of splice type equations in Theorem 7.2 might appear to depend
on the choice of monomials satisfying the relevant conditions, but in fact it does
not: for a given node v and edge e at v , any two such choices of monomial
differ by something of higher order, which can then be absorbed in the higher
order terms of the splice diagram equation. Precisely:

Theorem 10.1 Suppose M = Mve and M ′ = M ′
ve are two admissible mono-

mials for ∆ that satisfy the D(Γ)–equivariance condition. Then for some
a ∈ C∗ , M ′ − aM has v–weight greater than dv . In particular, the corre-
sponding notions of splice diagram equations are the same.

Proof Choose splice diagram equations as in Theorem 7.2, let (X, o) be the
resulting complete intersection singularity, and let Y = X/D(Γ). Thus Y has
a good resolution Ȳ with dual graph Γ. Denote d = det(Γ) = |D(Γ)|

An analytic function on Y is simply a D(Γ)–invariant function on X , and
thus has a v–weight for each node of ∆. It also induces a function on the
resolution Ȳ , and thus has an order of vanishing on the exceptional curve Ev

corresponding to v . We recall from item (5) of Theorem 7.2 that, for any node
v , the v–weight of a function f on Y is d times its order of vanishing on the
corresponding exceptional curve Ev of the resolution.

Now let E1, . . . , Eδ be the exceptional curves that intersect Ev , corresponding
to edges e1, . . . , eδ at v . Choose an admissible monomial Mi that satisfies the
D(Γ)–equivariance condition for each edge ei at v . Each Md

i is D(Γ)–invariant
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and hence defined on Ȳ and, by the above remark, it vanishes to order dv on
the exceptional curve Ev . In the same way, at an adjacent node v∗ of the splice
diagram as in

...
v
◦

n1
MMMMMMMM

nδ−1rrrrrrrr
nδ mν v∗

◦

m1
qqqqqqqq

mν−1 LLLLLLLL
...

,

the order of vanishing of Md
i on Ev∗ is dvdv∗/(nδmν) for i 6= δ and is nδmν

for i = δ . In particular, on Ev∗ , Md
δ vanishes to order D more than the other

Md
i ’s, where D is the edge determinant for the edge eδ .

In the maximal splice diagram we have a node for every exceptional curve and
all edge determinants are d (Theorem 12.2). So we have shown that on each
Ei that intersects Ev , the Md

j with j 6= i vanish to a common order and Md
i

vanishes to order d greater. Thus Md
i /Md

δ on Ev has a zero of order d at
Ev ∩ Ei , a pole of order d at Ev ∩ Eδ , and no other zero or pole.

Let the edge e in the theorem be e = e1 . Since M1 and Mδ transform the
same way under D(Γ), M1/Mδ is defined on Ȳ , and M1/Mδ on Ev has a
simple zero at Ev ∩ Ei , a simple pole at Ev ∩ Eδ , and no other poles or zeros.
Any other choice M ′

1 for M1 gives identical zero and pole for M ′
1/Mδ . So for

some a ∈ C∗ , (M ′
1−aM1)/Mδ vanishes identically on Ev , whence (M ′

1−aM1)
d

vanishes to higher order on Ev than does Md
δ . Since the v–weight of a function

f is measured by the order of vanishing of fd on Ev , the first assertion of the
theorem follows.

To prove the second statement of the Theorem, we must show that modulo
the equations defining (X, o), M ′ is equal to aM plus monomials of higher
v–weight. This is the definition of the weight filtration on X (for convenience,
we assume that the defining equations are polynomials): if P is the graded
polynomial ring in our variables, Ik its ideal generated by monomials of v–
weight k , and J the defining ideal for X , then the weight filtration on P/J
has k -th piece (Ik + J)/J ; so, modulo J , anything of weight at least k in P/J
can be written as a sum of monomials of degree at least k in the polynomial
ring.

11 Semigroup and congruence conditions in the two-

node case

We first revisit the congruence condition of Proposition 6.8 in the case that
the edge e connects v to an end node. Thus suppose we are in the following
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situation, where for convenience in this section we will assume minimal good
resolutions (although this is not essential) and e is the edge of ∆ from v to v∗ .

nσ/pσ ◦
WWWWW

◦
RRRRRR n/p → ◦

llllll
hhh

Γ =
...

v∗

−b
◦ _____

v
◦ ...

◦
jjjjjj ◦

TTTTTT
XXX

n1/p1 ◦
fffff

◦
nσ

VVVVVVVVVVVVV hhhh

∆ =
...

v∗
◦ r s

v
◦

mµ iiiiiii

m1
UUUUUUU ...

VVVV

◦
n1

hhhhhhhhhhhhh

As usual, we represent strings in Γ by their continued fractions (the continued
fraction for the empty string is n/p = 1/0). Denote N =

∏σ
i=1 ni , M =

∏µ
j=1 mj , d = det(Γ). Then, using Proposition 6.6, the condition of Proposition

6.8 for an admissible monomial Mve =
∏

xαi

i is that for i = 1, . . . , σ
[∑

j 6=i

αjNr/(ninjd) + αi(Nr/(n2
i d) + p′i/ni)

]

= [MN/(nid)] .

This simplifies to

[rs/(nid) + αip
′
i/ni] = [MN/(nid)] ,

or [(rs − MN)/(nid) + αip
′
i/ni] = [0] .

Since, by Proposition 12.3, rs − MN = dn, the above is equivalent to

orequivalently p′iαi ≡ −n (mod ni) ,

αi ≡ −npi (mod ni) .

Now, solutions of these congruences may be written

αi = ni⌈npi/ni⌉ − npi + niδi ,

where ⌈x⌉ means least integer ≥ x; further the non-negativity of the αi is
equivalent to the non-negativity of the δi . Thus the equality s =

∑
αiN/ni ,

which expresses that the monomial Mve is admissible, can be written

s =
∑

i

(N⌈npi/ni⌉ − Nnpi/ni + Nδi) . (16)

On the other hand, by computing determinant of a star-shaped graph we get

s = Nn(b −

σ∑

i=1

pi/ni − p/n) .
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Thus formula (16) is equivalent to
∑

δi = nb − p −
∑

⌈npi/ni⌉

If the right hand side of this expression is non-negative, then non-negative δi can
be found so that the corresponding αi satisfy both the congruence conditions
and the semigroup condition at the given edge. We summarize in the

Proposition 11.1 Consider the edge e leading from v to an end-node as
above. Then the following inequality is necessary and sufficient in order that
the semigroup and congruence conditions are both satisfied for vertex v and
edge e:

nb − p −
∑

⌈npi/ni⌉ ≥ 0 .

This proposition has the immediate corollary:

Proposition 11.2 The following two-node resolution graph (dashed lines rep-
resent strings described by continued fractions starting from the interior
weights; the central string n/p starts from the left node)

◦ ◦

Γ =
...

−b
◦

n1/p1
T T T T T T

nσ/pσj j j j j j
n/p →

________
−c
◦

m1/q1
jjjjjj

mτ /qτ TTTTTT ...

◦ ◦

satisfies the semigroup and congruence conditions if and only if

nb − p −
∑

⌈npi/ni⌉ ≥ 0

nc − p′ −
∑

⌈nqj/mj⌉ ≥ 0 .

We remark that the negative-definiteness of this graph Γ is equivalent to the
condition that the edge determinant rs−

∏

i ni
∏

j mj is positive together with
the positivity of s and r . The latter are slightly weaker conditions than those
of the proposition; s/N > 0 and r/M > 0 can be written:

s/N = nb − p −
∑

npi/ni > 0

r/M = nc − p′ −
∑

nqj/mj > 0 .

According to our main theorem, Γ occurs as the resolution dual graph of a
splice-quotient singularity, that is, a surface singularity whose universal abelian
cover is of splice type, if the semigroup and congruence conditions are satisfied.
We had conjectured earlier that a Q–Gorenstein singularity with QHS link is
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always of this type. Although counter-examples are now known (see [5]), the
conjecture appears to hold in a surprising number of cases. Singularities with
rational or minimally elliptic resolution graphs are automatically Q−Gorenstein
(even Gorenstein for minimally elliptic, [4]), and we assert the truth of the
following important

Conjecture 11.3 Let Y be a rational or QHS-link minimally elliptic surface
singularity. Then Y is a splice-quotient singularity as in 7.1.

Note added April 2005 T Okuma [13] has announced a proof of this conjec-
ture, see Section 13. In the original version of this paper we gave here a partial
proof of this conjecture in the two-node case, which we now omit.

12 Appendix 1: Splicing and plumbing

This appendix reviews in more detail how a splice diagram is associated to
a resolution diagram and explains why it is a topological invariant of the 3–
manifold link. We also prove some technical results needed earlier in the paper.

Recall (see the beginning of Section 2) that a splice diagram is a finite tree with
no valence 2 vertices, decorated with integer weights as follows: for each node
v and edge e incident at v an integer weight dve is given. Thus an edge joining
two nodes has weights associated to each end, while an edge from a node to
a leaf has just one weight at the node end. Moreover, we will show that the
splice diagrams which arise in the study of links of singularities always satisfy
the following conditions:

• All weights are positive.

• All edge determinants are positive.

• The ideal condition (Definition 2.2).

(For the splice diagram associated with an arbitrary graph-manifold rational
homology sphere the first two conditions need not hold.) In the process, we
will also have need for a variant of splice diagrams where valency 2 vertices are
permitted, and weights are also associated to the leaf end of an edge ending in
a leaf.

In [1] splice diagrams were used (among other things) to classify the topology
of integral homology sphere singularity links. The splice diagrams that arise
this way are precisely the splice diagrams as above with pairwise coprime posi-
tive weights around each node (in which case the ideal condition is automatic).
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The paper [9] was the first to associate a splice diagram more generally to any
rational homology sphere singularity link Σ. The splice diagram no longer de-
termines the topology of Σ, but we claim that it does determine the topology
of the universal abelian cover of Σ (which is Σ itself, if Σ is a Z–homology
sphere). The current paper establishes this assertion only when the semigroup
and congruence conditions (2.3 and 6.3) are satisfied, but the result holds with-
out these conditions, and extends even to arbitrary graph-manifold homology
spheres; this will be proved elsewhere.

For ease of exposition we restrict to the singularity link case here. In this case
we can describe the splice diagram in terms of a resolution of the singularity.
This was described briefly at the start of Section 6 but we will recall it in more
detail.

Thus, let (Y, o) be a normal surface singularity germ and Σ its link, that is, the
boundary of a regular neighborhood of o in Y . Assume that Σ is a rational
homology sphere, equivalently, H1(Σ) is finite. Let π : Ȳ → Y be a good
resolution. “Good” means that the exceptional divisor E = π−1(o) has only
normal crossings. The rational homology sphere condition is equivalent to the
condition that E is rationally contractible; that is,

• each component of E is a smooth rational curve;

• the dual resolution graph Γ (the graph with a vertex for each component
of E and an edge for each intersection of two components) is a tree.

We weight each vertex v of Γ by the self-intersection number Ev · Ev of the
corresponding component Ev of E . The intersection matrix for Γ is the matrix
A(Γ) with entries avw = Ev ·Ew . It is well known that A(Γ) is negative-definite
and its cokernel (also called the discriminant group) is H1(Σ). In particular,
det(Γ) := det(−A(Γ)) is the order of H1(Σ).

A string in Γ is a connected subgraph consisting of vertices that have valency
≤ 2 in Γ. The resolution is minimal if no (−1)–weighted vertex of Γ occurs
on a string. We do not necessarily want to assume minimality here.

The splice diagram ∆ for Σ has the same overall shape as the resolution graph
Γ; it’s underlying graph is obtained from Γ by suppressing valency two vertices.
The weights on edges are computed by the following procedure: At a vertex
v of ∆ let Γve be the subgraph of Γ cut off by the edge of Γ at v in the
direction of e, as in the following picture. The corresponding weight is then
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dve := det(Γve).

...
v

avv

◦

U U U U U U

i i i i i i

e

aww

◦

ggggggg

WWWWWWW ...

︸ ︷︷ ︸

Γve

Example 12.1 Here is an example of a resolution graph with integral ho-
mology sphere link. The reader can check that A(Γ) is negative-definite and
unimodular (a quick method is given in [1]).

−2
◦

−2
◦

Γ =
−1
◦

PPPPPP

nnnnnn
−17
◦

−1
◦

nnnnnn

PPPPPP
−3
◦

−3
◦

−2
◦

Its splice diagram is:

◦ ◦
∆ = ◦

2
SSSSSSS

3kkkkkkk ◦
5 SSSSSSS
2 kkkkkkk117

◦ ◦

For example, the weight 7 on the left node of ∆ is det(Γve) with
−2
◦

Γve =
−17
◦

−1
◦

oooooo

OOOOOO
−3
◦

−2
◦

Here is another resolution graph with the same splice diagram

−2
◦

−2
◦−3

◦
RRRRRR

llllll
−2
◦

llllll

RRRRRR
−2
◦

−2
◦

−2
◦

−2
◦

−2
◦

−2
◦ .

It has discriminant 17, so its link has first homology Z/17.

If Σ is a Z–homology sphere, then the minimal resolution graph can be recov-
ered from the splice diagram; an algorithm to do this is is described in [11],
improving on a procedure in [1]. Thus, in the above example, Γ is the only
minimal resolution graph with splice diagram ∆ and with Z–homology sphere
link. However, there can be several minimal resolution graphs with the same
splice diagram representing Q–homology spheres (infinitely many if the splice
diagram has just one node and finitely many otherwise).

To understand the resolution graphs that correspond to a given splice diagram
it is helpful to consider the maximal splice diagram: the version of the splice
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diagram that we get from the resolution graph if we do not first eliminate
vertices of valency 2, and include edge weights at all vertices — also the leaves.
Thus, for the first of Examples 12.1, the maximal splice diagram is:

◦ ◦

∆′ = ◦
2

11PPPPPP

3
5

nnnnnn
7 1 ◦ ◦

2
28nnnnnn

5
9

PPPPPP
111

◦ ◦
2 5

◦

and for the second it is

◦ ◦
◦

2
19RRRRRR

3
15

llllll
7 11◦

2
36llllll

5
21

RRRRRR

◦16 2 ◦ ◦ 4 20◦ 3 19◦ 2 18◦ .

The maximal splice diagram has the following properties.

Theorem 12.2 (1) For any pair of vertices v and w of the maximal diagram
let ℓvw be the product of the weights adjacent to, but not on, the shortest path
from v to w in ∆′ (in particular, ℓvv = dv , the product of weights at v). Then
the matrix L := (ℓvw) satisfies 1

det(Γ)L = −A(Γ)−1 .

(2) Every edge determinant for the maximal splice diagram is det(Γ).

Proof Property (1) of the theorem says

A(Γ)L = − det(Γ)I , (17)

which is easily shown by computing that the adjoint matrix of −A(Γ) equals
L. This calculation is carried out explicitly in Lemma 20.2 of [1].

For property (2), suppose we have an edge connecting vertices v and w of the
maximal splice diagram as follows,

...
v
◦

n1

LLLLLLLLLLn2

QQQQQQQQQQ

nσ
mmmmmmmmmm

r s

w
◦

m1

ssssssssss m2

mmmmmmmmmm

mτ QQQQQQQQQQ
...

and write N =
∏σ

1 ni , M =
∏τ

1 mj , Ni = N/ni (if v or w is a leaf the
corresponding N or M is 1). For each i = 1, . . . , σ let Li be the product of
the weights just beyond the other end of the ni–weighted edge. Then the vv–
and vw–entries of equation (17) are:

Nravv + NM +

σ∑

1

rNiLi = − det(Γ)

NMavv + sM +
σ∑

1

MNiLi = 0 .
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Multiplying the second of these equations by r/M and then subtracting the
first from it gives the desired equation rs − MN = det(Γ).

We can generalize part 2 of the above theorem to any edge of a splice diagram.
Let Γ be a resolution graph and ∆ its splice diagram. Thus each edge of ∆
corresponds to a string in Γ.

Proposition 12.3 Let e be an edge of ∆ corresponding to a string E of Γ.
Then the edge determinant D(e) is given by

D(e) = det(E) det(Γ) ,

where det(E) = 1 if E is the empty string.

Proof We need some preparation.

Lemma 12.4 Suppose in Γ we have an extremal string with continued fraction
n/p = b1 − 1/ · · · − 1/bk , and associated splice diagram as follows:

WWWWW

Γ =
...

v

−b
◦

−b1
◦ _____

−bk−1
◦

−bk
◦

n/p →
ggggg

nσ

SSSSSSSSS

∆ =
...

v
◦ n ◦

n1

kkkkkkkkk

Let Γ0 be the result of removing the string, so it consists of v and what is to
the left. Then, with N = n1 . . . nσ ,

det(Γ) = n det(Γ0) − Np .

Proof This is the edge determinant equation of part (2) of Theorem 12.2
applied to the edge from v to the −b1–weighted vertex in the maximal splice
diagram, since the determinant of the string starting at −b2 is p.

The following lemma has been used earlier (eg, Proposition 6.6), since, even
though the edge weight at a leaf is not part of the data of a splice diagram, it
is needed in computing discriminant groups.
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Lemma 12.5 Suppose we have a leaf w of a splice diagram

∆ =
...

v
◦

n1

RRRRRRRRR

nρlllllllll
n

w
◦

resulting from a resolution string with continued fraction n/p = b1 − 1/ · · · −
1/bk . Denote by p′ the discriminant of the string with w removed, so pp′ ≡ 1
(Lemma 6.2; if the string is quasi-minimal then p′ is the unique such positive
integer with p′ ≤ n). Denote N = n1 . . . nσ . Then the splice diagram weight x
at w is given by

x =
p′

n
det(Γ) +

N

n

Proof Denote n′ = (pp′ − 1)/n, so pp′ − nn′ = 1. By Lemma 6.2 we have
p′/n′ = b1 − 1/ · · · − 1/bk−1 (if k = 1, then p = p′ = 1, n′ = 0). Apply the
previous Lemma 12.4 to both Γ and the result Γ′ of removing the rightmost
vertex of Γ. This gives the following (also if k = 1):

det(Γ) = n det(Γ0) − Np, x := det(Γ′) = p′ det(Γ0) − Nn′ .

Solving the first of these equations for det(Γ0) and inserting in the second gives

x = p′
(

det(Γ)

n
+

Np

n

)

− Nn′ =
p′

n
det(Γ) +

N

n
,

as desired.

We now complete the proof of Proposition 12.3 by induction on the length of the
string. We already know it for the empty string by Theorem 12.2, so suppose
we have partially reduced the maximal splice diagram as follows:

...
v
◦

n1

UUUUUUUUUUU

nσ
iiiiiiiiiii

r s1

v1

◦
r1 s2

v2

◦
p1

iiiiiiiiiii

pρ UUUUUUUUUUU ... (ρ ≥ 0) ,

where v1 and v2 were adjacent in the maximal splice diagram, but the edge
from v to v1 may correspond to a non-empty string. Denote the string of Γ
between v and vi by Ei , i = 1, 2, and denote N = n1 . . . , nσ , P = p1 . . . , pρ .

By Theorem 12.2 and by the induction assumption we have

r1s2 − s1P = det(Γ), rs1 − Nr1 = det(E1) det(Γ) .

Multiplying the first of these by N and the second by s2 and adding gives

s1(rs2 − NP ) = det(Γ)(s2 det(E1) + N) .
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Apply the last lemma (Lemma 12.5) to the result of deleting from Γ the vertex
v2 and all to the right of it. This has determinant s2 , so Lemma 12.5 gives

s1 =
det(E1)

det(E2)
s2 +

N

det(E2)
.

Inserting this in the previous equation and simplifying gives

rs2 − NP = det(Γ) det(E2) ,

completing the inductive step.

We earlier needed to understand what happens to weights in a splice diagram ∆
when part of the resolution diagram Γ changes. Of course weights only change
if given by determinants of parts of the resolution graph that have changed. A
typical situation might be the following:

∆ =
v
◦

K
K

K

s
s

s
a b

w
◦

{
{

{
{

C
C

C
C

a′

___ ∆0

where changing the part of the resolution diagram Γ corresponding to ∆0 will
not change b but will change the weights a and a′ , say to ã and ã′ . Denote
the changed resolution diagram by Γ̃ and the corresponding splice diagram by
∆̃

Lemma 12.6 Let M be the product of weights other than a at v and L the
product of weights other than b and a′ at w .

adet(Γ̃) − ãdet(Γ) =
ML

b
(a′ det(Γ̃) − ã′ det(Γ))

Proof Applying Proposition 12.3 to the edge from v to w in ∆ and ∆̃ gives
the equations

ab − a′ML = n det(Γ)

ãb − ã′ML = n det(Γ̃)

where n is the determinant of the resolution string for the given edge. Elimi-
nating n from these two equations gives the desired equation.

Lemma 12.7 Suppose that Γ is a resolution diagram with a string

Γ =
−b0
◦

S
S

S

k
k

k
−b1
◦ ___ ___

−bn
◦

v∗

−bn+1

◦
k

k
k

S
S

S
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and Γ̃ results by deleting the node v∗ at one end of the string and all beyond
it:

Γ̃ =
−b0
◦

Q
Q

Q

m
m

m
−b1
◦ ___ ___

−bn
◦ .

Suppose ∆̃ is the corresponding splice diagram, and a and ã are the ∆– and
∆̃–weights towards v∗ at a node v of Γ̃. Then

adet(Γ̃) − ãdet(Γ) = MN(ℓ′v∗v)
2 ,

where M is the product of weights of ∆ other than a at v and N is the product
of weights of ∆ at v∗ other than the weight towards v .

Proof The result is by induction over the distance from v∗ to v in ∆. The
induction step is the previous lemma. The induction start is the case that v∗

and v are adjacent in ∆. In this case the equation to be proved can be written
adet(Γ̃)−MN = ãdet(Γ). This is the edge determinant formula of Proposition
12.3, since ã is the determinant of the string connecting v to v∗ in Γ and det(Γ̃)
is the edge weight of ∆ at v∗ towards v .

12.1 Topological description of the splice diagram and Ideal

Condition

The weights in a splice diagram have a simple topological meaning. The stan-
dard plumbing description (see, eg, [6]) of the manifold Σ = Σ(Γ) associated
to a resolution graph (or more general rational plumbing graph) Γ shows that
to each string in the graph Γ is associated an embedded torus in Σ such that,
if one cuts along these tori, Σ decomposes into pieces associated to the leaves
and nodes of Γ. The piece for a leaf is a solid torus, and for a node is of the
form (punctured disc)×S1 . (If one omits the tori corresponding to leaves, this
essentially describes the JSJ decomposition of Σ.) In particular, the pieces at
nodes have natural circle fibers, topologically determined up to isotopy.

Suppose we have a resolution diagram and associated splice diagram as follows:

Γ1

Γ =
...

−b0
◦

F
F

F
F

x
x

x
x

−b1
◦ ____ ____

−bn+1

◦

qqqqqqqqq

MMMMMMMM
...

Γn

︸ ︷︷ ︸

Γ0
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∆ =
...

v
◦

Q
Q

Q
Q

Q

m
m

m
m

m
dve dv′e

v′
◦

d1

ssssssssss d2

mmmmmmmmmm

dn QQQQQQQQQQ
...

(we are denoting di := dv′ei
for the i-th edge ei departing v′ to the right).

The topological interpretation of dve = det(Γ0) is simply that it is the size of
H1(Σ(Γ0); Z); topologically Σ(Γ0) is the manifold one obtains from the right
hand piece after cutting Σ along the torus for the edge e, by gluing a solid
torus into the boundary torus to kill fibers associated to the left node v (ie,
match them with meridians of the solid torus).

We can use this for a topological proof that a splice diagram satisfies the ideal
condition of Definition 2.2. Recall that it says that for each node v and adjacent
edge e of a splice diagram ∆, the edge-weight dve is in the ideal

(ℓ′vw : w a leaf of ∆ in ∆ve) ⊂ Z .

Definition 12.8 We will call the positive generator d̄ve of the above ideal the
ideal generator for e at v . So the ideal condition says d̄ve divides dve .

We refer again to the above diagrams and note that di = |H1(Σ(Γi); Z)| for
i = 0, . . . , n. Each of the manifolds Σ(Γi) contains a knot Ki corresponding to
the edge that attaches Γi to the rest of Γ. Note that the map H1(Σ(Γ0); Z) →
H1(Σ(Γ0)/K0; Z) is surjective, so |H1(Σ(Γ0)/K0; Z)| divides d0 . The following
theorem thus implies the ideal condition.

Theorem 12.9 The ideal generator d̄ve is |H1(Σ(Γ0)/K0; Z)|.

We will prove this theorem inductively, so we first describe an inductive com-
putation of the ideal generators.

Lemma 12.10 If v′ is a leaf (n = 0) put d̄ve = 1. Inductively, if the ideal
generator d̄i is known at the i-th edge departing v′ to the right for each i then
d̄ve is computed as

d̄ve = gcdn
i=1

(

d̄i

n∏

j 6=i

dj

)

.

Proof d̄i
∏n

j 6=i dj is the generator of the ideal (ℓ′v′w : w a leaf of ∆ in ∆v′ei
),

so gcdn
i=1 d̄i

∏n
j 6=i dj is the generator of the ideal (ℓ′vw : w a leaf of ∆ in ∆ve).
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Proof of Theorem 12.9 Define for the moment d̄i = |H1(Σ(Γi)/Ki; Z)| for
each i. We will show that these numbers satisfy the inductive formula of the
lemma, so they are the ideal generators.

Let ∆i be the subgraph of the splice diagram ∆ corresponding to the subgraph
Γi of Γ. Σ = Σ(Γ) contains tori Ti corresponding to the edges of ∆ that cut
off the subdiagrams ∆i . The torus T0 cuts Σ into two pieces. We denote the
piece corresponding to ∆0 by Σ′

0 . Thus Σ0 results from Σ′
0 by gluing a solid

torus into its boundary, so

H1(Σ0/K0) = H1(Σ
′
0/T0) .

Define Σ′
i for i = 1, . . . , n similarly, so

H1(Σi/Ki) = H1(Σ
′
i/Ti) .

If we cut Σ along all the tori Ti , i = 0, . . . , n, the central piece Σv′ correspond-
ing to the node v′ of ∆ is an S1–bundle over an (n + 1)–punctured sphere
S . Denote a fiber of this bundle by f and the boundary components of S by
q0, . . . , qn , considered as curves in Σv′

∼= S1 × S ⊂ Σ′
0 . For i = 1, . . . , n, Σi is

obtained from Σ′
i by gluing in a solid torus with meridian curve f , so we have

H1(Σi) = H1(Σ
′
i)/(f) ,

so H1(Σ
′
i)/(f) has order di . It follows that

H1(Σ
′
0)/(f) =

n⊕

i=1

H1(Σ
′
i)/(f)

has order d1 . . . dn .

By definition of d̄i , the quotient H1(Σ
′
i)/(f, qi) has order d̄i , so the order of the

element qi ∈ H1(Σ
′
i)/(f) must be di/d̄i . The element q1+· · ·+qn ∈ H1(Σ

′
0)/(f)

hence has order lcm(d1/d̄1, . . . , dn/d̄n).

Now
H1(Σ

′
0/T0) = H1(Σ

′
0)/(f, q0) = H1(Σ

′
0)/(f, q1 + · · · + qn) ,

so this group has order |H1(Σ
′
0)/(f)|/ lcm(d1/d̄1, . . . , dn/d̄n). This equals

d1 . . . dn/ lcm(d1/d̄1, . . . , dn/d̄n) = gcdn
i=1

(
d̄j

n∏

j 6=i

dj

)

completing the proof.

The ideal generator is also defined if v is a leaf, and the above proof shows that
it equals |H1(Σ/K; Z)| where K is the knot in Σ corresponding to the leaf.
Thus:
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Corollary 12.11 The order in homology of the knot in Σ corresponding to
a leaf of a resolution diagram Γ is det(Γ)/d̄ , where d̄ is the ideal generator at
the corresponding leaf of the splice diagram.

13 Appendix 2: Okuma’s Theorem

We conjectured (Conjecture 11.3) that rational singularities and QHS-link min-
imally elliptic singularities are splice quotients. In a recent preprint [13] T.
Okuma announces, in effect, that this conjecture is correct. A key is an ex-
plicit construction of the UAC, à la Esnault-Viehweg, via a sheaf of algebras
on the resolution of (Y, o) [12]. The preprint [13] is hesitant about whether
the complete intersections he constructs there, which he calls Neumann-Wahl
systems, are actually splice type. In fact, they are of splice type. He constructs
his complete intersections under a strong condition on the graph (Condition
3.4 of [13]). The key point we make is that a weaker condition, ‘Condition
3.3,’ that he shows this implies, is equivalent to the semigroup and congruence
conditions. To clarify the situation we first assume this equivalence and give
versions of Okuma’s main results in our language.

Recall that an end-curve on a resolution is a rational curve that has just one
intersection point with the rest of the exceptional divisor, so it corresponds to
a leaf of the resolution graph.

Theorem 13.1 (Okuma, [13]) Let (Y, o) be a normal surface singularity with
QHS link whose resolution graph Γ satisfies Okuma’s ‘Condition 3.4’, and Ȳ →
Y its minimal good resolution. Suppose that for each end curve Ei on Ȳ
there exists a function yi : Y → C such that the proper transform on Ȳ of
its zero-locus consists of one smooth irreducible curve Ci , which intersects Ei

transversally at one point and intersects no other exceptional curve. Then (Y, o)
is a splice-quotient.

We describe ‘Condition 3.4’ later; for now it suffices that it is stronger than
‘Condition 3.3’ (ie, the semigroup and congruence conditions). Since it is rarely
satisfied for splice-quotients, one would prefer to replace it in the Theorem by
the semigroup and congruence conditions. We have even conjectured that the
existence of functions yi as above is by itself equivalent to (Y, o) being a splice-
quotient. This is proved in [11] (Theorem 4.1) when the link is a Z–homology
sphere; in this case, the semigroup condition is deduced directly (and no UAC
need be constructed). But this conjecture is still open in general.
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Sketch of Proof of Theorem 13.1 Let di be the order of vanishing of yi

on Ci . Then the “Riemann surface” of y
1/di

i (ie, adjoin the di -th root of yi and
normalize) is an abelian cover that is unramified away from the singular point.
Thus, a di -th root zi of yi is well defined on the universal abelian cover (X, o)
of (Y, o). If the leaves of Γ are numbered i = 1, . . . , t, we want to show that
the zi , i = 1, . . . , t, embed X in Ct as a complete intersection of splice type
and Y is a splice-quotient of X .

Let us verify that the discriminant group H1(Σ) acts as specified in Proposition
5.3 on Ct . If π : Ȳ → Y is the resolution, then, since the zero-divisor of yi ◦ π
has zero intersection with each Ej , this divisor is

diCi − di

∑

j

āijEj ,

where (āij) is the inverse of the intersection matrix (aij) = (Ei · Ej). In other
words, the order of vanishing of yi along Ej is −diāij . Thus the di -th root zi of
yi changes by exp(−2πiāij) as we go around a meridian curve of Ej . But this
meridian curve represents the element of the discriminant group corresponding
to −ej in the notation of Section 5 (the sign results from the convention for
how a fundamental group acts as covering transformations) so its action on zi

is indeed as in Proposition 5.3 (see Lemma 6.4).

We next need to know that the zi generate the maximal ideal at our singular
point. This is a significant step in Okuma’s proof, and is where he needs ‘Con-
dition 3.4’ (as opposed to simply the semigroup and congruence conditions); we
do not attempt to reprove it here.

Since the semigroup and congruence conditions are satisfied by assumption, we
can choose a system of admissible monomials in the zi that transform correctly
under the discriminant group. Let M1, . . . ,Mδ be the monomials corresponding
to the δ edges at a node v of the splice diagram. Then, as in the proof of
Theorem 10.1 (see also the proof of Theorem 4.1 of [11]), the ratios Mi/Mδ are
invariant under the discriminant group, hence defined on Ȳ , and each has just
a single zero and a single pole on Ev (at the intersections with the neighboring
curves Evi

and Evδ
respectively). It follows that there are δ−2 linear relations

among the Mi/Mδ up to higher order at Ev . Multiplying by Mδ , we see that the
zi satisfy a system of splice type equations, compatible with the discriminant
group action. We thus get a map of (Y, o) to the corresponding splice quotient
and it is not hard to see it is an isomorphism.

Theorem 13.2 (Okuma, [13]) If (Y, o) is rational or QHS-link minimally el-
liptic, then the semigroup and congruence conditions are satisfied and functions
yi as in the above theorem exist. In addition, (Y, o) is a splice quotient.
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Proof The existence of functions yi as in Theorem 13.1 is standard in the
rational case, and, as Okuma points out, follows also in the minimally elliptic
case by the arguments of Miles Reid in [14] (Lemma, p. 112). It thus remains
to discuss ‘Condition 3.4’ and the semigroup and congruence conditions. We
first give some of Okuma’s terminology.

A Q–cycle is a rational linear combination of the exceptional curves Ei . For
each i Okuma denotes by Ēi the Q–cycle “dual” to Ei in the sense that
Ēi · Ej = −δij (so Ēi = −ei in the notation of Section 5). By Theorem 12.2:

Ēi =
1

det(Γ)

∑

j

ℓijEj

A monomial cycle is a non-negative integer linear combination

D =
∑

k∈E

αkĒk , where E = (the ends of Γ) .

Okuma calls each connected component C of E − Ei , for any i, a branch of
Ei . We denote by ΓC the corresponding subgraph of Γ.

The following is ‘Condition 3.4’, which is well known for rational and QHS-link
minimally elliptic singularities; as Okuma says, it follows from basic results on
computation sequences, eg, [3, 4]). As mentioned above, this condition is at
present needed to show the UAC is a complete intersection.

‘Condition 3.4’ For any branch C of any Ei not an end-curve, the funda-
mental cycle ZC for ΓC satisfies ZC · Ei = 1. (The fundamental cycle is the
minimal effective cycle that has non-positive intersection number with each Ej

in C .)

Okuma shows this condition implies the following ‘Condition 3.3’, which we will
show is equivalent to the semigroup and congruence conditions:

‘Condition 3.3’ For any node i of Γ and branch C of Ei there exists a
monomial cycle D such that D − Ēi is an effective integral cycle (ie, with
non-negative integral coefficients) supported on C . Moreover D has the form
D =

∑

k αkĒk with k running only through the leaves of Γ in ΓC .

We have included the second sentence of the condition for convenience; one can
show it follows from the first.

Okuma’s proof that that ‘Condition 3.4’ implies ‘Condition 3.3’ is elegant and
simple: We want to add an effective integral cycle to Ēi to get a monomial
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cycle D as in ‘Condition 3.3’. Let C1 = C be the branch in question and put
D1 = Ēi + ZC . Clearly D1 · Ej = 0 for each j outside ΓC and D1 · Ej ≤ 0
otherwise. If D1 · Ej = α < 0 for some j other than a leaf of Γ in ΓC , choose
such a j as close as possible to i, let C2 be a branch of j that is in C , and put
D2 = D1 − αZC2

. Repeat until you have D with D · Ej = 0 for all j that are
not leaves of Γ in ΓC . Then D =

∑

k αkĒk with αk = −D · Ek for each k a
leaf of Γ in ΓC .

Proposition 13.3 ‘Condition 3.3’ is equivalent to the semigroup and congru-
ence conditions.

Proof Suppose ‘Condition 3.3’ holds for a node i of Γ. In the following k
runs through the leaves of Γ in ΓC and j runs through all vertices of Γ.

det(Γ)(D − Ēi) =
∑

k

αk

∑

j

ℓkjEj −
∑

j

ℓijEj

=
∑

j

(
∑

k

αkℓkj − ℓij)Ej .

Since this cycle is supported in C , the coefficient of Ei is zero:
∑

k

αkℓki = ℓii .

This is the semigroup condition. Note that the vanishing of the coefficient of
any Ej with Ej not in C gives a multiple of this equation, so the semigroup
condition is equivalent to these coefficients vanishing for all Ej not in C .

Now look at the coefficient of an Ej that is in C . The condition that D − Ēi

is an integral cycle says
∑

k

αkℓkj ≡ ℓij (mod det(Γ)) .

Comparing with Propositions 6.8 and 6.5 we see that as j runs through leaves
of Γ this is the congruence condition. Recall that the congruence condition
is an equivariance condition and the above confirms this equivariance for the
generators of the discriminant group corresponding to leaves of Γ. The above
congruence for other Ej in C is the equivariance condition for the group ele-
ments corresponding to these vertices, and thus follows once one knows it for
the generators. Thus the congruence condition for the given node and branch
is equivalent to the above congruence as Ej runs through exceptional curves in
C .

Geometry & Topology, Volume 9 (2005)



Complete intersection singularities of splice type 755

References

[1] D Eisenbud, WD Neumann, Three-dimensional link theory and invariants

of plane curve singularities, Ann. Math. Stud. 110, Princeton Univ. Press (1985)

[2] Robin Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics 52,
Springer–Verlag (1977)

[3] H B Laufer, On rational singularities, Amer. J. Math. 94 (1972) 597–608

[4] H B Laufer, On minimally elliptic singularities, Amer. J. Math. 99 (1977)
1257–1295

[5] I Luengo-Velasco, A Melle-Hernandez, A Némethi, Links and ana-

lytic invariants of superisolated singularities, to appear in J. Alg. Geom.
arXiv:math.AG/0312416

[6] W D Neumann, A calculus for plumbing applied to the topology of complex

surface singularities and degenerating complex curves, Trans. Amer. Math. Soc.
268 (1981) 299–343

[7] W D Neumann, Abelian covers of quasihomogeneous surface singularities,
from: “Singularities, Arcata 1981”, Proc. Symp. Pure Math. 40 Amer. Math.
Soc. (1983) 233–243

[8] W D Neumann, G A Swarup, Canonical decompositions of 3-manifolds,
Geom. Topol. 1 (1997) 21–40

[9] W D Neumann, J Wahl, Universal abelian covers of surface singularities,
from: “Trends in Singularities”, (A Libgober and M Tibar, editors) Trends
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