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Abstract

J Hempel [Topology, 2001] showed that the set of distances of the Heegaard
splittings (S,V, hn(V)) is unbounded, as long as the stable and unstable lam-
inations of h avoid the closure of V ⊂ PML(S). Here h is a pseudo-Anosov
homeomorphism of a surface S while V is the set of isotopy classes of simple
closed curves in S bounding essential disks in a fixed handlebody.

With the same hypothesis we show the distance of the splitting (S,V, hn(V))
grows linearly with n, answering a question of A Casson. In addition we prove
the converse of Hempel’s theorem. Our method is to study the action of h
on the curve complex associated to S . We rely heavily on the result, due to
H Masur and Y Minsky [Invent. Math. 1999], that the curve complex is Gromov
hyperbolic.
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96 Aaron Abrams and Saul Schleimer

1 Introduction

J Hempel [8] introduced a new measure of the complexity of a Heegaard splitting
called the distance of the splitting. This definition is a conscious extension of
A Casson and C Gordon’s notion of strong irreducibility [3]. Indeed, a Heegaard
splitting is

• reducible if and only if its distance is 0,

• weakly reducible if and only if its distance is at most 1, and

• strongly irreducible if and only if its distance is at least 2.

Hempel’s distance derives its name from the curve complex; the distance of a
splitting is exactly the distance between the two handlebodies, thought of as
subsets of the curve complex associated to the splitting surface. In particular
the distance does not rely on any particular diagram for the splitting.

Casson and Gordon produce examples of strongly irreducible splittings by tak-
ing an existing splitting of S3 and altering the gluing map by high powers of a
certain Dehn twist. It is clear that the Dehn twist must be carefully chosen; a
Dehn twist about a curve which bounds a disk in one of the two handlebodies
leaves the splitting unchanged.

Hempel obtains examples of high distance splittings using a construction due
to T Kobayashi [11]. Instead of S3 he begins with the double of a handlebody
V . Instead of a Dehn twist he iterates a certain pseudo-Anosov map h on S =
∂V . Analyzing the dynamics of h acting on the space PML(S) of projective
measured laminations reveals that the set of distances, obtained by altering the
original gluing by hn , is unbounded. We sketch Hempel’s proof in Section 2.
Again, one must be careful when choosing h; if h extends over the handlebody
then the splitting remains unchanged.

We remark that the second author has proved that each fixed 3–manifold has a
bound on the distances of its Heegaard splittings. Thus the splittings provided
by Hempel’s theorem must represent infinitely many different 3–manifolds.

This paper is part of an ongoing program to understand handlebodies and Hee-
gaard splittings from the point of view of the curve complex. The fundamental
ingredient underlying our approach is the result of H Masur and Y Minsky [14]
that the curve complex is δ–hyperbolic. This allows us to study the dynamics of
h acting on the curve complex. We are thus able to both strengthen Hempel’s
theorem and to prove a converse.
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Theorem 1.1 Fix a handlebody V with genus at least two and set S = ∂V .

Fix also a pseudo-Anosov map h : S → S . Let V be the set of isotopy classes

of simple closed curves in S which bound disks in V . Let α(h) denote the

average displacement of h. The following are equivalent:

K: The stable and unstable laminations of h are each of full type

with respect to some pants decompositions of V .

M: In PML(S), the stable and unstable laminations of h are con-

tained in the Masur domain of V .

H: In PML(S), the stable and unstable laminations of h are not

contained in the closure of V .

B: In the curve complex, the projection of V onto an invariant axis

for h has finite diameter.

Lin: There is a constant K > 0 so that for any n ∈ N the distance

of the Heegaard splitting (S,V, hn(V)) lies between n · α(h) − K
and n · α(h) + K .

Unb: The set of distances of {(S,V, hn(V)) | n ∈ N} is unbounded.

The terms average displacement, full type, Masur domain, and invariant axis

are defined in Definitions 3.1, 11.2 (or the paper [11]), 10.1 (or the paper [12]),
and 5.6, respectively.

Hempel [8] proved that H implies Unb . Section 2 gives Hempel’s definition of
distance as well as a sketch of his proof.

In this paper we introduce the condition B and prove in Section 8 its equivalence
with H. This strengthens Hempel’s theorem as B (and hence H) implies Lin.
(Note that Lin implies Unb by the fact, also contained in [14], that α(h) > 0.)
To prove this we first develop several tools from δ–hyperbolic geometry in
Sections 3 through 6. These arguments are written out carefully to emphasize
their synthetic nature, in particular the fact that they apply to spaces (such
as the curve complex) which are not locally compact. In Section 7, we apply
these tools to the curve complex, as allowed by Masur and Minsky’s theorem, to
obtain Corollary 7.5, B implies Lin. The argument in Section 8 shows that B

is an accurate translation of H to the geometric language of the curve complex.
This relies on E Klarreich’s characterization [10] of the Gromov boundary of
the complex of curves as the space of unmeasured, minimal laminations.

In order to prove the converse, namely that Unb implies B, we use the more
recent theorem of Masur and Minsky [13] that handlebody sets are quasi-convex
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98 Aaron Abrams and Saul Schleimer

subsets of the curve complex. This is carried out in Section 9. The equivalence
of H, M, and K is established in the final two sections.

Acknowledgements We thank Howard Masur for many interesting conver-
sations and for showing us the proof of Lemma 11.7. AA was supported in
part by NSF grant DMS-0089927; SS was supported in part by NSF grant
DMS-0102069.

2 Hempel’s argument

Beginning with a few definitions, this section states Hempel’s theorem and
sketches a proof.

2.1 Terminology for Heegaard splittings

A handlebody is a compact three-manifold which is homeomorphic to a closed
regular neighborhood of a finite, polygonal, connected graph embedded in R

3 .
The genus of the handlebody is the genus of its boundary. A properly embedded
disk D in a handlebody V is essential if ∂D is not null-homotopic in ∂V .

Fix handlebodies V and W of the same genus. Let S = ∂V . Glue V and
W together via a homeomorphism f : ∂V → ∂W . We will consistently use V
to denote the handlebody set: the set of (isotopy classes of) curves in S which
bound essential disks in V . Let W denote the set of curves in S which, after
gluing, bound essential disks in W . Then the data (S,V,W) give a Heegaard

splitting. Note that a Heegaard splitting specifies a closed orientable three-
manifold. The surface S is referred to, in other literature, as the Heegaard

splitting surface.

Definition 2.1 The distance of the splitting (S,V,W) (see [8]) is the smallest
n ∈ N such that there are n + 1 essential simple closed curves αi ⊂ S with the
following properties:

• α0 ∈ V and αn ∈ W and

• αi ∩ αi+1 = ∅ for i = 0, . . . , n − 1.

Now suppose that h is a homeomorphism of S = ∂V . Then the set of curves
h(V) also defines a handlebody and (S,V, h(V)) also specifies a Heegaard split-
ting.

Geometry & Topology, Volume 9 (2005)
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2.2 Hempel’s theorem

As above fix a handlebody V of genus at least two and set S = ∂V . We will
freely use known facts about PML(S), the projectivization of the space of
measured laminations, and about the mapping class group of S . (See [5] or [9]
for extensive discussion of these objects.)

For convenience of notation we occasionally blur the distinction between an
object and its isotopy class. That said, let C0(S) be the set of isotopy classes of
essential simple closed curves in S . Let V ⊂ C0(S) be the set of curves which
bound essential disks in the handlebody V . Fix also a pseudo-Anosov map
h : S → S .

Definition 2.2 Given V , S , and h as above, we say that H holds if the stable
and unstable laminations of h, L±(h), are not contained in the closure of V
(considered as a subset of PML(S)).

Definition 2.3 Given V , S , and h as above, we say that Unb holds if the
set of distances of {(S,V, hn(V)) | n ∈ N} is unbounded.

The following theorem of Hempel’s [8] provided the first proof that high distance
splittings exist.

Theorem 2.4 (Hempel) Suppose a handlebody V with S = ∂V and a

pseudo-Anosov map h : S → S are given. Then H implies Unb .

Remark 2.5 Hempel cites Kobayashi [11] as the framer of the proof sketched
below. However, Kobayashi used a slightly different hypothesis; see Section 11.

Sketch of proof of Theorem 2.4 Suppose the distance of (S,V, hj(V)) is
bounded by some M ∈ N, for all j ∈ N. Then, for every j , there is a set of
essential curves {αj

i }
M
i=0 ⊂ C0(S) such that

• αj
0 ∈ V and αj

M ∈ hj(V) and

• αj
i ∩ αj

i+1 = ∅ for i = 0, 1, . . . ,M − 1.

Thus there is a curve βj ∈ V such that hj(βj) = αj
M . By H the unstable

lamination L−(h) is not contained in the closure of V (taken in PML(S)). It
follows that the βj ’s avoid an open neighborhood of L−(h). Thus, the curves
hj(βj) = αj

M converge to L+(h) as a sequence in PML(S).

Geometry & Topology, Volume 9 (2005)
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Recall that PML(S) is compact. Inductively pass to subsequences exactly M
times to ensure that the ith sequence {αj

i}j∈N also converges in PML(S), for

i = M−1,M−2, . . . , 0. Denote the limit of {αj
i }j∈N by Li . Thus LM = L+(h)

while L0 lies in the closure of V . In particular LM 6= L0 by H.

Recall that the geometric intersection number, ι(·, ·), extends to a continuous
function ML(S) ×ML(S) → R+ . As αj

i ∩ αj
i+1 = ∅ we have ι(Li,Li+1) = 0,

abusing notation slightly. As L+(h) is minimal (the lamination contains no
closed leaf and all complementary regions are disks) and uniquely ergodic (all
transverse measures are projectively equivalent), LM and LM−1 must be the
same point of PML(S). Inductively, Li = Li−1 in PML(S) which implies
that LM = L0 . This is a contradiction.

2.3 Distance grows linearly

The primary goal of this paper, then, is to show that Hempel’s hypothesis
H implies a seemingly stronger assertion: the distance grows linearly with the
number of iterates of h, up to a bounded additive constant. This is the condition
Lin. As indicated in the introduction we do this by studying the action of h
on the complex of curves, C(S).

3 Metric spaces

This section briefly states the facts we need about δ–hyperbolic spaces and
their isometries. For a deeper discussion consult Gromov [6] or Bridson and
Haefliger [2].

3.1 Basic terminology

Let (X, dX ) be a metric space. If Y and Z are subsets of X define dX(Y,Z) =
inf{dX (y, z) | y ∈ Y, z ∈ Z}.

An arc in X is a continuous map L : [a, b] → X where [a, b] is a closed connected
subset of the real numbers, R. The arc L is geodesic if |b′−a′| = dX(L(a′), L(b′))
for every finite subinterval [a′, b′] ⊂ [a, b]. An arc L : [a, b] → X connects two
points u, v ∈ X if [a, b] is a finite interval, L(a) = u, and L(b) = v . When
the choice of geodesic arc connecting u to v does not matter (or is clear from
context) we denote it by [u, v].

Geometry & Topology, Volume 9 (2005)
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This paper only considers geodesic metric spaces: metric spaces in which every
pair of points is connected by some geodesic arc. However, we do not assume
that our spaces are proper.

A subset U ⊂ X is quasi-convex with constant R ≥ 0 if, for every pair of points
u, v ∈ U and for every geodesic arc L connecting u to v , the image of L lies
inside a closed R neighborhood of the set U .

An arc L : [a, b] → X is quasi-geodesic with constants λ ≥ 1, ǫ ≥ 0 if

1

λ
|b′ − a′| − ǫ ≤ dX(L(a′), L(b′)) ≤ λ|b′ − a′| + ǫ (1)

for every finite interval [a′, b′] ⊂ [a, b].

3.2 Isometries

A map h : X → X is an isometry if for every pair of points x, y ∈ X we have
dX(x, y) = dX(h(x), h(y)).

Definition 3.1 Fix x ∈ X . The average displacement of an isometry h is the
quantity

α(h) = lim
n→∞

dX(x, hn(x))

n
= inf

n∈N

dX(x, hn(x))

n
.

It is well-known (see [4], Chapter 10, for example) that α(h) exists and is inde-
pendent of the given choice of x ∈ X . Note also that n · α(h) ≤ dX(x, hn(x)),
for all n. We say an isometry is hyperbolic if its average displacement is strictly
positive.

Remark 3.2 This is one of several equivalent definitions of a hyperbolic isom-
etry. Claim 5.4 below shows that any orbit of a hyperbolic isometry, acting on
a Gromov hyperbolic space, is a quasi-isometric embeddings of Z, as expected.

3.3 Gromov hyperbolicity

A geodesic metric space (X, dX ) is Gromov hyperbolic with constant δ , or
simply δ–hyperbolic, if every geodesic triangle is δ–thin: the (closed) δ neigh-
borhood of any two of the sides of the triangle contains the third side. Here
a geodesic triangle is a collection of three geodesic arcs which connect in pairs
some triple of points x, y, z ∈ X . As an immediate corollary geodesic n–gons
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are (n− 2) · δ–thin: any one side lies in a (n− 2) · δ neighborhood of the union
of the other n − 1 sides.

Again and again we will use the remarkable “stability” property of quasi-
geodesics in a δ–hyperbolic space:

Lemma 3.3 For any choice of δ, λ, ǫ there is a constant R > 0 such that:

if X is a δ–hyperbolic space X and L : [a, b] → X is a (λ, ǫ) quasi-geodesic,

then the image of L is quasi-convex with constant R. Furthermore, if [a, b] is

a finite interval then the image of L lies within the closed R neighborhood of

any geodesic connecting L(a) and L(b).

See [2], page 404, for a proof and note that X need not be proper. The number
R is referred to as the stability constant for L.

4 Triangles and quadrilaterals

Following [2], page 463, we define a notion of a “quasi-projection” onto a quasi-
convex set and deduce a few consequences.

4.1 Closest point projections

Suppose that U ⊂ X is nonempty and X is δ–hyperbolic. Define a quasi-

projection from X to U as follows: given ǫ > 0 and y ∈ X put

projǫU (y) = {y′ ∈ U | dX(y, y′) ≤ dX(y, U) + ǫ}.

That is, projǫU (y) is the set of points in U which are, within an error of ǫ,
closest to y . Note that projǫU (y) is nonempty.

Remark 4.1 When U is quasi-convex the function projǫU is a quasi-map from
X to U . That is, the diameter of projǫU (y) is bounded independently of the
point y . This is a direct consequence of Lemma 4.2, below.

4.2 The geometry of projections

This section discusses similarities between the function projǫU and orthogonal
projection in hyperbolic space H

n .

Geometry & Topology, Volume 9 (2005)
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Lemma 4.2 (Triangle lemma) Fix ǫ > 0. Suppose X is δ–hyperbolic and

U ⊂ X is quasi-convex with constant R. Suppose that y ∈ X , that y′ ∈
projǫU (y), and that u is another point of U . Then

dX(y, y′) + dX(y′, u) ≤ dX(y, u) + (2ǫ + 4δ + 2R).

Proof Note that if dX(y′, u) ≤ ǫ + 2δ + R then the conclusion follows from
the triangle inequality. Suppose, then, that ǫ + 2δ + R < dX(y′, u) and let a
be the point of [y′, u] such that dX(y′, a) = ǫ + 2δ + R + ǫ′ , where 0 < ǫ′ <
dX(y′, u) − ǫ − 2δ − R.

Claim 4.3 The point a does not lie within a δ neighborhood of [y′, y].

Proof of Claim 4.3 Suppose the opposite. Then there is a point b ∈ [y′, y]
with dX(a, b) ≤ δ . See Figure 1. By the triangle inequality we have ǫ+ δ +R+
ǫ′ ≤ dX(y′, b). On the other hand consider a piecewise geodesic from y to b to
a to U . This has length at most dX(y, b) + δ + R and at least dX(y′, y) − ǫ.
Thus dX(y′, y) − ǫ ≤ dX(y, b) + δ + R.

yy′

u

a

b

c

Figure 1: A “right-angled” triangle

Remark 4.4 This “no short-cuts” principle underlies both arguments in this
section.

Subtract dX(y, b) from both sides of the above inequality to find that dX(y′, b)
≤ ǫ + δ + R. This contradiction proves the claim.

Continuing with the proof of Lemma 4.2, by δ–thinness of the triangle uy′y we
have a point c ∈ [y, u] with dX(a, c) ≤ δ . See Figure 1. Attempting to shortcut
from y to c to a to U shows that dX(y, y′) ≤ dX(y, c)+ ǫ+ δ+R. Also, by the
triangle inequality applied to uy′c, we have dX(y′, u) ≤ dX(u, c) + δ + ǫ + 2δ +
R+ ǫ′ . Adding these last two inequalities and letting ǫ′ tend to zero proves the
lemma.
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A similar lemma holds for quadrilaterals.

Lemma 4.5 (Quadrilateral lemma) Fix ǫ > 0. Suppose X is a δ–hyperbolic

space and that U ⊂ X is quasi-convex with constant R. Suppose that y, z ∈ X
while y′ ∈ projǫU (y) and z′ ∈ projǫU (z). Suppose that 2ǫ+8δ +2R < dX(y′, z′).
Then

dX(y, y′) + dX(y′, z′) + dX(z′, z) ≤ dX(y, z) + (4ǫ + 12δ + 4R).

See also Chapter 10, Proposition 2.1, of [4], Proposition III.Γ.3.11 of [2], or
Lemma 7.3.D of [6].

Proof of Lemma 4.5 Let a ∈ [y′, z′] be the point with dX(a, z′) = ǫ + 4δ +
R + ǫ′ , where 0 < ǫ′ < dX(y′, z′) − 2ǫ − 8δ − 2R. As in Claim 4.3 the point a
lies outside of a 2δ neighborhood of the union of [y, y′] and [z, z′]. Thus, by
2δ–thinness of the geodesic quadrilateral yy′z′z , there is a point c ∈ [y, z] such
that dX(a, c) ≤ 2δ . See Figure 2.

zz′

yy′

a
c

Figure 2: Quadrilateral with two “right angles”

Applying the triangle inequality to the piecewise geodesic from y to c to a to
z′ we find that dX(y, z′) ≤ dX(y, c) + 2δ + ǫ + 4δ + R + ǫ′ . Combining this
with Lemma 4.2 (taking u = z′ ) gives dX(y, y′) + dX(y′, z′) ≤ dX(y, c) + 3ǫ +
10δ + 3R + ǫ′ . Finally, short-cutting from z to c to a to U gives dX(z, z′) ≤
dX(z, c) + ǫ + 2δ + R. Adding these last two inequalities and letting ǫ′ tend to
zero gives the desired conclusion.

5 The displacement lemma

This section gives a proof of:
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Lemma 5.1 (Displacement lemma) Suppose h is a hyperbolic isometry of

the δ–hyperbolic space X . Suppose that x ∈ X is fixed. Then there is a

constant K such that, for all n,

|dX(x, hn(x)) − n · α(h)| ≤ K.

Recall that α(h) is the average displacement of h; see Definition 3.1. Though
this result seems to be well-known, we have not been able to find it in the
literature.

Remark 5.2 Lemma 5.1 is immediate in H
n . In fact δ–hyperbolicity is not

necessary; the displacement lemma also holds for semi-simple isometries of con-
vex metric spaces. See [2] for definitions.

Remark 5.3 Set αn = dX(x, hn(x))/n. A consequence of the lemma is that
αn − α(h) = O(1/n).

Throughout the proof of the lemma we adopt the notation xn = hn(x) where
x0 = x is the basepoint provided by the hypothesis. Note that n · α(h) −
dX(x0, xn) ≤ 0. This gives the upper bound. For the lower, we define a
sequence of infinite arcs in X : for each positive integer n fix a geodesic arc

Pn = [x0, xn].

Let

Ln =
⋃

k∈Z

hnk(Pn) (2)

be parameterized by arc-length. We will investigate these infinite arcs in order
to prove the lemma.

Again, take αm = dX(x0, xm)/m. Fix M0 ≥ 3 so that if m + 1 ≥ M0 then
|αm − α(h)| < 1

2α(h). (See Definition 3.1.)

Claim 5.4 The arc L1 is a quasi-geodesic with constants λ1 = 2α1

α(h) and
ǫ1 = M0α1 .

See also [4], Chapter 10, Proposition 6.3.

Remark 5.5 More is true. All of the arcs Ln are quasi-geodesic with uni-
formly bounded additive constants ǫn and multiplicative constants of the form
λn = 1 + O(1/n).

Geometry & Topology, Volume 9 (2005)
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Proof of Claim 5.4 Fix a < b ∈ R. We will show that dX(L1(a), L1(b))
satisfies the inequalities given by Equation 1. To simplify notation set L1(a) = u
and L1(b) = v . As L1 is parameterized by arc-length, dX(u, v) ≤ |b − a|.

By applying h some number of times we may assume that u lies in P1 while v
lies in hm(P1), for some smallest possible nonnegative integer m. Recall that
xm = hm(x). The triangle inequality gives

dX(x0, xm) ≤ dX(u, v) + 2α1

where α1 = dX(x0, x1). In the case m + 1 ≥ M0 we have
m

2
α(h) < dX(x0, xm)

and, as L1 is parameterized via arc-length,

|b − a| ≤ (m + 1)α1.

Chaining together the above three inequalities gives:

α(h)

2α1
|b − a| −

α(h)

2
− 2α1 ≤ dX(u, v).

On the other hand, if m + 1 ≤ M0 then

|b − a| − M0α1 ≤ dX(u, v).

Since α(h) ≤ α1 and M0 ≥ 3, regardless of m we have

α(h)

2α1
|b − a| − M0α1 ≤ dX(u, v).

This completes the proof of the claim.

Definition 5.6 We call L1 as defined in Equation 2 an invariant axis for h.

Returning to the proof of Lemma 5.1, choose n ∈ N and fix attention on the
infinite arc Ln . Recall that xm = hm(x) where x is the chosen basepoint. As
αm = dX(x0, xm)/m converges to α(h) from above there is a positive integer
M1 such that if m > M1 then αm − α(h) ≤ 1/n. Choose m > M1 of the form
m = kn. It follows that

dX(x0, xm)

k
− n · α(h) ≤ 1. (3)

Now we compare the quantities dX(x0, xm)/k and dX(x0, xn). Recall that
Pm = [x0, xm]. For i ∈ {0, 1, . . . k} choose a point zi ∈ proj0Pm

(xni). Note
that zi exists as Pm is compact. It follows that dX(xni, zi) ≤ R where R is
the stability constant provided by Lemma 3.3 for the quasi-geodesic L1 . See
Figure 3.
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x0

xn

xm

x2n

z1

z2

Figure 3: The sides of the ladder: recall that xk = hk(x0). The rungs connecting xni

to zi are not drawn.

Claim 5.7 If n > 3R
α(h) then, when traveling from z0 = x0 to zk = xm = hm(x)

along Pm , the points zi are distinct and encountered in order of their indices.

Proof of Claim 5.7 From the definition of α(h) we know that dX(x0, xnj) ≥
n · α(h) > 3jR. Recall that dX(zi, xni) ≤ R. So for all i, dX(zi, zi+j) ≥
3jR − 2R. Thus consecutive zi ’s are distinct.

If the zi ’s are not encountered in order by index then there is a smallest i
with zi+1 appearing before zi . So either zi+1 ∈ [zi−1, zi] or zi−1 ∈ [zi+1, zi].
Suppose that former occurs (the latter is similar). Now, by the above para-
graph, dX(zi−1, zi) ≤ dX(x0, xn) + 2R and dX(zi+1, zi) ≥ dX(x0, xn) − 2R.
We deduce that dX(zi−1, zi+1) ≤ 4R. Thus by the triangle inequality we have
dX(xn(i−1), xn(i+1)) ≤ 6R. But this is a contradiction.

To conclude the proof of Lemma 5.1, assume for the moment that n > 3R
α(h) . By

the above claim the intervals [zi, zi+1] form a disjoint partition of Pm (ignoring
endpoints). Let j ∈ {0, 1, . . . , k − 1} be chosen to minimize the length of
[zj , zj+1]. Then certainly dX(zj , zj+1) ≤ dX(x0, xm)/k . Applying the triangle
inequality to the rectangle with vertices xnj , zj , zj+1 , xn(j+1) shows that

dX(x0, xn) ≤ (dX(x0, xm)/k) + 2R.

Conclude, by Equation 3, that

dX(x0, xn) − n · α(h) ≤ 1 + 2R

as long as n > 3R
α(h) . Thus regardless of n

|dX(x0, xn) − n · α(h)| ≤ max

{

1 + 2R,
3Rα1

α(h)

}

.

This proves the Displacement Lemma.
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6 Bounded projection implies linear growth

Let X be a δ–hyperbolic space and h a hyperbolic isometry of X . Choose an
invariant axis L1 for h as in Definition 5.6 above.

Definition 6.1 A subset Y ⊂ X has bounded projection with respect to h if
there is ǫ > 0 so that the set P =

⋃

z∈Y projǫL1
(z) has finite diameter.

Note that (for given Y and h) the above definition is independent of the choices
involved in defining L1 . In this section we prove:

Theorem 6.2 If Y has bounded projection with respect to h then there is a

constant K such that:

|dX(Y, hn(Y )) − n · α(h)| ≤ K.

Proof Pick any point y ∈ Y . Then there is a constant K ′ , provided by
Lemma 5.1, such that dX(y, hn(y))−n ·α(h) ≤ K ′ for all n. So dX(Y, hn(Y ))−
n · α(h) ≤ K ′ for all n. This gives the desired upper bound. We now turn to
the lower bound.

Let y ∈ Y and take z ∈ hn(Y ). We must bound from below the quantity
dX(y, z). Choose y′ ∈ projǫL1

(y) and z′ ∈ projǫL1
(z). Let P =

⋃

w∈Y projǫL1
(w)

be the projection of Y to L1 . By hypothesis this set has finite diameter, say
K ′′ . Note that dX(z′, hn(y′)) ≤ K ′′ .

By Definition 3.1 we have n · α(h) ≤ dX(y′, hn(y′)). Thus, by the triangle
inequality, n · α(h) ≤ dX(y′, z′) + K ′′ .

For the remainder of the proof take M ≡ 2ǫ+8δ+2R+K ′′

α(h) . Then, when n > M

the previous inequality implies that 2ǫ + 8δ + 2R < dX(y′, z′). Letting K ′′′ =
4ǫ + 12δ + 4R and applying Lemma 4.5 we have

dX(y, z) + K ′′′ ≥ dX(y, y′) + dX(y′, z′) + dX(z′, z)

≥ dX(y′, z′).

Thus when n > M , regardless of our choice of y ∈ Y and z ∈ hn(Y ), we have

n · α(h) ≤ dX(y, z) + K ′′ + K ′′′.

That is,

n · α(h) − dX(Y, hn(Y )) ≤ K ′′ + K ′′′
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for n > M . Also, as discussed in the first paragraph of the proof,

dX(Y, hn(Y )) − n · α(h) ≤ K ′

for all n. So take

K = max
{

K ′,K ′′ + K ′′′, |dX (Y, hn(Y )) − n · α(h)|
}

where n ranges from 1 to M . This gives the desired bound.

7 B implies Lin

This section transforms the preceding purely geometric considerations into tools
appropriate to the setting of Heegaard splittings. We begin by defining the
graph of curves.

Let S be a closed orientable surface of genus at least two. Let C0(S) be the set
of isotopy classes of essential simple closed curves in S . The graph of curves,
C1(S), has vertex set C0(S) and an edge connecting two distinct vertices if and
only if the two curves may be realized disjointly. We take each such edge to be
a copy of the interval [0, 1] and give C1(S) the induced metric.

Remark 7.1 The graph C1(S) is the one-skeleton of the curve complex and
is quasi-isometric to the full complex. For simplicity we consider only C1(S).

We require a pair of deep results of Masur and Minsky [14].

Theorem 7.2 (Masur–Minsky) The graph of curves (C1(S), dC), is a Gromov

hyperbolic space. Furthermore, pseudo-Anosov maps act on the graph of curves

as hyperbolic isometries.

Thus, Theorem 6.2 can be translated to the language of Heegaard splittings as
follows. Recall that V ⊂ C0(S) is the set of curves which bound essential disks
in the handlebody V . As usual S = ∂V has genus two or more. Fix h : S → S
a pseudo-Anosov map.

Definition 7.3 Given V , S , and h as above, we say that B holds if the
handlebody set V ⊂ C1(S) has bounded projection with respect to h.

Also, note that the distance of a Heegaard splitting (S,V,W) (Definition 2.1)
is exactly the quantity dC(V,W).
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Definition 7.4 Given V , S , and h as above, we say that Lin holds if there
is a constant K so that, for all n ∈ N,

|dC(V, hn(V)) − n · α(h)| ≤ K.

Corollary 7.5 Suppose a handlebody V with S = ∂V and a pseudo-Anosov

map h : S → S are given. Then B implies Lin.

Proof This follows immediately from Theorems 6.2 and 7.2.

Remark 7.6 Algorithmic computation of dC(V, hn(V)) would be highly desir-
able. Upper and lower bounds for α(h) may perhaps be obtained using methods
similar to [14]1. Estimation of K seems more difficult. For any n ∈ N there
are pairs (V, h) where the projection of V to L1 has finite diameter which is
bigger than n.

8 Equivalence of H and B

In this section we deduce the following from work of Klarreich [10].

Theorem 8.1 Suppose a handlebody V with S = ∂V and a pseudo-Anosov

map h : S → S are given. Then H is equivalent to B.

8.1 The Gromov product

Before proving Theorem 8.1 we recall the definition of the Gromov product.
Suppose that a basepoint x0 in the δ–hyperbolic space X is given. The Gromov

product of a pair of points y, z ∈ X is the quantity

(y · z) =
1

2
(dX(x0, y) + dX(x0, z) − dX(y, z)) .

Following [6] we say that a sequence {yi}
∞
i=0 ⊂ X converges at infinity if

limn,m→∞(yn ·ym) is infinite. This is independent of the choice of basepoint, x0 .
Two such sequences {yi} and {zi}, both converging at infinity, are equivalent

if limn,m→∞(yn · zm) is again infinite. The Gromov boundary of X , denoted
∂∞X , is the set of equivalence classes of sequences which converge at infinity.
As a final bit of notation, set |y| = (y · y) = dX(x0, y).

1Added in proof: K Shackleton [16] using work of B Bowditch [1] has made significant
progress on this problem.
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Now, if h is a hyperbolic isometry of X we define the stable and unstable fixed

points of h to be the points of ∂∞X containing the sequences L+(h) = {xn =
hn(x0) | n ∈ N} and L−(h) = {x−n = h−n(x0) | n ∈ N} respectively. Recall
that L1 is a piecewise geodesic through the points {xi}

∞
i=−∞

.

There is a simple relation between projection to the quasi-geodesic L1 and the
Gromov product. Fix ǫ > dX(x0, x1). Again we use x0 as the basepoint for
computing the Gromov product.

Lemma 8.2 Fix y, z ∈ X . Pick xm ∈ projǫL1
(y), xn ∈ projǫL1

(z), and suppose

that n,m > 0. Then

(y · z) ≥ min{|xn|, |xm|} − K

and

|(y · xn) − min{|xn|, |xm|}| ≤ K.

Here K is a constant not depending on y or z .

Proof Suppose that m ≤ n as the other case is similar. For ease of notation
let A = dX(x0, xm) = |xm|, B = dX(xm, y), C = dX(xm, xn), D = dX(xn, z),
and E = dX(x0, xn) = |xn|. Let K ′ = 2ǫ + 4δ + 2R, where R is the stability
constant for L1 .

Now (y · z) = 1
2(dX(x0, y) + dX(x0, z) − dX(y, z)). The first term is greater

than A + B − K ′ , applying Lemma 4.2 and the fact that L1 is quasi-geodesic
(Claim 5.4), hence quasi-convex. Similarly, the second term is greater than
D + E − K ′ . But E ≥ C + A − 2R, using the triangle inequality and the fact
that L1 is a quasi-geodesic. Finally, the third term is less than B+C+D using
the triangle inequality. So (y·z) ≥ 1

2(A+B−K ′+A+C+D−2R−K ′−B−C−D)
and we have the desired lower bound.

When z = xn we also obtain an upper bound, as in this case the first term is
less than A + B , the second is less than A + C , while the third is greater than
B + C − K ′ .

This leads to:

Lemma 8.3 A subset Y ⊂ X has unbounded projection with respect to h
if and only if there is a sequence yn ∈ Y converging to the stable or unstable

fixed point for h at infinity.

Geometry & Topology, Volume 9 (2005)



112 Aaron Abrams and Saul Schleimer

Proof Suppose that the set Y has unbounded projection to the sequence
L+(h) = {xn = hn(x0) | n ∈ N}. (The other case is similar.) Choose ǫ >
dX(x0, x1) and a sequence {yn} ⊂ Y so that xm(n) ∈ projǫL1

(yn), for some
m(n) > n. It follows from Lemma 8.2 that (yk · yl) ≥ min{|xm(k)|, |xm(l)|} −
K and thus {yn} converges at infinity. Also, using the second inequality of
Lemma 8.2 it is easy to check that {yn} and {xm(n)} are equivalent.

On the other hand, suppose that there is a sequence {yn} ⊂ Y with {yn}
converging to the stable fixed point of h. Then {yn} and {xn} are equivalent.
So we may pass to subsequences {yk} and {xk} so that (yk ·xk) goes to infinity
with k . Pick xm(k) ∈ projǫL1

(yk). Then, by the second half of Lemma 8.2, the
quantity min{|xm(k)|, |xk|} must also tend to infinity with k . Thus |xm(k)| also
tends to infinity with k and we are done.

8.2 The boundary of the curve complex

We next cite the necessary component from Klarreich [10]. Let MinLam be the
space of minimal measured laminations, considered up to topological equiva-
lence (ie, take a quotient by forgetting the measures). Klarreich gives a home-
omorphism π : MinLam → ∂∞C1(S) such that the following holds2:

Theorem 8.4 (Klarreich) Let γn be a sequence of essential simple closed

curves in the surface S . Suppose that L is a minimal, uniquely ergodic lami-

nation on S . Then the sequence γn ∈ PML(S) converges to L if and only if

γn ∈ C1(S) converges to π(L) ∈ ∂∞C1(S).

See Theorem 3.2 of [15], for a more precise version of Klarreich’s result. We are
now ready to prove Theorem 8.1.

Proof of Theorem 8.1 To begin, pick any x ∈ C0(S), and let L1 be a quasi-
geodesic (as defined in Section 5) passing through the points {xn = hn(x) |
n ∈ Z}. Also take x = x0 to be the basepoint when computing the Gromov
product.

Note that H does not hold if and only if there is a sequence of curves vn ∈ V
such that vn converges in PML(S) to one of L±(h). Suppose vn converges to
L+(h). (The other case is identical.)

2Added in proof: U Hamenstaedt [7] has announced a combinatorial proof of Klar-
reich’s theorem.
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Applying Theorem 8.4 the vn converge in PML(S) to L+(h) if and only if they
also converge, in C1(S), to π(L+(h)) in the boundary of the curve complex.
Now apply Lemma 8.3 to find that this occurs if and only if V has unbounded
projection to L+(h).

9 The converse: Unb implies B

In this section we prove Theorem 9.3, Unb implies B. Recall that V ⊂ C0(S),
the handlebody set, contains all curves which bound disks in the handlebody
V . We will need a final result of Masur and Minsky [13]:

Theorem 9.1 (Masur–Minsky) Fix a handlebody V with ∂V = S . The

handlebody set V is quasi-convex in C1(S).

We need one preparatory lemma about quasi-convex sets.

Lemma 9.2 Suppose X is a δ–hyperbolic space and Y and Z are quasi-

convex subsets with constant R. There is a constant K , depending only on δ
and R, such that: if {ym} ⊂ Y and {zn} ⊂ Z converge to the same point of

∂∞X then dX(Y,Z) < K .

To paraphrase: if Y and Z are quasi-convex and intersect at infinity then Y
and Z are close to each other.

Proof Pick y0 to be the basepoint for computing the Gromov product. Set
D = dX(y0, z0). As limm,n→∞(ym·zn) = ∞ we also have limm→∞(ym·zm) = ∞.
Thus there is a large k > 0 so that any geodesic [yk, zk] lies outside of a 5δ +D
ball about y0 .

Consider, then, a geodesic quadrilateral with vertices, in order, y0 , z0 , zk ,
and yk . Recall that the quadrilateral is 2δ–thin: any one side lies in the 2δ
neighborhood of the union of the other three sides. Apply this to the side
[y0, yk]. But the 2δ neighborhood of [y0, z0] lies within the 2δ + D ball about
y0 . Also, the 2δ neighborhood of [yk, zk] lies without the 3δ + D ball about
y0 . Thus some point of [y0, yk] lies within 2δ of some point of [z0, zk]. Apply
quasi-convexity to find that dX(Y,Z) < 2δ + 2R.

We may now prove:
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Theorem 9.3 Suppose a handlebody V with S = ∂V and a pseudo-Anosov

map h : S → S are given. Then Unb implies B.

Proof We prove the contrapositive. Choose x ∈ C0(S) to be the basepoint
and construct L1 , a piecewise geodesic connecting the points {xn = hn(x)},
as in Section 5. Suppose that V has unbounded projection to L1 . Thus, by
Lemma 8.3, there is a sequence vm ∈ V converging to the stable fixed point for
h at infinity. (The case where vm converges to the unstable fixed point for h
is identical.)

Note that, for any fixed n ∈ Z, the same holds of the handlebody set hn(V),
as unbounded projection to L1 is h–invariant. By Theorem 9.1 both V and
hn(V) are quasi-convex. Thus both requirements of Lemma 9.2 are satisfied. It
follows that the distance dC(V, hn(V)) is bounded independently of n.

10 Equivalence of M and H

As usual we have a handlebody V of genus at least two, S = ∂V , and h
a pseudo-Anosov map on S . The following subset was introduced by Masur
in [12].

Definition 10.1 The Masur domain M(V ) ⊂ PML(S) is the set of lamina-
tions having nonzero geometric intersection with every lamination in the closure
of V .

Definition 10.2 Given V , S , and h as above, we say that M holds if both
the stable and unstable laminations of h lie in M(V ).

We have:

Lemma 10.3 Suppose a handlebody V with S = ∂V and a pseudo-Anosov

map h : S → S are given. Then M is equivalent to H.

Proof Any lamination has zero geometric intersection with itself. So the clo-
sure of V lies in the complement of M(V ). Thus M implies H.

Now consider the stable or unstable lamination of h, L±(h). As L±(h) is
minimal and uniquely ergodic, ι(µ,L±(h)) = 0 implies that µ = L±(h) as
projective measured laminations. Thus if L±(h) is not in the Masur domain of
V then it must be in the closure of V .
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11 Equivalence of K and H

In [11] Kobayashi gives several examples of pairs (V, h) satisfying a condition
which we call K (see Definition 11.4). In this section we prove that K is
equivalent to Hempel’s hypothesis H.

11.1 Laminations and the Whitehead graph

A cut system C for a handlebody V is a collection of disjoint, nonparallel,
essential disks in V so that the closure of V rC (in the path metric) is a
union of three-balls. A maximal cut system will be referred to as a pants

decomposition of V . If V rC is connected then C is a minimal cut system.
Recall that S = ∂V . Let L be a measured lamination on S .

Definition 11.1 The lamination L is tight with respect to a cut system C if
no component of Sr(C∪L) is trivial: has boundary a union of two arcs, α∪β ,
where α ∩ β = ∂α = ∂β , α ⊂ L and β ⊂ ∂C .

When C and L are tight we form the Whitehead graph Γ(L, C) as follows. Let
P be the closure of Sr∂C , in the path metric. Thus P is a disjoint union
of planar surfaces. Every arc of L ∩ P now falls into one of finitely many
homotopy classes of properly embedded arcs in P . The vertices of Γ(L, C) are
the boundary components of P . For every homotopy class of arc we have an
edge with the obvious endpoints. Note that every such arc inherits a positive
transverse measure from L. Note that the number of components of Γ(L, C)
equals the number of components of P , when L is minimal.

A component of ∂P is a cut vertex for the graph if removing the component,
and all (open) edges adjacent to it, increases the number of components of
Γ(L, C).

Definition 11.2 A minimal lamination L is of full type with respect to C if
L and C are tight and the associated Whitehead graph has no cut vertex.

One obstruction to being full type is the presence of waves.

Definition 11.3 A wave is any component of LrC giving a loop-edge in the
Whitehead graph Γ(L, C).
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11.2 Kobayashi’s hypothesis

Let V be a handlebody (of genus at least two) and h a pseudo-Anosov map
from S = ∂V to itself. From [11] we have:

Definition 11.4 Given V , S , and h as above, we say that K holds if there
are pants decompositions C± such that L±(h) is of full type with respect to
C± .

Theorem 11.5 Suppose a handlebody V with S = ∂V and a pseudo-Anosov

map h : S → S are given. Then K is equivalent to H.

We prove the two directions separately.

Lemma 11.6 If K holds then H holds.

Proof Suppose K holds. We fix attention on L+(h) and the maximal cut
system C+ , as the other case is identical. Let vn be a sequence from V ,
converging in PML(S) to some minimal lamination, L. We must show that
L 6= L+(h).

Isotope each of the vn ’s so that each is tight with respect to C+ . Let P be the
collection of pants obtained by cutting S along ∂C+ and taking the closure in
the path metric. Passing to a subsequence, if necessary, we may assume that
every pair (vn, C+) yields the same Whitehead graph, Γ = Γ(vn, C+). Note
that Γ contains Γ′ = Γ(L, C+) as a subgraph.

As the vn ’s bound disks, there is some component ρ of ∂P so that every vn

contains a wave for ρ. It follows that ρ is a cut vertex for Γ and hence for Γ′ .
So L is not of full type and cannot be equal to L+(h).

The converse is more difficult and is dealt with in two steps.

Lemma 11.7 If H holds then there are minimal cut systems C± so that

L±(h) is full type with respect to C± .

Proof We prove the contrapositive. Suppose, as the other case is similar, that
the stable lamination L+(h) fails to be full type for every single minimal cut
system in V . Fix a measure on L+(h). Fix attention on a single minimal cut
system C . As above let P be the closure of Sr∂C in the path metric. Let
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Γ = Γ(L+(h), C) be the Whitehead graph. By hypothesis there is a disk D ∈ C
giving Γ a cut vertex.

As D gives a cut vertex, there is an essential arc γ properly embedded in P
with γ ∩ L+(h) = ∅. We use γ to do a disk replacement: choose a properly
embedded arc δ ⊂ D joining the endpoints of γ . As V rC is a ball the curve
γ ∪ δ bounds a disk E . Let D′,D′′ be the components of Drδ . One of the
disks D′ ∪ E or D′′ ∪ E is nonseparating in V . Thus form a new minimal cut
system C ′ by removing D and adding this new disk.

Note that ι(C ′,L+(h)) < ι(C,L+(h)), by minimality of L+(h). (A cut system is
a measured lamination when given the counting measure.) Also, by hypothesis,
L+(h) again fails to be of full type with respect to C ′ . So we may produce a
sequence of cut systems, C(n) , which have decreasing intersection number with
L+(h). It follows that C(n) is unbounded in ML(S).

Choose a sequence rn ∈ R+ (with rn → 0) so that the sequence of measured
laminations {rn · C(n)} is bounded in ML(S)r0. Passing to a convergent
subsequence let L = lim(rnC(n)). As ι(C(n),L+(h)) is bounded, ι(L,L+(h)) =
0. As in the proof of Theorem 2.4, minimality and unique ergodicity imply that
L+(h) = L and H does not hold.

Lemma 11.8 If a minimal lamination L is full type with respect to some

minimal cut system then L is full type with respect to some maximal cut

system.

Proof We will prove that if L is full type with respect to a non-maximal cut
system C ⊂ V then there is a disk D ⊂ V so that C ′ = C ∪{D} is again a cut
system and L remains of full type.

Recall that P is the union of planar surfaces obtained by cutting S = ∂V
along C . Let P̂ be the quotient of P obtained by identifying each boundary
component to a point. Note that Γ = Γ(L, C) is naturally embedded in P̂ . Let
q : P → P̂ be the quotient map.

Now, a bigon is any cycle in Γ of length two. A cut edge is any edge such that
removing the edge, its endpoints, and all edges adjacent to it, from Γ increases
the number of components of Γ. Note that if an edge lies on a bigon then it is
a cut edge. For every cut edge E which does not lie on a bigon we may add an
extra edge E′ ⊂ P̂ to Γ, with E′ ∩ Γ = ∂E′ , to form a temporary bigon. Note
also that these extra edges may be added disjointly, as all simple closed curves
in the sphere separate.
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Let B be an innermost bigon (either temporary or not) in P̂ . (If there are none
set B = ∅.) Let Q be the component of P̂rB which meets no bigons. Note
that none of the extra edges lie in Q. So choose any edge F ⊂ Γ with interior
contained in the interior of Q. Let D′′ be a regular neighborhood of F , taken
in P̂ . Let D′ = q−1(D′′) ⊂ P . Let δ = ∂D′

r∂P . Let D be a disk in V such
that ∂D = δ .

Let C ′ = C ∪ {D} and let Γ′ = Γ(L, C ′). (So Γ′ is essentially obtained from Γ
by collapsing the edge F and removing surplus parallel arcs.) Now, Γ′ cannot
have a cut vertex anywhere except at D ; any such vertex would give a cut
vertex for Γ. On the other hand, if D gives a cut vertex for Γ′ then the edge
F was either part of a bigon (and Γ′ has a wave) or F was part of a temporary
bigon (and Γ′ has a cut vertex without waves.) This would contradict our
choice of F .

Now H implies K by Lemma 11.7 and Lemma 11.8. This completes the proof
of Theorem 11.5, and thus of Theorem 1.1.
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