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220 Mario Bonk and Bruce Kleiner

1 Introduction

According to a well-known conjecture by Cannon, for every Gromov hyperbolic
group G whose boundary at infinity ∂∞G is homeomorphic to the 2–sphere
S

2 , there should exist a discrete, cocompact, and isometric action of G on
hyperbolic 3–space H

3 . In the present paper we establish Cannon’s conjecture
under the additional assumption that the Ahlfors regular conformal dimension
of ∂∞G is realized.

Theorem 1.1 Let G be a Gromov hyperbolic group with boundary ∂∞G
homeomorphic to S

2 . If the Ahlfors regular conformal dimension of ∂∞G is
attained, then there exists an action of G on H

3 which is discrete, cocompact
and isometric.

By definition, the Ahlfors regular conformal dimension of a metric space Z
is the infimal Hausdorff dimension of all Ahlfors regular metric spaces (see
Section 2 for the precise definition) quasisymmetrically homeomorphic to Z .
This notion occurs implicitly in a paper by Bourdon and Pajot [6, Section 0.2]
and is a variant of Pansu’s conformal dimension for metric spaces (the conformal
dimension of a metric space Z is the infimal Hausdorff dimension of all metric
spaces quasisymmetrically homeomorphic to Z ).

We recall that the boundary of a Gromov hyperbolic group G carries a canonical
family of visual metrics; these are Ahlfors regular and pairwise quasisymmet-
rically homeomorphic by the identity map. In particular, it is meaningful to
speak about quasisymmetric homeomorphisms between ∂∞G and other metric
spaces. The assumption on the Ahlfors regular conformal dimension of ∂∞G
says more explicitly that there is an Ahlfors Q–regular metric space Z qua-
sisymmetrically homeomorphic to ∂∞G with smallest possible Q among all
such Ahlfors regular spaces. We necessarily have Q ≥ 2, since the Hausdorff
dimension of a space cannot be smaller than its topological dimension. The
case Q = 2 of Theorem 1.1 can easily be deduced from [2, Theorem 1.1] or [3,
Theorem 1.1].

The converse of Theorem 1.1 is well-known: if a group acts discretely, cocom-
pactly and isometrically on hyperbolic 3–space, then its boundary is quasisym-
metrically homeomorphic to the standard 2–sphere [16], which is a 2–regular
space of conformal dimension 2. So by Theorem 1.1, Cannon’s conjecture is
equivalent to:

Conjecture 1.2 If G is a hyperbolic group with 2–sphere boundary, then the
Ahlfors regular conformal dimension of ∂∞G is attained.
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Conformal dimension and Gromov hyperbolic groups with 2–sphere boundary 221

We derive Theorem 1.1 from [2, Theorem 1.2] and a more general result about
hyperbolic groups:

Theorem 1.3 Let Z be an Ahlfors Q–regular compact metric space, Q > 1,
where Q is the Ahlfors regular conformal dimension of Z . If Z admits a
uniformly quasi-Möbius action G y Z which is fixed point free and for which
the induced action on the space of triples Tri(Z) is cocompact, then Z is Q–
Loewner.

The terminology will be explained in Section 2. The hypotheses of this theorem
will hold, for example, if Z is a Q–regular space of Ahlfors regular conformal
dimension Q, where Q > 1, and Z is quasisymmetrically homeomorphic to the
boundary of a hyperbolic group.

Another way to state the conclusion of Theorem 1.3 is by saying that Z satisfies
a (1, Q)–Poincaré inequality in the sense of Heinonen and Koskela [12]. They
showed that for a Q–regular complete metric space such a Poincaré inequality
holds if and only if the space is Q–Loewner; they also extended many classical
results about quasiconformal and quasisymmmetric homeomorphisms to the
setting of Q–regular Q–Loewner spaces.

By now there is a substantial body of literature about metric spaces satisfying
Poincaré inequalities; see for example [12, 10, 18, 17, 15, 14]. These spaces
play a central role in Cheeger’s theory of differentiability of Lipschitz functions
[8], and the Bourdon–Pajot rigidity theorem for quasi-isometries of hyperbolic
buildings [5]. Theorem 1.3 suggests that one might obtain more examples of
these nice spaces by minimizing the Hausdorff dimension of Ahlfors regular
metrics on the boundary of a hyperbolic group.

The full strength of the group action G y Z is actually not needed in the proof
of Theorem 1.3. It is sufficient to have a collection G of uniformly quasi-Möbius
homeomorphisms which is large enough to map any triple in Z to a uniformly
separated triple, and which does not have a common fixed point. However, the
assumption that the action G y Z is fixed point free is essential. Starting with
the Ahlfors 3–regular metric on R

2 defined by the formula

d((x1, y1), (x2, y2)) := |x1 − x2| + |y1 − y2|1/2,

one can construct an Ahlfors 3–regular metric on S
2 admitting a uniformly

quasi-Möbius action which is transitive on the complement of a point, and
cocompact on triples. The sphere S

2 equipped with this metric has Ahlfors
regular conformal dimension 3, but does not satisfy a (1, p)–Poincaré inequality
for any p ≥ 1.
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Similar in spirit to Theorem 1.1 is another immediate consequence of Theo-
rem 1.3 for convex cocompact Kleinian groups.

Theorem 1.4 Suppose G y H
n+1 is a convex cocompact isometric action

of a discrete group G on hyperbolic n–space H
n+1 , n ≥ 1. Let Λ(G) ⊆

S
n = ∂∞H

n+1 be the limit set of G, and assume that Q > 1, where Q is the
Hausdorff dimension of Λ(G). If the Ahlfors regular conformal dimension of
Λ(G) is equal to Q, then Q = k ∈ N is an integer and Γ stabilizes a totally
geodesic subspace of H

n+1 isometric to H
k+1 on which Γ acts cocompactly.

Note that if under the assumptions of this theorem Z = Λ(G) carries a family
of nonconstant curves with positive Q–modulus, then Q is equal to the Ahlfors
regular conformal dimension of Z [11, Theorem 15.10]. One can also replace
the condition on the Ahlfors regular dimension in the previous theorem by the
requirement that Z satisfies a (1, p)–Poincaré inequality for some p > 1 (see
Section 5 for further discussion).

We now sketch the proof of Theorem 1.3. Let Z and G y Z be as in the
statement of the theorem. A key ingredient used repeatedly in our proof is
a result of Tyson [22] that implies that elements of G preserve Q–modulus
to within a controlled factor. Our point of departure is a result of Keith and
Laakso [13]:

Theorem 1.5 (Keith–Laakso) Let X be an Ahlfors Q–regular complete met-
ric space, where Q > 1 is the Ahlfors regular conformal dimension of X . Then
there exists a weak tangent W of X which carries a family of nonconstant
paths with positive Q–modulus.

This theorem can easily be derived from [13, Corollary 1.0.2]. For the definition
of weak tangents and related discussion see [3, Section 4]; see Section 2 or [11]
for a discussion of modulus. In our “self-similar” situation we can combine
Theorem 1.5 with results from [3] and [22] to obtain the following corollary,
which may be of independent interest.

Corollary 1.6 Let Z be an Ahlfors Q–regular compact metric space, where
Q > 1 is the Ahlfors regular conformal dimension of Z . If Z admits a uniformly
quasi-Möbius action G y Z for which the induced action on the space of triples
Tri(Z) is cocompact, then there is a family of nonconstant paths in Z with
positive Q–modulus.
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Conformal dimension and Gromov hyperbolic groups with 2–sphere boundary 223

As we already pointed out, every (complete) Ahlfors Q–regular space carrying
a family of nontrivial paths with positive Q–modulus has Ahlfors regular con-
formal dimension Q; the corollary may be viewed as a partial converse of this
fact.

The next step in the proof of Theorem 1.3 is to show that Z satisfies a Loewner
type condition for pairs of balls: if the Q–modulus for a pair of balls is small,
then their relative distance is big, quantitatively. To prove this ball-Loewner
condition, we introduce the notion of a thick path. Thick paths correspond to
points in the support of Q–modulus, viewed as an outer measure on the space
of (nonconstant) paths. Using the dynamics of the action G y Z , we show
that any two open sets can be joined by a thick path, and this quickly leads
to the ball-Loewner condition. The remaining step, which is the bulk of our
argument, shows that any complete Q–regular space satisfying the ball-Loewner
condition is Q–Loewner. By the result of Heinonen–Koskela mentioned above,
this implies that Z satisfies a (1, Q)–Poincaré inequality.

In view of Conjecture 1.2 and Theorem 1.3, it is interesting to look for spaces
whose Ahlfors regular conformal dimension is (or is not) attained. There are
now several examples known where the Ahlfors regular conformal dimension
is actually not realized; see Section 6 for more discussion. It is particulary
interesting that Bourdon and Pajot [6] have found Gromov hyperbolic groups G
for which ∂∞G is not quasisymmetrically homeomorphic to an Ahlfors regular
Loewner space; so by Theorem 1.3 the Ahlfors regular conformal dimension of
∂∞G is not attained.

Additional remarks and open problems related to the discussion in this intro-
duction can be found in the final Section 7 of the paper.

Acknowledgement M Bonk was supported by NSF grants DMS-0200566 and
DMS-0244421. B Kleiner was supported by NSF grant DMS-0204506.

2 Notation and preliminaries

In this section, we will fix notation and review some basic definitions and facts.
We will be rather brief, since by now there is a standard reference on these
subjects [11] and most of the material has been discussed in greater detail in
our previous papers [3, 2].
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224 Mario Bonk and Bruce Kleiner

Notation

If (Z, d) is a metric space, we denote the open and the closed ball of radius r > 0
centered at a ∈ Z by BZ(a, r) and B̄Z(a, r), respectively. We will drop the
subscript Z if the space Z is understood. If B = B(a, r) is a ball and λ > 0
we let λB := B(a, λr). We use diam(A) for the diameter of a set A ⊆ Z .
If z ∈ Z and A,B ⊆ Z , then dist(z,A) and dist(A,B) are the distances of
z and A and of A and B , respectively. If A ⊆ Z and r > 0, then we let
Nr(A) := {z ∈ Z : dist(z,A) < r}. The Hausdorff distance between two sets
A,B ⊆ Z is defined by

distH(A,B) := max
{

sup
a∈A

dist(a,B), sup
b∈B

dist(b,A)
}
.

If f : X → Y is a map between two spaces X and Y , we let Im(f) := {f(x) :
x ∈ X}. If A ⊆ X , then f |A denotes the restriction of the map f to A.

Cross-ratios and quasi-Möbius maps

Let (Z, d) be a metric space. The cross-ratio, [z1, z2, z3, z4], of a four-tuple of
distinct points (z1, z2, z3, z4) in Z is the quantity

[z1, z2, z3, z4] :=
d(z1, z3)d(z2, z4)

d(z1, z4)d(z2, z3)
.

Let η : [0,∞) → [0,∞) be a homeomorphism, and let f : X → Y be an injective
map between metric spaces (X, dX ) and (Y, dY ). The map f is an η–quasi-

Möbius map if for every four-tuple (x1, x2, x3, x4) of distinct points in X , we
have

[f(x1), f(x2), f(x3), f(x4)] ≤ η([x1, x2, x3, x4]).

The map f is η–quasisymmetric if

dY (f(x1), f(x2))

dY (f(x1), f(x3))
≤ η

(
dX(x1, x2)

dX(x1, x3)

)

for every triple (x1, x2, x3) of distinct points in X .

We will make repeated use of the following lemma. We refer to [3, Lemma 5.1]
for the proof.

Lemma 2.1 Let (Z, d) be a compact metric space. Suppose that for each
k ∈ N we are given a ball Bk = B(pk, Rk) ⊆ Z , distinct points x1

k, x
2
k, x

3
k ∈

B̄(pk, λkRk) with

dZ(xi
k, x

j
k) > δkRk for i, j ∈ {1, 2, 3}, i 6= j,
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where λk, δk > 0, and an η–quasi-Möbius homeomorphism gk : Z → Z such
that for yi

k := gk(x
i
k) we have

dZ(yi
k, y

j
k) > δ′ for i, j ∈ {1, 2, 3}, i 6= j,

where η and δ′ > 0 are independent of k .

(i) If limk→∞ λk = 0 and the sequence (Rk)k∈N is bounded, then

diam(Z \ gk(Bk)) → 0 for k → ∞.

(ii) Suppose for k ∈ N the set Dk ⊆ Bk is (εkRk)–dense in Bk , where εk > 0.
If limk→∞ λk = 0 and the sequence (εk/δ

2
k)k∈N is bounded, then

distH(gk(Dk), Z) → 0 for k → ∞.

If a group G acts on a compact metric space (Z, d) by homeomorphisms, we
write G y Z and consider the group elements as self-homeomorphisms of Z .
We do not require that the action is effective; so it may well happen that a
group element different from the unit element is represented by the identity
map. We denote by Tri(Z) the space of distinct triples in Z . An action
G y Z induces an action G y Tri(Z). The action G y Tri(Z) is cocompact,
if and only if every triple in Tri(Z) can be mapped to a uniformly separated
triple by a group element. More precisely, this means that there exists δ > 0
such that for every triple (z1, z2, z3) ∈ Tri(Z) there exists a group element
g ∈ G such that the image triple (g(z1), g(z2), g(z3)) ∈ Tri(Z) is δ–separated,
ie, d(g(zi), g(zj)) ≥ δ for i 6= j . We call the action G y Z fixed point free if
the maps g ∈ G have no common fixed point, ie, for each z ∈ Z there exists
g ∈ G such that g(z) 6= z . The action G y Z is called uniformly quasi-Möbius

if there exists a homeomorphism η : [0,∞) → [0,∞) such that every g ∈ G is
an η–quasi-Möbius homeomorphism of Z .

Lemma 2.2 Suppose (Z, d) is a uniformly perfect compact metric space, and
G y Z is a fixed point free uniformly quasi-Möbius action which is cocompact
on Tri(Z). Then the action is minimal, ie, for all z, z′ ∈ Z and all ε > 0, there
is a group element g ∈ G such that d(g(z′), z) < ε.

Recall that a metric space Z is called uniformly perfect if there exists a constant
λ > 1 such that B(a,R) \ B(a,R/λ) is nonempty whenever a ∈ Z and 0 <
R ≤ diam(Z).

Proof Let z, z′ ∈ Z and ε > 0 be arbitrary. Since Z is uniformly perfect,
we can choose distinct points x1

k, x
2
k ∈ Z for k ∈ N such that the distances
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226 Mario Bonk and Bruce Kleiner

d(z, x1
k), d(z, x2

k), and d(x1
k, x

2
k) agree up to a factor independent of k , and

limk→∞ d(z, x1
k) = 0. Set rk := d(z, x1

k). Since G y Tri(Z) is cocompact, we
can find gk ∈ G such that the triples (gk(z), gk(x1

k), gk(x2
k)) are δ–separated

where δ > 0 is independent of k . Choose Rk > 0 such that limk→∞Rk = 0 and
limk→∞Rk/rk = ∞. By Lemma 2.1 we then have limk→∞ diam(Z \ gk(Bk)) =
0, where Bk := B(z,Rk). Pick g ∈ G such that g(z′) 6= z′ . Then for large k ,
either z′ ∈ gk(Bk) or g(z′) ∈ gk(Bk), which means that either g−1

k (z′) ∈ Bk

or g−1
k ◦ g(z′) ∈ Bk . Hence for sufficiently large k one of the points g−1

k (z′) or
g−1
k ◦ g(z′) is contained in B(z, ε).

Modulus in metric measure spaces

Suppose (Z, d, µ) is a metric measure space, ie, (Z, d) is a metric space and µ a
Borel measure on Z . Moreover, we assume that that (Z, d) is locally compact
and that µ is locally finite and has dense support.

The space (Z, d, µ) is called (Ahlfors) Q–regular, Q > 0, if the measure µ
satisfies

C−1RQ ≤ µ(B(a,R)) ≤ CRQ (2.3)

for each open ball B(a,R) of radius 0 < R ≤ diam(Z) and for some constant
C ≥ 1 independent of the ball. If the measure is not specified, then it is
understood that µ is Q–dimensional Hausdorff measure. Note that a complete
Ahlfors regular space Z is uniformly perfect and proper, ie, closed balls in Z
are compact.

A density (on Z ) is a Borel function ρ : Z → [0,∞]. A density ρ is called
admissible for a path family Γ in Z , if

∫

γ
ρ ds ≥ 1

for each rectifiable path γ ∈ Γ. Here integration is with respect to arclength
on γ . If Q ≥ 1, the Q–modulus of a family Γ of paths in Z is the number

ModQ(Γ) = inf

∫
ρQ dµ, (2.4)

where the infimum is taken over all densities ρ : Z → [0,∞] that are admissible
for Γ. If E and F are subsets of Z with positive diameter, we denote by

∆(E,F ) :=
dist(E,F )

min{diam(E),diam(F )} (2.5)
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the relative distance of E and F , and by Γ(E,F ) the family of paths in Z
connecting E and F .

Suppose (Z, d, µ) is a connected metric measure space. Then Z is called a Q–
Loewner space, Q ≥ 1, if there exists a positive decreasing function Ψ: (0,∞) →
(0,∞) such that

ModQ(Γ(E,F )) ≥ Ψ(∆(E,F )) (2.6)

whenever E and F are disjoint continua in Z . Note that in [12] it was also
required that Z is rectifiably connected. In case that the (locally compact)
space (Z, d, µ) is Q–regular and Q > 1, it is unnecessary to make this ad-
ditional assumption, because property (2.6) alone implies that (Z, d) is even
quasiconvex, ie, for every pair of points there exists a connecting path whose
length is comparable to the distance of the points.

We will need the following result due to Tyson.

Theorem 2.7 Let X and Y be Ahlfors Q–regular locally compact metric
spaces, Q ≥ 1, and let f : X → Y be an η–quasi-Möbius homeomorphism.
Then for every family Γ of paths in X , we have

1

C
ModQ(Γ) ≤ ModQ(f ◦ Γ) ≤ CModQ(Γ),

where f ◦ Γ := {f ◦ γ : γ ∈ Γ} and C is a constant depending only on X , Y
and η .

Tyson proved this for quasisymmetric mappings f in [22] and for locally quasi-
symmetric maps in [23, Theorem 6.4 and Lemma 9.2]. Here a map f : X → Y
is called locally η–quasisymmetric if every point x ∈ X has an open neigh-
borhood U such that f |U is η–quasisymmetric. Since η–quasi-Möbius maps
are locally η̃–quasisymmetric with η̃ depending only on η , the above theorem
follows.

Lemma 2.8 Assume Q > 1 and (Z, d, µ) is Ahlfors Q–regular. Then there
exists a constant C > 0 with the following property. If Γ is a family of paths
in Z which start in a ball B ⊆ Z of radius R > 0 and whose lengths are at
least LR, where L ≥ 2, then

ModQ(Γ) < C (logL)1−Q .

We omit a detailed proof, since the statement is well-known (cf [11, Lemma
7.18] and [4, Lemma 3.2] for very similar results). The basic idea is to use a
test function of the form

c

R+ dist(x,B)

supported in LB and use the upper mass bound µ(B(x, r)) . rQ .
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Thick paths

We now assume that (Z, d, µ) is a separable locally compact metric measure
space, and Q ≥ 1. Let I := [0, 1], and denote by P := C(I, Z) the set
of (continuous) paths in Z , metrized by the supremum metric. Then P is a
separable complete metric space. Since Q–modulus is monotonic and countably
subadditive for path families (cf [11, p. 51]), we can consider ModQ as an outer
measure on P .

Definition 2.9 A path γ ∈ P is thick if for all ε > 0, the family of nonconstant
paths in the ball B(γ, ε) ⊆ P has positive Q–modulus.

In other words, a path γ ∈ P is thick if ModQ(B(γ, ε) \ C) > 0 for all ε > 0,
where C is the family of constants paths in Z . We have to exclude the constant
paths here, because ModQ(Γ) = ∞ whenever Γ contains such a path. Constant
paths lead to some technicalities later on, which could be avoided if we had
defined P as the space of nonconstant paths in Z . This also has disadvantages,
since certain completeness and compactness properties of P would be lost with
this definition.

We denote by PT the set of thick paths in P . Ignoring constant paths, the
thick paths form the support of the outer measure ModQ .

Lemma 2.10 (Properties of thick paths)

(i) (Stability under limits) The set PT is closed in P : if γk ∈ P is thick for
k ∈ N and γ = limk→∞ γk , then γ is thick.

(ii) (Thickness of subpaths) The composition of any embedding I → I with
a thick path is a thick path.

(iii) (Quasi-Möbius invariance) If (Z, d, µ) is locally compact and Ahlfors
Q–regular, Q ≥ 1, then the image of a thick path under a quasi-Möbius
homeomorphism Z → Z is thick.

Proof Property (i) follows immediately from the definitions. Property (iii) is
a consequence of Tyson’s Theorem 2.7.

To prove property (ii) first note that if γ is any path and α : I → I is an
embedding, then the definition of modulus implies that

ModQ(B(γ, ε)) ≤ ModQ(B(γ ◦ α, ε)). (2.11)
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If γ is a thick path and γ ◦ α is nonconstant, then for sufficiently small ε > 0
there will be no constant paths in either B(γ, ε) or B(γ ◦ α, ε), and (2.11)
implies that γ ◦ α is thick. If γ is thick and γ ◦ α is constant, we can assume
without loss of generality that Im(α) is not contained in a larger interval on
which γ is constant. If Im(α) = I then γ ◦ α is just a reparametrization of a
thick path and is therefore thick. Otherwise, we can enlarge Im(α) slightly and
approximate γ ◦ α by nonconstant subpaths of γ , which are thick by the first
part of the argument. Property (i) now implies that γ ◦ α is also thick.

Lemma 2.12 The family Pt of nonconstant paths in P which are not thick
has zero Q–modulus. In particular, given any family Γ ⊆ P of nonconstant
paths, we have ModQ(Γ ∩ PT ) = ModQ(Γ).

Proof For each γ ∈ Pt , we can find an open set Uγ containing γ which consists
of nonconstant paths and has zero Q–modulus. The space P is separable, so we
can find a countable subcollection of the sets Uγ which covers Pt . Countable
subadditivity of Q–modulus implies that ModQ(Pt) = 0.

The second part of the lemma follows from monotonicity and subadditivity of
Q–modulus.

The previous lemma implies the existence of nonconstant thick paths whenever
Z carries a family of nonconstant paths of positive Q–modulus. Moreover,
suppose Γ0 is a family of paths with ModQ(Γ0) = 0. Then if γ is thick and
ε > 0 is arbitrary, we can find a thick path α ∈ B(γ, ε)\Γ0 . In other words, by
a small perturbation of a thick path, we can obtain a thick path avoiding any
given family of zero Q–modulus.

3 The Loewner condition for balls

In this section we prove the following proposition, which asserts that a space
which satisfies a Loewner type condition for pairs of balls, satisfies the Loewner
condition for all pairs of continua.

Proposition 3.1 Let (Z, d, µ) be a complete metric measure space. Assume
that for all C > 0, there are constants m = m(C) > 0 and L = L(C) > 0 such
that if R > 0 and B,B′ ⊆ Z are R–balls with dist(B,B′) ≤ CR, then the
Q–modulus of the family

{
γ ∈ Γ(B,B′) : length(γ) ≤ LR

}

is greater than m. Then (Z, d, µ) is Q–Loewner.
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Rather than using the hypothesis directly, the proof of the proposition will use
the following consequence: if ρ : Z → [0,∞] is a Borel function and the balls
are as in the statement of the proposition, then there is a path σ ∈ Γ(B,B′)
whose length is at most LR and whose ρ–length is at most

1

m1/Q

(∫

(L+1)B
ρQ dµ

)1/Q

. (3.2)

Here and in the following we call the integral
∫
σ ρ ds the ρ–length of a rectifiable

path σ .

We point out the following corollary of Proposition 3.1 which is of independent
interest.

Corollary 3.3 Suppose (Z, d, µ) is an Ahlfors Q–regular complete metric
measure space, Q > 1. Suppose that there exists a positive decreasing function
Ψ: (0,∞) → (0,∞) such that

ModQ(Γ(B,B′)) ≥ Ψ(∆(B,B′))

whenever B and B′ are disjoint balls in Z . Then (Z, d, µ) is Q–Loewner.

Proof This immediately follows from Proposition 3.1, Lemma 2.8 and the
subadditivity of modulus (see the end of the proof of Lemma 4.3 for additional
details).

Before we start with the proof of Proposition 3.1, we first indicate a lemma
whose proof uses a similar construction in a simpler setting.

Lemma 3.4 Let (X, d) be a complete metric space. Suppose there exist 0 ≤
λ < 1/2 and L < ∞ such that if u, v ∈ X , then there is a path of length at
most Ld(u, v) connecting B(u, λd(u, v)) and B(v, λd(u, v)). Then X is quasi-
convex.

This lemma can be used to give another proof that a Q–regular space satisfying
a (1, Q)–Poincaré inequality is quasi-convex.

Outline of proof Suppose x, y ∈ X and let R := d(x, y). By assumption
we can find a path σ1 of length ≤ LR joining B(x, λR) to B(y, λR). Set
Σ0 := {σ1}. Then we can find paths σ2, σ3 of length ≤ Lλ2R such that σ2

joins B(x, λ2R) to B(σ1(0), λ
2R) and σ3 joins B(σ1(1), λ

2R) to B(y, λ2R).
Set Σ2 := {σ2, σ3}. Continuing inductively, we can find path collections Σk for
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all k ≥ 0. At each step of the induction the “total gap” ∆k gets multiplied
by 2λ < 1, and the total length of the curves generated is ≤ L∆k . One then
concludes that if

Y :=

∞⋃

k=0

⋃

σ∈Σk

Im(σ),

then Ȳ is a compact connected set containing {x, y}, and has 1–dimensional
Hausdorff measure at most LR

1−2λ . Therefore there is an arc of length

≤
(

L

1 − 2λ

)
d(x, y)

joining x to y .

The proof of Proposition 3.1 will require two lemmas.

Lemma 3.5 Let X be a metric space, and ν be a Borel measure on X . If
Y ⊆ X is a nondegenerate continuum, then we can find a point y ∈ Y such
that for all r > 0 we have

ν(B(y, r)) ≤ 10r

diam(Y )
ν(X). (3.6)

Proof We assume that 0 < ν(X) < ∞, for otherwise the assertion obviously
holds.

If the statement were false, then for each y ∈ Y we could find ry > 0 such that
ν(B(y, ry)) > Mν(X)ry , where M = 10/diam(Y ). Then the radii ry , y ∈ Y ,
are uniformly bounded from above, and so we can find a disjoint subcollection
{Bi = B(yi, ri)}i∈I of the cover {B(y, ry) : y ∈ Y } of Y such that the collection
{5Bi}i∈I is also a cover of Y [11, Theorem 1.2]. Define an equivalence relation
on I by declaring that i ∼ i′ if there are elements i = i1, . . . , ik = i′ such that
5Bij ∩ 5Bij+1

6= ∅ for 1 ≤ j < k . If I = tj∈JIj is the decomposition of I
into equivalence classes, then the collection {∪i∈Ij

5Bi}j∈J is a cover of Y by
disjoint open sets; since Y is connected this implies that #J = 1. It follows
that ∑

i

ri ≥
1

10
diam(Y ) =

1

M
,

and so

ν(X) ≥
∑

i

ν(Bi) > ν(X)M
∑

i

ri ≥ ν(X).

This is a contradiction.
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Lemma 3.7 Let Z be as in Proposition 3.1, and suppose 0 < λ < 1/8. Then
there are constants Λ = Λ(λ) > 0 and K = K(λ) > 0 with the following
property. If ρ : Z → [0,∞] is a Borel function, B = B(p, r) ⊆ Z is a ball, and
F1, F2 ⊆ Z are continua such that Fi∩ 1

4B 6= ∅ and Fi\B 6= ∅ for i = 1, 2, then
there are disjoint balls Bi := B(qi, λr) for i = 1, 2, and a path σ : [0, 1] → Z
such that

(i) qi ∈ Fi for i = 1, 2,

(ii) Bi ⊆ 7
8B and ∫

Bi

ρQ dµ ≤ 80λ

∫

B
ρQ dµ

for i = 1, 2,

(iii) the path σ joins 1
4B1 and 1

4B2 , has image contained in ΛB , length at
most Λr , and ρ–length at most

K

(∫

ΛB
ρQ dµ

)1/Q

.

Proof We can find a subcontinuum E1 ⊆ F1 which is contained in B̄(p, 3r
8 ) \

B(p, r
4) and joins the sets ∂B(p, 3r

8 ) and ∂B(p, r
4). Similarly, we can find a

subcontinuum E2 ⊆ F2 which is contained in B̄(p, 3r
4 ) \ B(p, 5r

8 ) and joins
the sets ∂B(p, 3r

4 ) and ∂B(p, 5r
8 ). Then diam(Ei) ≥ r/8 for i = 1, 2, and

dist(E1, E2) ≥ r/4.

Applying Lemma 3.5 with X = B , the measure ν defined by ν(N) :=
∫
N ρQ dµ

for a Borel set N ⊆ B , and Y = Ei for i = 1, 2, we find qi ∈ Ei such that
∫

B(qi,s)
ρQ dµ ≤ 10s

diam(Ei)

∫

B
ρQ dµ ≤ 80s

r

∫

B
ρQ dµ, (3.8)

for 0 < s ≤ r/4. Set Bi := B(qi, λr). By our assumption on Z , we can find a
path σ from 1

4B1 to 1
4B2 with Im(σ) ⊆ ΛB , length at most Λr , and ρ–length

at most

K

(∫

ΛB
ρQ dµ

)1/Q

,

where Λ = Λ(λ) > 0 and K = K(λ) > 0.

The balls B1 and B2 are disjoint since λ < 1/8 and

d(q1, q2) ≥ dist(E1, E2) ≥ r/4.

Conditions (i) and (iii) are clearly satisfied. Condition (ii) follows from the facts
that λ < 1/8 and qi ∈ B̄(p, 3r

4 ), and from (3.8).
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Proof of Proposition 3.1 Fix 0 < λ < 1/8 subject to the condition 2 ·
(80λ)1/Q < 1.

Suppose E1, E2 ⊆ Z are nondegenerate continua, and let ρ : Z → [0,∞] be a
Borel function. It is enough to show that there is a rectifiable path γ joining
E1 to E2 whose ρ–length is at most

M

(∫

Z
ρQ dµ

)1/Q

,

where M > 0 only depends on the relative distance ∆(E1, E2) of E1 and E2 .
In fact, the path produced will have length . dist(E1, E2), though this will not
be used anywhere. We will henceforth assume that E1 and E2 are disjoint, for
otherwise we may use a constant path mapping into E1 ∩E2 .

Pick pi ∈ Ei such that d(p1, p2) = dist(E1, E2). Set

r0 :=
1

2
min(d(p1, p2),diam(E1),diam(E2)) > 0.

Let Bi = B(pi, r0) for i = 1, 2. Then B1 ∩B2 = ∅ and Ei \Bi 6= ∅ for i = 1, 2.

Also, dist(B1, B2) ≤
(

d(p1,p2)
r0

)
r0 ≤ tr0 where t := 2max(1,∆(E1, E2)). By

our hypotheses we can find a path σ joining 1
4B1 to 1

4B2 of length at most Lr0
and ρ–length at most

1

m1/Q

(∫

Z
ρQ dµ

)1/Q

, (3.9)

where L = L(t), m = m(t) are the constants appearing in the statement
of Proposition 3.1. Let Σ0 := {σ}, B0 := {B1, B2}, and Ω0 be the set
{E1, Im(σ), E2} endowed with the linear ordering E1 < Im(σ) < E2 . In addi-
tion, we associate the ball B1 with the pair E1 < Im(σ), and the ball B2 with
the pair Im(σ) < E2 ; see Figure 1.

Inductively, assume that for j = 0, . . . , k we have a path collection Σj , a
ball collection Bj , and a collection of continua Ωj subject to the following
conditions:

(1) For 0 ≤ j ≤ k , the set Ωj is linearly ordered.

(2) For each pair τ1 < τ2 of successive elements of Ωj , there is an associated
ball Bτ1,τ2 ∈ Bj such that τi \Bτ1,τ2 6= ∅ and τi ∩ 1

4Bτ1,τ2 6= ∅, for i = 1, 2.

(3) For j ≥ 1, the collections Σj , Bj , and Ωj are obtained from Ωj−1 and Bj−1

using the following procedure. For each pair of successive elements τ1, τ2 ∈ Ωj−1

with associated ball Bτ1,τ2 ∈ Bj−1 , one applies Lemma 3.7 with B = Bτ1,τ2 and
{F1, F2} = {τ1, τ2}, to obtain a path σ = σ(τ1, τ2) and a pair of disjoint balls
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Figure 1

Bτ1,σ, Bσ,τ2 . Here Bτ1,σ is centered at a point in τ1 , and Bσ,τ2 is centered at a
point in τ2 . Then Σj is the collection of these paths σ and Bj is the collection
of balls Bτ1,σ, Bσ,τ2 where τ1 < τ2 ranges over all successive pairs in Bj−1 . The
continuum collection Ωj is the disjoint union Ωj−1 t {Im(σ) : σ ∈ Σj}. One
linearly orders Ωj by extending the order on Ωj−1 subject to τ1 < Im(σ) < τ2 ;
moreover, one associates the ball Bτ1,σ with the pair τ1 < Im(σ), and the ball
Bσ,τ2 with the pair Im(σ) < τ2 .

By our second induction assumption, the hypotheses of Lemma 3.7 hold for
each successive pair τ1, τ2 ∈ Ωk and associated ball Bτ1,τ2 ∈ Bk . Hence we may
use the procedure in the third induction assumption (with j replaced by k+1)
to generate Σk+1 , Bk+1 , Ωk+1 , the linear order on Ωk+1 , and an association
of balls in Bk+1 with successive pairs in Ωk+1 . The conditions in Lemma 3.7
guarantee that the induction hypotheses are fulfilled. Therefore by induction
there are collections Σk , Bk , and Ωk which satisfy the conditions 1–3 for all
k ≥ 0.

By induction, one proves the following:

(a) For each k ≥ 0, we have #Bk = 2k+1 , and each ball in Bk has radius λkr0
(see Lemma 3.7).

(b) For each k ≥ 0, 0 < j ≤ k , and B ∈ Bk , there is a ball B′ ∈ Bk−j such
that B ⊆ 7

8B
′ , (see condition (ii) of Lemma 3.7).
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(c) For k ≥ 0, the ρ–mass of each ball B ∈ Bk satisfies
∫

B
ρQ dµ ≤ (80λ)k

∫

Z
ρQ dµ

(see Lemma 3.7, condition (ii)).

(d) For each k > 0, we have #Σk = 2k . Each σ ∈ Σk has length at most
Λλk−1r0 , for a suitable ball B ∈ Bk−1 we have Im(σ) ⊆ ΛB , and the ρ–length
of σ is at most

K

(∫

ΛB
ρQ dµ

)1/Q

,

where Λ and K are as in Lemma 3.7.

(e) For k ≥ 0 set

Yk :=
k⋃

j=0

⋃

σ∈Σj

Im(σ).

Then dist(Yk, E1),dist(Yk, E2) ≤ λkr0/4, and Yk is (λkr0/4)–connected: given
y, y′ ∈ Yk there are points y = y1, . . . , yl = y′ such that d(yj , yj+1) ≤ λkr0/4
for 1 ≤ j ≤ l .

(f) For k > 0, the union

Zk :=
⋃

j>k


 ⋃

σ∈Σj

Im(σ)




is covered by the collection {(Λ + 1)B}B∈Bk
.

Set

Y :=

∞⋃

j=0

⋃

σ∈Σj

Im(σ).

By (e) the closure Ȳ of Y is compact, connected, and intersects both E1 and
E2 . Then (f) and (a) imply that Ȳ \ Y has 1–dimensional Hausdorff measure
zero. Combining this with (d) and the fact that λ < 1/8, we get that the
1–dimensional Hausdorff measure of Ȳ is at most

∞∑

k=0

∑

σ∈Σk

length(σ) ≤ Lr0 +

∞∑

k=1

(2k)(Λλk−1r0) = Lr0 +
2Λr0

1 − 2λ
<∞.

Hence there is a rectifiable path γ : [0, 1] → Z contained in Ȳ joining E1 to E2

with

length(γ) ≤ Lr0 +
2Λr0

1 − 2λ
.
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Moreover, we may assume that Im(γ) is an arc and γ is an injective map.

Pick an integer s ≥ 2 such that (1/λ)s−1 > 8Λ. Then by (a) and (b) for
every k ≥ s and every ball B ∈ Bk−1 , there exists a ball B′ ∈ Bk−s such that
ΛB ⊆ B′ . Hence by (b) and (c), for every k ≥ s and σ ∈ Σk there is a ball
B′ ∈ Bk−s such that the ρ–length of σ is at most

K

(∫

B′

ρQ dµ

)1/Q

≤ K

(
(80λ)k−s

∫

Z
ρQ dµ

)1/Q

.

For 0 < k < s, each σ ∈ Σk has ρ–length at most

K

(∫

Z
ρQ dµ

)1/Q

.

Recall that σ ∈ Σ0 has ρ–length at most

1

m1/Q

(∫

Z
ρQ dµ

)1/Q

.

Using these bounds for ρ–length and the fact that γ parametrizes an arc, we
get
∫

γ
ρ ds ≤

∫

Ȳ
ρ dH1 ≤

∞∑

k=0

∑

σ∈Σk

∫

Im(σ)
ρ dH1

≤
(∫

Z
ρQ dµ

)1/Q
(

1

m1/Q
+K

s−1∑

k=1

2k +K

∞∑

k=s

2k(80λ)(k−s)/Q

)

=: M

(∫

Z
ρQ dµ

)1/Q

.

Note that M is finite since 2·(80λ)1/Q < 1 by our initial choice of λ. Moreover,
M depends only on ∆(E1, E2). This shows that the path γ has the desired
properties.

4 Rescaling and abundance of thick paths

We now let (Z, d, µ) be an Ahlfors Q–regular compact metric space, Q > 1,
which carries a family of nonconstant paths with positive Q–modulus, and we
let G y Z be a uniformly quasi-Möbius action which is fixed point free, and
acts cocompactly on triples in Z . As we have seen, Lemma 2.12 implies that
there exist nonconstant thick paths in Z .
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Lemma 4.1 There exist disjoint open balls B and B′ in Z such that the set
of endpoints of thick paths connecting B and B′ has a point of density in B .

Proof Let γ : I → Z be a nonconstant thick path. Pick t ∈ (0, 1) so that
x := γ(t) is distinct from the endpoints x0 := γ(0) and x1 := γ(1) of γ .
Define R := 1

10 dist(x, {x0, x1}), and let ε := R/10. Set B := B(x,R) and
B′ := B(x1, R).

Every path α ∈ B(γ, ε) has an image intersecting the open ball B and picks
up length in B which is comparable to R. In particular, each path in B(γ, ε)
is nonconstant. Let

S := B ∩ {Im(α) : α ∈ B(γ, ε) ∩ PT }.
By Lemma 2.10, every point in S is the initial point of a thick path ending in
B′ . Hence it is enough to show that S has positive Q–dimensional Hausdorff
measure. If this is not the case, we can find a Borel set S′ ⊇ S of vanishing
Hausdorff Q–measure. Then the function ρ : Z → [0,∞] defined to be infinity
on S′ and 0 elsewhere is Borel and an admissible test function for the path
family B(γ, ε) ∩ PT . Since the total Q–mass of ρ is zero, Lemma 2.12 implies

ModQ(B(γ, ε) \ C) = ModQ(B(γ, ε)) = ModQ(B(γ, ε) ∩ PT ) = 0,

which contradicts the thickness of γ .

Lemma 4.2 Let M ⊆ Z × Z be the set of pairs of points that can be joined
by a thick path. Then M is dense in Z × Z .

Note that this implies in particular that Z is connected.

Proof By Lemma 4.1, we can find a pair of disjoint open balls B and B′ so
that there exists a density point x ∈ B of the set of initial points of the family
Γ of thick paths starting in B and ending in B′ . For k ∈ N pick Rk > 0 with
limk→∞Rk = 0, and let Dk be the set of initial points of paths in Γ which
start in Bk := B(x,Rk). Then

εk :=
distH(Dk, Bk)

Rk
→ 0 as k → ∞.

We let δk :=
√
εk and define x1

k := x. Since Z is uniformly perfect, for large k
we can choose points x2

k, x
3
k ∈ Z such that the distances d(x1

k, x
2
k), d(x

1
k, x

3
k),

d(x2
k, x

3
k) exceed δkRk , but are not larger than λkRk , where λk = Cδk and C ≥

1 is a constant independent of k . Using the cocompactness of the action G y
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Tri(Z), we can find gk ∈ G such that the image of the triple (x1
k, x

2
k, x

3
k) under

gk is δ′–separated where δ′ > 0 is independent of k . Applying Lemma 2.1,
we conclude that distH(gk(Dk), Z) → 0 and diam(Z \ gk(Bk)) → 0 as k →
∞. After passing to a subsequence if necessary, we may assume that the sets
Z \ gk(Bk) Hausdorff converge to {z} for some z ∈ Z . Since B′ and Bk are
disjoint for large k , we then also have distH(gk(B

′), {z}) → 0 as k → ∞.

Now let z1, z2 ∈ Z and ε > 0 be arbitrary. By Lemma 2.2, we can find g ∈ G
such that g(z) ∈ B(z1, ε); then g ◦ gk(B

′) ⊆ B(z1, ε) for large k . In addition,
for large k we will also have g ◦ gk(Dk) ∩ B(z2, ε) 6= ∅. Using this and the
invariance of thickness under quasi-Möbius homeomorphisms we see that there
is a thick path starting in B(z1, ε) and ending in B(z2, ε).

Lemma 4.3 For each C > 0 there are constants m > 0 and L > 0 such that
if B, B′ ⊆ Z are R–balls with dist(B,B′) ≤ CR, then the modulus of the
family of paths of length at most LR joining B to B′ has Q–modulus greater
than m.

Proof Suppose C > 0 is arbitrary. We first claim that there is a number
m0 > 0 such that if B, B′ ⊆ Z are R–balls with dist(B,B′) ≤ CR, then
ModQ(Γ(B,B′)) > m0 . If this assertion were false, there would be balls Bk =
B(zk, Rk) and B′

k = B(z′k, Rk) for k ∈ N such that dist(Bk, B
′
k) ≤ CRk for all

k , but
lim

k→∞
ModQ(Γ(Bk, B

′
k)) = 0. (4.4)

Passing to a subsequence, we may assume that the sequences (zk) and (z′k)
converge in Z . Lemma 4.2 then implies that limk→∞Rk = 0. Disregarding
finitely many sequence elements if necessary, we can choose x1

k ∈ ∂B(zk, Rk),
and x2

k ∈ ∂B(zk, 2Rk) for all k by the connectedness of Z . Pick gk ∈ G
such that the triples (gk(zk), gk(x1

k), gk(x2
k)) are δ–separated where δ > 0 is

independent of k . Since the homeomorphisms gk are uniformly quasi-Möbius
and the balls Bk and B′

k have uniformly bounded relative distance, it is easy
to see that there is ε > 0 such that B(gk(zk), 2ε) ⊆ gk(Bk) and B(gk(z

′
k), 2ε) ⊆

gk(B
′
k) for all k . Passing to yet another subsequence, we may assume that

the sequences (gk(zk)) and (gk(z
′
k)) converge to points z ∈ Z and z′ ∈ Z ,

respectively. Hence for large k we have B̃ := B(z, ε) ⊆ gk(Bk), B̃
′ := B(z′, ε) ⊆

gk(B
′
k). Tyson’s theorem (Theorem 2.7) gives

ModQ(Γ(Bk, B
′
k)) ≥ cModQ

(
Γ(gk(Bk), gk(B

′
k))
)
≥ cModQ(Γ(B̃, B̃′)),

where c > 0 is a constant independent of k . Since ModQ(Γ(B̃, B̃′)) > 0 by
Lemma 4.2, this contradicts (4.4), and hence the claim is true.
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According to Lemma 2.8 we can choose L ≥ 2 such that every family of paths
in Z which start in a given ball of radius R and have length at least LR has
modulus at most m0/2. Now B and B′ are arbitrary balls of radius R > 0 in
Z and let Γ1 and Γ2 be the families of paths in Z a which connect B and B′

and have length at most LR and length at least LR, respectively. Then by the
choice of L and by subadditivity of modulus we have

m0 < ModQ(Γ(B,B′)) ≤ ModQ(Γ1) + ModQ(Γ2) ≤ ModQ(Γ1) +m0/2.

It follows that ModQ(Γ1) > m := m0/2 > 0.

5 The proofs of the theorems

Proof of Corollary 1.6 Under the hypotheses of the corollary, for every weak
tangent W of Z there exist a point z ∈ Z and a quasi-Möbius homeomorphism
between W and Z \ {z} (cf [3, Lemma 5.2]). According to Theorem 1.5 there
exists a weak tangent W of Z which carries a family of nonconstant paths with
positive Q–modulus. Note that W is an Ahlfors Q–regular complete metric
space. Hence by Tyson’s Theorem 2.7, the space Z also carries a family of
nonconstant paths with positive Q–modulus.

Proof of Theorem 1.3 If Z is as in the theorem, then Z satisfies the assump-
tions made in the begining of Section 4. So Lemma 4.3 applies, showing that
Z satisfies the hypotheses of Proposition 3.1. Therefore, Z is a Q–Loewner
space.

Proof of Theorem 1.1 Let G be as in the statement of Theorem 1.1, sup-
pose Z is an Ahlfors Q–regular metric space where Q ≥ 2 is the Ahlfors regular
conformal dimension of ∂∞G, and φ : ∂∞G → Z is a quasisymmetric homeo-
morphism. Conjugating the canonical action G y ∂∞G by φ, we obtain a
uniformly quasi-Möbius action G y Z which is fixed point free and for which
the induced action on triples is both properly discontinuous and cocompact.
Now by Corollary 1.6 the space Z carries a family of nonconstant paths with
positive Q–modulus, and so it is Q–Loewner by Theorem 1.3.

According to Theorem 1.2 of [2] every Ahlfors Q–regular and Q–Loewner 2–
sphere is quasisymmetrically homeomorphic to the standard 2–sphere S

2 . This
applies to Z and so there exists a quasisymmetric homeomorphism ψ : Z → S

2 .
Conjugating our action G y Z by ψ , we get a uniformly quasiconformal action

G
1

y S
2 (we use the superscript “1” to distinguish this action from another
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action discussed below). By a theorem of Sullivan and Tukia (cf [20, p. 468]
and [21, Theorem F and Remark F2]) every uniformly quasiconformal action
on S

2 is quasiconformally conjugate to an action by Möbius transformations.

Hence G
1
y S

2 is quasiconformally conjugate to an action G
2

y S
2 by Möbius

transformations. If we represent H
3 by the unit ball model so that ∂∞H

3 =

S
2 , the action G

2
y S

2 naturally extends to an isometric action G y H
3 .

Being topologically conjugate to G
1

y S
2 and hence to G y Z , the action

G
2

y S
2 is also properly discontinuous and cocompact on triples. Therefore,

the corresponding isometric action G y H
3 is discrete and cocompact.

Proof of Theorem 1.4 Let G be a group as in the theorem, and assume
that Q > 1 is equal to the Ahlfors regular conformal dimension of Z = Λ(G).
Note that Z ⊆ S

n equipped with the ambient Euclidean metric on S
n ⊆ R

n+1

is Ahlfors Q–regular [19, Theorem 7], and that the induced action G y Z
satisfies the hypotheses of Theorem 1.3. It follows that Z is a Q–Loewner
space. Hence Z satisfies a (1, Q)–Poincaré inequality.

Since the metric space Z ⊆ R
n+1 is Ahlfors regular and satisfies a (1, Q)–

Poincaré inequality, a theorem by Cheeger [8, Theorem 14.3] implies that Z
has a weak tangent which is bi-Lipschitz equivalent to some Euclidean space
R

k , k ≥ 1. As in the proof of Corollary 1.6, every weak tangent of Z is
homeomorphic to Z minus a point. Hence Z has topological dimension k .

On the other hand, since each weak tangent of an Ahlfors Q–regular space is also
Ahlfors Q–regular, we conclude that Q = k ∈ N; in particular, the topological
dimension of Z is equal to its Hausdorff dimension. Moreover, since Q > 1, we
have k ≥ 2. The desired conclusion now follows from [3, Theorem 1.2].

The proof shows that if G y X is a properly discontinuous, quasi-convex
cocompact, and isometric action on a CAT(−1)-space X , if the limit set Λ(G)
has Hausdorff dimension equal to its Ahlfors regular conformal dimension, and
if Λ(G) embeds in some Euclidean space by a bi-Lipschitz map, then there
is a convex G–invariant copy of a hyperbolic space Y ⊆ X on which G acts
cocompactly.

The conclusion of the quoted result by Cheeger already holds if Z satisfies a
(1, p)–Poincaré inequality for some p > 1. So it would be enough to stipulate
this condition in Theorem 1.4 instead of requiring that the Ahlfors regular
conformal dimension of Z = Λ(G) is equal to Q.

The converse of Theorem 1.4 and its indicated modifications lead to a statement
that is worth recording: if the limit set Λ(G) of a group G as in the theorem is
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not a “round” subsphere of S
n , then the Ahlfors regular dimension of Z = Λ(G)

is strictly less than Q, Z does not carry a family of nonconstant curves with
positive Q–modulus, and Z does not satisfy a (1, p)–Poincaré inequality for
any p > 1. In particular, limits sets of such groups G cannot lead to new
examples of Loewner spaces.

6 Spaces whose Ahlfors regular conformal dimension

is not realized

In our discussion below, we will refer to the Ahlfors regular conformal dimension
simply as the conformal dimension.

The most basic example of a space whose conformal dimension is not realized
is the standard Cantor set C . This dimension is equal to 0 for C , but it is not
attained, since any quasisymmetric homeomorphism between C and a metric
space Z is bi-Hölder, and so the Hausdorff dimension of Z is strictly positive.

To our knowledge, the first connected and locally connected example of this
type is due to Pansu, which we learned of through M. Bourdon. Essentially
the same example was considered also in [7]: if one glues together two closed
hyperbolic surfaces N1 and N2 isometrically along embedded geodesics γi ⊆ Ni

of equal length, then one obtains a 2–complex M with curvature bounded from
above by −1 and the boundary at infinity ∂∞M̃ of the universal cover M̃ has
conformal dimension 1. To see this one pinches the hyperbolic structures along
the closed geodesics γi , and observes that the volume entropies of the resulting
universal covers tend to 1 (“branching becomes less and less frequent”). The

space ∂∞M̃ is not quasisymmetrically homeomorphic to an Ahlfors 1–regular
space, because in this case it would have to be a topological circle by [3, Theorem

1.1]; in fact it is not difficult to see directly that ∂∞M̃ is not quasisymmetrically
homeomorphic to a space with finite 1–dimensional Hausdorff measure.

Bishop and Tyson [1] have shown that “antenna sets”—certain self-similar den-
drites in the plane—have conformal dimension 1, but are not quasisymmetri-
cally homeomorphic to any space of Hausdorff dimension 1.

Another example of a similar flavor is due to Laakso. He has shown that the
standard Sierpinski gasket has conformal dimension 1, but again, this dimension
cannot be realized. By considering pairs of points whose removal disconnects
the set, it is not hard to show that the homeomorphism group of the gasket is
the same as its isometry group for the usual embedding in R

2 . It follows that
this example is not homeomorphic to Pansu’s example.
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There are translation invariant Ahlfors regular metrics on R
2 for which the

1–parameter group of linear transformations etA , where

A :=

[
1 1
0 1

]
,

is a family of homotheties. Their conformal dimension is 2, but it cannot
be realized. The second author would like to thank L. Mosher for bringing
these examples to his attention. One can also describe them as follows. Let
G be the semi-direct product of R with R

2 , where R acts on R
2 by the 1–

parameter group above. Then the solvable Lie group G admits left invariant
Riemannian metrics with curvature pinched arbitrarily close to −1; if one re-
moves the unique fixed point from ∂∞G, one gets the “twisted plane” example
above.

The examples discussed so far are all either disconnected, have local cut points
(ie, by removing a single point one can disconnect a connected neighborhood),
or cannot be the boundary of a hyperbolic group.

Suppose an Ahlfors Q–regular space Z is quasisymmetric to the boundary of a
hyperbolic group G, where Q is the conformal dimension of Z . If Q < 1, then
the topological dimension of Z is zero; thus there is a free subgroup Fk sitting
in G with finite index. But then k = 1, |Z| = 2, and Q = 0, for otherwise
k > 1 which implies that Z is quasisymmetric to the standard Cantor set,
whose conformal dimension is not realized. If Q = 1, then [3, Theorem 1.1]
implies that Z is quasisymmetric to the standard circle. The case Q > 1 is
covered by Theorem 1.3. Disconnected spaces, or spaces with local cut points
cannot satisfy a Poincaré inequality, so Theorem 1.3 implies that if Q > 1,
then Z is connected and has no local cut points. The examples of Bourdon
and Pajot [6] give boundaries of hyperbolic groups which possess these two
topological properties, but which are not quasisymmetrically homeomorphic to
a Q–regular space satisfying a (1, Q)–Poincaré inequality. Thus by Theorem
1.3 even under these topological conditions the conformal dimension is not
necessarily realized.

Based on the examples mentioned above, one may speculate that if the con-
formal dimension of a self-similar space fails to be attained, then this is due
to degeneration which leads to a limiting structure resembling a foliation or
lamination.

We conclude this section with two questions related to the realization problem.

Problem 6.1 Can one algebraically characterize the hyperbolic groups whose
boundary has (Ahlfors regular) conformal dimension equal to 1? In particular,
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if the boundary of a hyperbolic group is homeomorphic to a Sierpinski carpet
or a Menger curve, is the Ahlfors regular conformal dimension strictly greater
than 1?

Problem 6.2 Is the (Ahlfors regular) conformal dimension of the standard
square Sierpinski carpet S attained?

If it is, it seems to be the case that S equipped with any Ahlfors regular metric
realizing its conformal dimension is a Loewner space. We remark that it follows
from [13] that the conformal dimension of S is less than its Hausdorff dimension.
A calculation by the second author had earlier given an explicit upper bound
for the conformal dimension of S .

7 Remarks and open problems

The themes explored in this paper lead to various general questions. To further
exploit the relation between the algebraic structure of a Gromov hyperbolic
group and the analysis of its boundary one needs analytic tools from the general
theory of analysis on metric spaces, perhaps tailored to the setting of self-
similar spaces or spaces admitting group actions as considered in this paper.
In particular, it would be interesting to find classes of function spaces that
are invariant under quasisymmetric homeomorphisms. They could be used to
define quasisymmetric invariants and answer structure and rigidity questions
for quasisymmetric homeomorphisms.

The setting of Loewner spaces is relatively well-understood, but it is not clear
how natural this framework really is. At present there is a somewhat limited
supply of these spaces, and one would like to have more examples. As Theo-
rem 1.4 indicates, the Loewner condition seems to lead to strong conclusions in
the presence of group actions and probably also in the presence of self-similarity.
In view of this theorem the following problem suggests itself.

Problem 7.1 Can one classify all quasi-convex cocompact isometric actions
G y X , where X is a CAT(−1)–space and the Ahlfors regular conformal
dimension of the limit set Λ(G) is realized and strictly greater than 1?

Note that in this situation Z = Λ(G) is a Loewner space, so the problem asks
for a classification of all Loewner spaces that arise as limit sets of quasi-convex
cocompact isometric group actions on CAT(−1)–spaces.
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Conversely, one could start with an Ahlfors Q–regular Q–Loewner Z space
quasisymmetrically homeomorphic to the boundary of a Gromov hyperbolic
group G and ask whether Z appears as the limit set Λ(G) of some isometric
action G y X , where X is a negatively curved metric space. It is natural to
require that X is Gromov hyperbolic. One can interpret the relation between Z
and Λ(G) in a measure theoretic sense. The obvious measure on Z is Hausdorff
Q–measure, and the measure on Λ(G) related to the dynamics G y Λ(G) is
the so-called Patterson–Sullivan measure (cf [9]). We arrive at the following
question:

Problem 7.2 Suppose φ : Z → ∂∞G is a quasisymmetric homeomorphism
from a compact Ahlfors regular Loewner space Z to the boundary ∂∞G of
Gromov hyperbolic group G. Is there a discrete, cocompact, isometric action
G y X of G on a Gromov hyperbolic space X whose Patterson–Sullivan
measure lies the same measure class as push-forward of Hausdorff measure
under φ?

More generally, one may ask when the measure class of a given measure on
the boundary of a Gromov hyperbolic group is represented by the Patterson–
Sullivan measure for some Gromov hyperbolic “filling” G y X of the boundary
action G y ∂∞G.

The general problem behind Cannon’s conjecture is the desire to find canonical
metric spaces on which a given Gromov hyperbolic group G acts. Since the
dynamics of an isometric action G on a Gromov hyperbolic space X is encoded
in the Patterson–Sullivan measure on Λ(G), a first step in this direction is to
find a natural measure, or at least a natural measure class on ∂∞G.

Problem 7.3 Given a Gromov hyperbolic group G, when is there a natural
measure class on ∂∞G?

Here “natural” can be interpreted in various ways. One could require the mea-
sure class to be invariant under all (local) quasisymmetric homeomorphisms.
For instance, if G acts discretely cocompactly on a rank 1 symmetric space X
other than H

2 , then the measure class of the Lebesgue measure associated with
the standard smooth structure on ∂∞X is invariant under the full group of qua-
sisymmetric self-homeomorphisms of ∂∞X ' ∂∞G. When X = H

2 this fails,
since the “Mostow map” ∂∞H

2 → ∂∞H
2 induced between two non-conjugate

discrete, cocompact and isometric actions G
1

y H
2 and G

2
y H

2 will not be
absolutely continuous with respect to Lebesgue measure. One expects a sim-
ilar phenomenon whenever G virtually splits over a virtually cyclic group, or
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equivalently, when ∂∞G has local cut points. Due to this, one can hope for an
affirmative answer to Problem 7.3 only under the assumption that G does not
have this property.

In many cases one expects that G is a subgroup of finite index in the group
QS(∂∞G) of all quasisymmetric self-homeomorphisms of ∂∞G. Then the re-
quirement that the measure class be invariant under QS(∂∞G) is rather weak.
This suggests another (stronger) interpretation of Problem 7.3: the measure
class should be constructed in a quasisymmetrically invariant way.
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