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1 Introduction

The study of invariants of Legendrian submanifolds in contact manifolds is cur-
rently a very active field of research. Holomorphic curve techniques stemming
from the introduction of Symplectic Field Theory [7] have inspired a great
deal of work on Legendrian isotopy invariants; papers in the subject include
[3, 5, 6, 8, 9, 18, 23], among others. Most of these papers focus on Legendrian
knots, and all deduce results in symplectic and contact geometry. Legendrian
knots, however, form a restrictive class within the space of all knots, and Legen-
drian isotopy only makes sense in the presence of an ambient contact structure.

In this manuscript, we use ideas from Symplectic Field Theory to obtain new in-
variants of topological knots and braids. We note that holomorphic curves have
been previously used to define knot invariants, through the work of Ozsváth
and Szabó [21] on Heegaard Floer homology. Their approach, however, is very
different from the one leading to the invariants in our paper, which is due to
Eliashberg and can be briefly summarized as follows. A knot or braid yields in
a natural way a Legendrian torus in a certain 5-dimensional contact manifold,
and topological isotopy of the knot or braid results in Legendrian isotopy of
the torus; thus, Legendrian invariants of the torus, and in particular relative
contact homology, yield topological invariants for the original knot or braid.

We will discuss this correspondence further in Section 3, but the analytical
underpinnings of the precise calculation of relative contact homology are still
in progress. Instead, in the rest of the paper, we handle our new invariants
algebraically, with no reference to contact geometry. The proofs of invariance,
and all subsequent calculations, are completely combinatorial and algebraic.

We now describe our invariants. The starting point is a representation φ of
the braid group Bn as a group of algebra automorphisms of a tensor algebra
with n(n − 1) generators. This representation, which extends ones considered
previously by Magnus [16] and Humphries [12], is nearly faithful, and there is
a slightly larger representation φext which is faithful. The map φ then gives
rise to a differential graded algebra (customarily abbreviated “DGA” in the
subject) for any braid B , which we call the braid DGA, while φext yields a
larger algebra called the knot DGA.

There is an equivalence relation on DGAs first introduced by Chekanov [3] called
stable tame isomorphism, which has been the subject of much work because of
its importance in the theory of Legendrian invariants. The main results of this
paper state that, up to stable tame isomorphism, the braid DGA of B is an
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invariant of the conjugacy class of B , while the knot DGA of B is an invariant
of the knot which is the closure of B .

In particular, the graded homology of these DGAs, which is unchanged by stable
tame isomorphism, gives an invariant of braid conjugacy classes and knots; we
call this the contact homology of the braid or knot. Although the homology of
a DGA is generally hard to compute, there is a relatively simple form for the
0-dimensional part HC0 of the contact homology, and we can compute HC0

explicitly for a large number of knots.

We concentrate on the invariant HC0 because it is difficult in general to dis-
tinguish between stable tame isomorphism classes of DGAs, and because HC0

seems to encode much of the information from the knot or braid DGA. It is
sometimes also hard to tell when two knots or braids have isomorphic HC0 , but
we can deduce numerical invariants from HC0 , called augmentation numbers,
which are easy to calculate by computer.

Knot contact homology seems to be an invariant distinct from previously known
knot invariants. On the one hand, it does not distinguish between mirrors, and
a result in [19] states that, for two-bridge knots, HC0 depends only on the
determinant |∆K(−1)| of the knot; hence one might expect that knot con-
tact homology is fairly weak as an invariant. On the other hand, there are
pairs of knots which are distinguished by HC0 (via augmentation numbers)
but not by (any given one of) a litany of familiar knot invariants: Alexander
polynomial, Jones polynomial, HOMFLY polynomial, Kauffman polynomial,
signature, Khovanov invariant, and Ozsváth–Szabó invariant.

One classical invariant that is contained in knot contact homology is the deter-
minant; in fact, the determinant is encoded by a linearization HC lin

∗ of HC∗ .
A further link between HC0(K) and the determinant is the existence of a sur-
jection from HC0(K) to a ring Z[x]/(p(x)), where p is a certain polynomial
determined by the homology of the double branched cover over K ; this map is
often an isomorphism.

Although knot contact homology is uniquely defined as a theory over Z2 , it has
different viable lifts to Z, one of which is the theory described above. However,
there is another, inequivalent, lift to Z, which we call alternate knot contact
homology; the alternate theory lacks some of the properties of the usual theory
but produces a knot invariant which seems to contain more information.

The paper is organized as follows. In Section 2, we define the braid and knot
DGAs and state the main invariance results. Section 3 gives a highly informal
description of how our invariants relate to contact geometry. Section 4 defines
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contact homology for braids and knots and proves invariance of HC0 ; we subse-
quently return to the invariance proof of the full DGAs in Section 5. Section 6
presents properties of the invariants, including augmentation numbers and be-
havior under mirrors, and Section 7 relates knot contact homology to the knot’s
determinant. Section 8 gives some examples of computations of the invariants.
We discuss the alternate knot invariant in Section 9.

In the sequel to this paper [19], we give a geometric interpretation of φ via the
usual treatment of Bn as a mapping class group. We then use this to present a
new, completely topological definition for HC0 for braids and knots, in terms
of cords and relations similar to skein relations, and find a relation to character
varieties. This interpretation explains, independent of contact geometry, “why”
HC0 is a topological invariant.

Acknowledgements I am grateful to Yasha Eliashberg for suggesting the
project and the means to approach it and offering a great deal of insightful
guidance. I would also like to thank John Etnyre, Michael Hutchings, Kiran
Kedlaya, Tom Mrowka, Josh Sabloff, Ravi Vakil, and Ke Zhu for useful con-
versations, and the Institute for Advanced Study, the American Institute of
Mathematics, and Stanford University for their hospitality. Funding was pro-
vided by a Five-Year Fellowship from the American Institute of Mathematics,
and at one point by NSF grant DMS-9729992.

2 Definitions and main results

2.1 Differential graded algebras

In contact geometry, the homology of a certain DGA defines the relative contact
homology of a Legendrian submanifold in a contact manifold. In all known
cases, a Legendrian isotopy invariant is provided not only by relative contact
homology, but also by the stable tame isomorphism class of the DGA.

We recall the basic definitions, originally due to Chekanov [3]. Let Z〈a1, . . . , an〉
denote the (noncommutative, unital) tensor algebra generated by a1, . . . , an ,
which is generated as a Z-module by words in the ai ’s, including the empty
word.

Definition 2.1 Equip A = Z〈a1, . . . , an〉 with a grading over Z by assigning
degrees to the generators ai . Then a differential on A = Z〈a1, . . . , an〉 is a map
∂ : A → A which lowers degree by 1 and satisfies ∂2 = 0 and the Leibniz rule
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∂(vw) = (∂v)w + (−1)deg vv(∂w). The pair (A, ∂) is what we call a differential

graded algebra, for the purposes of this paper.

To define a particular equivalence relation between DGAs known as stable tame
isomorphism, we need several more notions, beginning with a refinement of the
usual notion of isomorphism.

Definition 2.2 An algebra map φ : (Z〈a1, . . . , an〉, ∂) → (Z〈ã1, . . . , ãn〉, ∂̃) is
an elementary isomorphism if it is a graded chain map and, for some i,

φ(aj) =

{
±ãi + v for j = i and some v ∈ Z〈ã1, . . . , ãi−1, ãi+1, . . . , ãn〉

ãj for j 6= i.

A tame isomorphism between DGAs is any composition of elementary isomor-
phisms.

In the above definition, the order of the generators is immaterial; that is, a
map which simply permutes the generators of the DGA (and treats the grading
and differential accordingly) is considered to be elementary. Note also that
elementary and tame isomorphisms are in fact isomorphisms.

A “trivial” example of a DGA is given by (E i = Z〈ei
1, e

i
2〉, ∂), where deg ei

1−1 =
deg ei

2 = i and ∂ei
1 = ei

2, ∂ei
2 = 0. The main equivalence relation between

DGAs, which we now present, stipulates that adding this trivial DGA does not
change equivalence class.

Definition 2.3 The degree-i algebraic stabilization of the DGA (A = Z〈a1,
. . . , an〉, ∂) is the DGA (Si(A) = Z〈a1, . . . , an, ei

1, e
i
2〉, ∂), with grading and

differential induced from A and E i . Two DGAs (A, ∂) and (Ã, ∂̃) are stable

tame isomorphic if there exist algebraic stabilizations (Si1(· · · (Sik(A)) · · · ), ∂)

and (S ĩ1(· · · (S ĩ
k̃(Ã)) · · · ), ∂̃) which are tamely isomorphic.

Stable tame isomorphism is designed to be a special case of quasi-isomorphism.

Proposition 2.4 If (A, ∂) and (Ã, ∂̃) are stable tame isomorphic, then the

homologies H∗(A, ∂) and H∗(Ã, ∂̃) are isomorphic.

The proof of Proposition 2.4 can be found, eg, in [9].
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2.2 The invariants

We now introduce the knot and braid invariants. The definition of the knot
DGA depends on the braid definition, which we give first.

Let Bn denote the braid group on n strands, which is generated by σ1, . . . , σn−1 ,
with relations σiσi+1σi = σi+1σiσi+1 for 1 ≤ i ≤ n − 1, and σiσj = σjσi for
|i − j| ≥ 2. Write An for the tensor algebra on n(n − 1) generators which we
label as aij for 1 ≤ i, j ≤ n and i 6= j , and let Aut(An) denote the group of
algebra automorphisms of An .

For each generator σk of Bn , define the tame automorphism φσk
∈ Aut(An)

by its action on the generators of An :

φσk
:





aki 7→ −ak+1,i − ak+1,kaki i 6= k, k + 1
aik 7→ −ai,k+1 − aikak,k+1 i 6= k, k + 1

ak+1,i 7→ aki i 6= k, k + 1
ai,k+1 7→ aik i 6= k, k + 1
ak,k+1 7→ ak+1,k

ak+1,k 7→ ak,k+1

aij 7→ aij i, j 6= k, k + 1.

Proposition 2.5 φ extends to a homomorphism from Bn to Aut(An).

Proof The fact that φ preserves the braid relations in Bn is a direct compu-
tation.

We will denote the image of B ∈ Bn under φ as φB ∈ Aut(An).

This representation was essentially first studied by Magnus [16] in the context of
automorphisms of free groups; more precisely, he presented a representation on a
polynomial algebra in

(n
2

)
variables, which we can derive from φ by abelianizing

and setting aij = aji for all i, j . Humphries [12] subsequently extended the
representation to a polynomial algebra in n(n− 1) variables, and interpreted it
in terms of transvections. Our homomorphism is simply the lift of Humphries’
representation to the corresponding tensor algebra. We note that the starting
point in [19] is a new topological interpretation of φ in terms of skein relations.

We can obtain a linear representation from φ by finding a finite-dimensional
piece of An on which φ descends; in the language of [8], this involves linearizing
φ with respect to some augmentation. Concretely, if we write Mn as the subal-
gebra of An generated by {aij +2}, then φ descends to Mn/M2

n . If we further
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quotient by setting aij = aji for all i, j , then we obtain an
(n
2

)
-dimensional

representation of Bn , which is precisely the inverse of the Lawrence–Krammer
representation [14] with q = −1 and t = 1. Indeed, there is a striking similarity
in appearance between φ and the Lawrence–Krammer representation which we
further explore in [19].

Unlike Lawrence–Krammer, φ does not give a faithful representation of Bn ;
this is not overly surprising, since Bn has nontrivial center, while Aut(An)
does not. Indeed, a result from [12] states that the kernel of φ is precisely the
center of Bn , which is generated by (σ1 · · · σn−1)

n . However, the extension map

φext : Bn ↪→ Bn+1
φ
→ Aut(An+1) is faithful, a fact first established algebraically

in [16]. We will return to φext in a moment; geometric proofs of the faithfulness
results can be found in [19].

We now define the DGA invariant for braids.

Definition 2.6 Let B ∈ Bn be a braid. Let A be the graded tensor algebra
on 2n(n − 1) generators, {aij | 1 ≤ i, j ≤ n, i 6= j} of degree 0 and {bij | 1 ≤
i, j ≤ n, i 6= j} of degree 1. Define the differential ∂ on A by

∂bij = aij − φB(aij), ∂aij = 0.

Then we call (A, ∂) the braid DGA of B .

Theorem 2.7 If B, B̃ are conjugate in Bn , then their braid DGAs are stable

tame isomorphic.

We defer the proof of Theorem 2.7 until Section 5.1. The DGA invariant for
knots is also derived from the map φ; in fact, we will see in Section 4.2 that it
contains the braid DGA. Before introducing it, we need some more notation.

As mentioned before, we can define a map φext : Bn → Aut(An+1) induced from
φ through the inclusion Bn ↪→ Bn+1 obtained by adding an (n + 1)-st strand
which does not interact with the other n strands; that is, each generator σi ∈ Bn

is mapped to σi ∈ Bn+1 for 1 ≤ i ≤ n− 1. When dealing with φext , we replace
all indices (n+1) by an asterisk; ie, write a∗i, ai∗ for an+1,i, ai,n+1 , respectively.
Since the (n + 1)-st strand does not interact with the other strands, it follows
from the definition of φ that for B ∈ Bn , φext

B (a∗i) is a linear combination of
a∗j , 1 ≤ j ≤ n, with coefficients in An , and similarly for φext

B (ai∗).

Definition 2.8 The n × n matrices ΦL
B(A) and ΦR

B(A) are defined by

φext
B (ai∗) =

n∑

j=1

(ΦL
B(A))ijaj∗ and φext

B (a∗j) =

n∑

i=1

a∗i(Φ
R
B(A))ij .
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The matrices ΦL
B(A) and ΦR

B(A) can be obtained from each other by the “conju-
gation” operation discussed in Section 6.1. Though ΦL

B(A),ΦR
B(A) are derived

from φ, they also determine φ; see Proposition 6.2.

To define the DGA for knots, it is convenient to assemble generators of the
DGA into matrices. For notational purposes, let A denote the matrix (aij),
where we set aii = −2 for all i, and similarly write B = (bij), C = (cij),
D = (dij), where bij , cij , dij are variables used below with no stipulation on
bii, cii, dii ; also, write ∂A for the matrix (∂aij), φB(A) for (φB(aij)), and so
forth. (There should hopefully be no confusion between a braid B and the
matrix B .) We will sometimes view A as a matrix of variables, so that, eg, we
define ΦL

B(M) for an n× n matrix M to be the evaluation of ΦL
B(A) when we

set aij = Mij for all i, j . (Note that this requires Mii = −2 for all i.)

Definition 2.9 Let B ∈ Bn . Write A for the tensor algebra with the following
generators: {aij | 1 ≤ i, j ≤ n, i 6= j} of degree 0; {bij , cij | 1 ≤ i, j ≤ n} of
degree 1; and {dij | 1 ≤ i, j ≤ n} and {ei | 1 ≤ i ≤ n} of degree 2. Define the
differential ∂ on A by

∂A = 0

∂B = (1 − ΦL
B(A)) · A

∂C = A · (1 − ΦR
B(A))

∂D = B · (1 − ΦR
B(A)) − (1 − ΦL

B(A)) · C

∂ei = (B + ΦL
B(A) · C)ii,

where · denotes matrix multiplication. Then we call (A, ∂) the knot DGA of
B .

The fact that ∂2 = 0 in the knot DGA is not obvious; while it is clear that
∂2A = ∂2B = ∂2C = ∂2D = 0, we have ∂2ei = −2 −

(
ΦL

B(A) · A · ΦR
B(A)

)
ii
,

and we need Proposition 4.7 to conclude that ∂2ei = 0. The key result for knot
DGAs is the following theorem, which allows the knot DGA to descend from
braids to knots.

Theorem 2.10 If the closures of two braids B, B̃ are the same knot, then the

knot DGAs for B, B̃ are stable tame isomorphic.

The proof of Theorem 2.10 is postponed until Section 5.2, after we first intro-
duce HC0 and present the easier proof of invariance for HC0 .

By Alexander’s Theorem, every knot in R3 can be represented as a closed braid.
Theorem 2.10 implies that the following notion is well-defined.
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Definition 2.11 Let K ⊂ R3 be a knot. The knot DGA class of K is the
equivalence class (under stable tame isomorphism) of the knot DGA of any
braid whose closure is K .

We will occasionally abuse notation and speak of the “knot DGA” of K ; this
is understood to be modulo equivalence. The knot DGA can equally well be
defined for links, for which it also gives an invariant.

We conclude this section by explicitly computing, as an example, the knot
DGA for the trefoil, which is the closure of σ3

1 ∈ B2 . By the definition of φ,
we see that φext

σ1
acts as follows: a12 7→ a21 , a21 7→ a12 , a1∗ 7→ −a2∗ − a21a1∗ ,

a2∗ 7→ a1∗ , a∗1 7→ −a∗2 − a∗1a12 , a∗2 7→ a∗1 . Iterating φext
σ1

three times on
a1∗, a2∗, a∗1, a∗2 yields

ΦL
σ3
1

(A) =

(
2a21 − a21a12a21 1 − a21a12

−1 + a12a21 a12

)

and ΦR
σ3
1

(A) =

(
2a12 − a12a21a12 −1 + a12a21

1 − a21a12 a21

)
.

One can now calculate the differential on the knot DGA of σ3
1 :

∂b11 = −2 + 3a21 − a21a12a21

∂c11 = −2 + 3a12 − a12a21a12

∂b12 = 2 + a12 − 4a21a12 + a21a12a21a12

∂c21 = 2 + a21 − 4a21a12 + a21a12a21a12

∂b21 = −2 + a21 + a12a21

∂c12 = −2 + a12 + a12a21

∂b22 = −2 + 3a12 − a12a21a12

∂c22 = −2 + 3a21 − a21a12a21

∂d11 = b11 − b12 − c11 + c21 + 2a21c11 − 2b11a12 − a21a12c21 + b12a21a12

− a21a12a21c11 + b11a12a21a12

∂d12 = b11 + b12 − c12 + c22 + 2a21c12 − b12a21 − a21a12c22

− b11a12a21 − a21a12a21c12

∂d21 = b21 − b22 − c11 − c21 + a12c21 − 2b21a12 + a12a21c11

+ b22a21a12 + b21a12a21a12

∂d22 = b21 + b22 − c12 − c22 + a12c22 − b22a21 + a12a21c12 − b21a12a21

∂e1 = b11 + c21 + 2a21c11 − a21a12c21 − a21a12a21c11

∂e2 = b22 − c12 + a12c22 + a12a21c12.

We will return to this example in future sections.
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3 Motivation from contact geometry

Having defined the knot and braid DGAs in the previous section, we now de-
scribe the background in contact geometry leading to the development of these
invariants. It should be noted that work is in progress to establish rigorously
that the DGAs give the relative contact homology theory which we describe
below.

Given a smooth manifold M , the cotangent bundle T ∗M has a canonical
symplectic structure given by ω = dλ, where λ is the tautological one-form
on T ∗M sending a tangent vector in T ∗M to the pairing between the base
point in T ∗M and the projected tangent vector in TM under the projection
π : T ∗M → M . For any smooth submanifold N ⊂ M , the conormal bundle
LN = {θ ∈ T ∗M | 〈θ, v〉 = 0 for all v ∈ Tπ(v)N} over N is then a Lagrangian
submanifold of T ∗M , and smooth isotopy of N leads to Lagrangian isotopy of
LN . This setup (with N a knot) was introduced in the physics literature in
[20], and was communicated to the author in this generality by Eliashberg.

Partly because LN is noncompact, it is more convenient for us to consider a
slightly modified setup. Suppose that M is equipped with a metric. Then
the cosphere bundle ST ∗M of unit covectors in T ∗M (“co-oriented contact
elements in M ”) has a canonical contact structure induced by the one-form λ.
If N ⊂ M is a compact smooth submanifold, then the unit conormal bundle
LN = LN∩ST ∗M is a compact Legendrian submanifold of ST ∗M , and smooth
isotopy of N leads to Legendrian isotopy of LN .

In recent years, beginning with work of Eliashberg and Hofer, invariants of
Legendrian isotopy in contact manifolds have been developed, via holomorphic-
curve techniques, using relative contact homology [6] and the more general
Symplectic Field Theory [7]. In particular, for Legendrian knots in R3 with
the standard contact structure, Chekanov [3] developed a purely combinatorial
formulation of relative contact homology; this work was subsequently extended
in [9, 18]. Relative contact homology was also studied for knots in circle bundles
in [23], and for R2n+1 with the standard contact structure in [5]. In all of these
special cases, relative contact homology is given by the homology of a certain
DGA whose stable tame isomorphism class is an invariant. With the exception
of [5], however, the DGAs are defined combinatorially rather than geometrically,
with invariance proofs given by combinatorics as well. The invariants in the
present paper are likewise combinatorial in nature.

We now specialize, as in [20], to the case when M = R3 and K ⊂ R3 is
a knot. Then LK is an embedded Legendrian 2-torus in the 5-dimensional
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contact manifold ST ∗R3 = R3 × S2 , which is contactomorphic to the 1-jet
space J1(S2) with the standard contact structure. We note that LK is always
topologically unknotted since it has codimension 3 in ST ∗R3 ; however, its
Legendrian isotopy type yields information about the knot K . In fact, the
knot DGA defined in Section 2.2, which is a nontrivial invariant, conjecturally
gives the relative contact homology of LK in ST ∗R3 .

A local model suggested by Eliashberg allows us to study conjugacy classes of
braids as a first step. Let K ⊂ R3 be any knot (or, in particular, the unknot),
and let B be a braid. A sufficiently small neighborhood of LK is contactomor-
phic to J1(LK) = J1(T 2). If we glue B along a tubular neighborhood of K
to produce a new knot K̃ , then LK̃ is in an arbitrarily small neighborhood of
LK , and thus gives a Legendrian 2-torus in J1(T 2). A smooth isotopy of B ,
or a conjugation operation on B , yields a Legendrian isotopy of this torus in
J1(T 2). Then the braid DGA from Section 2.2 conjecturally gives the relative
contact homology of LK̃ in J1(T 2).

Recall from, eg, [6] that the relative contact homology for a Legendrian subman-
ifold L of a contact manifold (V, α) is the homology of a DGA whose generators
are Reeb chords of L, ie, flow lines of the Reeb vector field which begin and end
on L. The differential is then defined by counting certain holomorphic maps of
punctured disks into the symplectization V ×R of V , with boundary on L×R

and punctures limiting to Reeb chords.

For the case of a knot K in R3 , the contact manifold is R3×S2 , with Reeb vector
field pointing in the R3 fibers, in the direction specified by the underlying point
in S2 . It follows that Reeb chords for LK correspond to “binormal chords”
to K in R3 , ie, oriented line segments in R3 with endpoints on K which are
normal to K at both endpoints. For instance, the unknot given by an ellipse in
the plane yields four Reeb chords, corresponding to the major and minor axes
traversed either way.

If K is the closure of a braid B ∈ Bn , we can embed B in a neighborhood of
an elliptical unknot in such a way that the Reeb chords for LK come in two
families:

• 2n(n − 1) “small chords” within the neighborhood of the unknot, four
for each pair of braid strands; these divide further into two Reeb chords
where the pair of strands is closest (aij ) and two where the pair is farthest
(bij )

• 4n2 “big chords” corresponding to the Reeb chords of the ellipse; each
binormal chord of the ellipse yields n2 binormal chords for K (cij , dij for

Geometry & Topology, Volume 9 (2005)



258 Lenhard Ng

the minor-axis chords, eij , fij for the major-axis chords), since there are
n choices for each endpoint.

For the braid itself, the Reeb chords for LB ⊂ J1(T 2) correspond to the 2n(n−
1) “small chords” aij , bij .

This gives a rough explanation for the generators of the knot and braid DGAs;
for the knot case, this actually gives the modified knot DGA defined below in
Proposition 4.8. Showing that the differentials of these DGAs actually count the
appropriate holomorphic disks is beyond the scope of this paper. The analytical
details, which use an approach due to Fukaya and Oh [10] of counting gradient
flow trees, are the subject of work in progress. As in the theory of Legendrian
knots in standard contact R3 , however, the combinatorial proof of the invariance
of our DGAs under isotopy gives evidence for the validity of our “computation”
of relative contact homology.

4 Knot and braid contact homology

In this section, we examine the homology of the DGAs defined in Section 2,
and focus on a particular piece for which isotopy invariance is easy to establish.
We will return to invariance proofs of the full DGAs in Section 5.

4.1 Definitions

In order to use the knot and braid DGAs as invariants, we need to know when
two DGAs are stable tame isomorphic. This can be done through “computable”
invariants of equivalence classes of DGAs, including Poincaré polynomials [3]
and the characteristic algebra [18].

In the case of braid and knot DGAs, it turns out that the first order Poincaré
polynomial over Z2 corresponding to the trivial augmentation gives no interest-
ing invariant of the braid conjugacy class or the knot. (See however Section 8.3
for a different result for a nontrivial augmentation over Z2 , and Section 7.2 for
linearization over Z.) This is because to first order over Z2 , the homomorphism
φ factors through the projection Bn → Sn to the symmetric group. However,
the degree 0 part of the characteristic algebra already yields interesting invari-
ants; we recall from [18] that the characteristic algebra of a DGA (A, ∂) is the
quotient of A by the two-sided ideal generated by im ∂ . Before proceeding
further, we define the contact homology of a braid or knot.
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Definition 4.1 The contact homology of a braid B , written HC∗(B), is de-
fined to be the (graded) homology of the braid DGA of B . The contact homol-

ogy of a knot K , written HC∗(K), is the (graded) homology of the knot DGA
of any braid whose closure is K . More generally, if R is any ring, then we de-
fine as usual HC∗(B;R) and HC∗(K;R) to be the homology of the appropriate
DGA tensored with R.

Proposition 4.2 The degree 0 contact homology of knots and braids is the

degree 0 part of the characteristic algebra of the corresponding DGA. More

explicitly, for B ∈ Bn , let Ibraid
B be the two-sided ideal of An generated by

{aij−φB(aij)}, while Iknot
B is the two-sided ideal of An generated by the entries

of the two matrices (1 − ΦL
B(A)) · A and A · (1 − ΦR

B(A)). Then HC0(B) =
An/Ibraid

B and HC0(K) = An/Iknot
B , where K is the closure of B .

Proof Since the braid and knot DGAs of B ∈ Bn have no generators in
negative degree, the entirety of An (which is the degree 0 part of the algebra)
consists of cycles. On the other hand, the image of ∂ in degree 0 is precisely
the ideal generated by the images under ∂ of the generators in degree 1, and
so the ideal of boundaries in degree 0 is given by Ibraid

B , Iknot
B for the braid

and knot DGA, respectively.

For example, for the trefoil, HC0(31) is given by Z〈a12, a21〉 modulo the rela-
tions provided by ∂bij , ∂cij as calculated in Section 2.2. From ∂b21 and ∂c12 ,
we have relations −2 + a21 + a12a21 = −2 + a12 + a12a21 = 0, and hence
a12 = a21 . If we set a12 = a21 = x, then the ∂bij, ∂cij relations become
{x3 − 3x + 2, x4 − 4x2 + x + 2, x2 + x − 2}. The gcd of these polynomials is
x2 + x − 2, and so HC0(31) ∼= Z[x]/(x2 + x − 2).

In practice, we will study HC0 rather than the full braid and knot DGAs,
because it is relatively easy to compute, as the trefoil example demonstrates.
It is immediate from Proposition 2.4 and Theorems 2.6 and 2.9 that HC0 gives
an invariant of braid group conjugacy classes and knots. However, there is a
direct proof of the invariance of HC0 which is much simpler notationally than
the proofs of Theorems 2.6 and 2.9, while containing the main ideas from these
proofs. We will give this direct proof below for braids, and in Section 4.3 for
knots.

Theorem 4.3 Up to isomorphism, HC0(B) is an invariant of the conjugacy

class of the braid B .
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Proof Suppose that B, B̃ are conjugate in the braid group Bn , so that B̃ =
C−1BC for some C ∈ Bn . We use the notation of Proposition 4.2.

First note that Ibraid
B ⊂ An is the ideal generated by the image of the map

1 − φB : An → An : if x1, x2 ∈ An , then (1 − φB)(x1x2) = (1 − φB)(x1)x2 +
φB(x1)(1−φB)(x2) is in the ideal generated by (1−φB)(x1) and (1−φB)(x2).
Similarly, Ibraid

B̃
is the ideal generated by the image of 1−φB̃ = 1−φ−1

C φBφC .
It follows by inspection of the commutative diagram

An
1−φB

//

φC
∼=

��

An

φC
∼=

��

An

1−φ−1

C
φBφC

// An

that Ibraid
B̃

is the image of Ibraid
B under the automorphism φC on An , and hence

that HC0(B) = An/Ibraid
B and HC0(B̃) = An/Ibraid

B̃
are isomorphic.

The corresponding invariance result for knots requires a few preparatory results,
which are interesting in their own right; we give these in the following section,
and prove HC0 invariance for knots in Section 4.3.

4.2 Ancillary results

Here we collect a number of results about φ, ΦL , and ΦR which will be crucial
for future sections.

Proposition 4.4 (Chain Rule) If B1, B2 ∈ Bn , then

ΦL
B1B2

(A) = ΦL
B2

(φB1
(A)) · ΦL

B1
(A) and ΦR

B1B2
(A) = ΦR

B1
(A) · ΦR

B2
(φB1

(A)).

Proof We will establish the result for ΦL ; the proof for ΦR is completely
analogous. By the definition of ΦL , we have

φext
B1B2

(ai∗) =
n∑

j=1

(
ΦL

B1B2
(A)
)
ij

aj∗;

on the other hand,

φext
B1B2

(ai∗) = φext
B1

φext
B2

(ai∗)

=

n∑

j=1

φext
B1

((
ΦL

B2
(A)
)
ij

aj∗

)
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=

n∑

j=1

(
ΦL

B2
(φB1

(A))
)
ij

φext
B1

(aj∗)

=

n∑

j,`=1

(
ΦL

B2
(φB1

(A))
)
ij

(ΦL
B1

(A))j`a`∗,

and the result follows.

A word of explanation is in order for the penultimate equality in the chain
above, because it may seem backwards. Applying φext

B1
to
(
ΦL

B2
(A)
)
ij

aj∗ entails

replacing each aij by φB1
(aij) and each aj∗ by φext

B1
(aj∗), and the result is(

ΦL
B2

(φB1
(A))

)
ij

φext
B1

(aj∗).

Corollary 4.5 For any braid B ,

ΦL
B−1(φB(A)) = (ΦL

B(A))−1 and ΦR
B−1(φB(A)) = (ΦR

B(A))−1.

Proof Set B1 = B , B2 = B−1 in Proposition 4.4, and use the fact that
ΦL

id(A) = ΦR
id(A) = 1.

Lemma 4.6 The matrices ΦL
σk

(A) and ΦR
σk

(A) are identical to the n × n
identity matrix, outside of the 2 × 2 submatrix formed by rows k, k + 1 and

columns k, k + 1, which is given by
(
−ak+1,k −1

1 0

)
for ΦL

σk
(A) and

(
−ak,k+1 1

−1 0

)

for ΦR
σk

(A).

Proof This is immediate from the definitions of φ, ΦL , and ΦR .

Proposition 4.7 For any braid B , φB(A) = ΦL
B(A) · A · ΦR

B(A).

Proof When B = σk for some k , the identity can be verified by direct calcu-
lation, using Lemma 4.6. We conclude that the identity also holds for B = σ−1

k ,
either by another direct calculation, or by using the result for B = σk : since
φσk

(A) = ΦL
σk

(A) · A · ΦR
σk

(A), we have

A = ΦL
σk

(φ−1
σk

(A))·φ−1
σk

(A)·ΦR
σk

(φ−1
σk

(A)) =
(
ΦL

σ−1

k

(A)
)−1

·φσ−1

k
(A)·

(
ΦR

σ−1

k

(A)
)−1

,

where the last equality comes from Corollary 4.5; the desired identity for B =
σ−1

k follows.
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We now show that if the identity holds for B = B1 and B = B2 , then it holds
for B = B1B2 ; the proposition then follows by induction. Indeed, assuming
the identity for B = B1 and B = B2 , we have

φB1B2
(A) = φB1

(φB2
(A))

= ΦL
B2

(φB1
(A)) · φB1

(A) · ΦR
B2

(φB1
(A))

= ΦL
B2

(φB1
(A)) · ΦL

B1
(A) · A · ΦR

B1
(A) · ΦR

B2
(φB1

(A))

= ΦL
B1B2

(A) · A · ΦR
B1B2

(A),

where we use the chain rule for the final equality.

A more geometric proof of Proposition 4.7 is given in [19]. As remarked in
Section 2.2, Proposition 4.7 implies that the knot DGA does in fact satisfy
∂2 = 0. It also follows from Proposition 4.7 that the full homomorphism φB

can be deduced from the matrices ΦL
B and ΦR

B , which in turn can be deduced
from each other via the conjugation map to be discussed in Section 6.1. Thus
we may view ΦL

B and ΦR
B as “square roots” of φB .

One final result we will need in the future is a reformulation of the knot DGA in
terms of an equivalent DGA which has more generators but a slightly simpler
definition.

Proposition 4.8 Let B ∈ Bn . The knot DGA for B is stable tame isomorphic

to the “modified knot DGA” which has generators {aij | 1 ≤ i, j ≤ n, i 6= j} of

degree 0, {bij | 1 ≤ i, j ≤ n, i 6= j} and {cij , dij | 1 ≤ i, j ≤ n} of degree 1, and

{eij , fij | 1 ≤ i, j ≤ n} of degree 2, with differential

∂A = 0

∂B = A − φB(A)

∂C = (1 − ΦL
B(A)) · A

∂D = A · (1 − ΦR
B(A))

∂E = B − D − C · ΦR
B(A)

∂F = B − C − ΦL
B(A) · D.

Here we set bii = 0 for all i.

Proof In the modified knot DGA, replace eij by eij + fij for all i, j ; af-
ter applying the induced tame automorphism, we obtain the same differential,
except with ∂E = C · (1 − ΦR

B(A)) − (1 − ΦL
B(A)) · D . Now replace bij by
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(B + C + ΦL
B(A) · D)ij for i 6= j , which constitutes another tame automor-

phism; the differential is again unchanged, except that ∂B = 0 (this follows
from Proposition 4.7) and ∂F = B − diag(C + ΦL

B(A) · D), where diag re-
places all non-diagonal entries by 0. Now we have ∂fij = bij for i 6= j , and
hence, up to stabilization, we may drop the generators {bij , fij | i 6= j} from the
DGA. The resulting DGA is precisely the knot DGA for B , after we relabel
cij , dij , eij , fii by bij , cij , dij ,−ei , respectively.

An important consequence of Proposition 4.8 is that the knot DGA for a braid
can be obtained from the braid DGA, up to stable tame isomorphism, by adding
generators and appropriately extending the definition of the differential.

Corollary 4.9 If K is the closure of B , then HC0(K) is a quotient of

HC0(B).

Proof Immediate from Propositions 2.4 and 4.8.

4.3 Invariance of HC0 for knots

In this section, we prove the following result.

Theorem 4.10 Up to isomorphism, HC0(K) is a well-defined invariant of a

knot K .

Proof If B is a braid, we temporarily write HCknot
0 (B) for the 0-dimensional

homology of the knot DGA of B , as expressed in Proposition 4.2. We wish
to show that if B, B̃ are two braids whose closure is the same knot, then
HCknot

0 (B),HCknot
0 (B̃) are isomorphic. By Markov’s Theorem, it suffices to

check this when B, B̃ are related by one of three operations: conjugation,
positive stabilization, and negative stabilization.

Conjugation Here B, B̃ ∈ Bn satisfy B̃ = C−1BC for some C ∈ Bn .

Write HCknot
0 (B) = An/I , where I is generated by the entries of (1−ΦL

B(A))·A
and A · (1−ΦR

B(A)). For clarity, write HCknot
0 (B̃) = Ãn/Ĩ , with Ãn generated

by {ãij} and Ĩ generated by the entries of (1+ΦL
B̃
(Ã)) · Ã and Ã · (1+ΦR

B̃
(Ã)),

where Ã = (ãij) and ãii = −2.

We claim that the identification Ã = φC(A), ie, ãij = φC(aij) for all i, j , maps
Ĩ into I . This would suffice to prove that HCknot

0 (B) ∼= HCknot
0 (B̃), since
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a symmetrical argument with B and B̃ interchanged shows that the same
identification in the other direction also maps I into Ĩ , and hence I and Ĩ
coincide.

Assume that Ã = φC(A). From Proposition 4.4 and Corollary 4.5, we have

ΦL
B̃

(Ã) = ΦL
BC(A) · ΦL

C−1(φC(A))) = ΦL
C(φB(A)) · ΦL

B(A) · (ΦL
C(A))−1,

and similarly ΦR
B̃
(Ã) = (ΦR

C(A))−1 ·ΦR
B(A) ·ΦR

C(φB(A)). It follows by Proposi-
tion 4.7 that

(1 − ΦL
B̃
(Ã)) · Ã =

(
1 − ΦL

C(φB(A)) · ΦL
B(A) · (ΦL

C(A))−1
)
· ΦL

C(A) · A · ΦR
C(A)

= ΦL
C(A) · (1 − ΦL

B(A)) · A · ΦR
C(A)

−
(
ΦL

C(φB(A)) − ΦL
C(A)

)
· ΦL

B(A) · A · ΦR
C(A).

Now the entries of (1 − ΦL
B(A)) · A are in I by definition; on the other hand,

the entries of

φB(A)−A = ΦL
B(A) ·A ·ΦR

B(A)−A = −(1−ΦL
B(A)) ·A ·ΦR

B(A)−A ·(1−ΦR
B(A))

are in I , and thus so are the entries of ΦL
C(φB(A))−ΦL

C(A). Hence the entries
of (1 − ΦL

B̃
(Ã)) · Ã are in I . Similarly, the entries of Ã · (1 − ΦR

B̃
(Ã)) are also

in I , and therefore Ĩ ⊂ I , as desired.

Positive stabilization Here B̃ is obtained from B by adding an extra strand,
which we label 0, to the braid, and setting B̃ = Bσ0 .

Analogously to before, write HCknot
0 (B) = An/I and HCknot

0 (B̃) = Ã/Ĩ ,
where now Ã is obtained from An by adding generators ai0, a0i for 1 ≤
i ≤ n. Abbreviate ΦL

B(A),ΦR
B(A) by ΦL,ΦR . By using Proposition 4.4 and

Lemma 4.6, we can easily compute the matrices for ΦL
Bσ0

,ΦR
Bσ0

in terms of

ΦL,ΦR :
(
ΦL

Bσ0

)
00

= −φB(a10)
(
ΦR

Bσ0

)
00

= −φB(a01)(
ΦL

Bσ0

)
0i

= −ΦL
1i

(
ΦR

Bσ0

)
i0

= −ΦR
i1(

ΦL
Bσ0

)
10

= 1
(
ΦR

Bσ0

)
01

= 1
(
ΦL

Bσ0

)
1i

= 0
(
ΦR

Bσ0

)
i1

= 0
(
ΦL

Bσ0

)
j0

= 0
(
ΦR

Bσ0

)
0j

= 0
(
ΦL

Bσ0

)
ji

= ΦL
ji

(
ΦR

Bσ0

)
ij

= ΦR
ij .

Here i, j are any indices such that i ≥ 1 and j ≥ 2. It is then straightforward
to calculate the generators of Ĩ ; they are the entries of (1 − ΦL

B̃
(A)) · A and
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A · (1 − ΦR
B̃
(A)), which we write as ∂̃B̃ and ∂̃C̃ for future use in Section 5.2:

∂̃b̃00 = −2 − φB(a10) ∂̃c̃00 = −2 − φB(a01)

∂̃b̃0i = a0i + φB(a10)a0i + ΦL
1`a`i ∂̃c̃i0 = ai0 + ai0φB(a01) + ai`Φ

R
`1

∂̃b̃10 = a10 + 2 ∂̃c̃01 = a01 + 2

∂̃b̃1i = a1i − a0i ∂̃c̃i1 = ai1 − ai0

∂̃b̃j0 = aj0 − ΦL
j`a`0 ∂̃c̃0j = a0j − a0`Φ

R
`j

∂̃b̃ji = aji − ΦL
j`a`i ∂̃c̃ij = aij − ai`Φ

R
`j,

where, as before, i ≥ 1 and j ≥ 2, and any monomial involving the index `
is understood to be summed from ` = 1 to ` = n. (To obtain the expressions
for b̃00 and c̃00 , we use the facts that φB(a10) = ΦL

1`a`0 and φB(a01) = a0`Φ
R
`1 ,

which follow from the definitions of ΦL and ΦR .)

In Ã/Ĩ , we thus have a0i = a1i and ai0 = ai1 for i ≥ 1; in particular, a01 =
a10 = −2. Using these relations to replace all generators of the form a0i and
ai0 , we find that the remaining relations in Ã/Ĩ give precisely the generators
of I , namely aij −ΦL

i`a`j and aij −ai`Φ
R
`j for 1 ≤ i, j ≤ n. Thus An/I ∼= Ã/Ĩ ,

as desired.

Negative stabilization Here B̃ is obtained from B by adding an extra
strand, which we label 0, to the braid, and setting B̃ = Bσ−1

0 .

This case is very similar to the case of positive stabilization, with a slightly
different computation. Use the same notation as for positive stabilization; then
we have

(
ΦL

Bσ0

)
00

= 0
(
ΦR

Bσ0

)
00

= 0
(
ΦL

Bσ0

)
0i

= ΦL
1i

(
ΦR

Bσ0

)
i0

= ΦR
i1(

ΦL
Bσ0

)
10

= −1
(
ΦR

Bσ0

)
01

= −1
(
ΦL

Bσ0

)
1i

= −φB(a01)Φ
L
1i

(
ΦR

Bσ0

)
i1

= −ΦR
i1φB(a10)(

ΦL
Bσ0

)
j0

= 0
(
ΦR

Bσ0

)
0j

= 0
(
ΦL

Bσ0

)
ji

= ΦL
ji

(
ΦR

Bσ0

)
ij

= ΦR
ij

for i ≥ 1 and j ≥ 2, and so the generators of Ĩ are

∂̃b̃00 = −2 − φB(a10) ∂̃c̃00 = −2 − φB(a01)

∂̃b̃0i = a0i − ΦL
1`a`i ∂̃c̃i0 = ai0 − ai`Φ

R
`1

∂̃b̃10 = a10 − 2 + φB(a01)φB(a10) ∂̃c̃01 = a01 − 2 + φB(a01)φB(a10)
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∂̃b̃1i = a1i + a0i + φB(a01)Φ
L
1`a`i ∂̃c̃i1 = ai1 + ai0 + ai`Φ

R
`1φB(a10)

∂̃b̃j0 = aj0 − ΦL
j`a`0 ∂̃c̃0j = a0j − a0`Φ

R
`j

∂̃b̃ji = aji − ΦL
j`a`i ∂̃c̃ij = aij − ai`Φ

R
`j.

In Ã/Ĩ , we have a0i = ΦL
1`a`i and ai0 = ai`Φ

R
`1 . When we use these relations

to eliminate a0i, ai0 , we find that the remaining relations in Ã/Ĩ are precisely
the relations in An/I , as before. Hence Ã/Ĩ ∼= An/I .

We have shown that HCknot
0 (B) is invariant under the Markov moves, and

hence it gives a well-defined knot invariant, as desired.

5 Invariance proofs for braid and knot DGAs

In this section, we prove Theorems 2.7 and 2.10, the invariance results for braid
and knot DGAs. As mentioned before, the proofs are essentially more involved
versions of the corresponding proofs for HC0 given in Section 4.

5.1 Proof of Theorem 2.7

It suffices to establish Theorem 2.7 under the assumption that B̃ = σ−1
k Bσk

for some k . Then the braid DGAs for B and B̃ are generated by aij, bij and
ãij, b̃ij , respectively, for 1 ≤ i 6= j ≤ n. If we abbreviate φB by φ and φσk

by
φk , then the differentials for the braid DGAs are given by ∂bij = aij − φ(aij)
and ∂̃b̃ij = ãij −φ−1

k φφk(ãij). (By abusing notation, we will consider φ and φk

to act either on the algebra generated by the aij or on the algebra generated by
the ãij .) We will find a tame isomorphism between the algebras which sends
one differential to the other.

Set ãij = φk(aij) for all i, j . Then

∂̃b̃ij = ãij − φ−1
k φφk(ãij) = φk(aij) − φφk(aij).

Now make the following identifications:

b̃ki = −bk+1,i − φ(ak+1,k)bki − bk+1,kaki i 6= k, k + 1

b̃ik = −bi,k+1 − bikφ(ak,k+1) − aikbk,k+1 i 6= k, k + 1

b̃k+1,i = bki i 6= k, k + 1

b̃i,k+1 = bik i 6= k, k + 1

b̃k,k+1 = bk+1,k
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b̃k+1,k = bk,k+1

b̃ij = bij i, j 6= k, k + 1.

It is straightforward to check from ∂bij = aij − φ(aij) that ∂b̃ij = φk(aij) −
φφk(aij) for all i, j . For instance, for i 6= k, k + 1, we have

∂b̃ik = −∂bi,k+1 − (∂bik)φ(ak,k+1) − aik(∂bk,k+1)

= −ai,k+1 + φ(ai,k+1) + φ(aik)φ(ak,k+1) − aikak,k+1

= φk(aik) − φφk(aik).

Using the above definitions for ãij , b̃ij in terms of aij, bij , we conclude that
∂ = ∂̃ , and so the map sending aij to ãij and bij to b̃ij sends ∂ to ∂̃ . On
the other hand, it is easy to check that this map is tame; the map on the aij

is given by the tame isomorphism φk , while the map on the bij is tame by
inspection of the above definition for b̃ij in terms of bij . Thus the braid DGAs
for B and σ−1

k Bσk are tamely isomorphic, as desired.

5.2 Proof of Theorem 2.10

As in the proof of Theorem 4.10, it suffices to show that the equivalence class
of the knot DGA of a braid is invariant under the Markov moves.

Conjugation Let B ∈ Bn be a braid, and let B̃ = σ−1
k Bσk ; we show that the

modified knot DGAs (see Proposition 4.8) for B and B̃ are tamely isomorphic.

For clarity, we distinguish between the modified knot DGAs for B and B̃ by
using tildes on the generators and differential of the knot DGA for B̃ . As in
the proof of Theorem 2.7, we will exhibit an identification between the two sets
of generators so that ∂ = ∂̃ .

By Lemma 4.6, the matrices ΦL
σk

(A) −ΦL
σk

(φB(A)) and ΦR
σk

(A)− ΦR
σk

(φB(A))
are both identically zero except in the (k, k) entry, where they are −ak+1,k +
φB(ak+1,k) and −ak,k+1 + φB(ak,k+1), respectively. Hence if we define n × n
matrices ΘL

k (A) and ΘR
k (A) to be zero except in the (k, k) entry, where they

are −bk+1,k and −bk,k+1 , respectively, then we have

∂ΘL
k (A) = ΦL

σk
(A) − ΦL

σk
(φB(A)) and ∂ΘR

k (A) = ΦR
σk

(A) − ΦR
σk

(φB(A)).

Identify the ãij , b̃ij with the aij , bij using the same map as in the proof of
Theorem 2.7 in Section 5.1; then ∂ and ∂̃ agree on ãij and b̃ij . Now set

C̃ = ΦL
σk

(φB(A)) · C · ΦR
σk

(A) + ΘL
k (A) · A · ΦR

σk
(A),
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D̃ = ΦL
σk

(A) · D · ΦR
σk

(φB(A)) + ΦL
σk

(A) · A · ΘR
k (A),

Ẽ = ΦL
σk

(φB(A)) · E · ΦR
σk

(φB(A)) − ΘL
k (A) · D · ΦR

σk
(φB(A))

+ ΘL
k (A) · ΘR

k (A),

F̃ = ΦL
σk

(φB(A)) · F · ΦR
σk

(φB(A)) + ΦL
σk

(φB(A)) · C · ΘR
k (A)

+ ΘL
k (A) · (1 + A) · ΘR

k (A).

We claim that these identifications make ∂ and ∂̃ agree on c̃ij , d̃ij , ẽij , f̃ij , which
implies that ∂ = ∂̃ on the entire algebra. We will check that ∂̃C̃ = ∂C̃ and
∂̃Ẽ = ∂Ẽ ; the proofs for D and F are completely analogous.

By Proposition 4.4 and Corollary 4.5, we have

ΦL
B̃

(Ã) = ΦL
σ−1

k
Bσk

(φσk
(A)) = ΦL

Bσk
(A) · ΦL

σ−1

k

(φσk
(A))

= ΦL
σk

(φB(A)) · ΦL
B(A) · (ΦL

σk
(A))−1,

and similarly

ΦR
B̃

(Ã) = (ΦR
σk

(A))−1 · ΦR
B(A) · ΦR

σk
(φB(A)).

Recall from Proposition 4.7 that Ã = φσk
(A) = ΦL

σk
(A) · A · ΦR

σk
(A); it follows

that

∂C̃ = ΦL
σk

(φB(A)) ·
(
1 − ΦL

B(A)
)
· A · ΦR

σk
(A)

+
(
ΦL

σk
(A) − ΦL

σk
(φB(A))

)
· A · ΦR

σk
(A)

=
(
ΦL

σk
(A) − ΦL

σk
(φB(A)) · ΦL

B(A)
)
· A · ΦR

σk
(A)

= (1 − ΦL
B̃
(Ã)) · Ã

= ∂̃C̃

and

∂Ẽ = ΦL
σk

(φB(A)) · (B − D − C · ΦR
B(A)) · ΦR

σk
(φB(A))

−
(
ΦL

σk
(A) − ΦL

σk
(φB(A))

)
· D · ΦR

σk
(φB(A))

+ ΘL
k (A) · A · (1 − ΦR

B(A)) · ΦR
σk

(φB(A)) + ∂(ΘL
k (A) · ΘR

k (A))

= B̃ − D̃ − C̃ · ΦR
B̃

(Ã)

= ∂̃Ẽ,

where we use the fact (a direct computation from the definition of b̃ij ) that

B̃ = ΦL
σk

(φB(A)) · B · ΦR
σk

(φB(A)) + ΦL
σk

(A) · A · ΘR
k (A)

+ ΘL
k (A) · A · ΦR

σk
(φB(A)) + ∂

(
ΘL

k (A) · ΘR
k (A)

)
.
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Now that we have established that ∂ = ∂̃ on the entire algebra, it only remains
to verify that the identification of variables A 7→ Ã, etc., constitutes a tame
isomorphism. This is straightforward; as in the proof of Theorem 2.7, the map
A 7→ Ã,B 7→ B̃ is a tame automorphism. We can then send C to C̃ via the
composition of tame automorphisms

C 7→ C + ΘL
k (A) · A · ΦR

σk
(A),

C 7→ ΦL
σk

(φB(A)) · C,

C 7→ C · ΦR
σk

(A),

of which the last two are tame because of Lemma 4.6, and similarly for D 7→ D̃ .
Finally, we can send E to Ẽ via the composition of tame automorphisms

E 7→ E − ΘL
k (A) · D · ΦR

σk
(φB(A)) + ΘL

k (A) · ΘR
k (A),

E 7→ ΦL
σk

(φB(A)) · E,

E 7→ E · ΦR
σk

(φB(A)),

and similarly for F 7→ F̃ .

Positive stabilization Let B ∈ Bn be a braid; as in the proof of Theo-
rem 4.10, we denote stabilization by adding a strand labelled 0 and considering
the braid B̃ = Bσ0 . We will prove that the knot DGAs for B and B̃ are stable
tame isomorphic.

Denote the knot DGA for B by (A, ∂) and the knot DGA for B̃ by (Ã, ∂̃),
where the generators of Ã have tildes for notational clarity. Thus Ã is generated
by {ãij | 0 ≤ i 6= j ≤ n} in degree 0, and so forth. Note that Ã has more
generators than A does; we will establish that we can obtain (Ã, ∂̃) from (A, ∂)
by a suitable number of stabilizations.

We will progressively identify generators of A and Ã so that ∂ and ∂̃ agree.
The first identification is to drop all tildes on the ãij generators; that is, set
aij = ãij for all i, j ≥ 0, i 6= j . Note that this introduces 2n generators a0j

and ai0 not in A.

The matrices ΦL
Bσ0

and ΦR
Bσ0

were computed in the proof of Theorem 4.10.

We can then compute ∂̃ in terms of ΦL = ΦL
B and ΦR = ΦR

B . For b̃ij and c̃ij ,
we already calculated ∂̃ in the proof of Theorem 4.10. For completeness, we
include here the differentials of d̃ij and ẽij :

∂̃d̃00 = b̃00 − c̃00 + b̃00φB(a01) + b̃0`Φ
R
`1 − φB(a10)c̃00 − ΦL

1`c̃`0

∂̃d̃01 = b̃01 − c̃01 − b̃00 − φB(a10)c̃01 − ΦL
1`c̃`1
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∂̃d̃0j = b̃0j − c̃0j − b̃0`Φ
R
`j − φB(a10)c̃0j − ΦL

1`c̃`j

∂̃d̃10 = b̃10 − c̃10 + c̃00 + b̃10φB(a01) + b̃1`Φ
R
`1

∂̃d̃11 = b̃11 − c̃11 − b̃10 + c̃01

∂̃d̃1j = b̃1j − c̃1j + c̃0j − b̃1`Φ
R
`1

∂̃d̃j0 = b̃j0 − c̃j0 + b̃j0φB(a01) + b̃j`Φ
R
`1 + ΦL

j`c̃`0

∂̃d̃j1 = b̃j1 − c̃j1 − b̃j0 + ΦL
j`c̃`1

∂̃d̃j1j2 = b̃j1j2 − c̃j1j2 − b̃j1`Φ
R
`j2 + ΦL

j1`c̃`j2

∂̃ẽ0 = b̃00 − φB(a10)c̃00 − ΦL
1`c̃`0

∂̃ẽ1 = b̃11 + c̃01

∂̃ẽj = b̃jj + ΦL
j`c̃`j,

where j, j1, j2 ≥ 2 and, as usual, all monomials involving ` are summed from
` = 1 to ` = n.

If we set

b1i = −b̃0i + b̃1i − b̃00a0i ci1 = −c̃i0 + c̃i1 − ai0c̃00

bji = b̃ji cij = c̃ij

for i ≥ 1 and j ≥ 2, then it is easy to check, from the expressions for ∂̃b̃ij ,
∂̃c̃ij given in the proof of Theorem 4.10, that ∂̃bij = ∂bij and ∂̃cij = ∂cij for
all i, j ≥ 1. Next set

d11 = d̃00 − d̃01 + d̃11 − d̃10 + b̃00c̃01 + b̃10c̃00

d1j = −d̃0j + d̃1j + b̃00c̃0j

dj1 = −d̃j0 + d̃j1 + b̃j0c̃00

dj1j2 = d̃j1j2

e1 = ẽ0 + ẽ1 − d̃01 + b̃00c̃01

ej = ẽj

d00 = d̃10 − d̃11 + d̃01 − b̃10c̃00 − b̃00c̃01

e0 = d̃01 − ẽ1 − b̃00c̃01

d10 = d̃11 − ẽ1 d01 = ẽ1 d0j = d̃1j dj0 = d̃j1

for j, j1, j2 ≥ 2, and then successively set

b10 = b̃10 + c̃11 and c01 = c̃01 + b̃11;

b00 = b̃00 − b11 − ΦL
1`c̃`1 and c00 = c̃00 − c11 − b̃1`Φ

R
`1;
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bj0 = b̃j0 + c̃j1 − bj1 − ΦL
j`c̃`1 and c0j = c̃0j + b̃1j − c1j − b̃1`Φ

R
`j;

b0i = b̃1i and ci0 = c̃i1

for i ≥ 1 and j ≥ 2.

Under the above identifications, the map sending the tilde variables to the cor-
responding non-tilde variables is a tame automorphism on Ã. To see this, start
with the generators of Ã, and now perform the following changes of variables.
First introduce new variables b1i, ci1 for i ≥ 1, and then eliminate the gen-
erators b̃0i, c̃i0 by using the first identifications: b̃0i = −b1i + b̃1i − b̃00a0i and
c̃i0 = −ci1 + c̃i1−ai0c̃00 . Now successively continue this process using the given
identifications, from first to last; for each identification, introduce a new gener-
ator given by the left hand side, and use the relation to eliminate the generator
given by the first term on the right hand side. This can be done because no
eliminated generator appears in successive identifications. The final result is
that all tilde variables are eliminated and replaced by non-tilde variables. It
follows that the map sending tilde generators to non-tilde generators is tame.

On the other hand, a tedious but straightforward series of calculations demon-
strates that ∂ = ∂̃ after the above identifications have been made, where we set
∂b0i = −a0i + a1i , ∂ci0 = −ai0 + ai1 , ∂e0 = b00 , ∂d00 = b00 − c00 , ∂di0 = −bi0 ,
∂d0i = c0i for i ≥ 1. It follows that (Ã, ∂̃) is tamely isomorphic to the result
of stabilizing (A, ∂) by appending generators a0i , ai0 , b00 , b0i , bi0 , c00 , c0i ,
ci0 , d00 , d0i , di0 , e0 , and extending ∂ as in the previous sentence. (This cor-
responds to 2n stabilizations of degree 0 and 2n + 2 stabilizations of degree
1.) This completes the proof that the knot DGAs for B and B̃ are stable tame
isomorphic.

Negative stabilization We now wish to prove that the knot DGAs for B
and B̃ = Bσ−1

0 are stable tame isomorphic; this proof is entirely similar to the
proof for positive stabilization. We omit the calculations, but the sequence of
successive identifications is as follows, where indices satisfy i ≥ 1 and j, j1, j2 ≥
2, and all monomials involving ` are understood to be summed over ` ≥ 1:

b1i = b̃1i − b̃0i + c̃00Φ
L
1`a`i ci1 = c̃i1 − c̃i0 + ai`Φ

R
`1b̃00

bji = b̃ji cij = c̃ij ,
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followed by

d11 = −d̃10 + d̃11 − d̃01 + d̃00 − b1`Φ
R
`1b̃00 − c̃00Φ

L
1`c`1 − 2c̃00b̃00

d1j = d̃1j − d̃0j − c̃00Φ
L
1`c`j

dj1 = d̃j1 − d̃j0 − bj`Φ
R
`1b̃00

dj1j2 = d̃j1j2

e1 = −d̃01 + ẽ0 + ẽ1 − c̃00Φ
L
1`c`1 − c̃00b̃00 + (ẽ0 − d̃00)φB(a10) + φB(a01)ẽ0

ej = ẽj

d00 = d̃00 e0 = ẽ0 d10 = d̃11 − ẽ1 d01 = ẽ1 dj0 = d̃j0 d0j = d̃0j ,

and finally

b10 = −b̃10 + c11 + c̃10 − a1`Φ
R
`1b̃00

−(b1`Φ
R
`1 + b̃0`Φ

R
`1 + 2c̃00)φB(a10)

and
c01 = −c̃01 + b11 + b̃01 − c̃00Φ

L
1`a`1

−φB(a01)(Φ
L
1`c`1 + ΦL

1`c̃`0 + 2b̃00);

b00 = b̃00 + ΦL
1`c̃`0 and c00 = c̃00 + b̃0`Φ

R
`1;

bj0 = −b̃j0 + c̃j0 + bj`Φ
R
`1 − ΦL

j`c̃`0 and c0j = −c̃0j + b̃0j + ΦL
1`c`j − b̃0`Φ

R
`j;

b0i = b̃0i and ci0 = c̃i0.

We find that ∂ = ∂̃ as before, where we extend ∂ by defining ∂b0i = a0i−ΦL
1`a`i ,

∂ci0 = ai0 − ai`Φ
R
`1 , ∂d00 = b00 − c00 , ∂e0 = b00 , ∂di0 = −bi0 , ∂d0i = c0i . (The

calculation uses the fact that ΦL
1`a`mΦR

m1 = (φB(A))11 = −2.) It follows that
the knot DGA for Bσ−1

0 is tamely isomorphic to a stabilization of the knot
DGA for B , as desired.

6 Properties of the invariants

6.1 Conjugation and abelianization

There is a symmetry in the homomorphism φ : Bn → Aut(An) which induces
a symmetry in braid and knot DGAs. Define an involution on An , which we
term conjugation and write as v 7→ v , as follows: the conjugate of a monomial
ai1j1 · · · aimjm is ajmim · · · aj1i1 ; extend conjugation linearly, and set 1 = 1. In
other words, conjugation replaces each generator aij by aji and then reverses
the order of each word. The key observation is the following.

Proposition 6.1 For all v ∈ An and any B ∈ Bn , we have φB(v) = φB(v).
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Proof The result holds for B = σk and v = aij for any i, j, k , by direct
inspection of the definition of φ. The general result for B = σk follows since
vw = w v for all v,w ∈ An ; since φ is a homomorphism, the entire proposition
follows.

One consequence of Proposition 6.1 is that the matrices ΦL
B(A),ΦR

B(A) deter-
mine each other. Extend the operation of conjugation to matrices by conjugat-
ing each entry, and let T denote transpose; then we have the following result.

Proposition 6.2 For any B ∈ Bn , ΦR
B(A) = ΦL

B(A)
T

.

Proof By Proposition 6.1, we have

φB(a∗i) = φB(ai∗) = φB(ai∗) =
n∑

j=1

(ΦL
B(A))ijaj∗ =

n∑

j=1

a∗j(ΦL
B(A))ij ;

now use the definition of ΦR
B(A).

Conjugation also allows us to define simplified commutative versions of the
braid and knot DGAs. Intuitively, we can quotient the braid and knot DGAs
by conjugation and abelianize; the differential is well-defined on the resulting
quotient algebras. For instance, on the braid DGA, if ∂bij = aij − φB(aij),

then ∂bji = aji − φB(aji) = aij − φB(aij), and so ∂ is still well-defined if we
mod out by aji = aij , bji = bij and then abelianize.

Definition 6.3 Let B ∈ Bn be a braid. Let A be the graded sign-commutative
algebra on n(n − 1) generators, {aij | 1 ≤ i < j ≤ n} of degree 0 and
{bij | 1 ≤ i < j ≤ n} of degree 1. Define a differential ∂ on A to be the
usual differential on the braid DGA, where we set aji = aij for j > i. Then we
call (A, ∂) the abelian braid DGA of B .

Here by “sign-commutative,” we mean that vw = (−1)(deg v)(deg w)wv for all
v,w ∈ A of pure degree.

For the knot DGA, extend the conjugation operation to the entire algebra
by defining bij = cji , cij = bji , dij = −dji , ei = ei − dii , and vw =
(−1)(deg v)(deg w)w v .

Proposition 6.4 If (A, ∂) is the knot DGA for some braid, then ∂v = ∂v for

all v ∈ A.
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Proof We calculate directly that

∂bij = aij −
∑

`

a`j (ΦL
B(A))i` = ∂cji,

∂cij = aij −
∑

`

(ΦR
B(A))`j ai` = ∂bji,

∂dij = bij − cij +
∑

`

(
−(ΦR

B(A))`j bi` + c`j (ΦL
B(A))i`

)
= −∂dji,

∂ei = bii +
∑

`

c`i (ΦL
B(A))i` = cii + bi`(Φ

R
B(A))`i = ∂ei − ∂dii,

and if ∂v = ∂v and ∂w = ∂w , then

∂(vw) = (−1)(deg v−1)(deg w)w ∂v + (−1)(deg v)(deg w)∂w v = ∂(vw).

The proposition follows.

Since ∂ commutes with conjugation, we may mod out by conjugation and
abelianize, and ∂ is well-defined on the resulting algebra.

Definition 6.5 Let B ∈ Bn . Let A be the graded sign-commutative algebra
with generators {aij | 1 ≤ i < j ≤ n} of degree 0, {bij | 1 ≤ i, j ≤ n} of degree
1, and {dij | 1 ≤ i < j ≤ n} and {ei | 1 ≤ i ≤ n} of degree 2. Define ∂ on A
to be the usual differential on the knot DGA, where we set aji = aij for j > i
and cij = bji for all i, j . Then we call (A, ∂) the abelian knot DGA of B .

The notion of stable tame isomorphism can be defined for polynomial algebras
just as for tensor algebras, and with respect to this relation, abelian braid and
knot DGAs give invariants.

Proposition 6.6 Up to stable tame isomorphism, the abelian braid DGA of

B is an invariant of the conjugacy class of B , and the abelian knot DGA of B
is an invariant of the knot closure of B .

Proof Trace through the invariance proofs for the original knot and braid
DGAs, and note that all of the tame isomorphisms and stabilizations used
there are invariant under conjugation and hence well-defined in the commutative
case.

As in the noncommutative case, our main interest in the abelian DGAs lies in
the homology in degree 0, which we write as HCab

0 (B) in the braid case and
HCab

0 (K) in the knot case.
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Corollary 6.7 Up to isomorphism, HCab
0 (B) is an invariant of the conjugacy

class of B , and HCab
0 (K) is an invariant of the knot K .

We can summarize the various flavors of HC0 in a diagram, as follows. Suppose
that braid B has closure K , and let ab(HC0(B)), ab(HC0(K)) represent the
abelianizations of HC0(B),HC0(K). Then HC0(B),HC0(K) can both be
written as Z〈{aij}〉 modulo some ideal, and the ideal for HC0(K) contains the
ideal for HC0(B) by Proposition 4.8. Also, ab(HC0(B)),HCab

0 (B) are both
Z[{aij}] modulo some ideal, and the ideal for HCab

0 (B) is generated by the
ideal for ab(HC0(B)) and the relations {aij −aji}. Thus we have the following
commutative diagram of invariants:

HC0(B) // //

��
��

ab(HC0(B)) // //

��
��

HCab
0 (B)

��
��

HC0(K) // // ab(HC0(K)) // // HCab
0 (K).

6.2 Mirrors and inverses

In this section, we show that the braid and knot DGAs do not change under
mirroring and inversion. Recall that the mirror of a knot K is the knot K
obtained by reversing each of the crossings of the diagram of K , and similarly
for the mirror B of a braid B . In Bn , mirroring is the homomorphism sending
σk to σ−1

k for each k . It will be convenient for us to consider a related mirror
operation on Bn , B 7→ B∗ , which is the homomorphism sending σk to σ−1

n−k
for each k . Recall also that the inverse of a knot is the knot with the opposite
orientation. If K is the closure of B ∈ Bn , then the mirror K is the closure of

both B and B∗ , while the inverse of K is the closure of B
−1

.

Proposition 6.8 The braid DGAs for a braid B , its mirrors B and B∗ , and

its inverse B−1 are stable tame isomorphic.

Proof Let B ∈ Bn . We first show that B and B−1 have equivalent braid
DGAs. In the braid DGA of B−1 , we have ∂bij = aij − φB−1(aij) for all i, j ;
hence if we replace aij by φB(aij) and bij by −bij for all i, j , then we obtain
∂bij = aij − φB(aij), which gives the braid DGA for B .

Next, as in [1], denote ∆ = (σ1 · · · σn−1)(σ1 · · · σn−2) · · · (σ1σ2)σ1 . Then σn−k =
∆σk∆

−1 for all k , and so B and B∗ are conjugate for any B ∈ Bn ; hence by
Theorem 2.7, the braid DGAs of B and B∗ are stable tame isomorphic.
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It now suffices to show that B and B∗ have equivalent braid DGAs. Consider
the tame automorphism ξ of the algebra An which sends aij to an+1−i,n+1−j

for each generator aij (and sends 1 to 1). By inspecting the definition of φ,
we see that the induced action of ξ sends φσk

to φσ−1

n−k
, ie, ξφσk

= φσ−1

n−k
ξ for

all k . Hence ξφB∗ = φBξ for all B .

Write the braid DGAs for B,B∗ as (A, ∂), (A, ∂̃), respectively, and extend ξ to
a tame automorphism of A by sending bij to bn+1−i,n+1−j for each bij . Then

∂ξbij = ∂bn+1−i,n+1−j = ξ(aij) − φB(ξ(aij)) = ξ(aij − φB∗(aij)) = ξ∂̃bij,

and so ξ intertwines the differentials ∂ and ∂̃ .

Proposition 6.9 The knot DGA classes for a knot, its mirror, and its inverse

are the same.

Proof Let B ∈ Bn be a braid whose closure is a knot K . We first show that
the knot DGAs for B,B∗ are stable tame isomorphic, which implies that K
and its mirror have the same knot DGA class. Denote these knot DGAs by
(A, ∂), (A, ∂′), respectively.

Let Ξ be the map on n × n matrices which permutes entries according to the
definition (Ξ(M))ij = Mn+1−i,n+1−j ; note that Ξ commutes with matrix mul-
tiplication. Define the tame automorphism ξ on A by its action on generators:
ξ(A) = Ξ(A), ξ(B) = Ξ(B), ξ(C) = Ξ(C), ξ(D) = Ξ(D), ξ(ei) = en+1−i .

Inspection of the definitions of φ and ΦL shows that ξ(ΦL
σk

(A)) = Ξ(ΦL
σ−1

n−k

(A))

for all k . This, along with Proposition 4.4 and the identity ξφB∗ = φBξ
from the proof of Proposition 6.8, allows us to prove readily by induction
that ξ(ΦL

B∗(A)) = Ξ(ΦL
B(A)). Similarly, we can establish that ξ(ΦR

B∗(A)) =
Ξ(ΦR

B(A)).

Hence

∂ξB = Ξ∂B = (1 − Ξ(ΦL
B(A))) · Ξ(A) = (1 − ξ(ΦL

B∗(A))) · ξ(A) = ξ∂′B

and similarly ∂ξC = ξ∂′C , while

∂ξD = Ξ∂D = ξ(B) · (1 − ξ(ΦR
B∗(A))) − (1 − ξ(ΦL

B∗(A))) · ξ(C) = ξ∂′D

and

∂ξei = ∂en+1−i =
(
Ξ(B + ΦL

B(A) · C)
)
ii

=
(
ξ(B) + ξ(ΦL

B∗(A)) · ξ(C)
)
ii

= ξ∂′ei.

It follows that ξ intertwines ∂ and ∂′ , and so the knot DGAs of B and B∗ are
equivalent.
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Now we show that the knot DGAs of B and B−1 are equivalent; this implies
that K and its inverse have the same knot DGA class, since B−1, (B−1)∗ have

equivalent knot DGAs by the above argument, and (B−1)∗, B
−1

are conjugate
and hence have equivalent knot DGAs by Theorem 2.10. Write the knot DGA
of B−1 as (Ã, ∂̃), where the generators of Ã are marked by tildes. Identify
the generators of Ã with those of A by Ã = φB(A), B̃ = −B · ΦR

B(A), C̃ =
−ΦL

B(A) ·C , D̃ = D , and ẽi = dii−ei . Using Corollary 4.5 and Proposition 4.7,
we calculate that

∂̃B̃ = (1 − ΦL
B−1(Ã)) · Ã =

(
1 − (ΦL

B(A))−1
)
· ΦL

B(A) · A · ΦR
B(A) = ∂B̃

and similarly ∂̃C̃ = ∂C̃ , while

∂̃D̃ = B̃·(1−ΦR
B−1(Ã))−(1−ΦL

B−1(Ã))·C̃ = B·(1−ΦR
B(A))−(1−ΦL

B(A))·C = ∂D̃

and

∂̃ẽi = (B̃ + ΦL
B−1(Ã) · C̃)ii = (−B · ΦR

B(A) − C)ii = ∂(dii − ei) = ∂ẽi.

Hence our identification of generators, which yields a tame automorphism be-
tween A and Ã, gives ∂ = ∂̃ , and so the knot DGAs of B and B−1 are
equivalent.

It can similarly be shown that the abelian braid and knot DGAs do not distin-
guish between mirrors or inverses. We may then ask how our invariants relate
to classical invariants which also fail to distinguish between mirrors or inverses,
such as the Alexander polynomial and the absolute value of the signature. In
Section 7.1, we establish a connection between the knot DGA and the Alexan-
der polynomial. First, in the next section, we deduce an invariant from the
DGAs which shows that our invariants can distinguish between knots with the
same Alexander polynomial and signature.

6.3 Augmentation number

We now introduce a family of easily computable invariants derived from the
braid and knot DGAs. These invariants, which we call augmentation numbers,
gives a crude but effective way to distinguish between braid conjugacy classes
or knots. The advantage of augmentation numbers is that, unlike HC0 or the
full DGA, they are positive integers and hence require no ad hoc methods to
interpret (cf the computations of HC0 in Section 8).
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Definition 6.10 If R is a finitely generated ring and d ≥ 2 an integer,
define the Zd augmentation number of R to be the number of ring homo-
morphisms R → Zd . For B any braid and K any knot, write Aug(B, d),
Augab(B, d), Aug(K,d), Augab(K,d) for the Zd augmentation numbers of
HC0(B), HCab

0 (B), HC0(K), HCab
0 (K), respectively.

We use the term “augmentation” in keeping with [8], in which the case d = 2
is discussed in the context of DGAs and Poincaré polynomials. One could
imagine replacing Zd by any finite ring, although the usefulness of the more
general construction is unclear.

Calculating augmentation numbers is straightforward. For instance, to compute
Aug(B, d) for B ∈ Bn , write HC0(B) = Z〈{aij}〉/I and count the number of

points in Z
n(n−1)
d (the space parametrizing ring homomorphisms Z〈{aij}〉 →

Zd ) which lie in the vanishing set of I . There are dn(n−1) possible points and
n(n−1) conditions to check, corresponding to ∂bij for 1 ≤ i 6= j ≤ n. Similarly,
for Augab(B, d), there are dn(n−1)/2 possible points and n(n− 1)/2 conditions;
for Aug(K,d) with K the closure of B , dn(n−1) points and 2n2 conditions; and
for Augab(K,d), dn(n−1)/2 points and n2 conditions. (Note thus that Augab

typically takes considerably less computing time than Aug to calculate.) In all
cases, the Zd augmentation number is at least 1, as the following result shows.

Proposition 6.11 For any braid B or knot K , the ring homomorphism from

An to Z defined by sending each generator aij to −2 descends to homomor-

phisms from HC0(B), HCab
0 (B), HC0(K), HCab

0 (K) to Z.

Proof It suffices to prove the assertion for HCab
0 (K), where K is the closure

of the braid B ; see the diagram at the end of Section 6.1. Let M denote
the n × n matrix all of whose entries are −2; then we need to show that
M = ΦL

B(M) · M . It is clear from the definition of φ and Lemma 4.6 that
φσk

(M) = M and ΦL
σk

(M) · M = M . By Proposition 4.4, it follows that

ΦL
σkB(M) · M = ΦL

B(φσk
(M)) · ΦL

σk
(M) · M = ΦL

B(M) · M

for any B , and hence ΦL
B(M) · M = M for all B .

As an example of the computation of augmentation numbers, consider the trefoil
31 , for which we calculated in Section 4.1 that HC0

∼= Z[x]/((x + 2)(x− 1)); it
is also easy to see that HCab

0 (31) ∼= Z[x]/((x + 2)(x − 1)). Then Aug(31, d) =
Augab(31, d) = 2 for d 6= 3 and Aug(31, 3) = Augab(31, 3) = 1. Note that these
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augmentation numbers could be calculated without a nice form for HC0 , by
directly using the definition of ∂ .

Any knot K with HC0(K) ∼= Z[x]/(p(x)) for some polynomial p(x) satisfies
Augab(K,d) ≤ Aug(K,d) ≤ d for all d. Hence augmentation numbers can be
used to show that some knots have HC0 which is not of the form Z[x]/(p(x));
see the examples in Sections 8.5 and 8.6.

7 Knot contact homology and the determinant

For knots K , contact homology is closely related to the classical invariant
|∆K(−1)|, the determinant of K . Throughout this section, we will denote
by Σ2 = Σ2(K) the double branched cover of S3 over K , as in [22]; it is well
known that |H1(Σ2(K))| = |∆K(−1)|. In Section 7.1, we establish a surjection
from HC0(K) to a quotient of the polynomial ring Z[x] specified by the largest
invariant factor of H1(Σ2(K)), which typically is equal to the determinant of
K . In Section 7.2, we discuss a natural linearization of knot contact homology,
and see that H1(Σ2(K)), and hence the determinant, can be deduced from this
linearization.

7.1 HC0(K) and Σ2(K)

Before stating the main result of this section, we need to introduce a sequence of
polynomials which plays a key role in the remainder of the paper. Define {pm ∈
Z[x]} inductively by p0(x) = 2−x, p1(x) = x−2, pm+1(x) = xpm(x)−pm−1(x).
Perhaps a more illuminating way to view pm , m ≥ 1, is via its roots:

pm(x) =
m−1∏

k=0

(
x − 2 cos

2kπ

2m − 1

)
.

Theorem 7.1 For K a knot, let n(K) denote the largest invariant factor of

the abelian group H1(Σ2(K)). Then there is a surjective ring homomorphism

HC0(K) � Z[x]/(p(n(K)+1)/2(x)),

and this map factors through HCab
0 (K). In particular, the ranks of HC0(K)

and HCab
0 (K) are at least (n(K) + 1)/2.
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Note that n(K) is odd since the determinant of a knot is always odd, and that
n(K) divides |∆K(−1)| and is divisible by any prime dividing |∆K(−1)|. A
table of invariant factors of H1(Σ2(K)) for small knots can be found in [2].

To prove Theorem 7.1, we will need a number of preliminary results. De-
fine another sequence {qm ∈ Z[x]} by q0(x) = −2, q1(x) = −x, qm+1(x) =
xqm(x) − qm−1(x). Note that the recursion can be used to define qm for all
m ∈ Z, and that q−m = qm for all m because of symmetry.

Lemma 7.2 For all m1,m2 ∈ Z, we have

qm1
(x)qm2

(x) + qm1+m2
(x) + qm1−m2

(x) = 0.

Proof The identity holds by the defining relations for qm for m2 = 0 and
m2 = 1. It is then easy to establish by induction that it holds for all m2 ≥ 0,
and hence for all m2 since q−m2

= qm2
.

Lemma 7.3 For all `,m ∈ Z with m ≥ 0, we have pm(x) | q`+2m−1(x)−q`(x).

Proof An easy induction shows that (pm(x))2 = (x + 2)(q2m−1(x) + 2) and
pm(x)pm+1(x) = −(x + 2)(q2m(x) − x) for all m ≥ 0; since x + 2 divides
pm(x), pm+1(x), this establishes the lemma for ` = 0, 1. The lemma now follows
by induction on `.

One can more elegantly prove Lemmas 7.2 and 7.3 by noting that the polyno-
mials pm, qm are characterized by the identities pm(x + x−1) = xm + x−m −
xm−1 − x1−m , qm(x + x−1) = −xm − x−m ; the lemmas then follow easily.

We next need to recall the Burau representation on Bn ; see [1] as a reference.
For 1 ≤ k ≤ n−1, define Burσk

to be the linear map on the free Z[t, t−1] mod-
ule on n generators whose matrix is the identity except for the 2×2 submatrix
formed by the k, k + 1 rows and columns, which is

(
1−t t
1 0

)
. This extends

to a representation of Bn , classically known as the (nonreduced) Burau rep-

resentation. The Burau representation is reducible to a trivial 1-dimensional
representation spanned by the vector (1, . . . , 1), and the (n−1)-dimensional re-

duced Burau representation. More concretely, the map Z[t, t−1]n → Z[t, t−1]n−1

given by (v1, . . . , vn) 7→ (v2 − v1, . . . , vn − v1) induces the reduced Burau rep-
resentation on Z[t, t−1]n−1 .

For the remainder of this section, we will set t = −1; then the nonreduced and
reduced Burau representations of Bn act on Zn and Zn−1 , respectively. Let
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BurB and Bur0B denote the matrices for B in the two respective representations.
It is well known that Bur0B is a presentation matrix for the group H1(Σ2(K)).

We need a bit more notation. If B is a braid, let B̂ denote the “reverse” braid
obtained by reversing the word which gives B ; that is, if B = σj1

i1
σj2

i2
· · · σjm

im
,

then B̂ = σjm

im
· · · σj2

i2
σj1

i1
. (In our notation from Section 6.2, B̂ = B

−1
.) Also,

for v,w ∈ Zn , let M(v,w) denote the n × n matrix defined by (M(v,w))ij =
qvi−wj

.

Lemma 7.4 Let B ∈ Bn and v ∈ Zn . If we set A = M(v, v), then φB(A) =
M(BurB̂v,BurB̂v).

Proof Since A = M(v, v), we have aij = qvi−vj
for all i, j . The key is to

verify the relation for B = σk . If i 6= k, k + 1, then

φσk
(aki) = −ak+1,i − ak+1,kaki = −qvk+1−vi

− qvk+1−vk
qvk−vi

= q2vk−vk+1−vi

= (M(Burσk
v,Burσk

v))ki

by Lemma 7.2, and similarly φσk
(aik) = (M(Burσk

v,Burσk
v))ik ;

φσk
(ak+1,i) = aki = qvk−vi

= (M(Burσk
v,Burσk

v))k+1,i

and similarly φσk
(ai,k+1) = (M(Burσk

v,Burσk
v))i,k+1 ;

φσk
(ak,k+1) = ak+1,k = qvk+1−vk

= qvk−vk+1
= (M(Burσk

v,Burσk
v))k,k+1

and similarly φσk
(ak+1,k) = (M(Burσk

v,Burσk
v))k+1,k ; and finally, if i, j 6=

k, k + 1, then φσk
(aij) = qvi−vj

= (M(Burσk
v,Burσk

v))ij . This shows that
φσk

(A) = M(Burσk
v,Burσk

v).

By replacing v by Burσ−1

k
v , we can deduce the desired identity for B = σ−1

k

from the identity for B = σk . It thus suffices to show that if the identity holds
for B = B1 and B = B2 , then it holds for B = B1B2 . Now

φB1B2
(M(v, v)) = φB1

(φB2
(M(v, v)))

= φB2
(M(BurB̂1

v,BurB̂1
v))

= M(BurB̂2
BurB̂1

v,BurB̂2
BurB̂1

v)

= M(Bur
B̂1B2

v,Bur
B̂1B2

v),

and the lemma follows.

Lemma 7.5 Let B ∈ Bn and v ∈ Zn . If A = M(v, v), then ΦL
B(A) · A =

M(BurB̂v, v) and A · ΦR
B(A) = M(v,BurB̂v).
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Proof We will prove the identity involving ΦL ; the proof for ΦR is completely
analogous. First note that the identity is obvious when B is trivial. Now
suppose that the identity holds for B ; we show that it holds for Bσk . Indeed,
by Proposition 4.4, we have

ΦL
Bσk

(A) · A = ΦL
σk

(φB(A)) · ΦL
B(A) · A = ΦL

σk
(φB(A)) · M(BurB̂v, v).

By Lemma 4.6, (ΦL
Bσk

(A) ·A)ij = (BurB̂v)i−vj except when i = k or i = k+1;
in these cases, Lemmas 4.6, 7.2, and 7.4 yield

(ΦL
Bσk

(A) · A)kj = −φB(ak+1,k)(M(BurB̂v, v))kj − (M(BurB̂v, v))k+1,j

= −(q(Bur
B̂

v)k+1−(Bur
B̂

v)k
)(q(Bur

B̂
v)k−vj

) − q(Bur
B̂

v)k+1−vj

= q(2(Bur
B̂

v)k−(Bur
B̂

v)k+1−vj),

(ΦL
Bσk

(A) · A)k+1,j = (M(BurB̂v, v))kj = q(Bur
B̂

v)k−vj
.

In all cases, we have (ΦL
Bσk

(A) ·A)ij = q(Bur
σkB̂

v)i−vj
, and so the identity holds

for Bσk . A similar computation shows that if the identity holds for B , then it
holds for Bσ−1

k . The identity for all B follows by induction.

Proof of Theorem 7.1 Since Bur0
B̂

is a presentation matrix for H1(Σ2(K)) =

H1(Σ2(K)), and n(K) is by definition an invariant factor of H1(Σ2(K)), there
exists a vector v = (v2, . . . , vn) ∈ Zn−1 with gcd(v2, . . . , vn, n(K)) = 1, such
that the vector (Bur0

B̂
− 1)v is divisible by n(K). This means that v′ =

(0, v2, . . . , vn) ∈ Zn satisfies the following property: if we write w = (BurB̂ −
1)v′ , then wi ≡ wj (mod n(K)) for all 1 ≤ i, j ≤ n. Since the Burau represen-
tation sends (1, . . . , 1) to itself, we may define v′′ = (−w1, v2−w1, . . . , vn −w1)
and conclude that the vector (BurB̂ − 1)v′′ is divisible by n(K).

Now consider the ring homomorphism ρ : An → Z[x] defined by sending the
matrix A to M(v′′, v′′). By Lemma 7.5, ρ sends (1−ΦL

B(A)) ·A to M(v′′, v′′)−
M(BurB̂v′′, v′′). Since BurB̂v′′ ≡ v′′ (mod n(K)), Lemma 7.3 shows that for
all i, j ,

p(n(K)+1)/2

∣∣∣ qv′′i −v′′j
− q(Bur

B̂
v′′)i−v′′j

=
(
M(v′′, v′′) − M(BurB̂v′′, v′′)

)
ij

.

Hence p(n(K)+1)/2 divides all entries of ρ((1−ΦL
B(A))·A). Similarly, p(n(K)+1)/2

divides all entries of ρ(A · (1 − ΦR
B(A))). It follows that ρ descends to a map

ρ̃ : HC0(K) → Z[x]/(p(n(K)+1)/2(x)), which clearly factors through HCab
0 (K)

since qm = q−m .

It remains to show that ρ̃ is surjective, or equivalently, that x is in the image
of ρ̃. Define the set S = {j ∈ Z | qj(x) ∈ im ρ}. We first claim that S = gZ for
some g ∈ Z.
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By Lemma 7.2, if m1 ∈ S , then m1+m2 ∈ S if and only if m1−m2 ∈ S . Hence
if a1, a2 ∈ S , then the arithmetic progression {a1+`(a2−a1)}`∈Z is contained in
S . Now suppose that (m1,m2) = (a1, a2) minimizes |m1−m2|, where (m1,m2)
ranges over all pairs of distinct elements in S . Then S = {a1 + `(a2 − a1)}`∈Z ,
since the existence of an element of S not in the arithmetic progression would
violate minimality. Furthermore, 0 ∈ S since q0(x) = −2 ∈ im ρ. Hence S is
an ideal in Z, which proves the claim.

Now for 2 ≤ i ≤ n, we have ρ(ai1) = qv′′i −v′′
1

= qvi
, and so vi ∈ S . By the claim,

we conclude that all multiples of gcd(v2, . . . , vn) are in S . Since gcd(v2, . . . , vn)
and n(K) are relatively prime by construction, there exists j ∈ S with j ≡ 1
(mod n(K)). By Lemma 7.3, p(n(K)+1)/2 divides qj(x)−q1(x); but qj(x) ∈ im ρ
and q1(x) = −x, and hence x ∈ im ρ̃, as desired.

The above proof is a bit tedious and hard to digest. In [19], we will use the cord
ring to see the surjection from Theorem 7.1 rather more directly, and justify
the appearance of the polynomials pm .

7.2 Linearized knot contact homology

Although it is generally difficult to find a nice form for the full knot contact ho-
mology HC∗(K), there is a canonical linearization of HC∗(K) which is easy to
compute, and which encodes the group H1(Σ2(K)) and hence the determinant
of K . We will discuss this linearization in this section.

Let (A, ∂) be the knot DGA for a knot K . It follows easily from Proposi-
tion 6.11 that the algebra map ε : A → Z, sending each generator aij to −2,
and all other generators to 0, gives an augmentation for (A, ∂); that is, ε◦∂ = 0.
As in [3], we can construct linearized homology groups via this augmentation.

Let ϕε : A → A be the algebra isomorphism which sends aij to aij − 2 for
all i, j , and acts as the identity on the other generators bij , cij , dij , ei . Let
M be the subalgebra of A generated by all words of length at least 1. Then
∂ε := ϕε ◦ ∂ ◦ ϕ−1

ε maps M into itself. For any k ≥ 2, ∂ε descends to a
differential ∂lin

ε on the finite-rank graded Z-module M/Mk , and the homology
of the resulting complex gives a linearized version of HC∗(K).

We now restrict our attention to the simplest nontrivial case, k = 2, although
higher values of k also yield knot invariants. Note that M/M2 is a free Z-
module generated in degree 0 by aij , in degree 1 by bij and cij , and in degree
2 by dij and ei .
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Definition 7.6 The linearized contact homology of K , written HC lin
∗ (K), is

the graded homology of ∂ε on M/M2 .

Using the conjugation symmetry of Section 6.1, we can also define an abelian
version of linearized contact homology. In this case, (A, ∂) is the abelian knot
DGA of K with corresponding maximal subalgebra M, and ∂ε descends to a
differential on M/M2 , whose homology we denote by HCab,lin

∗ (K).

Proposition 7.7 The groups HC lin
∗ (K) and HCab,lin

∗ (K) are invariants of

the knot K .

Proof All of the stable tame isomorphisms used in the proof of Theorem 2.10
commute with ε, because φB ◦ ε = ε ◦ φB for any braid B . The proposition
follows.

We now establish some results about HC lin
∗ (K). Note that this homology exists

only in dimensions ∗ = 0, 1, 2.

Proposition 7.8 For K a knot, HC lin
2 (K) ∼= Z and HC lin

1 (K) ∼= (H1(Σ2) ⊕
Z) ⊗ (H1(Σ2) ⊕ Z) ⊕ Zm for some m ≥ 0.

Proposition 7.8 will follow almost immediately from a lemma which we now for-
mulate. Let d1, d2, . . . , dk be the invariant factors of H1(Σ2), with d1|d2| · · · |dk .
Write Y = BurB̂ , and express 1 − Y in Smith normal form; more precisely,
there are matrices X1,X2 ∈ GL(n, Z) with X1 · (1 − Y )X2 = ∆, where ∆
is a diagonal matrix. Since 1 − Y is a presentation matrix for H1(Σ2) ⊕ Z,
we may assume that the diagonal entries of ∆ are precisely d1, . . . , dn , where
dk+1 = · · · = dn−1 = 1 and dn = 0.

Now write the linearized chain complex of the alternate knot DGA of the braid

B as C2
M2→ C1

M1→ C0 , where C0 , C1 , C2 are generated by {aij}, {bij , cij , dij},
{eij , fij}, respectively. The map M2 is given by the action of ∂lin

ε on C2 :
∂lin

ε E = B − D − C · (BurB̂)T , ∂lin
ε F = B − C − BurB̂ · D .

Lemma 7.9 After changing bases for C1 and C2 , we can write M2 as a diag-

onal (3n2 − n)× (2n2) matrix, with n2 diagonal entries given by gcd(di, dj) =
dmin(i,j) , 1 ≤ i, j ≤ n, and the remaining n2 diagonal entries given by 1.
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Proof We wish to calculate Smith normal form for M2 . Replace D by D +
B −C ·Y T and then F by F + Y ·E (this simply reparametrizes dij and fij );
then ∂lin

ε E = −D and ∂lin
ε F = B −C − Y · (B −C · Y T ). The action of ∂lin

ε on
E gives n2 “1” diagonal entries in M2 . To complete the Smith normal form
for M2 , we need to examine the matrix Z = B − C − Y · (B − C · Y T ).

Introduce dummy variables b11, . . . , bnn (this adds n rows of zeros to M2 ), and
replace bij by bij − bjj for all i 6= j . If we write B̃ = (bij), which is identical to
B away from the diagonal, then Z becomes B̃ − C − Y · (B̃ − C · Y T ). Next
replace Z by X1 · Z · ZT

1 ; this has the effect of changing basis in C2 . Finally,
change basis in C1 by successively replacing B̃ by X2 · B̃ · (XT

1 )−1 + C , and
then C by Y −1 · X−1

1 · C · XT
2 . Then Z becomes

∆ · B̃ − C · ∆ = (dibij − djcij).

The lemma follows immediately.

Proof of Proposition 7.8 We have HC lin
2 (K) = ker M2 and HC lin

1 (K) =
(ker M1)/(im M2). Write M2 as in Lemma 7.9. Since d1, . . . , dn−1 > 0, M2

has only one 0 diagonal entry, and so ker M2
∼= Z.

For HC lin
1 (K), assume that we have chosen bases for C1, C2 so that M2 is diago-

nal with diagonal entries δ1, . . . , δ2n2 , with δ2n2 = 0 and δi 6= 0 for i < 2n2 . Let
the corresponding basis for C1 be v1, . . . , v3n2−n . Then v1, . . . , v2n2−1 ∈ ker M1 ,
and indeed we may assume that {v1, . . . , v2n2−1+m} forms a basis for ker M1 for
some m ≥ 0. It follows that (ker M1)/(im M2) ∼= Zm⊕⊕iZδi

. From Lemma 7.9,
we conclude that (ker M1)/(im M2) ∼= (H1(Σ2) ⊕ Z) ⊗ (H1(Σ2) ⊕ Z) ⊕ Zm , as
desired.

We conjecture that m is always 0 in Proposition 7.8. Even if this is not the
case, Proposition 7.8 still implies that we can deduce H1(Σ2) from HC lin

1 (K);
this is an easy consequence of the fundamental theorem of finitely generated
abelian groups.

Corollary 7.10 The group H1(Σ2), and hence the determinant |∆K(−1)|, is

determined by the equivalence class of the knot DGA of K .

We now turn our attention to HC lin
0 (K), and derive a result which will be used

in the sequel [19].

Proposition 7.11 There are surjections

HC lin
0 (K) � HC lin,ab

0 (K) � Sym2(H1(Σ2)).

Geometry & Topology, Volume 9 (2005)



286 Lenhard Ng

The proof of Proposition 7.11 is essentially a linearized version of the (more
involved) proof of Theorem 7.1, and we provide just an outline here. The
matrix BurB̂ acts on Zn , which has generators e1, . . . , en , and it is an easy
exercise to check that H1(Σ2) is generated by the differences {ei − ej}, modulo
the relations BurB̂ei − ei = 0 for all i. (Note that BurB̂ei − ei is a linear
combination of differences ej1 − ej2 .)

Lemma 7.12 In the ring Z[e1, . . . , en], if A = (−2 + (ei − ej)
2), then

ΦL
B(A) · A =

(
−2 + (BurB̂ei − ej)

2 + O(e4)
)

and

ΦR
B(A) · A =

(
−2 + (ei − BurB̂ej)

2 + O(e4)
)
.

Proof Induction on the braid word B , as in the proof of Lemma 7.5.

Proof of Proposition 7.11 The surjection from HC lin
0 (K) to Sym2(H1(Σ2))

which factors through HC lin,ab
0 (K), sends aij to (ei −ej)

2 . This is well-defined
by Lemma 7.12 and the fact that BurB̂ei − ei = 0 in H1(Σ2) for all i; it is a
surjection by polarization, since 2 is invertible in Sym2(H1(Σ2)).

A more natural way to see the second surjection in Proposition 7.11, using cords,
is given in Section 5.2 of [19]. By all computational indications, it seems likely

that this surjection is always an isomorphism, and hence that HC lin,ab
0 (K) is

determined by H1(Σ2) for all knots K . However, HC lin
0 (K) is not determined

by H1(Σ2). For instance, the knots 818 and 937 both satisfy H1(Σ2) ∼= Z3⊕Z15 ,
but HC lin

0 (818) ∼= Z3
3 ⊕ Z15 , while HC lin

0 (937) ∼= Z2
3 ⊕ Z15 . It is possible that

HC lin
0 (K) is always isomorphic to either Sym2(H1(Σ2)) or H1(Σ2) ⊗ H1(Σ2);

this has been verified for all prime knots with eleven or fewer crossings.

8 Computations

The combinatorial nature of our invariants allows them to be calculated readily
by computer. Mathematica source to compute the invariants is available at the
author’s web site. The full program requires the installation of the noncommu-
tative algebra package NCAlgebra/NCGB [11], though there is a commutative
version which does not use NCAlgebra. Using the program, we can calculate
the braid homomorphism φ, braid and knot DGAs, HC0 (via Gröbner bases),
augmentation numbers, and linearized knot contact homology. Many of the
calculations in this section were performed with the help of the program.
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8.1 Braid conjugacy classes

It can be difficult to tell if two braids have equivalent braid DGAs. Currently,
the most effective computational tool in this regard is the augmentation number
invariant described in Section 6.3, which can be calculated by computer and is
reasonably effective in distinguishing between braid conjugacy classes.

B w Aug(B, 2) Augab(B, 2) Augab(B, 5) Augab(B, 7)

σ5
1σ2 6 5 1 4 6

σ3
1σ3

2 6 9 5 12 18

σ3
1σ2 4 4 2 5 7

σ5
1σ−1

2 4 4 2 5 6

σ3
1σ2σ

−1
1 σ2 4 4 2 4 7

σ1σ2 2 4 2 5 7

σ3
1σ−1

2 2 4 2 4 7

σ3
1σ−1

2 σ1σ
−1
2 2 2 2 9 4

σ1σ
−1
2 0 5 1 4 6

σ1σ
−1
2 σ1σ

−1
2 0 9 5 12 18

σ3
1σ−3

2 0 7 5 11 13

σ2
1σ−2

2 σ1σ
−1
2 0 1 1 4 2

σ−2
1 σ2

2σ
−1
1 σ2 0 1 1 4 2

Table 1: The conjugacy classes in B3 with nonnegative writhe which can be represented
by a connected braid of word length at most 6, identified by such a representative B .
The writhe w is given, along with various augmentation numbers.

In Table 1, we list all conjugacy classes in B3 of nonnegative writhe which
can be represented by a connected braid of word length at most 6, along with
their writhe and selected augmentation numbers. (Recall that the writhe w is
the homomorphism Bn → Z for which w(σk) = 1 for all k .) The augmenta-
tion numbers, combined with the writhe, distinguish all of the given conjugacy
classes, with the exception of the mirrors σ2

1σ
−2
2 σ1σ

−1
2 and σ−2

1 σ2
2σ

−1
1 σ2 , which

by Proposition 6.8 cannot be distinguished using our invariants.

Without the use of the writhe, our invariants become less effective. For instance,
it can be shown that the braid DGAs for σ1σ2 and σ3

1σ2 are both stable tame
isomorphic to the DGA on two generators of degree 0 and two generators of
degree 1, with ∂ = 0.
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8.2 The unknot and unlink, and other links

The unknot is the closure of the trivial braid in B1 , whose knot DGA is gener-
ated by b11, c11 in degree 1 and d11, e1 in degree 2, with differential given by
∂b11 = ∂c11 = ∂d11 = 0, ∂e1 = b11 + c11 . (The 1 × 1 matrices ΦL and ΦR for
the trivial braid in B1 are simply (1).) This is stable tame isomorphic to the
DGA with generators b11 in degree 1 and d11 in degree 2, and with ∂ = 0. In
particular, we see that HC0(unknot) ∼= Z.

More generally, let Ln denote the n-component unlink, which is the closure of
the trivial braid B0

n in Bn . The matrices ΦL
B0

n
and ΦR

B0
n

are both the identity,

and so the knot DGA of B0
n has differential ∂aij = ∂bij = ∂cij = ∂dij = 0,

∂ei = bii + cii , and HC0(Ln) ∼= Z〈{aij}〉.

By contrast, the Hopf link, which is the closure of σ2
1 ∈ B2 , has knot DGA

satisfying

∂B =

(
−4 + a12a21 4a12 − a12a21a12

0 −4 + a21a12

)

and ∂C =

(
−4 + a12a21 0

4a21 − a21a12a21 −4 + a21a12

)
.

It follows that HC0(Hopf) ∼= Z〈a12, a21〉/〈−4 + a12a21,−4 + a21a12〉, which is
not isomorphic to HC0(L2).

Finally, consider the split link 31 t 01 given by the closure of σ3
1 ∈ B3 , which

is the unlinked union of an unknot and a trefoil. We can compute that

HC0(31 t 01) ∼= Z〈a12, a13, a31, a23, a32〉/〈−2 + a12 + a2
12,

a13 − a23 − a12a13 + a12a23, a31 − a32 − a31a12 + a32a12〉,

which is not isomorphic to HC0(L2). Hence our invariants, in contrast to the
Alexander polynomial, can distinguish between split links.

8.3 Torus knots T (2, n)

In this section, we generalize our computation in Section 4.1 of HC0 for the
trefoil, by computing HC0 for all torus knots of the form T (2, n).

First we introduce two sequences related to the polynomials qm(x) discussed

in Section 7.1. In A2 , define {q
(1)
m }, {q

(2)
m } by q

(1)
0 = q

(2)
0 = −2, q

(1)
1 = a12 ,

q
(2)
1 = a21 , and q

(1)
m+1 = −a12q

(2)
m −q

(1)
m−1 , q

(2)
m+1 = −a21q

(1)
m −q

(2)
m−1 ; by definition,

we have q
(1)
m |a12=a21=−x = q

(2)
m |a12=a21=−x = qm(x).
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Lemma 8.1 For k ≥ 1, we have

ΦL
σ2k−1

1

(A) · A =

(
q
(2)
2k−1 q

(2)
2k

q
(1)
2k−2 q

(1)
2k−1

)
and A · ΦR

σ2k−1

1

(A) =

(
q
(1)
2k−1 q

(1)
2k−2

q
(2)
2k q

(2)
2k−1

)
.

Proof We prove the first identity; the second follows similarly or by conjuga-
tion symmetry. For k = 1, the identity can be verified directly. For k ≥ 2, by
Proposition 4.4, we have

ΦL
σ2k−1

1

(A) · A = ΦL
σ2
1

(φσ2k−3

1

(A)) · ΦL
σ2k−3

1

(A) · A.

Now φσ2
1
(A) = A, and so φσ2m−1

1

(A) = φσ1
(A) =

(
−2 a21

a12 −2

)
; then we com-

pute that ΦL
σ2
1

(φσ2m−1

1

(A)) =
(
−1+a21a12 a21

−a12 −1

)
. The desired identity can now be

checked by induction on m.

We can now compute HC0 for the (2, 2k − 1) torus knot.

Proposition 8.2 For k ≥ 1, HC0(T (2, 2k − 1)) ∼= Z[x]/(pk(x)), where pk is

the polynomial defined in Section 7.1.

Proof By Lemma 8.1, we have ((1−ΦL
σ2k−1

1

(A)) ·A)12 = a12−q
(2)
2k and (A ·(1−

ΦR
σ2k−1

1

(A)))21 = a21 − q
(2)
2k . Hence in HC0(T (2, 2k − 1)), we have a12 = a21 ,

and we can set x := −a12 = −a21 . The relations in HC0(T (2, 2k − 1)) then
become the entries of the matrix

(
−2 − q2k−1(x) −x − q2k(x)
−x − q2k−2(x) −2 − q2k−1(x)

)
.

Now define rm(x) = qm(x)−q2k−1−m(x) for all m, so that rm(x) = xrm+1(x)−
rm+2(x). We have

HC0(T (2, 2k − 1)) ∼= Z[x]/(−x − q2k−2(x),−x − q2k(x),−2 − q2k−1(x))

= Z[x]/(r0(x), r1(x)),

where the second equality holds because −x−q2k(x) = r−1(x) = xr0(x)−r1(x).
Now

gcd(r0(x), r1(x)) = gcd(r1(x), r2(x)) = · · · = gcd(rk−1(x), rk(x)) = rk−1(x);

since rk−1(x) = pk(x) by induction on k , the proposition follows.
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Proposition 8.2 shows that the surjection in Theorem 7.1 is actually an iso-
morphism for (2, n) torus knots. This is established in more generality, for all
two-bridge knots, in [19]. However, we will see in the following sections that it
is not true for all knots.

Before moving on, we make an observation regarding the trefoil in the context
of Legendrian knot theory. We have seen that HC0 for the trefoil is Z[x]/(x2 +
x−2). This has two maps to Z2 and thus the knot DGA for the trefoil has two
augmentations over Z2 . If we use the form for the trefoil knot DGA given at the
end of Section 2.2, then one augmentation, ε0 , sends a12 and a21 to 0, while
the other, ε1 , sends them to 1. The linearized differential for ε0 is simply given
by the linear terms in the differential mod 2, and one can calculate that this
has Poincaré polynomial λ2 + λ (ie, homology of dimension 1 in degrees 2 and
1). On the other hand, one can check that the augmentation ε1 yields Poincaré
polynomial 4λ2 + 4λ. This is an example where different augmentations of a
DGA measuring relative contact homology give different Poincaré polynomials
over Z2 ; this phenomenon has also now been observed for some Legendrian
knots in R3 [17].

8.4 Torus knots T (3, n)

The invariant HC0 is not as simple for general torus knots as it is for T (2, n).
For instance, if we write the torus knot T (3, 4) as the closure of the braid
(σ1σ2)

4 ∈ B3 , we can calculate

HC0(T (3, 4)) ∼= Z〈a1, a2〉/〈2a1 − 2a2 − a2
1 + a1a2 + a3

1 − a2
1a2,

− a1a2 + a2a1 + a2
1a2 − a2a

2
1,−3a1 + 3a2 + a1a2a1 − a2a1a2,

− a1 + a2 + a2
1 − a2

2, 2 + a2 − a1a2 − a2a1 − a3
1〉.

Furthermore, if we use lexicographic order with a1 < a2 , then the above presen-
tation gives a Gröbner basis for the ideal. Thus as an additive abelian group,
HC0(T (3, 4)) ∼= Z7 , generated by 1, a1, a2, a

2
1, a1a2, a2a1, a1a2a1 . On the other

hand, the abelianization of HC0(T (3, 4)) is easily shown to be isomorphic to
Z[x]/(x3 − 2x2 − x + 2), and so HC0(T (3, 4)) is noncommutative. Note that
HC0(T (3, 4)) does map surjectively to Z[x]/(x2 − x − 2), as per Theorem 7.1.

In general, it seems that HC0(T (m,n)) is too complicated to be expressed in
closed form. However, for T (3, n), there is a relatively simple expression for
HCab

0 , if not for HC0 (cf HC0(T (3, 4)) above).

It is easy to see that HCab
0 (T (3, n)) can be written in the form Z[x]/(p(x))

for some polynomial p. The knot T (3, n) is the closure of (σ1σ2)
n ∈ B3 , and
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φ(σ1σ2)n cyclically permutes a12, a23, a31 when 3 does not divide n. Hence the

generators a12, a23, a13 of HCab
0 (T (3, n)) are equal by Corollary 4.9. (The same

argument shows that HC0(T (3, n)) is generated by two elements.)

Explicitly calculating HCab
0 (T (3, n)) is more involved; a straightforward but

tedious induction, along the lines of the proof of Proposition 8.2, yields the
following result.

Proposition 8.3 If gcd(3, n) = 1, then

HCab
0 (T (3, n)) ∼=

{
Z[x]/(rk(x)), n = 2k − 1

Z[x]/(sk(x)), n = 2k − 2,

where r0(x) = 2 − x, r1(x) = x − 2, rm+1(x) = (x − 1)rm(x) − rm−1(x), and

s1(x) = 0, s2(x) = (x − 2)(x + 1), sm+1(x) = (x − 1)sm(x) − sm−1(x).

Note that rk(x) = x−2
x−3 pk(x − 1).

8.5 The connected sums 31#31 and 31#31

When we view the connected sum 31#31 as the closure of σ3
1σ

3
2 ∈ B3 , we can

calculate that Augab(31#31, 2) = 7, and hence HC0(31#31) is not of the form
Z[x]/(p(x)). To garner more information, we use the standard Gröbner basis
algorithm to find that

HC0(31#31) ∼= Z〈a1, a2, a3, a4〉/〈(a1 + 2)(a1 − 1), (a2 + 2)(a2 − 1),

(a1 − 1)a3, a4(a1 − 1), (a2 − 1)a4, a3(a2 − 1)〉.

The given presentation for the above ideal is a noncommutative Gröbner ba-
sis for the ideal with respect to any lexicographic order, and it follows that
HC0(31#31) is noncommutative (for instance, a1a3 6= a3a1 ) and not finitely
generated as a Z-module. It is also true that HCab

0 has infinite rank in this
case; in fact,

HCab
0 (31#31) ∼= Z[a1, a2, a3]/((a1 + 2)(a1 − 1), (a2 + 2)(a2 − 1),

(a1 − 1)(a3 − a2), (a2 − 1)(a3 − a1)).

As another application of this example, it turns out that precisely the same
computation holds for 31#31 ; hence it is not true that HC0 or HCab

0 deter-
mines the isotopy class of a knot, even up to mirrors.
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8.6 Knot contact homology and other invariants

From the computations of the previous sections, the HC0 invariant for knots
depends on more than the determinant of the knot. It is also not determined
by the Alexander polynomial; for instance, the knots 61 and 946 have the same
Alexander polynomial, but Augab(61, 2) = 2 while Augab(946, 2) = 5.

More generally, knot contact homology seems to behave independently of many
known knot invariants. In particular, HC0 can distinguish knots which share
many of the same “classical” invariants.

The knots 1025 and 1056 (the mirror of 1056 , with the conventions of [22]) are
both alternating, with the same HOMFLY polynomial and signature; hence
they also share the same Alexander polynomial, Jones polynomial, Khovanov
invariant [13] (by a result of [15]), and Ozsváth–Szabó invariant [21]. On the
other hand, we have Augab(1025, 7) = 1, while Augab(1056, 7) = 2.

Similarly, the knots 11a
255 and 11a

257 , alternating 11-crossing knots from Con-
way’s enumeration [4], have the same (two-variable) Kauffman polynomial, but
Augab(11a

255, 7) = 1 while Augab(11a
257, 7) = 2. We conclude the following

result.

Proposition 8.4 The invariant HC0 for knots is not determined by any of

the following: Alexander polynomial, Jones polynomial, HOMFLY polynomial,

Kauffman polynomial, signature, Khovanov invariant, and Ozsváth–Szabó in-

variant.

9 An alternate knot invariant

As explained in Section 3, in the symplectic world, the knot DGA counts holo-
morphic disks with certain boundary conditions determined by the knot. This
count is well defined modulo 2, and so we obtain a DGA over Z2 . To lift
this DGA to Z coefficients, however, we need a set of coherent orientations for
the relevant moduli spaces. The knot DGA we have been using presumably
corresponds to a choice of coherent orientations, but there are others.

By experimenting with various choices of signs, one can derive several inequiv-
alent choices for DGAs over Z which are knot invariants and agree with the
original knot DGA modulo 2, but only two seem to give “nice” results for sim-
ple knots (eg, such that HC0 for small knots is of the form Z[x]/(p(x))). One
is the knot DGA already described; the other we call the alternate knot DGA.
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This alternate theory lacks some of the nice properties of the knot DGA—for in-
stance, no obvious analogue of Theorem 7.1 exists for the alternate DGA—but
it seems to give a sharper knot invariant than the usual DGA.

9.1 The alternate DGA

We follow the definition of the knot DGA, making adjustments where necessary.

Let φ̃ denote the homomorphism from Bn to Aut(An) defined on generators
by

φ̃σk
:





aki 7→ −ak+1,i + ak+1,kaki i 6= k, k + 1
aik 7→ −ai,k+1 − aikak,k+1 i 6= k, k + 1

ak+1,i 7→ aki i 6= k, k + 1
ai,k+1 7→ aik i 6= k, k + 1
ak,k+1 7→ −ak+1,k

ak+1,k 7→ −ak,k+1

aij 7→ aij i, j 6= k, k + 1.

Note that φ̃ is identical to φ modulo 2, and that φ and φ̃ are conjugate through
the automorphism of An which sends aij to aij if i < j and −aij if i > j .

Write A = (aij), B = (bij), C = (cij), D = (dij) as usual, with the crucial
difference that we set aii = 0, rather than aii = −2, for all i. Denote by φ̃ext

the composition map Bn ↪→ Bn+1
φ̃
→ Aut(An), and define matrices Φ̃L

B(A),
Φ̃R

B(A) by

φ̃ext
B (ai∗) =

n∑

j=1

(Φ̃L
B(A))ijaj∗ and φ̃ext

B (a∗j) =
n∑

i=1

a∗i(Φ̃
R
B(A))ij .

Then the alternate knot DGA of B ∈ Bn is generated, as before, by {aij | 1 ≤
i 6= j ≤ n} in degree 0, {bij , cij | 1 ≤ i, j ≤ n} in degree 1, and {dij | 1 ≤ i, j ≤
n} and {ei | 1 ≤ i ≤ n} in degree 2, with

∂A = 0

∂B = (1 + Φ̃L
B(A)) · A

∂C = A · (1 + Φ̃R
B(A))

∂D = B · (1 + Φ̃R
B(A)) − (1 + Φ̃L

B(A)) · C

∂ei = (B − Φ̃L
B(A) · C)ii.

Note the difference in signs from Definition 2.9. Also, let the alternate contact

homology of a knot K , written H̃C∗(K), be the homology of the alternate
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knot DGA of any braid closing to K . As mentioned before, the alternate knot
DGA and contact homology are identical modulo 2 to the usual knot DGA and
contact homology.

Theorem 9.1 The stable tame isomorphism class of the alternate knot DGA,

as well as H̃C∗ , are knot invariants.

The proof of Theorem 9.1 is entirely analogous to the proofs from Sections 4
and 5, and is omitted here.

Many of the results from Section 6 still hold in this context. We can define
conjugation on the alternate knot DGA by aij = −aji , bij = −cji , cij = −bji ,
dij = dji , and ei = dii − ei ; then the differential ∂ in the alternate knot DGA
commutes with conjugation. Hence we can form the alternate abelian knot DGA

similarly to Definition 6.5, but with aji = −aij and cij = −bji . None of the
alternate invariants distinguish between knot mirrors or inverses.

9.2 Computations of H̃C0(K) for small knots

One interesting question is whether an analogue of Theorem 7.1 holds for H̃C0 .
In all computations performed by the author, there is a surjection from H̃C0(K)

to some ring of the form Z[x]/(p(x)), where p is monic of degree n(K)+1
2 and

p(x) ≡ p(n(K)+1)/2(x) (mod 2). Why this should be true in general is unclear.

Nevertheless, for small knots K , we have H̃C0(K) ∼= Z[x]/(p(x)) for some
polynomial p with deg(p) = (|∆K(−1)|+1)/2. In contrast to the case of HC0 ,
however, the polynomial p depends on more than just |∆K(−1)|. For example,
the knots 41 and 51 both satisfy |∆K(−1)| = 5 and HC0(K) ∼= Z[x]/(x3−x2−

3x+2), but H̃C0(41) ∼= Z[x]/(x3−x2+x), while H̃C0(51) ∼= Z[x]/(x3−x2−x).
See Table 2 for more examples.

Proposition 9.2 If K is a prime knot with seven or fewer crossings, then we

can write H̃C0(K) ∼= Z[x]/(p(x)) with deg(p) = (|∆K(−1)| + 1)/2. Further-

more, p can be expressed as p = p̃(|∆K(−1)|+1)/2 for some sequence {p̃m} with

p̃0(x) = p̃1(x) = x and p̃m+1(x) = xp̃m(x)± p̃m−1(x) for each m; in particular,

p ≡ p(|∆K(−1)|+1)/2 (mod 2), with {pm} as in Section 7.1.

Proposition 9.2 can be verified by direct computation using the author’s pro-
gram in Mathematica; see Table 2.

As with HC0 , it is easy to compute H̃C0 explicitly for any torus knot T (2, n).
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K p(x) with H̃C0(K) ∼= Z[x]/(p(x)) D(p)

01 x 1

31 x2 − x 1

41 x3 − x2 + x −3

51 x3 − x2 − x 5

52 x4 − x3 + x −23

61 x5 − x4 + x3 + x 257

62 x6 − x5 − 2x4 + x3 + x2 + x 1777

63 x7 − x6 − x5 + 2x4 − x2 + x −10571

71 x4 − x3 − 2x2 + x 49

72 x6 − x5 + x3 + x2 − x 4409

73 x7 − x6 − 3x5 + 2x4 + 2x3 + x2 − x 78301

74 x8 − x7 + 4x6 − 3x5 + 4x4 − 2x3 + x −1166607

75 x9 − x8 − x7 + 2x6 + x5 − 2x4 + 2x2 − x −4690927

76 x10 − x9 + 2x8 − x7 + 3x6 − x5 + 2x4 + x2 + x 90320393

77 x11 − x10 + 3x9 − 2x8 + 4x7 − 3x6 + 3x5 − 2x4 + x3 − x2 + x −932501627

Table 2: The invariant H̃C0(K) for prime knots with seven or fewer crossings, and the
discriminant D(p). Knot notation is as in [22].

Proposition 9.3 For k ≥ 1, HC0(T (2, 2k − 1)) ∼= Z[x]/(p̃k(x)), where

p̃k(x) =

k−1∑

j=0

(−1)dj/2e

(
k − 1 − dj/2e

bj/2c

)
xk−j.

Note that the sequence {p̃k} in Proposition 9.3 satisfies p̃0(x) = p̃1(x) = x and
p̃m+1(x) = xp̃m(x) − p̃m−1(x), and that p̃m(x) = xpm(x)/(x + 2) for all m.

In general, when H̃C0(K) is of the form Z[x]/(p(x)) with p monic, the poly-
nomial p(x) is not unique; however, we can deduce two useful invariants of

the isomorphism class of H̃C0(K) from p(x). The first is the degree of p,

which is simply the vector space dimension of H̃C0(K; Q). The second is the
discriminant D(p), the well-known integer invariant which can be defined as∏

i<j(ri − rj)
2 , where {ri} is the set of roots of p.

Table 2 gives H̃C0(K) for all prime knots K with seven or fewer crossings, while
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K p(x) with HC0(K) ∼= Z[x]/(p(x)) p(x) with H̃C0(K) ∼= Z[x]/(p(x))

01 x − 2 x

31 x2 − x − 2 x2 − x

41 x3 − x2 − 3x + 2 x3 − x2 + x

51 x3 − x2 − 3x + 2 x3 − x2 − x

52 x4 − x3 − 4x2 + 3x + 2 x4 − x3 + x

61 x5 − x4 − 5x3 + 4x2 + 5x − 2 x5 − x4 + x3 + x

62 x6 − x5 − 6x4 + 5x3 + 9x2 − 5x − 2 x6 − x5 − 2x4 + x3 + x2 + x

63 x7 − x6 − 7x5 + 6x4 + 14x3 − 9x2 − 7x + 2 x7 − x6 − x5 + 2x4 − x2 + x

71 x4 − x3 − 4x2 + 3x + 2 x4 − x3 − 2x2 + x

72 x6 − x5 − 6x4 + 5x3 + 9x2 − 5x − 2 x6 − x5 + x3 + x2 − x

73 x7 − x6 − 7x5 + 6x4 + 14x3 − 9x2 − 7x + 2 x7 − x6 − 3x5 + 2x4 + 2x3 + x2 − x

Table 3: Comparison between HC0 and H̃C0 for some small knots.

Table 3 contrasts the invariants HC0 and H̃C0 . Note that the discriminant on
H̃C0 allows us to distinguish between knots which have the same HC0 ; in other
words, lifting H̃C0(K; Z2) = HC0(K; Z2) to H̃C0(K) does give new informa-
tion. This would seem to provide an instance where considering orientations in
contact homology yields results not given by the unoriented theory.

References

[1] J Birman, Braids, Links, and Mapping Class Groups, Ann. of Math. Studies
82, Princeton University Press, Princeton (1974)

[2] G Burde, H Zieschang, Knots, 2nd edition, de Gruyter Studies in Mathe-
matics 5, Walter de Gruyter, Berlin (2003)

[3] Y Chekanov, Differential algebra of Legendrian links, Invent. Math. 150 (2002)
441–483

[4] JH Conway, An enumeration of knots and links, and some of their algebraic

properties, from “Computational Problems in Abstract Algebra (Oxford, 1967)”,
Pergamon, Oxford (1970) 329–358

[5] T Ekholm, J Etnyre, M Sullivan, Legendrian submanifolds in R2n+1 and

contact homology, arXiv:math.SG/0210124

Geometry & Topology, Volume 9 (2005)



Knot and braid invariants from contact homology I 297

[6] Y Eliashberg, Invariants in contact topology, from: “Proceedings of the ICM
(Berlin, 1998)”, Doc. Math. Extra Vol. II (1998) 327–338

[7] Y Eliashberg, A Givental, H Hofer, Introduction to Symplectic Field The-

ory, GAFA 2000 (Tel Aviv, 1999), Geom. Funct. Anal. Special Volume, Part II
(2000) 560–673

[8] J Epstein, D Fuchs, M Meyer, Chekanov–Eliashberg invariants and trans-

verse approximations of Legendrian knots, Pacific J. Math. 201 (2001) 89–106

[9] J Etnyre, L Ng, J Sabloff, Invariants of Legendrian knots and coherent ori-

entations, J. Symplectic Geom. 1 (2002) 321–367

[10] K Fukaya, Y-G Oh, Zero-loop open strings in the cotangent bundle and Morse

homotopy, Asian J. Math. 1 (1997) 96–180

[11] J Helton, R Miller, M Stankus, NCAlgebra: a Mathematica package for

doing non commuting algebra, http://www.math.ucsd.edu/∼ncalg

[12] S Humphries, An approach to automorphisms of free groups and braids via

transvections, Math. Z. 209 (1992) 131–152

[13] M Khovanov, A categorification of the Jones polynomial, Duke Math. J. 101
(2000) 359–426

[14] D Krammer, The braid group B4 is linear, Invent. Math. 142 (2000) 451–486

[15] E S Lee, On Khovanov invariant for alternating links, Adv. Math. to appear,
arXiv:math.GT/0210213

[16] W Magnus, Rings of Fricke characters and automorphism groups of free

groups, Math. Z. 170 (1980) 91–103

[17] P Melvin, S Shrestha, The nonuniqueness of Chekanov polynomials of Leg-

endrian knots, arXiv:math.GT/0411206

[18] L Ng, Computable Legendrian invariants, Topology 42 (2003) 55–82

[19] L Ng, Knot and braid invariants from contact homology II, preprint,
arXiv:math.GT/0303343

[20] H Ooguri, C Vafa, Knot invariants and topological strings, Nuclear Phys. B
577 (2000) 419–438

[21] P Ozsváth, Z Szabó, Holomorphic disks and knot invariants, Adv. Math. 186
(2004) 58–116

[22] D Rolfsen, Knots and Links, Publish or Perish, Berkeley (1976)

[23] J Sabloff, Invariants of Legendrian knots in circle bundles, Commun. Contemp.
Math. 5 (2003) 569–627

Geometry & Topology, Volume 9 (2005)


