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Introduction

There is by now a significant literature on homological stability properties of
various families of discrete groups, including matrix groups, mapping class
groups of surfaces, and automorphism groups of free groups. The present paper
is yet another contribution in this direction, for a family of groups As

n,k that can
be thought of as relative versions of automorphism groups of free groups. The
groups A1

n,k arose first in [23] in studying the relation between mapping class
groups of surfaces and automorphism groups of free groups, and applications to
this work provide our main motivation. The extra parameter s in the family,
necessary for the proof of the stability theorem, has also interests of its own.
In the present paper we exploit the fact that As

n,k can be realized as a quotient
of the mapping class group of a certain 3 manifold, and our proof of stability
applies to give a homological stability result for the analogous quotients of the
mapping class groups of general compact orientable 3 manifolds.

The quickest definition of An,k = A1
n,k is in terms of homotopy equivalences of

graphs. Let Gn,k denote the graph shown in Figure 1 consisting of a wedge of
n circles together with k distinguished circles joined by arcs to the basepoint.

n k

Figure 1: The graph Gn,k

Then An,k is the group of path-components of the space of homotopy equiva-
lences of Gn,k that preserve the basepoint and restrict to the identity on each of
the k distinguished circles. If this last condition is relaxed to allow homotopy
equivalences that rotate each of the k distinguished circles, the group An,k is
replaced by the group Autn,k of automorphisms of the free group on n + k

generators that take each of the last k generators to a conjugate of itself. By
restricting the more general homotopy equivalences of Gn,k to their rotations
of the distinguished circles, we obtain a fibration whose associated long exact
sequence of homotopy groups is a short exact sequence

1 −→ Z
k −→ An,k −→ Autn,k −→ 1

expressing An,k as a central extension of Autn,k . The groups Autn,k can be
regarded as interpolations between automorphism groups of free groups, which
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are the groups Autn,0 , and the groups Aut0,k which are the ‘symmetric’ au-
tomorphism groups studied for example in [2] and [18]. A purely algebraic
description of An,k is given in [14].

The group An,k relates to mapping class groups of surfaces in the following
way. Let S be a surface of genus g with k + 1 boundary components and let
Γg,k+1 be its mapping class group, the group of path components of the space
of diffeomorphisms of S fixing the boundary pointwise. There is a natural
embedding of the graph G2g,k in S with the basepoint of G2g,k on the first
boundary component of S and the k distinguished circles of G identified with
the other k boundary components of S , such that the embedding is a homotopy
equivalence relative to the basepoint and the k distinguished circles. This
defines a map from Γg,k+1 to A2g,k , which is actually injective. Dehn twists
along the last k boundary circles of S are identified under this inclusion with
the copy of Z

k in A2g,k arising in the short exact sequence above.

The natural inclusions Gn,k →֒ Gn+1,k and Gn,k →֒ Gn,k+1 obtained by attach-
ing an extra circle or circle-plus-arc induce stabilization maps An,k → An+1,k

and An,k → An,k+1 by extending homotopy equivalences via the identity on the
added parts. These stabilization maps are easily seen to be injective. The main
goal of the paper is to prove the following result:

Theorem A The stabilization maps An,k → An+1,k and An,k → An,k+1 in-

duce isomorphisms Hi(An,k) → Hi(An+1,k) and Hi(An,k) → Hi(An,k+1) for

n ≥ 3i+ 3 and k ≥ 0.

In particular, the case k = 0 in the first stabilization gives a new proof of
homology stability for automorphism groups of free groups, although the ranges
n ≥ 2i + 3 obtained in [9] and n ≥ 2i + 2 in [11] are better than the one
we obtain here. The proof of the theorem also shows that the quotient map
Aut(Fn) → Out(Fn) induces an isomorphism on Hi for n ≥ 3i + 3. Again, a
better range is given in [11].

The theorem says that the stable An,k groups have the same homology as the
stable automorphism groups of free groups. Not a great deal is known about
these stable homology groups. In low dimensions they are trivial rationally
[9], [10], and this is conjectured to hold in all dimensions. The only nontrivial
torsion known so far is a copy of the homology of the infinite symmetric group,
or equivalently Ω∞S∞ , as noted in [7].

The above theorem is one of the main ingredients in [23] in showing that the
natural map from the stable mapping class group of surfaces to the stable auto-
morphism group of free groups induces an infinite loop map on the classifying
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spaces of these groups after plus-construction. The infinite loop space struc-
ture of the stable mapping class group is governed by a cobordism category,
the surfaces being cobordisms between disjoint unions of circles [21]. Graphs
with distinguished circles, thought of as boundary circles, can be used to define
a generalized cobordism category where graphs as well as surfaces define cobor-
disms and where gluing along boundary circles is compatible in an appropriate
sense with the map Γg,k+1 → A2g,k described above. This category is used to
compare the two infinite loop spaces and homological stability for the groups
An,k is needed for identifying the homotopy type of this generalized cobordism
category. From [17] and [4] the homology of the stable mapping class group
is known (and it is very rich!). Little is known however about the map from
the mapping class groups to the automorphism groups. If the map could be
shown to be rationally trivial, for example, this would give further evidence for
the conjecture that the stable rational homology of the automorphism groups
is trivial.

To prove the theorem we actually need to work with the more general groups
As

n,k which can be defined as follows. Consider the graph Gs
n,k obtained from

Gn,k by wedging s− 1 edges at the basepoint. We think of the free ends of the
new edges as extra basepoints. (When s = 0, we forget the basepoint of Gn,k .)
Define As

n,k as the group of path components of the space of homotopy equiva-
lences of Gs

n,k which fix the k distinguished circles as well as the s basepoints.
There is a short exact sequence

1 −→ Fn+k −→ As
n,k −→ As−1

n,k −→ 1

where the map As
n,k → As−1

n,k forgets the last basepoint. When s ≥ 2, this

map splits and in fact As
n,k = (Fn+k)

s−1
⋉A1

n,k where A1
n,k acts diagonally on

(Fn+k)
s−1 via the map A1

n,k → Aut(Fn+k). Particular cases of these groups

are A0
n,0 = Out(Fn), A1

n,0 = Aut(Fn) and A2
n,0 = Fn ⋉ Aut(Fn).

We show in Theorem 4.1 that the stabilization map As
n,k → As+1

n,k and the map

As
n,k → As−1

n,k for s ≥ 1 also induce isomorphisms in homology when n ≥ 3i+3.

A corollary of the stability for A2
n,0 → A1

n,0 is that the twisted homology
group Hi(Aut(Fn),Zn) is trivial when n ≥ 3i + 9. This is immediate from
the Leray–Hochschild–Serre spectral sequence for the short exact sequence dis-
played above, with s = 2 and k = 0.

Our proof of homological stability for An,k , and in fact As
n,k , is based on an

interpretation of these groups in terms of the mapping class group of compact
3 manifolds M s

n,k obtained from the connected sum of n copies of S1 × S2

by deleting the interiors of s disjoint balls and k disjoint unknotted, unlinked
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solid tori S1 × D2 . Equivalently, M s
n,k is the connected sum of n copies of

S1×S2 , s balls, and k solid tori. If Diff(M s
n,k) denotes the group of orientation-

preserving diffeomorphisms of M s
n,k that restrict to the identity on the bound-

ary, then As
n,k is the quotient of the mapping class group π0Diff(M s

n,k) by the
subgroup generated by Dehn twists along embedded spheres. This subgroup is
rather small, the product of finitely many Z2 ’s.

It seemed worthwhile to write the proof in its most natural level of generality.
Thus we actually consider manifolds M s

n,k obtained from a fixed compact ori-

entable manifold N by taking the connected sum with n copies of S1 × S2 ,
s balls, and k solid tori, where we assume that none of the connected sum-
mands of N has universal cover a counterexample to the Poincaré conjecture.
We let now As

n,k denote the mapping class group π0Diff(M s
n,k) with twists along

2 spheres factored out. Again these generate just a product of finitely many
Z2 ’s. When s ≥ 1 there are natural stabilizations with respect to n, k , and s

by enlarging M s
n,k and extending diffeomorphisms by the identity. The more

general form of the preceding theorem is then:

Theorem B The maps Hi(A
s
n,k) → Hi(A

s
n+1,k), Hi(A

s
n,k) → Hi(A

s
n,k+1

), and

Hi(A
s
n,k) → Hi(A

s+1

n,k ) induced by stabilization are isomorphisms for n ≥ 3i+3,

k ≥ 0, and s ≥ 1.

One might hope that these stability results could be part of a program to extend
the work of Madsen–Weiss on mapping class groups of surfaces to 3 manifolds,
but there are some obstacles to doing this. For surfaces the contractibility of
the components of Diff was an essential step in the Madsen–Weiss program,
allowing π0Diff to be replaced by Diff. However, the components of Diff(M s

n,k)
are far from contractible, according to the results of [12], and the homology of
Diff(M s

n,k) itself does not stabilize. This suggests that for 3 manifolds a differ-
ent sort of stabilization than by connected sum might be better if one wanted to
use the Madsen–Weiss techniques, a stabilization that stays within the realm
of irreducible 3 manifolds where Diff often has contractible components, as
shown in [5] and [3].

Here is how the paper is organized. The first section is devoted to showing
the definition of As

n,k in terms of mapping class groups agrees with the graph-
theoretic definition. The second section proves some preliminary properties of
systems of spheres and disks in a 3 manifold, generalizing [7]. These properties
are used in the third section to prove that the complexes of disks and spheres we
are interested in are highly connected. Then in the fourth section the spectral
sequence arguments proving homological stability are given.
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We have tried to make the paper largely independent of [7], but the reader
might still find it helpful to consult this earlier paper at certain points.

The second author was supported by a Marie Curie Fellowship of the European
Community under contract number HPMF-CT-2002-01925.

1 Diffeomorphism groups

In the introduction we first defined As
n,k as the group of path-components of the

space of homotopy equivalences of the graph Gs
n,k that fix the s basepoints and

the k distinguished circles. A homotopy equivalence satisfying this condition
is in fact a homotopy equivalence relative to the basepoints and distinguished
circles, according to Proposition 0.19 of [8], so As

n,k is indeed a group, with
inverses. When s ≥ 1, by assigning to each homotopy equivalence its induced
automorphism of π1G

s
n,k = Fn+k one obtains a short exact sequence

1 −→ Z
k × (Fn+k)

s−1 −→ As
n,k −→ Autn,k −→ 1

The copy of Z
k in the kernel is generated by the homotopy equivalences pro-

duced by rotating one of the distinguished circles through 360 degrees and
dragging along the arc connecting this circle to the basepoint so that this arc
wraps once around the circle. The ith copy of Fn+k = π1G

s
n,k is identified with

the homotopy classes of maps from the interval to Gs
n,k mapping the endpoints

to the endpoints of the ith extra edge.

Our aim in this section is to relate As
n,k to the mapping class group of M s

n,k ,
where M s

n,k is the connected sum

M s
n,k =

(
#n(S1 × S2)

)
#

(
#k(S

1 ×D2)
)

#
(
#sD

3
)

For an orientable 3 manifold M we denote by Diff(M) the group of orientation-
preserving diffeomorphisms of M that fix its boundary pointwise. When the
boundary of M is nonempty, as will usually be the case in this paper, diffeo-
morphisms that restrict to the identity on the boundary automatically preserve
orientation.

Theorem 1.1 There is an exact sequence

1 −→ Ks
n,k −→ π0Diff(M s

n,k) −→ As
n,k −→ 1

where the kernel Ks
n,k is the subgroup of π0Diff(M s

n,k) generated by Dehn twists

along embedded 2 spheres. This subgroup is a product of at most n + k + s

copies of Z2 .

Geometry & Topology, Volume 9 (2005)



Stabilization for the automorphisms of free groups with boundaries 1301

In the case k = 0 and s = 0, 1 when A1
n,0 = Aut(Fn) and A0

n,0 = Out(Fn), this

is a theorem of Laudenbach [15, III.4.3] who showed that K0
n,0 = K1

n,0 is the
product of exactly n copies of Z2 . (Laudenbach considered diffeomorphisms of
M0

n,0 fixing a point rather than diffeomorphisms of M1
n,0 fixing the boundary,

but the group of isotopy classes is the same in both cases.) For our purposes
we only need to know that Ks

n,k is generated by twists along 2 spheres. As
we will see, twists along spheres act trivially on embedded spheres and disks,
up to isotopy, so the natural action of the diffeomorphism group of M on the
complexes of isotopy classes of spheres and disks that we define in Section 3
will induce an action of As

n,k on these complexes.

Proof We first consider the case when s = 1. As before, we drop s = 1 from
the notation so that An,k = A1

n,k etc. The first step will be to construct a
homomorphism α : π0Diff(Mn,k) → An,k . To do this we first describe a natural
embedding Gn,k →֒ Mn,k . We can construct Mn,k in the following way. Start
with the space X obtained from a ball B by removing the interiors of 2n + k

disjoint subballs Bi , i = 1, ··· , 2n + k . Then Mn,k is the quotient space of X
obtained by identifying ∂B2i−1 with ∂B2i for i = 1, ··· , n to form nonseparating
spheres Si ⊂ Mn,k and identifying two disjoint disks D′

i and D′′
i in ∂Bi for

i = 2n + 1, ··· , 2n + k to form disks Di ⊂ Mn,k . Construct a tree T ⊂ X by

Figure 2: The graph Gn,k in Mn,k

taking arcs ai joining a basepoint x0 ∈ ∂B to points xi ∈ ∂Bi (with xi disjoint
from the disks D′

i and D′′
i for i = 2n+ 1, ··· , 2n+ k), together with arcs bi in

∂Bi for i = 2n+1, ··· , 2n+k joining points x′i ∈ ∂D′
i and x′′i ∈ ∂D′′

i and passing
through xi . We may assume the points xi , x

′

i , and x′′i are chosen so that the
pairs (x2i−1, x2i) for i = 1, ··· , n and the pairs (x′i, x

′′

i ) for i = 2n+1, ··· , 2n+k
match up under the identifications which form Mn,k , and then the image of T
in Mn,k is a copy of Gn,k . Let i : Gn,k → Mn,k be this embedding. With this
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embedding the k distinguished circles of Gn,k lie in ∂Mn,k so we call them
boundary circles. There is a retraction X → T obtained by first deformation
retracting X onto the union of T with the spheres ∂Bi and then retracting
this union onto T by collapsing each sphere ∂Bi to its intersection with T ,
which is either a point xi or an arc bi . These retractions can be taken to
respect the identifications which produce Mn,k , so they induce a retraction
r : Mn,k → i(Gn,k). This retraction is not a homotopy equivalence but it does
induce an isomorphism on π1 , as does the inclusion map i.

Now we are able to define a map α : π0Diff(Mn,k) → An,k by sending a diffeo-
morphism ϕ : Mn,k → Mn,k to the map rϕi : Gn,k → Gn,k . This composition
is a homotopy equivalence since it induces an isomorphism on π1 . Since it
fixes the basepoint and the boundary circles, it therefore represents an element
of An,k .

To show that α is a homomorphism, we need the following fact: For every map
j : Gn,k →Mn,k that agrees with i on the basepoint and boundary circles there
is a homotopy irj ≃ j relative to the basepoint and boundary circles. If this is
true then by taking j = ϕi we obtain a homotopy (rψi)(rϕi) ≃ r(ψϕ)i. Hence
α is a homomorphism.

To verify the fact, it suffices to homotope j to have image in i(Gn,k) by a ho-
motopy relative to the basepoint and boundary circles. Such a homotopy exists
since i induces a surjection on π1 , so the pair

(
Mn,k, i(Gn,k)

)
is 1 connected,

which means that any map (I, ∂I) →
(
Mn,k, i(Gn,k)

)
is homotopic, fixing ∂I ,

to a map into i(Gn,k).

The next step of the proof is to show that α is surjective. Following the method
of [15] this will be done by showing that generators for An,k can be realized
by diffeomorphisms of Mn,k . According to [14] the group An,k has the fol-
lowing generators, described by their effect on a basis {x1, ··· , xn, y1, ··· , yk}
for Fn+k = π1(Gn,k), where we write the action on generators only when it is
nontrivial.

Pi,j xi → xj and xj → xi 1 ≤ i, j ≤ n, i 6= j

Ii xi → x−1

i 1 ≤ i ≤ n

(xi;xj) xi → xixj 1 ≤ i, j ≤ n, i 6= j

(xi; yj) xi → xiyj 1 ≤ i ≤ n, 1 ≤ j ≤ k

(x−1

i ; yj) xi → y−1

j xi 1 ≤ i ≤ n, 1 ≤ j ≤ k

(y±i ;xj) yi → x−1

j yixj 1 ≤ i ≤ k , 1 ≤ j ≤ n

(y±i ; yj) yi → y−1

j yiyj 1 ≤ i, j ≤ k

When i = j in the last set of generators one has the trivial automorphism of
Fn+k but a nontrivial element of An,k , a generator of the subgroup Z

k .
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The first three types of generators involve only the xi ’s and can be realized as
in [15]. Thinking of the S1 × S2 summands of Mn,k as handles, the generator
Pi,j interchanges the ith and j th handles, Ii switches the two ends of the
ith handle, and (xi;xj) slides one end of the ith handle over the j th handle.
The result of this slide is a Dehn twist along a torus that encloses one end
of the ith handle and passes over the j th handle. The next two types of
generators, (xi; yj) and (x−1

i ; yj), can be realized by similar slides of one end of
the ith handle along a loop that represents yj , going through the j th S1 ×D2

summand of Mn,k . For the last two types of generators we think of the ith
S1 × D2 summand as a punctured solid torus attached to the rest of Mn,k

along a sphere that gives the connected sum operation, and then we slide this
punctured solid torus over the j th handle to realize the conjugation (y±i ;xj),
or through the j th S1 × D2 summand to realize (y±i ; yj) for i 6= j . Like the
slide producing (xi;xj), these slides also yield Dehn twists along tori. The last
remaining type of generator (y±i ; yi) is realized by a Dehn twist along a torus
parallel to the ith boundary torus of Mn,k , with the twisting in the direction
of the S1 factor of the summand S1 ×D2 .

The last step of the proof is to describe the kernel of α, using the following
commutative diagram

1 // Kn,k
// π0Diff(Mn,k)

α
//

''P

P

P

P

P

P

P

P

P

P

P

P

An,k
//

��

1

Aut(Fn+k)

where the top row is exact and the diagonal map is the action on π1 . Let ϕ
be a diffeomorphism representing a class in the kernel Kn,k , so in particular
ϕ induces the identity on π1(Mn,k). By [15, A-III.3.2] we know that ϕ also
induces the identity on π2(Mn,k). Let Σ be a system of n+ k spheres in Mn,k

consisting of the n spheres Si in the S1 ×S2 summands together with spheres
Sn+1, ··· , Sn+k separating off the S1 × D2 summands. Splitting Mn,k along
Σ produces a ball with 2n + k punctures, along with k copies of a punctured
solid torus. Because ϕ induces the identity on π2 , it can be isotoped so that
it is the identity on Σ, using Laudenbach’s homotopy-implies-isotopy theorem
for 2 spheres, taking care of the spheres Si one by one. (For the induction
step one uses [15, V.4.2] which says that homotopic spheres that are disjoint
from a sphere S and not isotopic to S are still isotopic in the complement of
S ; this is reproved in our Theorem 2.2.) So we can consider ϕ separately on
the components of M −Σ. On the punctured ball it is isotopic to a product of
Dehn twists along a subset of the 2n + k boundary spheres of the punctures.
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According to Lemma 1.2 which follows below, the mapping class group of a
punctured solid torus is Z2 × Z with the first factor generated by a Dehn
twist along the boundary sphere and the second factor generated by a Dehn
twist along the boundary torus, in the S1 direction. The latter twist is the
diffeomorphism realizing one of the generators (yi; yi) of the Z

k subgroup of
An,k , so only the Z2 factor lies in the kernel Kn,k .

The conclusion of all this is that the diffeomorphism ϕ representing an element
of the kernel of α is isotopic to a product of Dehn twists along a subset of
the spheres of Σ. The proof of the theorem for s = 1 is then completed by
observing that all twists along 2 spheres lie in the kernel of α since for a given
2 sphere, the map i : Gn,k → Mn,k can be homotoped to intersect this sphere
only in the fixed points of a twist along the sphere.

An argument for deducing the theorem for arbitrary s from the case s = 1
is given in Proposition 1 of [11] when k = 0, and the same argument works
equally well for arbitrary k .

Lemma 1.2 π0Diff(M1
0,1)

∼= Z2×Z where the Z2 is generated by a Dehn twist

along the boundary sphere and the Z is generated by a Dehn twist along the

boundary torus in the direction of the S1 factor of the summand S1 ×D2 of

M1
0,1 = (S1 ×D2) # D3 .

Proof Consider the fibration

Diff(M1
0,1) −→ Diff(S1 ×D2) −→ E(D3, S1 ×D2)

where E(D3, S1 × D2) is the space of embeddings of a ball in the interior of
S1 × D2 and the projection to E is obtained by restricting diffeomorphisms
to a chosen ball in the interior of S1 × D2 . Since elements of Diff(S1 × D2)
fix the boundary pointwise, they preserve orientation, so we may as well take
E(D3, S1 ×D2) to consist of orientation-preserving embeddings.

The total space Diff(S1 ×D2) of the fibration is contractible. This can be seen
by looking at a second fibration

Diff(D3) −→ Diff(S1 ×D2) −→ E(D2, S1 ×D2)

whose projection map is restriction to a meridian disk. The base space consists
of embeddings of a disk in S1 ×D2 fixed on the boundary. It is a classical fact
that this space is path-connected, and in fact it is contractible by [5]. The fiber
consists of diffeomorphisms of S1 ×D2 that are fixed on the boundary and a
meridian disk, so this can be identified with Diff(D3) which is contractible by
[6]. Hence Diff(S1 ×D2) is also contractible.
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The base space of the first fibration is homotopy equivalent to S1×SO(3). The
long exact sequence of the fibration then gives an isomorphism

π0Diff(M1
0,1)

∼= π1

(
S1 × SO(3)

)
∼= Z × Z2

where the Z2 corresponds to a Dehn twist about the boundary sphere of M1
0,1

and the Z is generated by the diffeomorphism resulting from an isotopy dragging
a ball in the interior of S1 ×D2 around the S1 factor. This diffeomorphism is
equivalent to a Dehn twist about the boundary torus of M1

0,1 .

2 Normal form

We are primarily interested in the manifolds M s
n,k , but it will be convenient

and not much extra work to consider a more general compact manifold M

that is the connected sum of n copies of S1 × S2 , s balls, and k irreducible
orientable manifolds Qi that are neither a ball nor a counterexample to the
Poincaré conjecture. The latter condition is needed since we will be using
Laudenbach’s theorem that homotopy implies isotopy for embedded spheres,
which requires this hypothesis. We will in fact assume that no Qi has universal
cover a counterexample to the Poincaré conjecture, although it is possible that
this stronger assumption could be avoided by taking extra care at certain points
in the proofs.

We will study π0Diff(M) by studying isotopy classes of embedded spheres and
disks in M . By an embedded sphere or disk we mean a submanifold of M that
is diffeomorphic to a sphere or disk, but without a specific diffeomorphism being
chosen. An isotopy of an embedded sphere or disk is a smooth one-parameter
family of such submanifolds. This is the same as choosing a diffeomorphism
from the standard sphere or disk to the given submanifold and varying this
map to M by isotopy. More generally, if we allow the map to vary by homo-
topy instead of isotopy we can speak of two embedded spheres or disks being
homotopic as well as isotopic.

Besides individual spheres and disks, we also consider systems of finitely many
embedded spheres and disks in M . The spheres and disks in a system are
assumed to be disjoint, except that the boundary circles of different disks are
allowed to coincide. We will assume the disks have their boundaries contained
in a fixed finite collection C of disjoint circles in ∂M . In the end we will only
need the case that C is a single circle, either in a boundary sphere of M or in
the boundary torus of a solid torus summand Qi = S1 × D2 , with the circle
being a meridian {x}×∂D2 in the latter case. However, to prove the results in
Section 3 we will have to allow larger collections C . It will suffice to assume:
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C consists of at most two circles in each sphere component of ∂M and at
most one circle in the boundary torus of each summand Qi = S1 ×D2 ,
this circle being a meridian.

The reason for allowing two circles in a boundary sphere is that we will be
cutting M open along systems of disks with boundaries in C . Cutting M

along a disk bounded by a circle of C that is a meridian in a boundary torus
replaces the torus by a boundary sphere containing two copies of the original
circle of C (bounding two copies of the disk). On the other hand, cutting M

along a disk bounded by a circle of C in a boundary sphere replaces the sphere
by two spheres, each containing a copy of the original circle of C , so the number
of circles in a boundary sphere does not increase.

The spheres and disks in a system will be assumed to be nontrivial. For spheres
this means that they do not bound balls in M and are not isotopic to boundary
spheres of M disjoint from C . Nontriviality for disks means they are not
isotopic, fixing their boundary, to disks in ∂M containing no circles of C in
their interior. Another assumption we make is that no two spheres in a system
are isotopic, and no two disks are isotopic fixing their boundaries. This is
equivalent to saying that no two spheres bound a product S2 × I in M and no
two disks bound a ball.

To save words in the rest of the paper we will always assume that isotopies and
homotopies of disks in a system fix the boundaries of these disks.

Our purpose in this section is to develop a notion of normal form for systems of
spheres and disks in the manifold M , generalizing [7] which dealt with systems
of spheres in the manifolds M s

n,0 . The simplest definition of normal form is to
say that a system S of spheres and disks in M is in normal form with respect
to a fixed maximal sphere system Σ if S is transverse to Σ and the number of
circles of S∩Σ is minimal among all systems isotopic to S and transverse to Σ.
As we will see, in the case of the manifolds M s

n,0 this boils down to almost the
same thing as the more complicated definition given in [7], with only a minor
difference in how spheres of S that are isotopic to spheres of Σ are treated.

The advantage of the present definition is that the existence of a system in
normal form within each isotopy class of systems is obvious. This allows us to
focus on what is the real point of normal form, which is to obtain a reasonable
uniqueness statement. The strongest uniqueness statement would be that if two
normal form systems are isotopic then they are isotopic through normal form
systems. However, this could hold only if one first eliminated certain knotting
and linking phenomena. Fortunately knotting and linking are not really an
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issue in view of the fact that Laudenbach’s homotopy-implies-isotopy theorem
for spheres and sphere systems holds also for systems of spheres and disks, as we
show in Theorem 2.2 below. We can then avoid knotting and linking problems
by making the following definition. Two systems S and S′ transverse to Σ are
called equivalent if there is a homotopy St from S to S′ through immersions
such that St is transverse to Σ for all t and the self-intersections of St are
disjoint from Σ for all t. We also allow a sphere of S that is disjoint from Σ
and hence isotopic to a sphere of Σ to be moved from one side of this sphere
to the other. The main result is then:

Theorem 2.1 Isotopic systems in normal form are equivalent.

Before beginning the proof of this we will need to establish a more basic result:

Theorem 2.2 Homotopic systems are isotopic. In particular, equivalent sys-

tems are isotopic.

Proof For single spheres this is Theorem III.1.3 of [15], and the generalization
to systems of spheres follows from the Lemma on page 124 of [15]. We need to
extend the proof to allow disks as well. First consider systems consisting of a
single disk, so let D0 and D1 be two disks that are homotopic. If the common
boundary of these two disks lies in a torus component T of ∂M , we can associate
to D0 and D1 spheres S0 and S1 that are the boundaries of ε neighborhoods
of T ∪D0 and T ∪D1 . Alternatively, we can view Si as the result of surgering
T along Di . A homotopy from D0 to D1 induces a homotopy from S0 to S1 .
By Laudenbach’s theorem, S0 and S1 are then isotopic, so there is an ambient
isotopy of M , fixing ∂M , taking S0 to S1 and taking D0 to a new disk D′

0 that
lies in the ε neighborhood of T ∪D1 . This neighborhood is a once-punctured
solid torus, the manifold M1

0,1 . Any two disks in M1
0,1 are equivalent under

a diffeomorphism of M1
0,1 fixing ∂M1

0,1 since after filling in the puncture they
are isotopic fixing their boundary. We saw in the previous section that the
mapping class group of M1

0,1 is Z2 × Z generated by Dehn twists along the
boundary sphere and boundary torus. Twists along the boundary sphere act
trivially on disks with boundary on the torus. So, up to isotopy, D′

0 and D1

are equivalent under twists along the boundary torus. Looking in the universal
cover of M , lifts of D′

0 and D1 having the same boundary circle are homotopic
and therefore homologous. But the homology classes represented by the lifts of
the disks obtained by the Z’s worth of Dehn twists along T applied to a single
disk are all distinct, so it follows that D′

0 and D1 are isotopic.
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The other possibility is that the common boundary circle of D0 and D1 lies in
a sphere S of ∂M . The argument in this case is similar. An ε neighborhood
of S ∪Di is a 3 punctured sphere bounded by S and two other spheres S′

i and
S′′

i . A homotopy from D0 to D1 induces a homotopy from S′
0 ∪S

′′
0 to S′

1 ∪S
′′
1 ,

so from the known case of sphere systems we can conclude that these two sphere
systems are isotopic. Arguing as before, this gives a disk D′

0 isotopic to D0

lying in the ε neighborhood of S ∪ D1 . Since D′
0 is not a trivial disk, it is

unique up to isotopy in this neighborhood, which finishes the argument in this
case.

Now we turn to the general case. Let X = X1∪ ···∪Xn and Y = Y1∪ ···∪Yn be
two homotopic systems of spheres and disks, with Xi corresponding to Yi under
the homotopy. By induction on n we may assume the subsystems X1∪···∪Xn−1

and Y1 ∪ ··· ∪ Yn−1 are isotopic, so after an ambient isotopy we may assume
they coincide. The surfaces Xn and Yn are homotopic in M so it will suffice
to show they are homotopic in the complement of X1 ∪ ··· ∪Xn−1 . By another
induction the problem reduces further to the case n = 2, that is, to show that
for systems X1 ∪X2 and Y1 ∪ Y2 with X1 = Y1 , if X2 and Y2 are homotopic
in M then they are homotopic in M −X1 .

To simplify the notation, let the two systems be X ∪ Z and Y ∪ Z . In the
universal cover M̃ choose a lift X̃ of X and lift the homotopy from X to Y to
a homotopy from X̃ to a lift Ỹ of Y . If X and Y are disks then X̃ and Ỹ have
the same boundary since the homotopy from X to Y fixes the boundary. After
we perturb X and Y to meet transversely we can triangulate M so that X , Y ,
and Z are all subcomplexes, and we can lift this triangulation to a triangulation
of M̃ . Since X̃ and Ỹ are homotopic in M̃ they are homologous, so there is
a simplicial 3 chain bounded by X̃ and Ỹ , suitably oriented. Geometrically,
this chain is a subcomplex W of M̃ bounded by X̃∪ Ỹ . Note that W is unique
since there are no 3 cycles in M̃ . Also W is connected since the component of
W containing X̃ must also contain Ỹ . This is clear if X̃∩ Ỹ 6= ∅, in particular
if X̃ and Ỹ are disks. If X̃ and Ỹ are disjoint spheres they cannot be trivial in
H2(M̃) ∼= π2(M̃ ) ∼= π2(M), so the component of W containing X̃ must contain
Ỹ in this case as well.

Let Z̃ be any lift of Z . We claim that Z̃ is disjoint from W , except perhaps for
points in ∂Z̃ when Z̃ is a disk. For suppose there are other points of intersection
of Z̃ with W . Then Z̃ is entirely contained in W since ∂W = X̃ ∪ Ỹ and Z̃

is disjoint from X̃ and Ỹ , apart from ∂Z̃ . Since Z̃ separates M̃ , it splits W
into two parts W1 and W2 . There are only two possibilities:

W1 or W2 has Z̃ as its complete boundary. This is obviously impossible
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if Z̃ is a disk, and if it is a sphere this would make Z̃ homologous to zero
in M̃ , which is not the case since Z is a nontrivial sphere in M .

One of W1 , W2 is bounded by X̃ ∪ Z̃ and the other is bounded by Ỹ ∪ Z̃ .
In particular this would say X̃ and Z̃ are homologous. If one is a disk, the
other would also have to be a disk with the same boundary and the sphere
X̃ ∪ Z̃ would be homologous to zero, hence homotopic to zero, making X̃
homotopic to Z̃ , forcing the same to be true for X and Z . This would
make X and Z isotopic, contrary to the assumption that X ∪ Z is a
system. The other alternative is that both X̃ and Z̃ are spheres, but
then they would be homotopic since they are homologous, again forcing
X and Z to be homotopic and therefore isotopic, a contradiction.

Now if we split M̃ along all the lifts of Z , W will lie in one of the resulting
components, a simply-connected manifold N . In the case that X̃ and Ỹ are
spheres, this says they are homologous in N and hence homotopic in N . Pro-
jecting to M , we deduce that X and Y are homotopic in the complement of
Z , the conclusion we wanted. In the opposite case that X̃ and Ỹ are disks,
they together give a map S2 → M̃ that is homologous to zero in N , hence
homotopic to zero in N , making X̃ and Ỹ homotopic in N . Again this makes
X and Y homotopic in the complement of Z .

Before proving Theorem 2.1 we need to understand what normal form systems
look like. So suppose the system S is in normal form with respect to the
maximal sphere system Σ. Splitting M along Σ produces connected manifolds
Pi , and splitting S along Σ produces connected surfaces which we call pieces of
S . Components of S disjoint from Σ are either spheres parallel to components
of Σ or disks that are of one of two types:

(a) In a Pi = S2 × I that has a component of Σ as one boundary sphere and
a component of ∂M containing two circles of C as the other boundary
sphere, one can have a disk with boundary on one circle of C , the disk
cutting off a ball from Pi that contains the other circle of C .

(b) In a Pi that is a punctured S1 ×D2 having a circle of C in its boundary
torus, one can have a disk with boundary this circle of C .

For pieces that actually meet Σ there are the following possibilities:

(1) In a Pi that is a 3 punctured sphere, a piece can be:

a disk with boundary on one boundary sphere and separating the
other two boundary spheres, or
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a cylinder with its two boundary circles on two different boundary
spheres of Pi , or

a pair of pants with each boundary circle on a different boundary
sphere of Pi .

(2) In a Pi = S2 × I with a component of Σ at one end and a component of
∂M at the other, a piece can be a cylinder with one boundary circle on
each boundary sphere, the boundary circle in ∂M being a circle of C .

(3) In a Pi that is a once-punctured summand Qj , a piece can be the bound-
ary surface of a tubular neighborhood of a tree in Pi obtained by joining
p ≥ 2 points in the boundary sphere of Pi to an interior point of Pi by
disjoint arcs such that a lift of this tree to the universal cover P̃i of Pi has
its endpoints all in distinct boundary spheres of P̃i . This is equivalent to
saying that the boundary circles of a lift of the piece all lie in different
components of ∂P̃i .

(4) In a Pi that is a once-punctured S1×D2 with a circle of C in its boundary
torus a piece can be of the type in (3) or it can be:

a cylinder joining the circle of C in the boundary torus to the bound-
ary sphere, or

a pair of pants with one boundary circle on C and two boundary
circles on the boundary sphere of Pi , such that after lifting to the
universal cover the three boundary circles of a lift of the pair of pants
all lie in different components of ∂P̃i .

To show that if the number of circles of intersection of S with Σ is minimal
then the pieces have only the types listed we argue as follows. By a sequence of
surgeries on S the circles of S ∩Σ can be eliminated one by one. This converts
S into a collections of disks and spheres disjoint from Σ, and S is obtained
from this collection by the inverse sequence of tubing operations, where the
tubes might be nested one inside another. So each piece of S is obtained from
a sphere or disk in a Pi by inserting tubes that run from this sphere or disk to
one or more of the boundary spheres of Pi that are in Σ. See Figure 3 for an
example.

Consider first the case of a sphere S0 connected to boundary spheres of Pi by
tubes. Since Σ is maximal, S0 must be trivial in Pi , either bounding a ball
or parallel to a sphere of ∂Pi . Suppose first that S0 bounds a ball. If there
were nesting among the tubes from S0 , then there would be an outermost tube
connecting S0 on the outside to a sphere of Σ and a next-outermost tube inside
this going from the inside of S0 to the same sphere of Σ.
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Σ

S0

Figure 3

There is an isotopy of S that takes the end of this inner tube attached to S0

and slides it along S0 over to the outer tube and then along the outer tube
until it lies on the other side of Σ. If there are other tubes inside this inner
tube, they are to be carried along during this sliding process. After this isotopy
the number of circles of S ∩ Σ has temporarily increased, but now there is a
regular homotopy of the new tube that pushes it across Σ so as to eliminate
both its new and old intersections with Σ. Again any tubes inside this tube
can be carried along during the regular homotopy. The net result is a new
embedding of S which is homotopic to the original one and therefore isotopic
to it by Theorem 2.2, and which has fewer circles of intersection with Σ than
the original S had, contrary to the minimality assumption. Thus nesting of
tubes is ruled out. Similarly, if two tubes joining S0 to the same sphere of Σ
were homotopic in Pi , then we could slide one tube across the other and again
decrease the number of circles of S ∩ Σ. Thus homotopic tubes are ruled out,
or in terms of the universal cover, tubes joining a lift of S0 to the same lift of a
sphere of Σ. Since there have to be at least two tubes from S0 , we see in this
case that the piece is as in (3) or is a cylinder or pair of pants as in (1).

Suppose now that S0 is a sphere parallel to a sphere of ∂Pi . If there is a tube
from S0 to this sphere of ∂Pi , then the piece can also be obtained by joining a
sphere bounding a ball to ∂Pi by tubes, reducing to the previous case. If there
is no tube joining S0 to the sphere of ∂Pi it is parallel to, then Pi must be
a 3 punctured sphere as in (1). By the reasoning in the preceding paragraph
there can be no nesting of tubes, and there can be at most one tube joining S0

to each of the other two spheres of ∂Pi since Pi is simply-connected. Thus the
piece is a disk or a cylinder, and it must be of the type in (1).

The other possibility is that the piece is a disk D0 with tubes connecting it to
Σ. If Pi is as in (2), then arguing as before we see that there can be only one
tube and the piece is a cylinder of the type described. If Pi is as in (4) then D0
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is a nontrivial disk in Pi joined by one or more tubes to the boundary sphere
of Pi . The disk D0 is unique up to isotopy if we allow its boundary to move in
the boundary torus of Pi , so we may assume D0 is obtained by applying Dehn
twists along this torus to a meridian disk of Pi . Minimality rules out nesting
of tubes, and it rules out two tubes being connected to the same side of D0

since if there were, the two tubes would be homotopic. Thus either there is one
tube or there are two tubes attached on opposite sides of D0 . These are the
configurations in (4).

Proof of Theorem 2.1 What we will show is that if two isotopic systems S
and S′ are in normal form in the sense that their pieces have the forms described
above, then they are equivalent.

Let Σ̃ be the preimage of Σ in the universal cover M̃ of M . We first consider
the case that S has a single component, a sphere or disk. Let S̃ be a lift of S
to M̃ . An isotopy of S to S′ lifts to an isotopy of S̃ to a lift S̃′ of S′ . Our
goal in the first part of the proof will be to show:

(I) S̃ and S̃′ are isotopic staying transverse to Σ̃, except in the special
case that they are spheres isotopic to the same sphere of Σ̃ but lying on
opposite sides of this sphere.

The proof will involve several steps. To begin, let us choose an orientation
for S̃ . This is equivalent to choosing a transverse orientation once we fix an
orientation for M̃ . The orientation for S̃ carries over to an orientation for S̃′ by
means of the isotopy between them, and likewise for the transverse orientation.

Dual to Σ̃ is a tree T , with a vertex for each component of M̃ − Σ̃ and an edge
for each component of Σ̃. Similarly, dual to the collection of circles S̃ ∩ Σ̃ in
S̃ is a tree T (S̃) with a vertex for each component of S̃ − Σ̃ and an edge for
each circle of S̃ ∩ Σ̃. The natural map T (S̃) → T is injective since it is locally
injective, the pieces of S having the types listed in (1)–(4) when S ∩ Σ 6= ∅.
Thus we can view T (S̃) as a subtree of T . In the same way we have a subtree
T (S̃′) of T .

(a) T (S̃) = T (S̃′), except in the case that S is a sphere isotopic to a sphere
of Σ, when T (S̃) and T (S̃′) can be adjacent vertices of T .

To prove this it will suffice to show that T (S̃) is determined by the homology

class of the oriented surface S̃ in H2(M̃ , ∂S̃). Let e be an oriented edge of
T , by which we mean an edge together with a choice of one of its two possible
orientations. We can split M̃ into two components along the sphere of Σ̃
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corresponding to e, and we let M̃e be the component at the tail of e. If T (S̃)
is not a single vertex, then an end vertex v of T (S̃) corresponds to a piece of S̃
that is either a disk in a 3 punctured sphere or an annulus in a once-punctured
D3 or S1 × D2 . This disk or annulus is nonzero in H2(M̃ , M̃e ∪ ∂S̃) where
e is the edge of T (S̃) with v as its head vertex. Thus if we partially order

the submanifolds M̃e by inclusion as e ranges over the oriented edges of T ,
then the maximal M̃e ’s for which S̃ is nonzero in H2(M̃, M̃e ∪ ∂S̃) are those
corresponding to oriented edges e whose head vertex is an end vertex of T (S̃),
at least if T (S̃) is not a single vertex. This remains true also when T (S̃) is a
single vertex and S is a disk. In the case that T (S̃) is a single vertex and S

is a sphere the maximal M̃e ’s have e with its head vertex at either end of the
edge of T corresponding to the component of Σ̃ isotopic to S̃ . This gives a
homological characterization of T (S̃), proving (a).

Assuming that we are not in the exceptional case in (a) from now on, then
since T (S̃) = T (S̃′), the pieces of S̃ are diffeomorphic to those of S̃′ . In fact a
stronger statement is true:

(b) The pieces of S̃ are isotopic within their P̃i ’s to the corresponding pieces
of S̃′ . Here we mean proper isotopies of the pieces, so their boundary
circles in Σ̃ stay in Σ̃ during the isotopies.

This is proved by examining the various types of pieces. If a piece is the
boundary of a neighborhood of a tree in P̃i then two different embeddings
of the tree having the same endpoints are homotopic fixing their endpoints
since P̃i is simply-connected, and a homotopy can be improved to an isotopy
by sliding crossings of edges over the boundary spheres at their outer ends —
the so-called lightbulb trick of unknotting the cord to a hanging light bulb by
letting the knot drop over the bulb. This works in the present situation since
the various edges in the tree all go to different boundary spheres of P̃i . This
argument covers pieces of types (2) and (3) and cylinders and pairs of pants
in (1). A disk in (1) is unique up to isotopy since the isotopy class of a disk
in a ball with punctures is determined by how it separates the punctures. For
(4) we have a piece that is the lift of a meridian disk with one or two tubes
attached, and possibly with Dehn twists along the boundary torus applied to
the meridian disk. Again the lightbulb trick applies in P̃i since if there are two
tubes, they connect to different boundary spheres of P̃i . Thus we have (b) in
all cases.

The different ways of gluing together two pieces that lie on opposite sides of a
sphere of Σ̃ and have a boundary circle in this sphere depend only on choosing
an isotopy taking one boundary circle to the other in this sphere. The space
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of circles in a 2 sphere has the homotopy type of the projective plane, with
fundamental group Z2 , so there are two essentially distinct isotopies taking one
circle to another. This two-fold ambiguity is eliminated if we require the gluing
to preserve transverse orientations for the two pieces since the space of oriented
circles in a 2 sphere is simply-connected, being homotopy equivalent to S2 .
Thus in order to finish the proof of assertion (I) that S̃ and S̃′ are isotopic
staying transverse to Σ̃, it will suffice to refine (b) to:

(c) Corresponding pieces of S̃ and S̃′ are isotopic preserving transverse ori-
entations.

This is automatically true for a piece that is a pair of pants in a 3 punctured
sphere since there is an isotopy of this piece that starts and ends with the
same position and reverses the transverse orientation. Namely, take the three
punctures to lie on a great circle in S3 and then the family of great 2 spheres
containing this great circle gives such an isotopy. (Alternatively, think of the
3 punctured sphere as a 2 punctured ball, with the two punctures aligned
along a diameter of the ball, and intersect the punctured ball with the family
of planes containing this diameter.) The same thing happens for a piece that
is an n punctured sphere in a P̃i that is an n punctured S3 . Such a P̃i is the
universal cover of a once-punctured Qj with π1Qj of order n.

We claim that cutting S̃ along Σ̃ and regluing according to different transverse
orientations in any subset of the remaining pieces changes the class of S̃ in
H2(M̃, ∂S̃). If ∂S 6= ∅ it is clear that reorienting the piece containing ∂S

changes the homology class since this changes its image under the boundary
map to H1(∂S̃). So we may assume the orientation of this piece is fixed. To
treat the remaining cases it is convenient to pass to a quotient manifold N

of M̃ constructed in the following way. Consider a P̃i containing a piece of
type (3) that does not touch all the boundary spheres of P̃i . This piece is the
boundary of a neighborhood X of a tree in P̃i . Let Y be the union of X with
an arc joining it to a boundary sphere of P̃i disjoint from the piece. Let Z
be an ǫ neighborhood in P̃i of the union of Y with the boundary spheres of
P̃i that meet Y . Then ∂Z consists of some boundary spheres of P̃i together
with one sphere in the interior of P̃i . The latter sphere splits M̃ into two
components. Collapsing the component not containing Z to a point produces a
quotient manifold of M̃ . Doing this collapsing operation on all such P̃i ’s gives
the manifold N . This still contains S̃ , and it contains a subcollection Σ̃N of
the spheres of Σ̃, with dual tree TN containing T (S̃). Edges of TN that touch
T (S̃) but are not contained in T (S̃) we call abutting edges.

Consider the effect of changing the transverse orientation on a type (3) piece
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that meets all but one of the boundary spheres of the n punctured sphere of
N − Σ̃N that contains it. If we fill in with a ball the one boundary sphere that
it does not meet, then we have seen that there is an isotopy of the piece that
reverses its transverse orientation. This isotopy sweeps across the filled-in ball
exactly once, so if we take out the filled-in ball we see that reorienting the piece
changes the homology class of S̃ by adding the boundary sphere of the filled-in
ball, with one of its two possible orientations. The same argument applies also
to a type (1) piece that is an annulus. For a type (1) piece that is a disk, if we
surger S̃ along the boundary of this disk using one of the two disks it bounds in
Σ̃, we obtain a surface of two components, one of which is a copy of one of the
other two boundary spheres of the P̃i containing the given piece, and we can
recover S from this surgered surface by a connected sum operation reversing
the surgery. The connected sum operation preserves the homology class. As
Figure 4 shows, changing the boundary sphere we use for the connected sum
corresponds to changing the orientation of the piece.

Figure 4

Hence the homology class of S̃ changes by subtracting one boundary sphere of
P̃i and adding another. In terms of transverse orientations the homology class
changes by adding two boundary spheres of P̃i , one oriented into P̃i and the
other out of P̃i .

Thus we see that reorienting some collection of pieces disjoint from ∂S̃ changes
the homology class of S̃ in H2(N, ∂S̃) by adding the spheres corresponding to
some of the abutting edges of TN , with certain signs. If this signed sum of
spheres were homologically a boundary it would have to consist of spheres for
all the abutting edges, oriented all toward S̃ or all away from S̃ , but this is not
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the case as there is at least one abutting edge corresponding to a disk. This
finishes the proof of (c) and hence of (I).

We now consider the general case that S and S′ have an arbitrary number of
components. Choose a transverse orientation for S . This gives a transverse
orientation to the circles of S ∩ Σ in Σ. In each sphere Σ0 of Σ, each circle
of S ∩ Σ0 then partitions the remaining circles of S ∩ Σ0 into those on the
positive side and those on the negative side of the given circle. Let us call this
partition data the side relation for S ∩ Σ. The transverse orientation for S
induces a transverse orientation for S′ via the isotopy between them, so the
circles of S′ ∩Σ also have a side relation. From what we have shown so far we
have a bijective correspondence between the pieces of S and S′ and hence also
between the circles of S ∩ Σ and those of S′ ∩ Σ.

(II) The side relation on S∩Σ agrees with that on S′∩Σ under this bijection.

For suppose this is false. Then in some sphere Σ0 of Σ we have circles cp and
cq of S ∩ Σ0 with corresponding circles c′p and c′q of S′ ∩ Σ0 such that cq and

c′q lie on opposite sides of cp and c′p , respectively. Choose a lift Σ̃0 of Σ0 to

M̃ , and let S̃j and S̃k be the lifts of components of S containing the lifts to

Σ̃0 of cp and cq , respectively. Similarly we have S̃′

j and S̃′

k containing the lifts

of c′p and c′q to Σ̃0 . We know that S̃′

j is isotopic to S̃j staying transverse to Σ̃.

This isotopy can be realized by an ambient isotopy of (M̃ , Σ̃). Restricting this
ambient isotopy to S̃′

k , we obtain an isotopy of S̃′

k to a surface S̃∗

k . Then S̃k

and S̃∗

k lie on opposite sides of S̃j , hence are disjoint except for their common
boundary circle when they are disks. Since they are isotopic, both being isotopic
to S̃′

k , there is a product region between them. This product contains S̃j since

S̃k and S̃∗

k lie on opposite sides of S̃j . Thus if S̃k and S̃∗

k are spheres, so is
Sj , and if they are disks, so is Sj . There is a unique isotopy class of disks or

nontrivial spheres in the product between S̃k and S̃∗

k , so there is also a product

region between S̃j and S̃k . If S̃j and S̃k project to different components of
S , these two components would be homotopic and hence isotopic, contrary to
the definition of a system of disks and spheres. So S̃j and S̃k must be lifts of
the same component of S . This component must be a sphere, otherwise the
isotopy between S̃j and S̃k would give ∂S̃j = ∂S̃k and hence S̃j = S̃k , which
is impossible since cp 6= cq .

Lemma 2.3 If a 3 manifold M contains a nontrivial sphere S having two

lifts to the universal cover M̃ that bound a product S2 × I , then M is either

an S2 bundle over S1 or M has a connected summand that is a real projective

3 space split off by S .
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Proof Let S1 and S2 be two lifts of S bounding a product S2 × I in M̃ . By
rechoosing S2 if necessary, we may assume no other lifts of S lie in this product.
If the deck transformation taking S1 to S2 takes the product to itself, it is a free
involution on this product, yielding a projective space summand of M bounded
by S by a classical theorem of Livesay [16]. If the deck transformation takes
the product S2 × I outside itself, then M is obtained from this product by
identifying its two ends, so M is an S2 bundle.

Now we finish the proof of (II). If M is an S2 bundle, it contains a unique
isotopy class of nontrivial spheres, and if S and S′ were in normal form with
respect to Σ they would have to be disjoint from Σ, making (II) true vacuously.
So we may assume M is not an S2 bundle. In the case of a projective space
summand bounded by Sj , this summand lifts to the region between S̃j and

S̃k . Applying the same argument with the roles of S and S′ reversed, we find
a projective space summand of M bounded by S′

j lifting to the region between

S̃′

j and S̃′

k . After extending the isotopy taking S′

j to Sj to an isotopy of M , the
projective space summand bounded by S′

j becomes a second projective space
summand bounded by Sj , and this lies on the opposite side of Sj from the first

summand since S̃k and S̃′

k lie on opposite sides of S̃j and S̃′
j , where we are

using the transverse orientations to distinguish sides. Thus Sj has a projective
space summand on each side, so M is the connected sum of two projective
spaces. It is an elementary fact that in a manifold such as this which is the
sum of two irreducible manifolds there is only one isotopy class of nontrivial
spheres, just as for S2 bundles, and (II) would again be true vacuously. (If one
wants to avoid quoting Livesay’s theorem, one can say that Sj splits M as the
sum of two closed 3 manifolds with fundamental group of order 2, and these
manifolds are irreducible since M has no fake 3 sphere summands.)

Conclusion of the proof of Theorem 2.1 It is easy to see that a system
of transversely oriented circles in a sphere is determined up to isotopy by its
associated side relation. In view of (II) this means that by an isotopy of S
staying transverse to Σ, the transversely oriented circles of S ∩Σ can be made
to agree with the corresponding transversely oriented circles of S′ ∩ Σ. By the
earlier arguments there are then isotopies of the pieces of S̃ to the corresponding
pieces of S̃′ , preserving transverse orientations, and we can take these isotopies
to fix the boundaries of these pieces since the space of transversely oriented
circles in a 2 sphere is simply-connected, as noted earlier. Thus these isotopies
fit together to give an isotopy of S̃ to S̃′ fixing S̃ ∩ Σ̃. This isotopy projects to
an equivalence of S and S′ in M .
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3 Complexes of disks and spheres

We continue with the notation of the previous section, so M is a connected
sum of n copies of S1 × S2 with s copies of the ball D3 and k additional
irreducible manifolds, and C is a collection of circles in the sphere and torus
boundary components of M subject to the same restrictions as before. Let
DS(M,C) be the simplicial complex whose p simplices are the isotopy classes
of systems of p+ 1 disks and spheres in M . The faces of such a simplex are
obtained by passing to subsystems. If we restrict attention to systems formed
just of disks or just of spheres we obtain subcomplexes D(M,C) and S(M,C),
respectively. We write S(M) for S(M,∅). Eventually we will be most inter-
ested in the subcomplex Dc(M,C) of D(M,C) formed by disk systems with
connected complement. The main result we are heading for in this section is

Theorem 3.1 Dc(M,C) is (n−2) connected if C 6= ∅, and (n−1) connected

if C is contained in torus components of ∂M and C 6= ∅.

The plan of the proof is to show:

(1) DS(M,C) is contractible except when n = 0 and k ≤ 1, in which cases it
is (2k + s− 5) connected if C = ∅ and (k+ s− 4) connected if C 6= ∅.

(2) D(M,C) is contractible if C is contained in torus components of ∂M
and C 6= ∅.

(3) D(M,C) is (2n + k + s− 4) connected in general, if C 6= ∅.

(4) Dc(M,C) is (n− 2) connected if C 6= ∅.

(5) Dc(M,C) is (n− 1) connected if C is contained in torus components of
∂M , C 6= ∅.

Our convention is that (−1) connected means nonempty and (−2) connected
is a vacuous condition. The empty set is (−2) connected, for example.

The proof of (3) is the most delicate so we will postpone this until last.

Proof of (1) There are three main steps. The first is the following, where t
denotes the number of boundary spheres of M that contain circles of C :

(a) DS(M,C) is contractible if S(M) 6= ∅ and either s ≤ 1 or s = t.
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This is proved using the surgery technique of the proof of Theorem 2.1 of [7],
with a few minor simplifications. Choose a maximal sphere system Σ and put
an arbitrary disk-sphere system S = S0 ∪ ··· ∪ Sp in normal form with respect
to Σ. A point in the p simplex of DS(M,C) determined by S can be thought
of as a weighted sum

∑
i tiSi of the components of S , with weights ti the

barycentric coordinates of the point in the simplex. Barycentric coordinates
are normalized to have

∑
i ti = 1. To make the surgery process clearer it is

helpful to replace each Si by a family S × [0, ti] of parallel copies of Si of
‘thickness’ ti . When a weight ti goes to zero at a face of the simplex, the
family Si × [0, ti] shrinks to thickness zero and is deleted. We will allow the
family Si× [0, ti] to be split into several parallel families of total thickness ti , as
well as the inverse operation of combining parallel families into a single family,
adding their weights.

Our aim is to construct a sequence of surgeries on S to eliminate the circles of
S ∩ Σ0 for Σ0 one of the spheres of Σ. Let T0 be the dual tree of S ∩ Σ0 in
Σ0 , with a vertex for each components of Σ0 − S and an edge for each circle
of S ∩ Σ0 . The weights on the Si ’s define lengths for these edges, so T0 is a
metric tree. There is a canonical way to shrink T0 to a point by shortening all
its extremal edges simultaneously at unit speed. Once an extremal edge has
disappeared one continues shrinking all remaining extremal edges. The surgery
process will realize this shrinking of T0 by a path in DS(M,C) starting at S
and ending with a system disjoint from Σ0 . If T0 is not already a point, its
extremal vertices v correspond to disjoint disks Dv in Σ0 with Dv ∩S = ∂Dv .
These disks can be used to surger S to a new system in which the circles ∂Dv

have been eliminated from S ∩Σ0 . Taking weights into account, one gradually
surgers through the appropriate families Si×[0, ti] at unit speed, decreasing the
thicknesses of these families while increasing the thicknesses of the new families
created by the surgery. The old and new families can be taken to be disjoint,
so the surgery can be viewed as simply transferring weights from the old family
to the new. When the thickness of a family has shrunk to zero, this family is
deleted and one continues the surgery process on the remaining families. Near
the end of the process of shrinking T0 to a point it can happen that all that
remains of T0 is a single edge, and then both ends of this edge are shrinking
at the same time, so the corresponding family of surfaces is being surgered on
both sides simultaneously.

Thus the surgery process produces a family S(t1, ··· , tp, u) of weighted collec-
tions of surfaces, for (t, u) ∈ ∆p × [0,∞), with S(t1, ··· , tp, 0) the given family.
After the process is completed we combine parallel families and discard any
trivial spheres or disks that are produced by the surgeries. We need to make
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sure that some nontrivial disks or spheres always remain. Surgery on a nontriv-
ial sphere S0 produces a pair of spheres, and the only way these can both be
trivial is if S0 splits off a pair of boundary spheres from M , neither of which
meets C . This cannot happen if s ≤ 1 or s = t. Surgery on a nontrivial disk
D0 produces a sphere and a disk, and the only way these can both be trivial is
if ∂D0 lies in a sphere of ∂M and D0 splits off another boundary sphere of M
that is disjoint from C . Again we are safe if s ≤ 1 or s = t.

Thus after discarding trivial spheres and disks we are left with systems of
spheres and disks. Then renormalizing the weights of the remaining nontriv-
ial spheres and disks to have sum 1, the surgery process defines a path in
DS(M,C). This is independent of the choice of normal form system S within
its isotopy class because the surgeries always take equivalent systems to equiv-
alent systems, and equivalent systems are isotopic. The surgeries may destroy
normal form, but that does not matter.

It is evident that S(t1, ··· , tp, u), regarded as a point in DS(M,C) by discarding
trivial components and renormalizing weights, depends continuously on the
parameters ti and u. When we pass to a face of the parameter simplex ∆p by
letting some ti go to zero, we get the corresponding family S(t1, ··· , t̂i, ··· , tp, u)
for the system obtained by deleting Si from S . So we have constructed a
deformation retraction of DS(M,C) into the subspace of systems disjoint from
Σ0 . This subspace is contractible since it is the star of the vertex corresponding
to Σ0 . Hence DS(M,C) is contractible.

Note that instead of surgering along just the sphere Σ0 we could just as well
surger along any subsystem of Σ, and this would produce a deformation retrac-
tion onto the star of this subsystem in DS(M,C).

This takes care of (a). The other two steps in the proof of (1) will provide a
reduction to (a). Suppose M has boundary spheres ∂1, ··· , ∂s , one of which,
say ∂s , is disjoint from C . Let M ′ be the manifold obtained from M by filling
in ∂s with a ball.

(b) If S(M) 6= ∅ and s ≥ t+ 2, the connectivity of DS(M,C) is one greater
than the connectivity of DS(M ′, C).

The proof of this is similar to the proof of Lemma 2.2 in [7]. Call a vertex of
DS(M,C) special if it is either

a sphere splitting off a 3 punctured sphere from M whose other two
boundary spheres are ∂s and some ∂i which is disjoint from C , or

Geometry & Topology, Volume 9 (2005)



Stabilization for the automorphisms of free groups with boundaries 1321

a disk splitting off a 2 punctured sphere from M having ∂s as one bound-
ary sphere and whose other boundary sphere intersects C only in the
boundary circle of the disk.

Special vertex spheres exist if s ≥ t+ 2, so let Σ be such a sphere, splitting off
a submanifold P of M that is a 3 punctured sphere bounded by Σ, ∂s , and
some other ∂i . Let DS ′(M,C) be the subcomplex of DS(M,C) consisting of
simplices with no special vertices. A deformation retraction of DS ′(M,C) onto
the link of Σ can be obtained in the following way. Take a system S defining a
simplex in DS ′(M,C) and put it in normal form with respect to some maximal
sphere system containing Σ. Then if S ∩P is not empty, it consists of parallel
disks separating ∂s from ∂i . These disks can be eliminated by pushing them
across ∂s and then outside P . Since no components of S are special disks or
spheres, this process of modifying S by pushing across ∂s produces no trivial
disks or spheres. The process could also be described in terms of surgering S

along Σ and discarding the resulting spheres that are isotopic to ∂s , so the
process determines a deformation retraction of DS ′(M,C) onto the link of Σ,
as desired.

We obtain DS(M,C) from DS ′(M,C) by attaching the star of each special
vertex along the link of this vertex. These stars are the cones on the links,
and have disjoint interiors since no simplex can contain two distinct special
vertices. The star of Σ is contractible, so by the preceding paragraph the union
of this star with DS ′(M,C) is also contractible. We obtain DS(M,C) from
this contractible space by attaching the stars of the other special vertices, so
DS(M,C) is homotopy equivalent to the wedge of the suspensions of the other
links. Each link is a copy of DS(M ′, C), so the connectivity of DS(M,C) is
one greater than the connectivity of DS(M ′, C).

(c) The connectivity of DS(M,C) is one greater than the connectivity of
DS(M ′, C) if s > t and t > 0. The same is true for D(M,C) and
D(M ′, C).

The proof parallels the previous one. First we have a preliminary observation:

If C is obtained from C ′ by adding a second circle in some sphere com-
ponent of ∂M then DS(M,C) is homotopy equivalent to the suspension
of DS(M,C ′), and this is also true for D(M,C) and D(M,C ′).

To see this, let C0 and C1 be two circles of C in the same boundary sphere
of M and let these bound disks D0 and D1 that lie in a neighborhood of
the boundary sphere and represent vertices of D(M,C). Let DS ′(M,C) be
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the subcomplex of DS(M,C) consisting of simplices containing neither of the
vertices represented by D0 and D1 . Then DS ′(M,C) deformation retracts
onto the link of D1 in DS(M,C) by shifting disks with boundary on C0 over
to disks with boundary on C1 , using the annulus between C0 and C1 in ∂M .
In the same way DS ′(M,C) deformation retracts onto the link of D0 . Since
DS(M,C) is the union of DS ′(M,C) with the stars of the vertices D0 and D1 ,
it follows that DS(M,C) is homotopy equivalent to the suspension of the link
of either of these vertices. These links can be identified with DS(M,C ′). The
same argument applies with D in place of DS .

Now to prove (c) we may assume C has at most one circle in each sphere of
∂M . Let D0 be a disk representing a special vertex of D(M,C), with ∂D0

in ∂i , and let Σ be a sphere splitting off a 3 punctured sphere P containing
D0 and having ∂s and ∂i as its other two boundary spheres. As in (b), let
DS ′(M,C) be the subcomplex of DS(M,C) consisting of simplices having no
special vertices. We may deformation retract DS ′(M,C) onto the link of D0

by putting systems S representing simplices of DS ′(M,C) into normal form
with respect to a maximal sphere system containing Σ and then eliminating the
intersections of S with an arc in P joining ∂i to ∂s by pushing across ∂s . The
intersections of S with P can be disks with boundary on Σ, cylinders joining
Σ to ∂i , or spheres parallel to ∂i . Figure 5 shows which combinations of these
surfaces are possible (along with parallel copies of these surfaces).

Σ Σ Σ Σ

∂i

∂s

∂i

∂s

∂i

∂s

∂i

∂s

Figure 5

The rest of the argument then follows the reasoning in (b). The proof works
equally well with D in place of DS .

To deduce (1) from (a), (b), and (c) there are three cases:

(i) If n > 0 or k > 1 then S(M) 6= ∅, so (b) gives the reduction to (a) when
t = 0 and (c) gives the reduction to (a) when t > 0. The conclusion in
both cases is that DS(M,C) is contractible.
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(ii) Suppose n = k = 0. If t = 0 then DS(M,C) = S(M) 6= ∅ for s ≥ 4 so
(b) gives the reduction to the case s = 4 and we conclude that DS(M,C)
is (s − 5) connected. If t = 1 then S(M) 6= ∅ for s ≥ 3 so (b) gives a
reduction to the case s = 3 and DS(M,C) is (s− 4) connected. If t ≥ 2
then S(M) 6= ∅ so (c) gives a reduction to the case s = t and we see
that DS(M,C) is contractible.

(iii) Suppose n = 0 and k = 1. Then S(M) 6= ∅ for s ≥ 2. Reasoning as in
(ii) we see that DS(M,C) is contractible if t ≥ 2 and (s− 3) connected
if t ≤ 1. Note that s− 3 = 2k + s− 5 = k + s− 4 when k = 1.

This finishes the proof of (1).

Proof of (2) Let Σ be a system of spheres that splits off all the S1 × D2

summands of M whose boundary tori contain circles of C . Doing surgery
along this Σ as in the first step of the proof of (1) and discarding all spheres
produced by the surgeries gives a deformation retraction of D(M,C) into the
subcomplex consisting of disk systems disjoint from Σ. This subcomplex is the
join of copies of the disk complex for M1

0,1 , which is homeomorphic to the real

line. Namely, up to diffeomorphism of M1
0,1 fixing the boundary torus there is

a unique nontrivial disk, and applying Dehn twists on the boundary torus gives
an infinite sequence of disks, the vertices of the disk complex. There is an edge
joining each vertex to each of its two neighbors in the infinite sequence, and
there are no simplices of higher dimension, so the disk complex for M1

0,1 is a
line. In particular it is contractible, so D(M,C) is contractible as well.

This argument does not cover the special case M = M0
0,1 , but in this case

D(M,C) is just a point.

Proof that (3) implies (4) For n = 0 the result holds vacuously, and for
n = 1 it is true since Dc(M,C) is nonempty if n > 0 and C 6= ∅. So
we may assume n ≥ 2. To show that Dc(M,C) is (n − 2) connected, start
with a map f : Sm → Dc(M,C), m ≤ n − 2. By (3) this extends to a map
F : Dm+1 → D(M,C) since 2n + k + s − 4 ≥ n − 2 if n ≥ 2. We may assume
F is simplicial with respect to some triangulation of Dm+1 . Each p simplex σ

of Dm+1 then maps to a disk system D = D0 ∪ ··· ∪Dq with q ≤ p. Choose σ
of maximal dimension p such that the system D is purely separating, meaning
that each Di separates the complement of the other disks. This is equivalent
to saying that all edges in the dual graph of D have distinct endpoints. This
implies that σ is not contained in ∂Dm+1 since F maps this to systems with
connected complement, having dual graph a wedge of circles. Thus the link
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Lσ of σ in the triangulation of Dm+1 is a sphere Sm−p . The maximality of σ
implies that any simplex properly containing σ is sent by F to a disk system
whose dual graph is obtained from the dual graph of D by attaching loops at
some vertices. This implies that F maps Lσ to the join

Jσ = Dc(M1, C1) ∗ ··· ∗ Dc(Md, Cd)

where the Mi ’s are the components of the manifold obtained by splitting M

along D and the Ci ’s are the preimages of C in these components. Each
(Mi, Ci) is smaller than (M,C) with respect to the lexicographic ordering on
the 4 tuples (n, k, s, u) where u denotes the number of circles in C . So by
induction Dc(Mi, Ci) is (ni − 2) connected. Since the quantity ‘connectivity-
plus-two’ is additive for joins by [19], it follows that Jσ is

(∑
i ni−2

)
connected.

We have
∑

i ni ≥ n− q ≥ n−p since the system D of q+1 disks separates M ,
so splitting M along D can decrease the rank of the dual graph by at most q .
Thus Jσ is at least (n − p − 2) connected. Since Lσ is a sphere of dimension
m − p we deduce that if m ≤ n − 2, the map F : Lσ → Jσ extends to a map
G : Dm−p+1 → Jσ . The star of σ in Dm+1 is the join σ ∗ Lσ but it can also
be regarded as ∂σ ∗Dm−p+1 for a disk Dm−p+1 ⊂ Dm+1 with ∂Dm−p+1 = Lσ .
Thus we can redefine F on the interior of the star of σ by taking the join
of the restriction of F to ∂σ with G. For the new F there are no purely
separating simplices of dimension p or greater in the star. Hence after a finite
number of modifications like this we eliminate all purely separating simplices,
thereby making F into a map to Dc(M,C), finishing the proof that Dc(M,C)
is (n− 2) connected.

Proof that (4) implies (5) This is very similar to the preceding proof. The
case n = 0 is easy since Dc(M,C) is nonempty, so we may assume n ≥ 1. We
start with a map Sm → Dc(M,C) and extend it to a map Dm+1 → D(M,C)
using (2). As before, we look at a maximal simplex σ mapping to a purely
separating disk system D . The inequality

∑
i ni ≥ n−p now becomes

∑
i ni ≥

n − p + 1 since splitting along the first disk in a disk system just changes a
boundary torus into a sphere. The join Jσ is

(∑
i ni − 2

)
connected using (4)

instead of induction. Then if m ≤ n − 1 the connectivity of Jσ is at least∑
i ni − 2 ≥ n− p+ 1 − 2 ≥ m− p so we can finish the proof as before.

Proof of (3) It is natural to try the same approach as in the two previous
proofs. Starting with a map f : Sm → D(M,C) we can extend it to a map
F : Dm+1 → DS(M,C) using (1), and we may assume this is a simplicial map.
We wish to modify F so as to eliminate all sphere systems in its image, so
one’s first guess would be to take σ to be a maximal dimension simplex in
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Dm+1 such that F (σ) is a sphere system. This does not work, however. Here
is an example of what can go wrong. Suppose we take m = 0 and we let C
consist of two circles in one sphere of ∂M . Then there are nontrivial disks D0

and D1 lying in a neighborhood of this boundary sphere and having boundaries
on the two circles of C . These two disks correspond to two distinct vertices of
D(M,C), and the easiest way to join these two vertices by a path in DS(M,C)
is to interpolate the vertex formed by a sphere S parallel to this boundary
component of M , so there are edges from D0 to S and from S to D1 . Then
σ would be this vertex S , but there is no way to modify F on the star of σ
by connecting D0 and D1 by a path of disk systems disjoint from S since the
only such disk systems are D0 and D1 .

So a more subtle approach is needed. Fortunately a model for what to do in an
analogous situation in one lower dimension is available in Theorem 2.7 of [13],
and we will follow this model closely.

Recall that t is the number of boundary spheres of M intersecting C . Note
that we can assume that t > 0 by (2), and then that t = s by (1)(c).

For a p simplex σ of Dm+1 mapped by F to a sphere system S let X = Xσ

be the closure of the union of the components of M − S that meet C , and
let Y = Yσ be the closure of M − X . Call σ regular if no spheres of S lie
in the interior of Y . Every simplex σ of Dm+1 mapping to a sphere system
contains a subsimplex which is regular, obtained by discarding vertices mapping
to spheres in the interior of Y . Such vertices are called superfluous. We will
assume from now on that σ is regular. Let Y1, ··· , Yc be the components of
Y and let X1, ··· ,Xd be the components of the manifold obtained from X by
splitting along the spheres of S .

Among the various regular simplices of Dm+1 suppose that σ is chosen so that
the lexicographically ordered pair (c(Yσ), p) is maximal, where the complexity
c(Yσ) is defined as the number of components in the complement of a maximal
sphere system in Yσ . (This does not depend on the maximal sphere system
chosen, by the unique prime decomposition theorem for 3 manifolds.) With
this maximality assumption on σ we claim that F takes the link Lσ of σ in
Dm+1 to the join

Jσ = D(X1, C1) ∗ ··· ∗ D(Xd, Cd) ∗ S(Y1) ∗ ··· ∗ S(Yc)

where Ci is the part of C in Xi . Indeed, let v be a vertex in Lσ , so F (v) is a
disk or sphere in the complement of the system S = F (σ). If F (σ) lies in some
Yj it must be a sphere defining a vertex of S(Yj) and hence in Jσ . The other
possibility is that F (σ) lies in some Xi , where it could be a disk or a sphere,
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and we need to show it must be a disk. So suppose it is a sphere. If it does
not split off a piece of Xσ disjoint from C then we can enlarge σ to include
v without changing Xσ or Yσ , contradicting the maximality of (c(Yσ), p). On
the other hand, if F (σ) does split off a piece of Xσ disjoint from C then by
enlarging σ to include v and then discarding any resulting superfluous vertices
we obtain a new σ′ with Yσ′ the union of Yσ and the piece split off from Xσ ,
so c(Yσ′) > c(Yσ), contradicting maximality again.

So we have F : Lσ → Jσ . We calculate now the connectivity Jσ . If any Yj

has n(Yj) > 0 or k(Yj) > 1 then S(Yj) is contractible by (1), hence Jσ is also
contractible. So we may assume n(Yj) = 0 and k(Yj) ≤ 1 for each j . For the
connectivity of the join Jσ we have

conn(Jσ) =
∑

i conn
(
D(Xi, Ci)

)
+

∑
j conn

(
S(Yj)

)
+ 2c+ 2d− 2

By induction on the lexicographically ordered triple (n, k, s) we know the con-
nectivities in the first summation, and (1) gives the connectivities in the second
summation, so if the number of Yj ’s with k(Yj) = 1 is a, we get

conn(Jσ) = 2
∑

in(Xi)+
∑

ik(Xi) +
∑

is(Xi) − 4d

+
∑

js(Yj) − 5c+ 2a+ 2c+ 2d− 2

We can start the induction with (n, k, s) = (0, 0, 3) when D(M,C) is nonempty
if C 6= ∅. If F (σ) is a q simplex, consisting of q+ 1 spheres, then by splitting
M along these spheres and counting the number of boundary spheres in the
resulting manifold we see that s(M) + 2q + 2 =

∑
i s(Xi) +

∑
j s(Yj). Looking

at the dual graph to the system F (σ) we see that n(M) =
∑

i n(Xi) + q + 1−
(c+d−1) since it takes c+d−1 edges to connect together the c+d subgraphs
corresponding to the Xi ’s and Yj ’s and we assumed n(Yj) = 0. Also we have
k(M) =

∑
i k(Xi) + a. Substituting into the preceding displayed formula and

letting n = n(M), k = k(M), s = s(M), we see that the connectivity of Jσ is

(2n−2q − 4 + 2c+ 2d) + (k − a) − 4d+ (s+ 2q + 2) − 5c+ 2a+ 2c+ 2d− 2

= 2n+ k + s− 4 + a− c

Note that q+1 ≥ 3(c−a) since each Yj with k(Yj) = 0 must have at least three
boundary spheres and we assumed that no boundary sphere of M was disjoint
from C . This implies that q ≥ c − a. If we assume that m ≤ 2n + k + s − 4,
then

dimLσ = m− p ≤ m− q ≤ 2n + k + s− 4 − q

≤ 2n + k + s− 4 + a− c = conn(Jσ)
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Hence if m ≤ 2n + k + s − 4 we can modify F in the star of σ as before,
taking the join of its values on ∂σ with an extension of F : Lσ → Jσ to a map
Dm−p+1 → Jσ .

It remains to check that this modification improves the situation, namely that
the maximum value of (c(Yσ),dim σ) has not increased, while the number of
simplices σ realizing this maximum value has actually decreased. We only need
to check simplices τ in Dm−p+1 ∗ ∂σ that are sent by the new F ′ to sphere
systems, and we need only consider such τ that are regular. The simplex τ

is the join of a simplex α in Dm−p+1 and a simplex β in ∂σ , where α or β
is taken to be empty when τ lies in ∂σ or Dm−p+1 . Since F ′(τ) is a sphere
system, so are F ′(α) and F ′(β). By construction F ′(α) is a simplex in Jσ , so
since it is a sphere system it must lie in S(Y1) ∗ ··· ∗ S(Yc) and hence it must
consist of spheres in Yσ . On the other hand, F ′(β) is a subsimplex of F (σ).
These two facts imply that Yτ ⊂ Yσ . Hence c(Yτ ) ≤ c(Yσ). Equality can occur
only if Yτ = Yσ , in which case α = ∅ since τ is regular. Then the simplex
τ = β is a proper face of σ and hence has smaller dimension. So in all cases
(c(Yτ ),dim τ) < (c(Yσ),dimσ).

This finishes the proof of Theorem 3.1. We will also need a similar result with
spheres in place of disks. Let Sc(M) be the subcomplex of S(M) consisting of
sphere systems with connected complement and let S±

c (M) be the complex of
oriented sphere systems with connected complement. The simplices of S±

c (M)
thus correspond to systems of spheres each of which has a chosen orientation,
or equivalently, a chosen normal orientation. (There is no need to consider
oriented disk complexes since disks can be canonically oriented by choosing
orientations for the circles of C .)

Proposition 3.2 Sc(M) and S±
c (M) are (n − 2) connected.

This was shown in Proposition 3.1 of [7] in the case k = 0. The generalization
to k > 0 is straightforward, and we give the proof here mainly to correct a
small error at the beginning of the proof in [7].

Proof For the case of Sc(M) this will follow from (1) by the same argument
used to show that (3) implies (4). The result is trivially true for n = 0, so we
may assume that n > 0. Consider a map f : Sm → Sc(M) with m ≤ n − 2.
Since S(M) is contractible, this extends to a map F : Dm+1 → S(M). Let σ be
a purely separating simplex in Dm+1 of maximal dimension p with image the
sphere system S = S0∪ ···∪Sq where q ≤ p. Then F maps the link Lσ = Sm−p
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to Jσ = Sc(M1) ∗ ··· ∗ Sc(Md) where the Mi ’s are the manifolds obtained by
cutting M along S . By induction on the triple (n, k, s), the connectivity of
Sc(Mi) is ni − 2 and thus Jσ is (

∑
i ni − 2) connected. Now

∑
i ni ≥ n− q as

the system S separates M . So
∑

i ni − 2 ≥ n − q − 2 ≥ m − p as m ≤ n − 2
and q ≤ p. Hence F : Lσ = Sm−p → Jσ can be extended to the disc Dm−p+1 .
We use this to modify F on the interior of the star of σ . After a finite number
of such modifications, F becomes a map with image in Sc(M), so Sc(M) is
(n− 2) connected.

We want to deduce that S±
c (M) is also (n − 2) connected. For this, choose a

positive orientation on the spheres of Sc(M) so that Sc(M) is identified with
the subcomplex S+

c (M) of S±
c (M) of spheres with positive orientation. It will

suffice to take a map f : Sm → S±
c (M) with m ≤ n − 2 and homotope this

to have image in S+
c (M). Let σ be a simplex of Sm of maximal dimension

p whose image under f is a system S = S−

0
∪ ··· ∪ S−

q consisting entirely of
negatively oriented spheres. The link Lσ = Sm−p−1 then maps to S+

c (M ′),
where M ′ is M cut along S . The manifold M ′ has n− q− 1 copies of S1 ×S2

in its decomposition as M−S is connected. So S+
c (M ′) is (n−q−3) connected.

Now m− p− 1 ≤ n − q − 3 as m ≤ n− 2 and q ≤ p. Hence we can modify f

on the interior of the star of σ as before. Note that the new f is homotopic to
the old one by coning. After a finite number of such modifications we obtain
an f having image in S+

c (M).

We conclude this section with two results that will be needed for the spectral se-
quence argument. We use the notation A(M) for the quotient of π0Diff(M) by
twists along 2 spheres. This quotient acts on all the disk and sphere complexes
for M since twists along 2 spheres act trivially, as they obviously preserve the
homotopy classes of embedded spheres and disks.

Proposition 3.3 If C consists of a single circle, then A(M) acts transitively

on the p simplices of Dc(M,C) for each p. The same is true also for Sc(M)
and S±

c (M).

Proof First consider the case that C is contained in a torus boundary com-
ponent. Let D = D0 ∪ ··· ∪ Dp be a disk system representing a p simplex
of Dc(M,C). Thinking of C as a longitude of the torus T of ∂M that it
lies in, take a meridian circle of T and push this slightly into the interior of
M . Orienting this meridian circle then determines an ordering of the disks
Di , which we may assume agrees with the ordering by increasing subscripts. If
D′ = D′

0∪···∪D′
p is another such disk system, we want to find a diffeomorphism

M →M fixed on ∂M and taking each Di to D′

i .
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Let N be the manifold obtained from M by splitting along D . Splitting along
D0 replaces the S1×D2 summand of M containing T by a D3 summand, and
then, since M − D is connected, splitting along each subsequent Di replaces
an S1 × S2 summand by another D3 summand. The same is true when we
split along D′ to produce another manifold N ′ . By the uniqueness of prime de-
compositions for compact orientable 3 manifolds, N and N ′ are diffeomorphic,
and the diffeomorphism can be chosen to be the identity on the components of
∂M other than T . The diffeomorphism can also be chosen to permute the new
boundary spheres in any way we like, so it can be chosen in such a way that it
passes down to a quotient diffeomorphism M →M taking each Di to D′

i and
fixed on ∂M .

The case that C is contained in a sphere boundary component is covered by the
same argument since in this case splitting along disks again replaces S1 × S2

summands by D3 summands. For Sc(M) and S±
c (M) splitting along spheres

replaces S1 × S2 summands by pairs of D3 summands, so a similar argument
applies.

For a system S of disks and spheres in M let A(M,S) be the subgroup of
A(M) represented by diffeomorphisms restricting to the identity on S . If M ′

denotes M split along S , there is thus a surjection A(M ′) → A(M,S).

Proposition 3.4 The surjection A(M ′) → A(M,S) is an isomorphism.

Proof Choose a system Σ in M ′ consisting of spheres that split off all prime
summands together with spheres in S1 × S2 summands and disks in S1 ×D2

summands. Represent an element of the kernel of A(M ′) → A(M,S) by a
diffeomorphism f ∈ Diff(M) that is isotopic to the identity and restricts to the
identity on S . The system f(Σ) is then isotopic to Σ in M , hence in M ′ as
shown in the proof of Theorem 2.2. So we may assume f takes each component
of Σ to itself. We may also assume f is the identity on disk components of
Σ since it is the identity on their boundaries. On the spheres in Σ that are
separating, f must preserve orientation since it cannot switch the sides of these
spheres, and f must also preserve orientations of the nonseparating spheres in
Σ since it induces the identity on homology. Thus we may assume f is the
identity on Σ as well as on S . Modulo twists along 2 spheres we can then
deform f , staying fixed on Σ, to be the identity on all of M except the prime
summands that are neither S1×S2 nor S1×D2 , since an orientation-preserving
diffeomorphism of a punctured S3 that takes each puncture to itself is isotopic
to the identity. For the remaining prime summands we appeal to the theorem
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in Section 5 of [12] which has as a corollary the fact that the product of the
mapping class groups of these prime summands injects into the mapping class
group of M .

4 Proof of stability

We make a small change of notation now and let M s
n,k be the connected sum

of n copies of S1 × S2 , k copies of S1 ×D2 , s balls, and perhaps also another
manifold N that is a sum of prime factors satisfying the conditions imposed
at the beginning of Section 2. Then we have the following stabilization result
for the groups As

n,k , which are the mapping class groups of the manifolds M s
n,k

with twists along 2 spheres factored out:

Theorem 4.1 For all k ≥ 0 and s ≥ 1 the natural stabilization maps

(1) Hi(A
s
n,k) → Hi(A

s+1

n,k )

(2) Hi(A
s
n,k) → Hi(A

s
n,k+1)

(3) Hi(A
s
n,k) → Hi(A

s
n+1,k)

are isomorphisms whenever n ≥ 3i+ 3.

These isomorphisms will follow from three other similar isomorphisms. Consider
the following three maps, for s ≥ 0:

α : As+2

n,k → As+1

n+1,k , induced by the map M s+2

n,k → M s+1

n+1,k identifying
disks in each of the last two boundary spheres of M , or equivalently,
attaching a 1 handle D1 ×D2 joining these two boundary spheres.

β : As+2

n,k → As
n+1,k , induced by the map M s+2

n,k → M s
n+1,k identifying

the two last boundary spheres of M , or equivalently, joining them by a
product S2 × I .

γ : As+1

n,k → As
n,k+1

, induced by the map M s+1

n,k →M s
n,k+1

identifying two

disks in the last boundary sphere of M s+1

n,k , or equivalently, attaching a

1 handle D1 ×D2 from this boundary sphere to itself.

What we will actually prove is that for all k ≥ 0 and s ≥ 0 the induced maps

(A) αi : Hi(A
s+2

n,k ) → Hi(A
s+1

n+1,k)

(B) βi : Hi(A
s+2

n,k ) → Hi(A
s
n+1,k)

(C) γi : Hi(A
s+1

n,k ) → Hi(A
s
n,k+1)
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are surjective when n ≥ 3i and isomorphisms when n ≥ 3i + 2. To see how
this implies the theorem, we use two other maps:

δ : As+1

n,k → As
n,k , induced by filling in the last boundary sphere with a

ball.

ε : As
n,k → As+1

n,k , induced by attaching a 2 handle D2 × D1 to the last
boundary sphere, if s ≥ 1.

Since β is the composition δα, we deduce that δi : Hi(A
s+1

n,k ) → Hi(A
s
n,k) is an

isomorphism for n ≥ 3i+3. The composition δε is the identity, so we conclude
that ε induces an isomorphism on homology:

(1) The stabilization Hi(A
s
n,k) → Hi(A

s+1

n,k ) is an isomorphism for n ≥ 3i+ 3
and s ≥ 1.

The composition γε comes from attaching disjoint 1 and 2 handles to the last
boundary sphere, so this is the standard stabilization As

n,k → As
n,k+1

. Thus we
have:

(2) The stabilization Hi(A
s
n,k) → Hi(A

s
n,k+1

) is an isomorphism for n ≥ 3i+3
and s ≥ 1.

Finally, the standard stabilization As
n,k → As

n+1,k is βε2 , so:

(3) The stabilization Hi(A
s
n,k) → Hi(A

s
n+1,k) is an isomorphism for n ≥ 3i+3

and s ≥ 1.

Corollary 4.2 The quotient map Aut(Fn) → Out(Fn) induces an isomor-

phism on Hi for n ≥ 3i+ 3.

Proof The map Aut(Fn) → Out(Fn) is a special case of δ as A1
n,0 = Aut(Fn)

and A0
n,0 = Out(Fn), and we have just seen that δ induces an isomorphism on

Hi in the stated range.

Case (A) We do an induction on i, using the relative spectral sequence argu-
ment of [22]. The statement is clearly true for i = 0. The induction hypothesis
will be that the following two statements are true for all q < i:

(aq) αq : Hq(A
s+2

n,k ) → Hq(A
s+1

n+1,k) is surjective for all n ≥ 3q .

(bq) αq : Hq(A
s+2

n,k ) → Hq(A
s+1

n+1,k) is an isomorphism for all n ≥ 3q + 2.
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We want to show that this implies (ai) and (bi).

To ease the notation we write the stabilization As+2

n,k → As+1

n+1,k as Gn → Gn+1 .

Consider the action of Gn+1 on the complex Xn+1 = Dc(M
s+1

n+1,k, C), where
C is a single circle in the last sphere component of ∂M . The stabilizer of
a vertex is Gn , and more generally the stabilizer of a p simplex is Gn−p =

A
s+p+2

n−p,k . If we take Xn to be Dc(M
s+2

n,k , C) with C again a single circle in the
last boundary sphere, then the vertex stabilizer Gn acts on Xn , and the map
(M s+2

n,k , C) → (M s+1

n+1,k, C) that induces α also induces an embedding of Xn in
Xn+1 preserving the actions of Gn and Gn+1 . Thus if (C∗, ∂∗) and (C ′

∗, ∂
′
∗) are

the augmented chain complexes of Xn and Xn+1 respectively, then we have a
map of double complexes

i : EqGn ⊗Gn
Cp −→ EqGn+1 ⊗Gn+1

C ′

p

where (E∗Gn, d∗) is a free Gn resolution of Z and similarly for (E∗Gn+1, d∗).

With mapping cones in mind, consider now the double complex

(Eq−1Gn ⊗Gn
Cp) ⊕ (EqGn+1 ⊗Gn+1

C ′

p)

with vertical boundary maps (a⊗ b, a′ ⊗ b′) 7→
(
−da⊗ b, d′a′ ⊗ b′ + i(a⊗ b)

)

and horizontal boundary maps (a⊗ b, a′ ⊗ b′) 7→ (−1)q(a⊗ ∂b, a′ ⊗ ∂′b′). There
are two spectral sequences associated to this double complex. The first spectral
sequence, arising from the horizontal filtration, converges to 0 for p ≤ n − 2
since Hp(C∗) = 0 for p ≤ n − 2 and Hp(C

′
∗) = 0 for p ≤ n − 1 by Theorem

3.1. So in the second spectral sequence, associated to the vertical filtration, we
have E∞

p,q = 0 for p + q ≤ n − 2. The columns in the double complex are the
mapping cones of the chain maps i : E∗Gn ⊗Gn

Cp → E∗Gn+1⊗Gn+1
C ′

p . So the
E1 term of the second spectral sequence is

E1
p,q = Hq(E∗Gn+1 ⊗Gn+1

C ′

p, E∗Gn ⊗Gn
Cp)

By Proposition 3.3 the actions of Gn and Gn+1 on Xn and Xn+1 are transitive
on the sets of p simplices. For the map Xn → Xn+1 , each orbit of a p simplex
in Xn+1 comes from the orbit of a p simplex in Xn if p ≤ dimXn = n−1. The
stabilizers of p simplices in Xn and Xn+1 are Gn−p−1 and Gn−p respectively,
so Shapiro’s Lemma (or its proof) gives an isomorphism

E1
p,q

∼= Hq(Gn−p, Gn−p−1) for p ≤ n− 1

where the coefficients are untwisted Z’s since the stabilizers do not permute
the vertices of a simplex.

To prove (ai), we will show that Hi(Gn+1, Gn) = 0 when n ≥ 3i. Consider the
differential

d1 : E1
0,i = Hi(Gn, Gn−1) −→ E1

−1,i = Hi(Gn+1, Gn)
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By assumption, Hq(Gn−p, Gn−p−1) = 0 if q < i and p + q = i as n − p − 1 ≥
3i−p−1 ≥ 3i−3p = 3q since p ≥ 1. As n ≥ 3i also implies i−1 ≤ n−2 when
i > 0, the term E1

−1,i must be killed by differentials and hence the differential

d1 above is surjective as the other differentials originate in trivial groups. Now
a diagram chase in

Hi(Gn) //

��

Hi(Gn, Gn−1)

d1

��

// Hi−1(Gn−1)
∼=

// Hi−1(Gn)

Hi(Gn+1) // Hi(Gn+1, Gn)

shows that Hi(Gn+1, Gn) = 0. Indeed, given an element x ∈ Hi(Gn+1, Gn)
there is an x′ ∈ Hi(Gn, Gn−1) mapping to x. The top right map is an iso-
morphism by (bi−1) as n − 1 ≥ 3i − 1 = 3(i − 1) + 2. So x′ maps to 0 in
Hi−1(Gn−1), and thus there is an x′′ ∈ Hi(Gn) mapping to x′ . Following x′′

around the other two sides of the square gives 0 since these groups are part of
an exact sequence, so x = 0. This proves (ai).

The proof of (bi) is similar. From the preceding paragraph and the assumption
n ≥ 3i + 2 in (bi) we have E1

p,q = Hq(Gn−p, Gn−p−1) = 0 for all q ≤ i and
p + q = i + 1 as n − p − 1 ≥ 3i + 2 − p − 1 ≥ 3i − 3p + 3 = 3q since p ≥ 1.
From the spectral sequence we conclude by the same reasoning as before that
the differential

d1 : E1
0,i+1 = Hi+1(Gn, Gn−1) −→ E1

−1,i+1 = Hi+1(Gn+1, Gn)

is surjective as i ≤ n− 2 when n ≥ 3i+ 2. A diagram chase in

Hi+1(Gn, Gn−1) //

d1

��

Hi(Gn−1)

��

Hi+1(Gn+1, Gn) // Hi(Gn)
αi

// Hi(Gn+1)

now shows that αi : Hi(Gn) → Hi(Gn+1) is injective. Indeed, let x ∈ Hi(Gn)
be in the kernel of αi . Then there exists x′ ∈ Hi+1(Gn+1, Gn) mapping to x.
As the left vertical map is surjective, there is a lift x′′ ∈ Hi+1(Gn, Gn−1) of x′ .
Following x′′ around the other two sides of the square gives 0, so x = 0. This
proves (bi) since (ai) gives the surjectivity of αi .

Case (B) The result in this case is shown in [11] by a slightly different spec-
tral sequence argument, and we include a proof here mainly for the reader’s
convenience.

As in the previous case, we do an induction on i. The statement is clearly true
for i = 0. Suppose inductively that the following are valid for all q < i:
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(aq) βq : Hq(A
s+2

n,k ) → Hq(A
s
n+1,k) is surjective for all n ≥ 3q .

(bq) βq : Hq(A
s+2

n,k ) → Hq(A
s
n+1,k) is an isomorphism for all n ≥ 3q + 2.

We write the stabilization As+2

n,k → As
n+1,k as Gn → Gn+1 and consider the

action of Gn+1 on Xn+1 = S±
c (M s

n+1,k). A vertex stabilizer is Gn , but unfor-

tunately the stabilizer of a p simplex for p > 0 is larger than Gn−p = A
s+2p+2

n−p,k

since the stabilizer includes diffeomorphisms that permute the vertices of the
p simplex. To fix this problem one could attempt to refine the definition of
S±

c (M s
n+1,k) so as to include the data of an ordering of the spheres in a sphere

system. However, it is not evident that this complex would be highly connected.
So instead we do something slightly different, letting Xn+1 be the complex
whose p simplices are all the simplicial maps ∆p → S±

c (M s
n+1,k). These maps

take vertices to vertices, but different vertices of ∆p can have the same im-
age, so we are allowing ‘degenerate’ simplices. (This means that Xn+1 is no
longer a simplicial complex, but it is a CW complex with the added structure
of a ∆ complex, in the terminology of [8].) It is a standard fact in algebraic
topology that enlarging a simplicial complex by adjoining degenerate ordered
simplices in this way does not change its homology groups; see for example
Theorem 4.6.8 of [20]. The group Gn+1 still acts on the new Xn+1 , and the
action is transitive on vertices with Gn as vertex stabilizer, but the action is no
longer transitive on higher-dimensional simplices. The stabilizers of p simplices
are the groups Gn−r for r ≤ p, and this will be good enough for the proof in
case (A) to go through without significant change.

The action of Gn+1 on Xn+1 restricts to an action of Gn on Xn , so as in case
(A) we look at the double complex (Eq−1Gn⊗Gn

Cp)⊕(EqGn+1⊗Gn+1
C ′

p) with
boundary maps as before. The spectral sequence coming from the horizontal
filtration converges to 0 when p ≤ n − 2, so the second spectral sequence has
E∞

p,q = 0 for all p+ q ≤ n− 2.

The inclusion Xn →֒ Xn+1 induces a bijection on orbits of p simplices for
p ≤ n−1, so Shapiro’s Lemma says that the term E1

p,q of the spectral sequence
obtained from the vertical filtration is a direct sum of terms Hq(Gn−r, Gn−r−1)
for r ≤ p if p ≤ n− 1. Again the coefficients are untwisted Z’s since stabilizers
do not permute vertices of a simplex.

The rest of the argument now proceeds as in case (A) as n− r− 1 ≥ 3q for all
r ≤ p if and only if this holds when r = p.

Case (C) In order to keep the same notation as in the previous cases we
take the liberty of writing As+1

n,k → As
n,k+1

as Gn → Gn+1 . This is the map
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induced by the inclusion M s+1

n,k →֒M s
n,k+1

. We consider the action of Gn+1 on
Xn+1 = Dc(M

s
n,k+1

, C) where C is a single circle in the last boundary torus.

Then Gn is a vertex stabilizer, and this acts on Xn = Dc(M
s+1

n,k , C) where C is a
single circle in the last boundary sphere, as in case (A). The connectivities of Xn

and Xn+1 are n− 2 and n− 1 respectively and the inclusion M s+1

n,k →֒M s
n,k+1

induces an equivariant map Xn → Xn+1 . The actions are transitive on simplices
in each dimension. The stabilizer of a p simplex for the action of Gn+1 on Xn+1

is Gn−p = A
s+p+1

n−p,k and for the action of Gn on Xn it is As+p+2

n−p−1,k = Gn−p−1 .
Thus the stabilizers are the same as in (A). More precisely, taking s̃ = s+ 1 in
(A), the E1 pages are the same when 0 ≤ p ≤ n− 1, so we already know that
the appropriate terms are 0. The result thus follows by the same argument as
for (A), except that we do not need a full induction argument, but can instead
appeal to the results proved in (A).

It is worth noting that γ automatically induces injections on all homology
groups since if we follow it by the map coming from attaching a 2 handle to
the last boundary torus to surger it to a sphere, the composition is the identity.
One can also see from the proof of case (C) that an improvement in the stable
range for stabilization with respect to n and s would yield an improvement for
stabilization with respect to k .

References

[1] K S Brown, Cohomology of Groups, Graduate Texts in Mathematics 87,
Springer-Verlag (1982) MathReview

[2] DJ Collins, Cohomological dimension and symmetric automorphisms of a free

group, Comment. Math. Helv. 64 (1989) 44–61 MathReview

[3] D Gabai, The Smale conjecture for hyperbolic 3 manifolds: Isom(M3) ≃
Diff(M3), J. Differential Geom. 58 (2001) 113–149 MathReview

[4] S Galatius, Mod p homology of the stable mapping class group, Topology 43
(2004) 1105–1132 MathReview

[5] A Hatcher, Homeomorphisms of sufficiently large P 2 irreducible 3 manifolds,
Topology 15 (1976) 343–347 MathReview
Revised version: Spaces of incompressible surfaces, available at:
http://www.math.cornell.edu/∼hatcher

[6] A Hatcher, A proof of the Smale conjecture, Ann. of Math. 117 (1983) 553–607
MathReview

[7] A Hatcher,Homological stability for automorphism groups of free groups, Com-
ment. Math. Helv. 70 (1995) 39–62 MathReview

Geometry & Topology, Volume 9 (2005)

http://www.ams.org/mathscinet-getitem?mr=672956
http://www.ams.org/mathscinet-getitem?mr=982561
http://www.ams.org/mathscinet-getitem?mr=1895350
http://www.ams.org/mathscinet-getitem?mr=MR2079997
http://www.ams.org/mathscinet-getitem?mr=0420620
http://www.math.cornell.edu/~hatcher
http://www.ams.org/mathscinet-getitem?mr=701256
http://www.ams.org/mathscinet-getitem?mr=1314940


1336 Allen Hatcher and Nathalie Wahl

[8] A Hatcher, Algebraic topology, Cambridge University Press, Cambridge (2002)
MathReview

[9] A Hatcher, K Vogtmann, Cerf theory for graphs, J. London Math. Soc. 58
(1998) 633–655 MathReview

[10] A Hatcher, K Vogtmann, Rational homology of Aut(Fn), Math. Res. Lett.
5 (1998) 759–780 MathReview

[11] A Hatcher, K Vogtmann, Homology stability for outer automorphism groups

of free groups, Algebr. Geom. Topol. 4 (2004) 1253–1272 MathReview
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