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Abstract
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group Z ⋉ Z[1/2]. These two fundamental groups are known to be the only
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with this Alexander polynomial).
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1 Introduction

A knot is an embedding S1 →֒ S3 . We work in the topological category and
assume that every embedding is locally flat. Note that a smooth embedding
is locally flat and that we prefer to add the adjective “smooth” to emphasize
this stronger condition on the embedding, except in our title. Two knots are
called concordant if there exists an embedding S1 × [0, 1] →֒ S3 × [0, 1] which
restricts to the given knots at both ends. The concordance classes form an
abelian group under connected sum, the knot concordance group C . A knot
is called slice if it is concordant to the unknot or, equivalently, if it bounds an
embedding of disks D2 →֒ D4 . Predating the 4–dimensional revolution in the
early 80’s, Casson and Gordon showed that the epimorphism from C onto its
high dimension analogue has a nontrivial kernel [2]. There has been much recent
progress in understanding how complicated C really is. In [5], [6] an infinite
sequence of new invariants was found using non-commutative Blanchfield forms
and their von Neumann signatures. On the other hand, many knots are known
to be slice, for example the knots in Figure 1.1, where the band can be tied into
an arbitrary knot C . In fact, there is a large class of slice knots given as the

C

Figure 1.1: A family of ribbon knots

boundary of ribbons in S3 . These knots are called ribbon knots, where a ribbon

is a smooth immersion D2
# S3 such that all singularities are of the type as in

Figure 1.2: They consist of arcs of self–intersection that lie completely in the
interior of one of the two sheets involved. Such singularities can be resolved in
D4 by pushing an open disk around each singular arc slightly away from ∂D4 .
Thus a ribbon leads to a smooth slice disk in D4 , the so called ribbon disk.
It is a fascinating open problem whether every smoothly slice knot is ribbon.
One distinctive feature of a ribbon knot is that the inclusion map induces an
epimorphism of the knot group onto the ribbon group, the fundamental group
of the complement in D4 of the ribbon disk. There is a simple criterion for a
given group to be ribbon in terms of certain presentations, see Theorem 2.1. For
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New topologically slice knots 2131

general slice complements the inclusion map does not induce an epimorphism,
and slice disks with the ontoness property are called homotopically ribbon, or
h–ribbon for short.

Figure 1.2: Local singularity of a ribbon

In the topological category, Freedman proved that any knot with trivial Alexan-
der polynomial is slice [10], see also [13] for a more direct construction. Using
gauge theory, Gompf showed that some of these knots are not smoothly slice
[14]. The easiest such knot is probably the Whitehead double of the trefoil
knot, already exhibiting the subtle difference between smooth and topological
4–manifolds. In an amazing turn of events, Rasmussen very recently gave the
first purely combinatorial proof for the fact that this knot is not smoothly slice.
He constructed a concordance invariant from Khovanov homology [28] with
beautiful properties. In particular, the arguments of [22] for showing that (it-
erated) Whitehead doubles of the trefoil are not smoothly slice can be adapted
to this setting from the concordance invariant of Ozsváth and Szabó [23]. Liv-
ingston uses the following argument, going back to at least Rudolph: One can
exhibit some Whitehead doubles as separating curves on minimal Seifert sur-
faces of certain torus knots. Since the Rasmussen and Ozsváth–Szabó invariants
detect the minimal genus of torus knots, it follows that such separating curves
cannot be smoothly slice.

In this note we provide the first new class of slice knots since Freedman’s con-
struction, using his theorem [9] that solvable groups are good (for topological
surgery). Our main result is the following theorem. Let

SR := 〈a, c | aca−1 = c2〉 ∼= Z ⋉ Z[1/2].

Here the generator a of Z acts on the normal subgroup Z[1/2] via multiplication
by 2. It is known, cf Lemma 2.2, that SR and Z are the only solvable ribbon

groups, hence the name. In geometric group theory, this group is also known
as the Baumslag–Solitar group B(1, 2).

Theorem 1.3 Let K be a knot and denote by MK the 0–surgery on K . If
there is an epimorphism π1(MK) ։ G, G = SR or Z, such that

Ext1
Z[G](H1(MK ; Z[G]),Z[G]) = 0 (Ext)
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2132 Stefan Friedl and Peter Teichner

then K is (topologically) slice. In fact, K is h–ribbon with group G if and
only if this Ext–condition holds for some epimorphism π1(MK) ։ G.

The case G = Z is actually just a reformulation of Freedman’s theorem because
the condition (Ext) is then equivalent to ∆K(t) = 1. For G = SR, we shall
show in Corollary 3.4 that this condition implies

∆K(t) = (t− 2)(t−1 − 2).

There are well known knots with this Alexander polynomial that are not slice
(cf Section 7) so the h–ribbon question with group SR is more subtle than for
Z. Our result complements work of Tim Cochran and Taehee Kim [7]. They
show that if the degree of the Alexander polynomial is greater than two, than
the homology of solvable covers can not determine whether a given knot is slice
or not.

Remark We will show in Lemma 5.1 that the somewhat awkward (Ext) con-
dition can be replaced by the condition that a non-commutative Blanchfield
pairing

Bℓ : H1(MK ; Z[G]) ×H1(MK ; Z[G]) −→ Q(G)/Z[G]

vanishes, where Q(G) denotes the Ore localization of Z[G].

It is surprisingly easy to construct many knots that satisfy all conditions of our
Theorem 1.3. For example, all knots in Figure 1.1 do. The easiest one is the
knot 61 , which is isotopic to the case where the band C is the unknot. However,
all knots in Figure 1.1 are obviously ribbon and hence we need to work harder
to get new h–ribbon knots. One trick is the following satellite construction that
can be considered as an analogue of Whitehead doubling (a nice way to obtain
knots with trivial Alexander polynomial). We give a much more general result
in Section 6.

Theorem 1.4 Start with the knot 61 , drawn in a solid torus as on the right
hand side of Figure 1.5. Tie an arbitrary knot into that solid torus to obtain
a satellite K of 61 . Then K satisfies the assumptions of Theorem 1.3 and is
therefore h–ribbon.

On the left hand side of Figure 1.5 we picked an axis A which is unknotted in
S3 (so that the complement of A will be a solid torus) and which punctures all
ribbon disks that we could see. Then we redrew the picture in a way that A
becomes the meridian to the visible solid torus. We conjecture that Theorem 1.4

Geometry & Topology, Volume 9 (2005)



New topologically slice knots 2133

A

Figure 1.5: The knot 61 in the solid torus S3 rA

gives new examples of knots which are h–ribbon but not smoothly slice. The
simplest candidate is the satellite knot of the trefoil knot. It has a knot diagram
with 93 crossings and we are unable to compute Rasmussen’s invariant [28], the
complexity of which is exponential in the number of crossings. For the general
ribbon case we propose the following generalization of Theorem 1.3.

Conjecture 1.6 Let G be a ribbon group for which topological surgery works.
A knot K is h–ribbon with group G if and only if there exists an epimorphism
ϕ : π1(MK) ։ G such that the condition (Ext) from Theorem 1.3 holds.

Note that the converse of this conjecture is not completely straight forward
either. We use a Blanchfield form to prove the converse for the groups G = SR
and Z.

Question 1.7 Are the fundamental groups of complements of h–ribbons rib-
bon groups?

The phrase “surgery works for G” means here that the (reduced) surgery se-
quence

ShTOP (X,M) −→ ÑTOP (X,M) −→ L̃h4(Z[G]) (S)

is exact for all Poincaré pairs (X,M) with π1(X) = G, see [10, chapter 11.3] for
more information. If G = SR or Z then this sequence is exact by Freedman’s
disk embedding theorem (cf [9] and [11]) for solvable groups. The general case
is still open and since most other ribbon groups contain free groups we need a
very strong form of this result. It is logically possible that topological surgery
works for a given fundamental group but the disk embedding theorem (and
hence the s–cobordism theorem) fail for this group.

The “if”–direction of Conjecture 1.6 would follow from the following purely
homological conjecture. We say that (MK , ϕ) satisfies the Poincaré duality
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2134 Stefan Friedl and Peter Teichner

condition if the induced inclusion MK →֒ K(G, 1) is a finite 4–dimensional
Poincaré pair.

Conjecture 1.8 Let K be a knot with an epimorphism π1(MK) ։ G onto
a ribbon group such that the condition (Ext) from Theorem 1.3 holds. Then
(MK , ϕ) satisfies the Poincaré duality condition. Moreover, L̃h4(Z[G]) = 0.

We give supporting evidence for this algebraic conjecture at the end of Section 2.
For G = Z it is true out of easy reasons and in Lemmas 3.3, 4.1 and Lemma 4.4
we prove that the conjecture is true for G = SR. The main reason why this
works is the fact that the group ring Z[SR] is an Ore-domain and hence has
an ordinary (skew) quotient field, see Section 4. We use various lemmas and
ideas from [5]. The first statement of Theorem 1.3 is then a consequence of the
following general result.

Theorem 1.9 Let G be a finitely presented group for which topological sur-
gery works and with H1(G) ∼= Z,H2(G) = 0 and L̃h4(Z[G]) = 0. A knot K is
h–ribbon with group G if there is an epimorphism ϕ : π1(MK) ։ G such that
(MK , ϕ) satisfies the Poincaré duality condition. In particular, Conjecture 1.6
follows from Conjecture 1.8.

Theorem 1.9 comes from the fact that given a Poincaré pair, one can attempt to
use classical surgery theory to find a 4–manifold W of type K(G, 1). We show
that in the situation above, this approach successfully produces a h–ribbon
complement that is a K(G, 1).

The paper is organized as follows. In Section 2 we recall several known facts
about ribbon groups. In Section 3 we explain how surgery can be used to
find h–ribbons. We accumulate several restrictions on the group G, and in
Section 4 we show that the group SR satisfies all of them. In Section 5 we will
show that for our groups the (Ext)–condition can be replaced by a vanishing
condition on a non–commutative Blanchfield pairing. In Section 6 we recall the
satellite construction which we use to give examples of topologically slice knots
in Section 7.

Acknowledgments We thank Chuck Livingston and the referee for their valu-
able comments on the first version of this paper. We also wish to thank Jerry
Levine and Andrew Ranicki for helpful discussions regarding certain technical
aspects in this paper.
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2 Ribbon disk complements

Definition A group G is called ribbon if there exists a ribbon disk D →֒ D4 ,
as explained in the introduction, with π1(D

4 rD) ∼= G.

The deficiency of a presentation of a group is the number of generators minus
the number of relations. The deficiency def(G) of a finitely presented group G
is the maximum of the deficiencies of all presentations. The following theorem
is well-known and uses the fact that any ribbon in 3–space can be obtained as
follows: Start with an s–component unlink and add (s − 1) bands to produce
a knot, where the bands can be arbitrarily twisted and linked. In particular,
the bands may hit the disks bounding the unlink which introduces our ribbon
singularities. This description actually gives an embedded disk D →֒ D4 with
a Morse function D4 → [0, 1] which has s minima and (s − 1) saddles when
restricted to D . This implies that the complement ND := D4rνD , νD an open
tubular neighborhood of D , has a handle decomposition with one 0–handle, s
1–handles and (s− 1) 2–handles, giving the desired group presentation.

Theorem 2.1 A group G is ribbon if and only if H1(G) = Z and G has a
Wirtinger presentation of deficiency one, ie, G has a presentation of the form

G = 〈g1, . . . , gs | r1, . . . , rs−1〉,

where ri = ghi
gǫili g

−1
ki
g−ǫili

for some hi, ki, li ∈ {1, . . . , s} and ǫi ∈ {−1, 1}.

Using the above theorem and the Wirtinger presentation, one sees that knot
groups are ribbon. As pointed out by John Stallings, a direct geometric way to
see the corresponding ribbon disk is as follows. Represent the knot by an arc
ending in a plane P ⊂ R3 . A rotation by 180 degrees in R4 , with fixed plane
P , sweeps out a disk in D4 which has the same local minima and saddles as
the original knotted arc (when projected orthogonally to the fixed plane) and
there are no maxima. Applying this construction to a knot K , one obtains a
ribbon disk with fundamental group π1(S

3 rK) and boundary K#(−K). We
recover by this argument the reason why the mirror image −K is the inverse
of K in the concordance group.

Lemma 2.2 The only solvable ribbon groups are Z and SR = Z ⋉ Z[1/2].

Proof Wilson [32] shows that every solvable group of deficiency one is isomor-
phic to Gk := Z ⋉ Z[t, t−1]/(tk − 1) for some k . A direct computation shows
that Gk/[Gk, Gk] = Z if and only if k = 0, 2. These are exactly the two groups
in the statement. Below we show that SR is indeed a ribbon group.
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2136 Stefan Friedl and Peter Teichner

We now show that SR does in fact appear as the fundamental group of a
ribbon disk complement. Let D be the ribbon disk given by Figure 1.1. The
corresponding ribbon disk complement ND is given by the handle diagram of
Figure 2.3, with two (dotted) 1–handles and one 2–handle. This is the case
s = 2 in the discussion above Theorem 2.1, see also [15, p. 213]. Note that with

a b

C

Figure 2.3: Handle decomposition of ND , with generators a, b for π1(ND).

c := ab−1 one gets

π1(D
4 rD) = 〈a, b | a−1ba−1bab−1〉 = 〈a, c | aca−1 = c2〉 = SR.

which is in fact independent of the knot C that was tied into the band in
Figure 1.1.

Remark Writing R(C) for the above ribbon knot, then R(C) is a satellite

knot with companion C and orbit R := R(trivial knot). The knot R is the
knot 61 of the standard knot table and we shall construct many more examples
in this manner in Section 6.

Remark Since any ribbon group π1(ND) has a presentation of deficiency
rank(H1(ND)) = 1 it is in particular an E–group (cf [30, p. 324]), hence
π1(ND)(1) is an E–group (cf [30, p. 302]). It follows from a result of Roushon
[29, Corollary 4.6] in the case that rankZ(π1(ND)(1)/π1(ND)(2)) ≥ 2 that the
derived series of π1(ND) never stabilizes, ie, π1(ND)(i) 6= π1(ND)(i+1) for all
i ∈ N (cf also [3]). This means that with few exceptions ribbon groups are
neither solvable nor does their derived series stabilize.

The ribbon group conjecture

Alexander duality implies that ribbon groups satisfy H1(G) ∼= Z and H2(G) =
0. We say that a group G is aspherical if K(G, 1) is a 2–complex. For a ribbon
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group G = π1(D
4 r D) this is the case if π2(D

4 r D) = 0. It is conjectured
that ribbon groups are aspherical. Note that this is in turn a special case of the
Whitehead conjecture. This conjecture is known to be true for all knot groups
since knot complements are aspherical by the sphere theorem. It is also known
for all locally indicable ribbon groups (cf [16]), which in particular includes all
ribbon groups with G(α) = {e} for some ordinal α (cf also [30]). For some more
examples cf [17]. In particular, we conjecture that a ribbon group G has the
property that

H3(G) = 0 and Exti
Z[G](Z,Z[G]) = 0 for i > 2.

This conjecture clearly holds for aspherical ribbon groups. Furthermore we
conjecture that for a ribbon group G and an epimorphism ϕ : π1MK ։ G, we
always have

HomZ[G](Hi(MK ; Z[G]),Z[G]) = 0 for i = 1, 2.

The relevance of these properties comes from Lemma 3.3 and Theorem 1.9. We
will prove all these properties for G = SR in Lemma 4.1.

3 Proof of the Main Theorem 1.3

Let K be a knot in S3 and denote by MK the result of zero framed surgery
along K . The following is a well known slice criterion, see eg, [5]. For the “only
if” direction one takes W to be the complement in D4 of a (thickened up) slice
disk. For the “if” direction one uses Freedman’s solution of the topological
Poincaré conjecture in dimension 4, in order to recognize as D4 the 4–manifold
W union a 2–handle along a meridian for K in MK .

Proposition 3.1 A knot K is slice if and only if M3
K bounds a 4–manifold

W 4 with

(1) π1(W ) is normally generated by the image of a meridian for K ,

(2) H1(W ) ∼= Z,

(3) H2(W ) = 0,

Furthermore, K is h–ribbon with group π1(W ) if and only if (1) is replaced by

(1-h) π1(MK)→ π1(W ) is surjective.

Note that the first two conditions can always be satisfied, even with π1(W ) ∼= Z.
However, to satisfy condition (3) as well, it is often necessary to make the
fundamental group of W more complicated. In fact, if (1)–(3) are satisfied
for π1(W ) ∼= Z then K has vanishing Alexander polynomial. Thus the main
problem is to find a candidate for the fundamental group of W .

Geometry & Topology, Volume 9 (2005)



2138 Stefan Friedl and Peter Teichner

3.1 Outline of the construction of W

To prove Theorem 1.3, we take our candidate for the fundamental group to be
G = SR or Z. By assumption we have given an epimorphism ϕ : π1MK ։ G
and we would like to find a K(G, 1)–manifold W with boundary MK such
that the inclusion induces ϕ. Since any ribbon group satisfies H1(G) = Z and
H2(G) = 0, such a manifold W would fulfill the conditions (1-h), (2) and (3)
above. This means that we are in a classical surgery situation and we can follow
the steps taken by many before us. Below, the steps are labelled by the section
numbers where they will be worked out.

(3.2) First we seek conditions such that (K(G, 1),MK ) is a Poincaré pair. It
turns out that exactly condition (Ext) from Theorem 1.3 arises.

(3.3) Secondly, we check that the Spivak normal bundle of this Poincaré pair
has a linear reduction, ie, that there is a degree 1 normal map from a
(smooth) manifold pair (N,MK)→ (K(G, 1),MK ). In fact, we shall see
that there is a unique normal cobordism class of such maps if we require,
as we shall, that the signature of N is zero.

(3.4) This normal map has surgery obstruction in the reduced L–group
L̃h4(Z[G]). Since π2K(G, 1) = 0 this quadratic form is nothing but the
intersection form on π2N . We will verify in Lemma 4.4 that our L–group
vanishes and hence the intersection form on π2N is (stably) hyperbolic.

(3.5) Finally, since by assumption the surgery sequence (S) for our funda-
mental groups is exact (in the topological category), one gets a topo-
logical manifold W together with a homotopy equivalence (W,MK) →
(K(G, 1),MK ). Hence we found our h–ribbon by Proposition 3.1.

In the following sections, we go through these steps one by one. We will not

assume from the beginning that G = SR or Z but we shall add conditions on
G (and ϕ) as we go, in turn proving Theorem 1.9. It will turn out that some
of these conditions are known for all ribbon groups and some are conjectural.
For the groups SR and Z we will prove all conditions in Section 4.

3.2 The Poincaré duality condition

We will use the following conventions. If X̃ → X is the universal cover then
C∗(X̃) has a right Z[π1(X)]–module structure. Given a left Z[π1(X)]–module
P we can consider H∗(X;P ) := H∗(C∗(X̃) ⊗Z[π1(X)] P ). Using the usual in-
volution on group rings given by ḡ = g−1 we can turn left Z[G]–modules into
right Z[G]–modules. We define H∗(X;P ) := H∗(HomZ[π1(X)](C∗(X̃), P )).
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Definition [31] Let Y ⊂ X be CW–complexes, write G := π1(X). Then
(X,Y ) is called a Poincaré pair of dimension n if there exists [X] ∈ Hn(X),
such that

∩[X] : H i(X,Y ; Z[G]) −→ Hn−i(X; Z[G])
∩∂[X] : H i(Y ; Z[G]) −→ Hn−i−1(Y ; Z[G])

(∩)

are isomorphisms of Z[G]–right modules. [X] is called the fundamental homol-
ogy class of (X,Y ).

Note that if (X,Y ) is a Poincaré complex, then from the long exact homology
and cohomology sequences it follows that

∩[X] : H i(X; Z[G])→ Hn−i(X,Y ; Z[G])

is an isomorphism as well. In our case, Y will be the 3–manifold MK so that
the second condition on ∂[X] will be satisfied. Recall that we have an inclusion
ϕ : MK →֒ K(G, 1) that induces an epimorphism of fundamental groups. For
brevity we set

M := MK and X := K(G, 1).

Recall that if (X,M) is a finite 4–dimensional Poincaré pair, we say that (M,ϕ)
satisfies the Poincaré duality condition.

Lemma 3.2 Assume that G satisfies H3(G) = 0 and H i(G; Z[G]) = 0 for
i > 2. Then (M,ϕ) satisfies the Poincaré duality condition if and only if

ϕ∗ : H i(G; Z[G]) −→ H i(M ; Z[G])

is an isomorphism for i = 1, 2.

Remark In Section 4 we will show that the above assumptions are satisfied for
G = SR. In this case H2(G; Z[G]) 6= 0 (cf Lemma 4.3) which shows that the
Poincaré duality condition in general can not be simplified to H2(MK ; Z[G]) =
0. Note also that the lemma implies that Hi(G) = 0 for all i ≥ 3.

Proof We first show the “only if” direction. In that case H4−i(X,M ; Z[G]) ∼=
Hi(X; Z[G]). But Hi(X; Z[G]) = 0 for i 6= 0 since this is the homology of the
G-cover of X which is contractible since X = K(G, 1). The claim now follows
from the long exact cohomology sequence with Z[G]–coefficients. We now turn
to the proof of the “if” direction. By the long exact homology sequence of
(X,M), with Z–coefficients, and the vanishing of H3(G) = H3(X) we can
choose a class [X] ∈ H4(X,M) that maps to the fundamental class [M ] ∈
H3(M) under the boundary map. Cap product with this class induces maps as
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in (∩) above and we need to check that they are isomorphisms. These maps
are the left (or right) most vertical arrows in the commutative diagram of long
exact sequences (with Z[G]–coefficients understood):

→ H i(X,M) → H i(X) → H i(M) → H i+1(X,M)

↓ ∩(−1)i[X] ↓ ∩(−1)i[X] ↓ ∩(−1)i+1[M ] ↓ ∩(−1)i+1[X]

→ H4−i(X) → H4−i(X,M) → H3−i(M) → H4−(i+1)(X)

Recall that Hi(X; Z[G]) = 0 for i 6= 0. Therefore, we need to show in particular
that H i(X,M ; Z[G]) = 0 for i 6= 4. Note that

H4−i(X,M ; Z[G]) ∼= H3−i(M ; Z[G]) for i 6= 3.

Since the maps ∩[M ] are isomorphisms it suffices to show that for all i 6= 3 the
maps

ϕ∗ : H i(X; Z[G]) −→ H i(M ; Z[G])

are isomorphisms. For i = 1, 2 this is our assumption so it suffices to discuss
the other cases. For i = 0 both groups are zero since G has infinite order. For
i > 3 again both groups are zero, for X this is our assumption and for M it
follows from dimM = 3. Finally, we need to discuss the special case i = 3 in
the diagram above. Then

H0(M ; Z[G]) ∼= Z ∼= H0(X; Z[G])

and by assumption H i(X; Z[G]) = 0 for i = 3, 4. It follows that the boundary
map H3(M ; Z[G])→ H4(X,M ; Z[G]) is an isomorphism and by commutativity
of the diagram the last map in question

∩[X] : H4(X,M ; Z[G]) −→ H0(X; Z[G])

is also an isomorphism.

Lemma 3.3 Let G satisfy H3(G) = 0 and H i(G; Z[G]) = 0 for i > 2. Fur-
thermore, assume that HomZ[G](Hi(M ; Z[G]),Z[G]) = 0 for i = 1, 2. Then
(M,ϕ) satisfies the Poincaré duality condition if and only if the (Ext) condi-
tion from Theorem 1.3 holds: Ext1

Z[G](H1(M ; Z[G]),Z[G]) = 0.

Proof Denote the universal cover of M by M̃ . Write π := π1(M). Note that
we have a chain isomorphism of right Z[G]–module complexes given by

HomZ[π](C∗(M̃),Z[G]) → HomZ[G](C∗(M̃)⊗Z[π] Z[G],Z[G])

φ 7→ (c⊗ f 7→ φ(c)f).
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Therefore H∗(M ; Z[G]) ∼= H∗(HomZ[G](C∗(M̃ )⊗Z[π] Z[G],Z[G])). We now ap-
ply the universal coefficient spectral sequence (UCSS). This has an E2–term

Ep,q2 = Extp
Z[G]

(Hq(M ; Z[G]),Z[G]),

differentials dr of degree (r, 1 − r) and converges to

Hp+q(M ; Z[G]) ∼= Hp+q(HomZ[G](C∗(M̃)⊗Z[π] Z[G],Z[G])),

cf [20, Theorem 2.7] for more details. We use that the edge homomorphism at
q = 0 of the spectral sequence is the map

ϕ∗ : Extp
Z[G](H0(M ; Z[G]),Z[G]) ∼= Hp(G; Z[G]) −→ Hp(M ; Z[G]).

By Lemma 3.2 we only need to verify that this is an isomorphism for p = 1, 2
if and only if condition (Ext) holds. For p = 1 this follows immediately from
our assumption HomZ[G](H1(M ; Z[G]),Z[G]) = 0. For p = 2 we first observe

that since H3(G; Z[G]) = 0 there are no possible d2–differentials into the E1,1
2

spot. Since HomZ[G](H2(M ; Z[G]),Z[G]) = 0, we get a short exact sequence

0 −→ Ext1
Z[G](H1(M ; Z[G]),Z[G]) −→ H2(G; Z[G])

ϕ∗

−→ H2(M ; Z[G]) −→ 0

showing that the condition (Ext) holds if and only if ϕ∗ is an isomorphism.

Let G be any group with H1(G) = Z. Then we define ∆G(t) ∈ Z[t±1] to be
the order of the Z[t±1]–module H1(G,Z[t±1]) ∼= H1(G

(1),Z). Note that ∆G is
well-defined up to multiplication by a unit in Z[t±1] and up taking the natural
involution t 7→ t−1 . For example if G = SR, then ∆G(t) = t− 2.

Corollary 3.4 Let G and M satisfy all the conditions from Lemma 3.3, in-
cluding the (Ext) condition. Then

∆K(t) = ∆G(t)∆G(t−1).

In particular Arf(K) = 0.

Proof By Lemma 3.3 (K(G, 1),MK ) is a Poincaré pair. Since

Hi(MK ; Z)
∼=
−→ Hi(K(G, 1); Z)

for all i it follows from a well-known argument that

0 = Hi(MK ; Q(t))
∼=
−→ Hi(K(G, 1); Q(t))

for all i. In particular Hi(K(G, 1); Z[t±1]) is Z[t±1]–torsion for all i. The corol-
lary now follows from the long exact sequence of (K(G, 1),MK ) with Z[t±1]–
coefficients, duality, and the fact that the alternating product of orders of a
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long exact sequence equals one (cf [19, Lemma 5, p. 76]). The Arf invariant
Arf(K) ∈ Z/2 of a knot K has the well-known property that it equals zero if
∆K(−1) ≡ ±1 mod 8, and 1 otherwise.

We shall now work through the remaining steps outlined in Section 3.1. We
have a Poincaré pair (X,M) where X = K(G, 1) and M = MK . Clearly
π1(X) is normally generated by the image of a meridian for K since ϕ is
surjective and since any meridian normally generates π1(MK). Furthermore
H1(X) ∼= H1(G) ∼= Z and H2(X) = H2(G) = 0. It follows from the homology
exact sequence of the pair (X,M), Poincaré duality, and the fact that ϕ is an
isomorphism on H1 that H3(X) = 0.

3.3 The degree 1 normal map

We show that the stable Spivak normal bundle of (X,M) has a linear reduction.
It seems well known to experts that this is always true in the oriented case in
4 dimensions but we could not find an explicit reference. So here is a rather
ad hoc argument: Since M is orientable, its tangent bundle is trivial and so is
its stable normal bundle. We claim that the stable Spivak normal bundle of X
is also trivial: Let BS be the classifying space of such (oriented) bundles. Its
homotopy groups are the (shifted) stable homotopy groups of spheres, starting
with

π2BS ∼= Z/2 ∼= π3BS and π4BS ∼= Z/24.

It follows that for all i we have H i(X;πiBS) = 0 which shows that the classi-
fying map X → BS of the stable Spivak normal bundle is trivial. Finally, it is
clear that, up to homotopy, this trivial map can be lifted (trivially) through the
fibration BSO → BS , having the trivial map on the boundary M . From the
usual transversality theory we obtain a degree 1 normal map from a manifold
pair

f : (N,M)→ (X,M)

that is the identity on the boundary. Note that since the stable normal bundle
of X is trivial, so is that of N . In particular, N is spin. Another approach to
finding f is to prove that (M,ϕ) represents the zero element in the spin-bordism
group ΩSpin

4 (X). The fact that this element is zero comes from comparing with
the Poincaré duality spin bordism group in which X itself gives a zero bordism.
Even though this is not really important for our main argument, we next show
that f is unique in a certain sense: In the spin case the normal cobordism group
of degree 1 normal maps is isomorphic to

H2(X; Z/2) ⊕ 8 · Z
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where the 8 ·Z summand is the difference of ordinary signatures, σ(N)−σ(X).
The first summand vanishes in our case and so does σ(X). By adding copies
of Freedman’s E8–manifold to N , we may assume that σ(N) = 0. This is just
another way of saying that we work with the reduced normal cobordism group.

3.4 The surgery obstruction

There is a well defined surgery obstruction σ(f) in Lh4(Z[G]) which in our case
is simply the intersection form on π2N . The first step is ‘surgery below the
middle dimension’ which makes f 2–connected. The surgery obstruction then
measures the kernel of f in the middle dimension which in our case is in π2 .
To make this precise, recall the following definition from [31, p. 47].

Definition A quadratic form over Z[G] is defined to be a triple (H,λ, µ) with
H a free Z[G]–module,

λ : H ×H → Z[G]

a non-singular hermitian form and

µ : H → Z[G]/〈a − ā | a ∈ Z[G]〉

a quadratic refinement. Here a form is non-singular if the induced map H →
HomZ[G](H; Z[G]) is an isomorphism. A form isomorphic to a direct sum of the
form (Z[G] · e⊕Z[G] · f, λ, µ), where λ(e, f) = 1 and µ(e) = µ(f) = 0, is called
a hyperbolic form.

It should be pointed out that in the oriented case, where the involution on Z[G]
is given by ḡ := g−1 , the quadratic refinement µ is completely determined by
the hermitian form λ. Its only role is to make sure that λ is even in the sense
that for every h ∈ H there is an m ∈ Z[G] such that

λ(h, h) = m+ m̄ (even)

The main examples of hermitian forms come from the intersection form of
4–manifolds, where G = π1W and (H,λ) = (π2W

4, λW ). If h ∈ π2W is
represented by an immersed 2–sphere S in W , then one can look at the self-
intersections m(S) that are related to the intersection λW of S and a parallel
push-off by the following formula:

λW (S, S) = m(S) + m̄(S) + e(S) · 1

Here e(S) ∈ Z denotes the normal Euler class of S . Note that the coefficient of
1 ∈ G in m(S) can be changed arbitrarily by a (nonregular) homotopy, the so
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called cusp move. This also changes e(S) so as to make the above formula still
hold (the left hand side only depends on the homotopy class of S ). It follows
that the intersection form λ on π2 of a 4–manifold is even in the above sense if
and only if e(S) is an even integer, ie, the second Stiefel–Whitney class w2(S)
vanishes. That is why we will completely ignore the quadratic refinement µ
in the following, only making sure that our manifolds are spin. Note that for
general spin 4–manifolds W with fundamental group G, the intersection form
λW on π2W is not a quadratic form in the above sense. The problems are
that in general π2W is not free and λW is not non-singular. However, given a
2–connected degree 1 map f : N → X , one can restrict λN to the kernel of f
on π2 . Then both of these conditions can be arranged after stabilizing N by
copies of S2 × S2 , [31, p. 26]. Moreover, if w2 vanishes on 2–spheres in this
kernel then a quadratic refinement exists by the above considerations. If f is a
normal map (in addition to having degree 1) then this last condition is obvious.
In our setting, π2K(G, 1) = 0 so that we automatically work on the kernel of
f . Moreover, we saw that N is spin so that the intersection form λN on π2N
is even and hence represents a unique quadratic form, up to the stabilization
with hyperbolic forms. This motivates the following definition. Consider the
semigroup of quadratic forms under direct sum. We say that forms X1,X2

are equivalent if there exist hyperbolic forms H1,H2 , such that X1 ⊕H1 and
X2 ⊕ H2 are isomorphic. The set of equivalence classes form a group (cf [27,
p. 249]), denoted by Lh4(Z[G]). As discussed above, (π2N,λN ) represents an
element in this group.

Theorem 3.5 The ordinary signature σ induces isomorphisms

(1) Lh4(Z)
∼=
−→ Z, (H,λ, µ) 7→ σ(λ)/8

(2) Lh4(Z[G])
∼=
−→ Lh4(Z) for G = Z or G = SR.

The first statement is well-known, see for example [31, Theorem 13A.1]. The
second statement is well-known in the case that G = Z (cf [26]). We prove the
case G = SR in Section 4. In general if G is a ribbon group, then Lh4(Z[G])→
Lh4(Z) is an isomorphism if the Whitehead conjecture and the Farrell–Jones
conjecture hold. This has been shown in many interesting cases, cf [1] for the
case of knot groups. By the computations in Section 3.3, the surgery obstruction
σ(f) = λN actually only depends on the original data (M,ϕ) if we assume that
σ(N) = 0, ie, that it lies in the reduced L–group

σ(M,ϕ) = σ(f) = λN ∈ L̃
h
4(Z[G]) := ker(Lh4(Z[G]) −→ Lh4(Z))

This element is hence an obstruction for finding a h–ribbon for K with epi-
morphism φ : π1M ։ G. If the reduced L–group vanishes then, after further
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stabilization by S2×S2 , we may assume that π2N has hyperbolic intersection
form.

3.5 Constructing the h–ribbon disk

The assumptions of Theorem 1.9 say that the reduced L–group vanishes and
that the topological surgery sequence (S) is exact for our fundamental group.
Therefore, one gets a topological manifold W together with a homotopy equiv-
alence (W,MK) → (K(G, 1),MK ). Hence we found our h–ribbon by Proposi-
tion 3.1 and we finished the proof of Theorem 1.9.

3.6 Proof of Theorem 1.3

To construct a ribbon disk we use Theorem 1.9 that we just finished proving.
For G = SR, we will show all the required properties in Section 4. For G = Z

they are easy to check, for example the conditions on Hom follow from the fact
that the Alexander module H1(MK ; Z[Z]) is a Z[Z]–torsion module. Moreover,

Ext1
Z[Z](H1(MK ; Z[Z]),Z[Z]) ∼= H1(MK ; Z[Z])

so that our (Ext) condition simply means that the Alexander module (or, equiv-
alently, the Alexander polynomial) of K is trivial. Conversely, assume that
there exists a h–ribbon D for K with π1(ND) ∼= G. Then it follows from ar-
guments as in the proof of Theorem 4.4 in [5] that the Blanchfield form Bℓ(G)
always vanishes on

Ker{H1(MK ; Z[G]) −→ H1(ND; Z[G])},

In our case this group equals H1(MK ; Z[G]) since H1(ND; Z[G]) = 0. In the
Section 5 we will recall this Blanchfield form and show in Lemma 5.1 that its
vanishing is indeed equivalent to our (Ext) condition.

4 Properties of the solvable ribbon group SR

The purpose of this section is to prove that the assumptions of Lemma 3.3 are
satisfied for the group G = SR:

Lemma 4.1 The group G = SR satisfies H3(G) = 0 and H i(G; Z[G]) = 0
for i > 2. Furthermore, for any knot K and any epimorphism π1(MK) ։ G
one has

HomZ[G](Hi(MK ; Z[G]),Z[G]) = 0 for i = 1, 2.
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A group G is called poly-torsion-free-abelian (PTFA) if there exists a filtration

1 = G0 ⊳ G1 ⊳ · · · ⊳ Gn−1 ⊳ Gn = G

such that Gi/Gi−1 is torsion free abelian. As we pointed out in Section 2 the
only solvable ribbon groups are Z and SR and clearly both are PTFA. If G is a
PTFA group then the group ring Z[G] satisfies the Ore condition and therefore
has an Ore localization, cf [5, Proposition 2.5]

Q(G) := Z[G](Z[G] r 0)−1

which is a skew field. Therefore, every Q(G)–module is free and its rank is
well-defined. As a localization, Q(G) is flat as a right (and left) Z[G]–module.
Moreover, the Z[G]–torsion part of a module is a submodule (unlike for general
non-commutative rings). Let K be a knot and π1(MK) ։ G be an epimor-
phism onto a PTFA group. From [5, Proposition 2.11] it follows that

H1(MK ; Z[G]) ⊗Z[G] Q(G) ∼= H1(MK ;Q(G)) = 0,

ie, H1(MK ; Z[G]) is Z[G]–torsion. In particular, the required condition

HomZ[G](H1(MK ; Z[G]),Z[G]) = 0

in Lemma 4.1 follows. Furthermore,

H0(MK ;Q(G)) ∼= H0(MK ; Z[G]) ⊗Z[G] Q(G) ∼= Z⊗Z[G] Q(G) = 0

and similarly H3(MK ;Q(G)) = 0 since H3(MK ; Z[G]) = 0. The Euler charac-
teristics of MK with Z and Q(G) coefficients agree by the usual argument and
hence

χQ(G)(H∗(MK ;Q(G))) = χZ(H∗(MK ; Z)) = 0.

It follows that

H2(MK ; Z[G]) ⊗Z[G] Q(G) ∼= H2(MK ;Q(G)) = 0,

Therefore H1(MK ;Q(G)) = 0 and hence HomZ[G](H2(MK ; Z[G]),Z[G]) = 0
because H2(MK ; Z[G]) is again Z[G]–torsion. So another required condition in
Lemma 4.1 follows:

HomZ[G](H2(MK ; Z[G]),Z[G]) = 0.

The following result finishes up our task of showing SR has all the required
properties.

Lemma 4.2 The group G = SR is aspherical, in particular Exti
Z[G](Z,Z[G]) =

0 for i > 2 and H3(G) = 0.
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Proof Let D be a ribbon disk with complement ND and fundamental group
π1(ND) = G = SR. Recall that by Alexander duality H2(ND) = 0. We will
show that ND is a K(G, 1). First note that ND is homotopy equivalent to
a 2–complex N . By the Hurewicz theorem it suffices to prove the vanishing
of π2(N) ∼= H2(Ñ ). Let Q(G) be the Ore localization of Z[G]. By the same
arguments as above for MK , involving Euler characteristics, one shows that

H2(Ñ )⊗Z[G] Q(G) ∼= H2(N ; Z[G]) ⊗Z[G] Q(G) = 0.

Now consider the following commutative diagram

0 → H2(Ñ) →֒ C2(Ñ)
↓ ↓

0 → H2(Ñ)⊗Z[G] Q(G) →֒ C2(Ñ)⊗Z[G] Q(G).

The second vertical map is injective since C2(Ñ) is a free Z[G]–module, hence
the first vertical map is injective as well, hence H2(Ñ ) = 0.

Remark We could have used the well known fact that a one-relator group is
aspherical if the relation is not a proper power (so in particular the group is
torsion free). However, a similar argument as above will also be used in the
proof of Lemma 4.3. Locally indicable ribbon groups are also known to be
aspherical.

The following result is not needed in the rest of the paper but we include it for
the interested reader. The nontriviality of the homology group in question made
it clear that some more naive formulations of the Poincaré duality condition
must fail. Recall from Section 2 that SR has the presentation

SR = 〈a, c | aca−1 = c2〉.

Lemma 4.3 Let G := SR, then H2(G; Z[G]) maps onto Z[1/2]. More pre-
cisely, as a right Z[G]–module, H2(G; Z[G]) is the quotient of Z[G] by the right
ideal generated by

1− aca−1 and a− aca−1c−1 − aca−1c−2.

Dividing Z[G] by the two-sided ideal generated by the same elements gives the
ring Z[1/2].

Proof The proof of Lemma 4.1 shows that the 2–complex associated to the
above presentation is a K(G, 1). Therefore, we can calculate H2(G; Z[G]) from
the short resolution

0 −→ Z[G] −→ Z[G]2 −→ Z[G]
ǫ
−→ Z −→ 0
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where the first map is given by the Fox derivatives ∂a and ∂c of the relation
aca−1c−2 . A straightforward calculation using Fox derivatives ‘from the left’
gives

∂a = 1− aca−1 and ∂c = a− aca−1c−1 − aca−1c−2

If we now decide to quotient by the two-sided ideal generated by the first rela-
tion, we find that the defining relation forces c = 1 and hence we are left with
Z[Z], generated by a. The second relation then introduces the relation a = 2
into this commutative ring which gives the ring Z[1/2].

Computation of Lh
4(Z[SR])

Lemma 4.4 The inclusion map Z → Z[Z ⋉ Z[1/2]] induces an isomorphism
Lh4(Z)→ Lh4(Z[Z ⋉ Z[1/2]]).

In order to prove this lemma, we need a theorem by Ranicki, which in turn needs
the notion of Ln–groups for any n. We refer to [25] for the definition of these
groups. We recall that the Whitehead group Wh(G) for a group G is defined
as Wh(G) = K1(Z[G])/ ±G (cf [27, p. 172] for a definition of K1(Z[G])).

Theorem 4.5 [24] Let G be a group with Wh(G) = 0 and let α : Z[G] →
Z[G] be an automorphism, then there exists a long exact sequence

· · · → Ln(Z[G])
1−α∗−−−→ Ln(Z[G])→ Ln(Z[G]α[t, t−1])→ Ln−1(Z[G])→ . . . ,

where Z[G]α[t, t−1] denotes the twisted Laurent ring, ie, for a1, a2 ∈ Z[G] we
have a1t

n1 · a2t
n2 = a1α(a2)

n1tn1+n2 .

Remark Since Wh(G) = 0, we don’t have to distinguish between Ls and Lh .
We will therefore henceforth drop any decorations.

We’ll make use of the fact that Z[1/2] is the direct limit of the direct sys-

tem Z
·2
−→ Z

·2
−→ . . . . We’ll therefore write Z[1/2] = lim

→
Z. Denote the map

·2: Z[1/2]→ Z[1/2] by α; then Z[Z ⋉ Z[1/2]] ∼= Z[Z[1/2]]α[t, t−1].

Claim Wh(Z[1/2]) = 0.

The determinant map det: K1(Z[Z]) → Z × {±1} is an isomorphism (cf [27,
p. 172]). The K1 functor commutes with direct limits and α commutes with
the determinant maps, hence det: K1(Z[Z[1/2]]) → Z[Z[1/2]] × {±1} is an
isomorphism as well. It now follows immediately that Wh(Z[1/2]) = 0.
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By Theorem 4.5 there therefore exists an exact sequence

· · · → Ln(Z[Z[1/2]])
1−α∗−−−→ Ln(Z[Z[1/2]])→ Ln(Z[Z[1/2]]α[t, t−1])→

→ Ln−1(Z[Z[1/2]])
1−α∗−−−→ . . .

It is clear that the proposition follows once we prove the following claim.

Claim (1) L4(Z)→ L4(Z[Z[1/2]] is an isomorphism,

(2) α∗ : L4(Z[Z[1/2]])→ L4(Z[Z[1/2]]) is the identity map,

(3) L3(Z[Z[1/2]]) = 0.

We recall that (cf [31])

Ln(Z) =





0 if n ≡ 1 mod 2
Z if n ≡ 0 mod 4

Z/2 if n ≡ 2 mod 4.

From Theorem 4.5 it follows that L4(Z])
∼=
−→ L4(Z[Z]) via the map induced by

the inclusion Z → Z[Z]. The inverse L4(Z[Z]) → L4(Z) is given by tensoring
with Z, considered as a Z[Z]–module via the map t 7→ 1. In particular the

map Z
·2
−→ Z induces the identity on the L4 group of the group ring, ie, on

L4(Z[Z]). From the fact that the L–functor commutes with direct limits, we
immediately get the first two statements. From [31, p. 181] we get the following
commutative diagram

L3(Z[Z]) → L3(Z[Z/2])
α∗ ↓ ↓ α∗

L3(Z[Z]) → L3(Z[Z/2]),

where α denotes multiplication by two. In particular α∗ : L3(Z[Z/2]) →
L3(Z[Z/2]) factors through L3(Z) = 0. Hence α∗ : L3(Z[Z]) → L3(Z[Z]) is
the zero map, taking direct limits we see that L3(Z[Z[1/2]]) = 0. This com-
pletes the proof of Lemma 4.4.

5 Non-commutative Blanchfield forms

Let G be a PTFA–group and ϕ : MK ։ G a homomorphism. Note that the
involution on Z[G] extends to an involution on Q(G) and on Q(G)/Z[G]. Let
π := π1(MK). Note that the map

HomZ[π](C∗(M̃K), Q(G)/Z[G]) → HomZ[G](C∗(M̃K)⊗Z[π] Z[G], Q(G)/Z[G])

φ 7→ (c⊗ f 7→ φ(c)f)

Geometry & Topology, Volume 9 (2005)



2150 Stefan Friedl and Peter Teichner

is well–defined and induces an evaluation map

H1(MK ;Q(G)/Z[G]) −→ HomZ[G](H1(MK ; Z[G]), Q(G)/Z[G]).

Now consider

H1(MK ; Z[G])
∼=
−→ H2(MK ; Z[G])

∼=
←− H1(MK ;Q(G)/Z[G])

−→ HomZ[G](H1(MK ; Z[G]), Q(G)/Z[G])

ie, the composition of Poincaré duality, the inverse of the Bockstein homomor-
phism for the coefficient sequence 0 → Z[G] → Q(G) → Q(G)/Z[G] → 0 and
the above evaluation map.

Note that the second map is an isomorphism since the homology and hence the
cohomology with Q(G) coefficients vanishes. This map defines the hermitian
Blanchfield pairing, cf [8, Theorem 5.1]

Bℓ(G) : H1(MK ; Z[G]) ×H1(MK ; Z[G]) −→ Q(G)/Z[G].

Lemma 5.1 For G = Z or SR, the condition (Ext) from Theorem 1.3 is
equivalent to the vanishing of the Blanchfield form Bℓ(G).

The remark after Lemma 3.2 shows that the vanishing of the Blanchfield pairing
Bℓ(G) is a weaker statement than the vanishing of the corresponding homology
group H1(MK ; Z[G]) ∼= H2(MK ; Z[G]). In particular, this shows that Bℓ(G)
will in general be singular.

Proof of Lemma 5.1 From the long exact Ext–sequence corresponding to

0 −→ Z[G] −→ Q(G) −→ Q(G)/Z[G] −→ 0

it follows that

Ext1
Z[G](H1(MK ; Z[G]),Z[G]) ∼= Ext0

Z[G](H1(MK ; Z[G]), Q(G)/Z[G])
∼= HomZ[G](H1(MK ; Z[G]), Q(G)/Z[G])

since Exti
Z[G](H1(MK ; Z[G]), Q(G)) = 0 for all i (cf [5, Remark 2.8]). We are

now done once we show that the homomorphism

H1(MK ;Q(G)/Z[G]) −→ HomZ[G](H1(MK ; Z[G]), Q(G)/Z[G]) (5.2)

in the definition of Bℓ(G) is surjective. As in the proof of Lemma 3.3 we have
an isomorphism

H1(MK ;Q(G)/Z[G]) ∼= H1(HomZ[G](C∗(M̃K)⊗Z[π1(M)] Z[G], Q(G)/Z[G])).
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Now applying the UCSS we see that the evaluation map (5.2) is surjective if
Ext2

Z[G](Z, Q(G)/Z[G]) = 0. Let X = K(SR, 1). By Lemma 4.2 we can assume
that X is a 2–complex. Then

Ext2
Z[G](Z, Q(G)/Z[G]) ∼= H2(G;Q(G)/Z[G]) ∼= H2(X;Q(G)/Z[G]).

Note that H i(X;Q(G)) ∼= Hi(X;Q(G)) ∼= Hi(X; Z[G]) ⊗Z[G] Q(G) = 0 for
i = 2, 3, in particular it follows that

H2(X;Q(G)/Z[G]) = H3(X; Z[G]) = 0

because X is a 2–complex.

Since Bℓ(Z) is nonsingular for any knot K , it vanishes if and only if the Alexan-
der module itself vanishes. This in turn is equivalent to K having trivial Alexan-
der polynomial and to our condition (Ext) for G = Z.

6 The satellite construction

Let K,C be knots. Let A ⊂ S3rK be a curve, unknotted in S3 . Then S3rνA
is a solid torus. Let ψ : ∂(νA) → ∂(νC) be a diffeomorphism which sends a
meridian of A to a longitude of C , and a longitude of A to a meridian of C .
The space

(S3 r νA) ∪ψ (S3 r νC)

is a 3–sphere and the image of K is denoted by S = S(K,C,A). We say S is the
satellite knot with companion C , orbit K and axis A. Note that we replaced
a tubular neighborhood of C by a knot in a solid torus, namely K ⊂ S3 r νA.
Figure 6.1 shows that taking the Whitehead double of a knot is an example for
the satellite construction. It is easy to see that

C

K

A S

Figure 6.1: Satellite construction with C the trefoil, K the unknot

MS = (MK r νA) ∪∂(νA) (S3 r νC).
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Obstruction theory shows that the map ψ−1 : ∂(νC)→ ∂(νA) can be extended
to a map f : S3 r νC → νA. Combining with the injection MK r νA → MK

this defines a map MS →MK . Let ϕ : π1(MK)→ G be a homomorphism onto
a torsion-free group. Then we get an induced map π1(MS)→ G.

Lemma 6.2 If ϕ(A) = e, then H1(MS ; Z[G]) ∼= H1(MK ; Z[G]), otherwise

H1(MS ; Z[G]) ∼= H1(MK ; Z[G]) ⊕H1(MC ; Z[Z])⊗Z[Z] Z[G],

where Z[G] is a Z[Z] ∼= Z[t, t−1] module via t 7→ ϕ(A).

Proof Consider the following commutative diagram of Meyer–Vietoris exact
sequences (with Z[G]–coefficients understood)

H1(∂(νA)) −→ H1(MK r νA) ⊕ H1(S
3 r νC) −→ H1(MS) −→ 0

↓ ↓ ↓f ↓
H1(∂(νA)) −→ H1(MK r νA) ⊕ H1(νA) −→ H1(MK) −→ 0

If ϕ(A) = e, then the coefficient systems for νA and for S3 r νC are trivial,
hence

H1(νA; Z[G]) ∼= H1(νA; Z)⊗Z Z[G]
∼= Z⊗Z Z[G]
∼= H1(S

3 r νC; Z)⊗Z Z[G]
∼= H1(S

3 r νC; Z[G]).

This immediately implies that H1(MS ; Z[G]) ∼= H1(MK ; Z[G]). If ϕ(A) 6= e,
then H1(νA; Z[G]) = 0 since ϕ is an element of infinite order since G is torsion
free. Furthermore H1(∂(νA)) is a free Z[G]–module on the meridian of A,
which gets mapped to the longitude in S3 r νC which is zero in H1(S

3 r

νC; Z[Z]). From the above commutative diagram it now follows that

H1(MS ; Z[G]) ∼= H1(MK ; Z[G]) ⊕H1(S
3 r νC; Z[Z])⊗Z[Z] Z[G]

since H1(S
3 r νC; Z[G]) ∼= H1(S

3 r νC; Z[Z]) ⊗Z[Z] Z[G]. The lemma now
follows from H1(S

3 r νC; Z[Z]) ∼= H1(MC ; Z[Z]).

7 Examples: Satellite knots of 61

In Figure 7.1 we see three projections of the knot 61 , the first one having the
minimal crossing number 6. Indeed, the isotopy between K1 and K3 is shown
in [2]. The isotopy between K2 and K3 follows from Figures 1.1 and 7.2, which
shows that both knots are formed by band connected sum of two trivial knots
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K1 K2 K3

Figure 7.1: Three projections of the knot 61

Figure 7.2: A ribbon disk for 61

along isotopic bands. Note that the two trivial circles in Figure 7.2 bound
disjoint disks in S2 . Now consider the knot 61 with the Seifert surface F in
Figure 7.3. With the given basis a, b for H1(F ) we get

A(61) =

(
0 2
1 0

)

which then shows that ∆61
(t) = det(At−At) = (t− 2)(t−1 − 2).

a b

α β

Figure 7.3: Seifert surface for 61
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Examples of h–ribbon knots

We first prove a general result. Let R be a ribbon knot with ribbon disk DR ,
such that π1(D

4 rDR) ∼= SR. Denote the induced map π1(MK) ։ G := SR
by ϕ. Let C be any knot and A ⊂ S3 rK the unknot in S3 .

Proposition 7.4 If ϕ(A) = e then the satellite knot S = S(R,C,A) is h–
ribbon.

Proof By Lemma 6.2 there exists a map π1(MS) ։ G with H∗(MS ; Z[G]) ∼=
H∗(MR; Z[G]). From Theorem 1.3 it follows that Ext1

Z[G](H1(MR; Z[G]),Z[G])

= 0 and hence (MS , ϕ) also satisfies Ext1
Z[G](H1(MS ; Z[G]),Z[G]) = 0. The

proposition is implied by Theorem 1.3.

This result is similar to the well-known fact that the Whitehead double of any
knot (which is the satellite of the unknot) is topologically slice. This is an
immediate corollary from Freedman’s slicing theorem and Lemma 6.2.

Now turn back to the study of K = 61 . From the discussion in Section 2 we
know that K has a ribbon disk D such that π1(ND) ∼= 〈a, b | a−1ba−1bab−1〉 =
SR. The group π1(MK) ∼= π1(S

3 rK)/〈longitude〉 is generated by the merid-
ians of K3 . From Figure 2.3 it follows that the map

ϕ : π1(MK)→ π1(ND) ∼= 〈a, b | a−1ba−1bab−1〉 = G

is given by the map indicated in Figure 7.5. The image of the other meridians

a

b

Figure 7.5: The map π1(S
3 rK)→ 〈a, b | a−1ba−1bab−1〉

is determined by the image of the two given meridians.

As an example take K = 61 , A as in Figure 7.6 and C the trefoil knot. We
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A

S

Figure 7.6: Ribbon knot with choice of A and the satellite knot S(61, trefoil, A)

have ϕ(A) = e ∈ G as one can easily verify. Therefore S is h–ribbon by
Proposition 7.4. But in fact S is trivially ribbon already, since the ribbon disk
of 61 ‘survives’ the satellite construction. We therefore need a more subtle
choice of A. Now consider Figure 1.5. One can easily verify that ϕ(A) = e.
The knot 61 as a knot in the torus S3 r νA is given in Figure 1.5 on the right.
Wrapping this knot around say the trefoil gives a h–ribbon knot, which we
conjecture not to be smoothly ribbon.

Remark It follows immediately from arguments as in Lemma 6.2 that

(H1(MK ; Z[Z]), Bℓ(Z)) ∼= (H1(MS ; Z[Z]), Bℓ(Z)).

In particular K and S have the same abelian invariants. Livingston [21] showed
that there exists a knot K̃ with

(H1(MK ; Z[Z]), Bℓ(Z)) ∼= (H1(MK̃ ; Z[Z]), Bℓ(Z))

which is not topologically slice (cf also [18]). This shows that the vanishing of
Bℓ(SR), which is a condition on the non-commutative homology of K , can not
be reduced to a condition on abelian invariants.

Non-existence of certain ribbon disks

Now consider the knot 61 with the Seifert surface F in Figure 7.3. For given
knots Cα, Cβ consider S(K,Cα, Cβ , α, β), ie, the result of applying the satellite
construction twice. This means that we tie knots Cα and Cβ into the bands α
and β .

Proposition 7.7 If ∆Cα(t) 6= 1,∆Cβ
(t) 6= 1, then S has no h–ribbon with

fundamental group SR.
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Proof Assume that S has in fact a h–ribbon D with fundamental group G :=
SR = Z⋉Λ/(t−2). Then Ker{H1(MS ; Z[Z])→ H1(ND; Z[Z])} is a metabolizer
for Bℓ(Z) (cf [12]). In the following we will write Λ := Z[t, t−1] ∼= Z[Z]. Note
that α, β in Figure 7.3 lift to elements α̃, β̃ in H1(MK ; Λ), in fact

H1(MK ; Λ) ∼= (Λα̃ ⊕ Λβ̃)/(At−At) ∼= Λα̃/(2t− 1)⊕ Λβ̃/(t− 2).

Furthermore the Blanchfield pairing Bℓ(Z) is given by the matrix (t− 1)(At−
At)−1 . It is easy to see that the submodule generated by α̃ respectively by β̃ are
the only two metabolizers for Bℓ(Z). In particular the map π : = π1(MS) →
π1(ND) is up to automorphism of G either of the form

ϕα : π1(MS)→ π/π(2) ∼= Z ⋉H1(MS ; Λ)→ Z ⋉ Λα̃/(2t − 1)→ SR

or it is of the same form with α̃ replaced by β̃ . We denote this homomorphism
by ϕβ . By Theorem 1.3 we get Ext1

Z[G](H1(MS ; Z[G]),Z[G]) = 0 with G–
coefficients induced by ϕα or by ϕβ . Now consider coefficients induced by ϕα .
From Lemma 6.2 it follows that

H1(MS ; Z[G]) ∼= H1(MK ; Z[G]) ⊕H1(MCα ; Z[Z])⊗Z[Z] Z[G].

We compute

Ext1
Z[G](H1(MS ; Z[G]),Z[G])

∼= Ext1
Z[G]

(
H1(MK ; Z[G]),Z[G]) ⊕H1(MCα ; Z[Z])⊗Z[Z] Z[G],Z[G]

)

∼= Ext1
Z[G]

(
H1(MK ; Z[G]),Z[G]) ⊕ Ext1

Z[G](H1(MCα ; Z[Z])⊗Z[Z] Z[G],Z[G]
)

∼= Ext1
Z[G]

(
H1(MK ; Z[G]),Z[G]) ⊕ Ext1

Z[Z](H1(MCα ; Z[Z]),Z[Z]
)

∼= Ext1
Z[Z](H1(MCα ; Z[Z]),Z[Z]

)
.

Note that H1(MCα ; Z[Z]) ∼= H1(S
3 r Cα; Z[Z]), in particular it is Z–torsion

free. It follows from [20, Theorem 3.4] that Ext1
Z[Z](H1(MCα ; Z[Z]),Z[Z]

)
∼=

H1(MCα ; Z[Z]), which is non-trivial since ∆Cα(t) 6= 1. The same calculation
for ϕβ then gives the contradiction.

Non-uniqueness of ribbon groups

A ribbon knot can in general have ribbons with non-isomorphic groups. For
example let K be a non-trivial knot with ∆K(t) = 1, eg, the Whitehead double
of a non-trivial knot. Let G := π1(S

3 r K), then G is in particular a ribbon
group for the knot L := K# − K . On the other hand, L still has trivial
Alexander polynomial and so by Theorem 1.3 it follows that L also has a h–
ribbon with fundamental group Z. In fact, if K is the Whitehead double of
a ribbon knot then it is ribbon, not just h–ribbon, with fundamental group Z

(and so is L).
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