Geometry \& Topology M onographs
Volume 1: The Epstein Birthday Schrift
Pages 1 \{21

The mean curvature integral is invariant under bending

Frederic J Almgren J r Igor Rivin

Abstract

Suppose M_{t} is a smooth family of compact connected two dimensional submanifolds of Euclidean space E^{3} without boundary varying isometrically in their induced Riemannian metrics. Then we show that the mean curvature integrals $$
\int_{M_{t}} H_{t} d H^{2}
$$ are constant. It is unknown whether there are nontrivial such bendings M_{t}. The estimates also hold for periodic manifolds for which there are nontrivial bendings. In addition, our methods work essentially without change to show the similar results for submanifolds of H^{n} and S^{n}, to wit, if $M_{t}=@{ }_{t}$ $$
\mathrm{d} \int_{\mathrm{M}} \mathrm{H}_{\mathrm{t}} \mathrm{dH} \mathrm{H}^{2}=-\mathrm{kn}-1 \mathrm{dV}\left(\mathrm{X}_{\mathrm{t}}\right) ;
$$ where $\mathrm{k}=-1$ for H^{3} and $\mathrm{k}=1$ for S^{3}. The Euclidean case can be viewed as a special case where $k=0$. The rigidity of the mean curvature integral can be used to show new rigidity results for isometric embeddings and provide new proofs of some well-known results. This, together with far-reaching extensions of the results of the present note is done in the preprint [6]. Our result should be compared with the well-known formula of Herglotz (see [5], also [8] and [2]).

AMS Classi cation 53A07, 49Q15
Keywords Isometric embedding, integral mean curvature, bending, varifolds

1 Introduction

The underlying idea of this noteis the following. Suppose N_{t} is a smoothly varying family of polyhedral solids having edges $E_{t}(k){ }_{k}$, and associated (signed) dihedral angles $\quad{ }_{\mathrm{t}}(\mathrm{k})_{\mathrm{k}}$. According to a theorem of Schlafli [7]
X
$E_{t}(k) \frac{d}{d t} t(k)=0:$

In case edge length is preserved in the family, ie

$$
\frac{d}{d t} E_{t}(k)=0
$$

for each time t and each k, then also (product rule)

$$
\frac{d}{d t}_{k}^{X} E_{t}(k) \quad t(k)=0:
$$

Should the \mathbb{W}_{t} 's be polyhedral approximations to submanifolds M_{t} varying isometrically, one might regard

$$
E_{t}(k) \quad t(k)
$$

$$
\mathrm{k}
$$

as a reasonable approximation to the mean curvature integrals

$$
M_{\mathrm{t}} \mathrm{H}_{\mathrm{t}} \mathrm{dH}^{2}
$$

and expect

$$
\frac{d}{d t} E_{t}(k)
$$

to be small. Hence it is plausible that the mean curvature integrals of the M_{t} 's might be constant. In this note we show that that is indeed the case.
Examples such as the isometry pictured on page 306 of volume 5 of [8] show that the mean curvature integral is not preserved under discrete isometries.
Two comments are in order. The rst is that it is very likely that there are no isometric bendings of hypersurfaces. One reason for the existence of the current work is to produce a tool for resolving this conjecture(as Herglotz' mean curvature variation formula can be used to give a simple proof of Cohn\{Vossen's theorem on rigidity of convex hypersurfaces). Secondly, the main theorem can be viewed as a sort of dual bellows theorem (when the hypersurface in question lies in H^{n} or S^{n}): as the surface is isometrically deformed, the volume of the polar dual stays constant. This should be contrasted with the usual bellows theorem recently proved by Sabitov, Connelly and Walz [4].

2 Terminology and basic facts

Our object in this section is to set up terminology for a family of manifolds varying smoothly through isometries. We consider triangulations of increasing neness varying with the manifolds. To make possible our mean curvature analysis we associate integral varifolds with both the manifolds and the polyhedral surfaces determined by the triangulations. The mean curvature integral of interest is identi ed with (minus two times) the varifold rst variation associated with the unit normal initial velocity vector eld.

2.1 Terminology and facts for a static manifold M

2.1.1 We suppose that $M \quad \mathbb{R}^{3}$ is a compact connected smooth two dimensional submanifold of \mathbb{R}^{3} without boundary oriented by a smooth Gauss mapping $\mathbf{n}: \mathrm{M}!\mathbb{S}^{2}$ of unit normal vectors.
2.1.2 $\mathrm{H}: \mathrm{M}$! \mathbb{R} denotes half the sum of principal curvatures in direction \mathbf{n} at points in M so that $H \mathbf{n}$ is the mean curvature vector edd of M.
2.1.3 We denote by U a suitable neighborhood of M in \mathbb{R}^{3} in which a smooth nearest point retraction mapping : U! M is well de ned. Thesmooth signed distance function $: U!\mathbb{R}$ is de ned by requiring $p=(p)+(p) \mathbf{n}(p))$ for each p. We set

$$
g=r: U!\mathbb{R}^{3}
$$

(so that $\mathrm{gj} \mathrm{M}=\mathbf{n}$); the vector edd g is the initial velocity vector eld of the deformation

$$
G_{t}: U!\mathbb{R}^{3} ; \quad G_{t}(p)=p+t g(p) \text { for } p 2 U:
$$

2.1.4 We denote by

$$
V=\mathbf{v}(M)
$$

the integral varifold associated with M [1, 3.5]. The rst variation distribution of $\mathrm{V}[1,4.1,4.2]$ is representable by integration $[1,4.3]$ and can be written

$$
V=H^{2} L M \wedge(-2 H) \mathbf{n}
$$

[1, 4.3.5] so that

$$
\mathrm{V}(\mathrm{~g})=\frac{\mathrm{d}}{\mathrm{dt}} \mathrm{H}^{2} \mathrm{G}_{\mathrm{t}}(\mathrm{M})_{\mathrm{t}=0}=-2_{\mathrm{M}}^{\mathrm{Z}} \mathrm{~g} \mathrm{H} \mathrm{ndH}{ }^{2}=-2_{\mathrm{M}}^{\mathrm{Z}} \mathrm{HdH} \text {; }
$$

here H^{2} denotes two dimensional Hausdor measure in \mathbb{R}^{3}.
2.1.5 By a vertex p in M we mean any point p in M. By an edge hpqi in M we mean any (unordered) pair of distinct vertexes p, q in M which are close enough together that there is a unique length minimizing geodesic arc【pq】 in M joining them; in particular hpqi = hqpi. For each edge hpqi we write @pqi = $\mathrm{fp} ; q \mathrm{q}$ and call p a vertex of edge hpqi, etc. We also denote by pq the straight line segment in \mathbb{R}^{3} between p and q, ie the convex hull of p and q. By a facet hpqri in M we mean any (unordered) triple of distinct vertexes p, q, r which are not collinear in \mathbb{R}^{3} such that hpqi, hari, hrpi are edges in M ; in particular, hpqri $=$ hqpri $=$ hrpqi, etc. For each facet hpqri we write
@pqri = hpqi ; hqri; hrpi and call hpqi an edge of facet hpqri and also denote by par the convex hull of p, q, r in \mathbb{R}^{3}.
2.1.6 Suppose $0 \ll 1$ and $0 \ll 1$. By a ; regular triangulation T of M of maximum edge length L we mean
(i) a family T_{2} of facets in M, together with
(ii) the family T_{1} of all edges of facess in T_{2} together with
(iii) the family T_{0} of all vertexes of edges in T_{1}
such that
(iv) pqr U for each facet hpari in T_{2}
(v) M is partitioned by the family of subsets

$$
\begin{gathered}
\text { pqr (pq[qr [rq) : hpqri } 2 T_{2}\left[\begin{array}{c}
\text { (pq) } f p ; q g: ~ h p q i ~
\end{array} \mathrm{~T}_{1}\right. \\
{\left[\quad f p g: p 2 T_{0}\right.}
\end{gathered}
$$

(vi) for facets hpqri $2 T_{2}$ we have the uniform nondegeneracy condition: if we set $u=q-p$ and $v=r-p$ then

$$
v-\frac{u}{j u j} v \frac{u}{j u j} \quad j v j
$$

(vii) $L=\sup j p-q i:$ ppqi $2 T_{1}$
(viii) for edges in T_{1} we have the uniform control on the ratio of lengths:

$$
\text { inf jp - qi : hpqi } 2 \mathrm{~T}_{1} \quad \mathrm{~L} \text { : }
$$

2.1.7 Fact [3] It is a standard fact about the geometry of smooth submanifolds that there are $0 \ll 1$ and $0 \ll 1$ such that for arbitrarily small maximum edge lengths L there are ; regular triangulations of M of maximum edge length L. We x such and . We hereafter consider only ; regular triangulations T with very small maximum edge length L. Once L is small the triangles pqr associated with hpqri in T_{2} are very nearly paralle with the tangent plane to M at p .
2.1.8 Associated with each facet hpari in T_{2} is the unit normal vector \mathbf{n} (pqr) to par having positive inner product with the normal $\mathbf{n}(\mathrm{p})$ to M at p .
2.1.9 Associated with each edge hpqi in T_{1} are exactly two distinct facets hpqri and hpasi in T_{2}. We denote by

$$
\mathbf{n}(\mathrm{pq})=\frac{\mathbf{n}(\mathrm{pqr})+\mathbf{n}(\mathrm{pqs})}{\mathbf{n} \mathrm{pqr})+\mathbf{n}(\mathrm{pqs})}
$$

the average normal vector at pq.
For each hpqi we further denote by (pq) the signed dihedral angle at pq be tween the oriented plane directions of pqr and pqs which is characterized by the condition

$$
2 \sin \frac{(p q)}{2} \quad n(p q)=V+W
$$

where
V is the unit exterior normal vector to pqr along edge pq, so that, in particular,

$$
V \quad(p-q)=V \quad \mathbf{n}(p q r)=0 ;
$$

W is the unit exterior normal vector to pos along edge pq.
One checks that

$$
\cos (p q)=\mathbf{n}(p q r) \quad \mathbf{n}(p q s):
$$

Finally for each hpqi we denote by

$$
\mathrm{g}(\mathrm{pq})=\mathrm{jp}-\mathrm{qi}_{\mathrm{pq}}^{-1} \mathrm{gdH}^{1} 2 \mathbb{R}^{3}
$$

the pq average of g ; here H^{1} is one dimensional Hausdor measure in \mathbb{R}^{3}.
2.1.10 Associated with our triangulation T of M is the polyhedral approximation

$$
N[T]=\left[\text { pqr : ppri } 2 T_{2}\right.
$$

and the integral varifold

$$
\mathrm{V}[\mathrm{~T}]=\underset{\text { hpgri } 2 \mathrm{~T}_{2}}{\mathrm{X}} \mathbf{v} \text { pqr }=\mathbf{v} \mathrm{N}(\mathrm{~T})
$$

whose rst variation distribution is representable by integration
[1, 4.3.5] so that

$$
\mathrm{V}[\mathrm{~T}](\mathrm{g})={\underset{\text { hpqi2 } T_{1}}{\mathrm{X}} \mathrm{jp-qi} \quad 2 \sin \frac{(\mathrm{pq})}{2} \quad \mathbf{n}(\mathrm{pq}) \quad \mathrm{g}(\mathrm{pq}):}
$$

2.2 Terminology and facts for a flow of manifolds M_{t}

2.2.1 As in 2.1 .1 we suppose that $M \quad \mathbb{R}^{3}$ is a compact connected smooth two dimensional submanifold of \mathbb{R}^{3} without boundary oriented by a smooth Gauss mapping n: M ! \mathbb{S}^{2} of unit normal vectors. We suppose additionally that ': $(-1 ; 1) \quad M \quad!\quad \mathbb{R}^{3}$ is a smooth mapping with ${ }^{\prime}(0 ; p)=p$ for each p 2 M. For each t we set

$$
{ }^{\prime}[t]==^{\prime}(\mathrm{t} ;): \mathrm{M}!\mathbb{R}^{3} \quad \text { and } \quad \mathrm{M}_{\mathrm{t}}=^{\prime}[\mathrm{t}](\mathrm{M}):
$$

Our principal assumption is that, for each t, the mapping ' [t]: M ! M_{t} is an orientation preserving isometric imbedding (of Riemannian manifolds). In particular, each $\mathrm{M}_{\mathrm{t}} \quad \mathbb{R}^{3}$ is a compact connected smooth two dimensional submanifold of \mathbb{R}^{3} without boundary oriented by a smooth Gauss mapping $\mathbf{n}_{\mathrm{t}}: \mathrm{M}_{\mathrm{t}}!\mathbb{S}^{2}$ of unit normal vectors.
2.2.2 As in 2.1.2, for each t, we denote by $H_{t} \mathbf{n}_{t}$ the mean curvature vector eld of M_{t}.
2.2.3 As in 2.1.3, for each t we denote by U_{t} a suitable neighborhood of M_{t} in \mathbb{R}^{3} in which a smooth nearest point retraction mapping ${ }_{t}: U_{t}!M_{t}$ is well de ned together with smooth signed distance function ${ }_{t}: U_{t}!\mathbb{R}$; also we set $g[t]=r \quad{ }_{t}: U_{t}!\mathbb{R}^{3}$ as an initial velocity vector eld.
2.2.4 By a convenient abuse of notation we assume that we can de nea smooth map

$$
\begin{gathered}
\prime:(-1 ; 1) \quad U_{0}!\mathbb{R}^{3} ; \\
,(\mathrm{t} ; \mathrm{p})={ }^{\prime} \mathrm{t} ;{ }_{o}(\mathrm{p})+{ }_{o}(\mathrm{p}) \mathbf{n}_{0}\left((\mathrm{p})={ }^{\prime} \mathrm{t}_{\mathrm{t}} ;{ }_{0}(\mathrm{p})+{ }_{o}(\mathrm{p}) \mathbf{n}_{\mathrm{t}}(\mathrm{o}(\mathrm{p})\right.
\end{gathered}
$$

for each t and p. With ' $[t]=$ ' (t ;) we have ' $[0]=\mathbf{1}_{\mathrm{U}_{0}}$ and, additionally, $o(p)=t^{\prime}[t](p)$. We further assume that

$$
U_{t}={ }^{\prime}[t] U_{0}
$$

for each t.
2.2.5 Fact If we replace our initial ' $[\mathrm{t}]$: M ! $\mathbb{R}^{3 \prime}$ s by ' [t] for large enough (equivalently, restrict times t to $-1=<t<1=$) and decrease the size of U_{0} then the extended ' $[t]$: $U_{0}!\mathbb{R}^{3}$'s will exist. Such restrictions do not matter in the proof of our main assertion, since it is local in time and requires only small neighborhoods of the M_{t} 's.
2.1.6 As in 2.1.4, for each t we denote by

$$
V_{t}=\mathbf{v}\left(M_{t}\right)
$$

the integral varifold associated with M_{t}.
2.2.7 We $\times 0 \ll 1=2$ and $0 \ll 1=2$ as in 2.1.7 and $\times 2$, 2 regular triangulations $\mathrm{T}(1), \mathrm{T}(2), \mathrm{T}(3)$, ::: of M having maximum edge lengths $L(1), L(2), L(3)$::: respectively with $\lim _{\mathrm{m}}!1 \mathrm{~L}(\mathrm{j})=0$: For each j , the vertexes of $T(j)$ are denoted $T_{0}(j)$, the edges are denoted $T_{1}(j)$, and the faces are denoted $T_{2}(j)$. For all large j and each t we have triangulations $\mathrm{T}(1 ; \mathrm{t}), \mathrm{T}(2 ; \mathrm{t}), \mathrm{T}(3 ; \mathrm{t})$, ::: of M_{t} as follows. With notation similar to that above we specify, for each j and t,

$$
\begin{gathered}
T_{0}(j ; t)=\quad[t](p): p 2 T_{0}(j) ; T_{1}(j ; t)=\quad,[t](p)^{\prime}[t](q): \operatorname{lpqi} 2 T_{1}(j) ; \\
T_{2}(j ; t)=\quad,[t](p)^{\prime}[t](q)^{\prime}[t](r): \operatorname{lpqri} 2 T_{2}(j):
\end{gathered}
$$

2.2.8 Fact If we replace ' [t] by ' [t] for large enough (equivalently, re strict times t to $-1=<\mathrm{t}<1=$) then $\mathrm{T}(1 ; \mathrm{t}), \mathrm{T}(2 ; \mathrm{t}), \mathrm{T}(3 ; \mathrm{t})$, ::: will a sequence of ; regular triangulations of M with maximum edge lengths $\mathrm{L}(\mathrm{j} ; \mathrm{t})$ converging to 0 uniformly in time t as $\mathrm{j}!1$. Such restrictions do not matter in the proof of our main assertion, since it is local in time. We assume this has been done, if necessary, and that each of the triangulations $\mathrm{T}(\mathrm{j} ; \mathrm{t})$ is ; regular with maximum edge lengths $L(j ; t)$ converging to 0 as indicated.
2.2.9 As in 2.1 .8 we associate with each j, t, and hpqri $2 T_{2}(j)$ a unit normal vector $\mathbf{n}[t ; j](p q r)$ to ${ }^{\prime}[t](p)^{\prime}[t](q)^{\prime}[t](r)$. As in 2.1 .9 we associate with each j, t, and hpqi $2 \mathrm{~T}_{1}(\mathrm{j})$ an average normal vector $\mathbf{n}[\mathrm{t}$; j$](\mathrm{pq})$ at ${ }^{{ }^{\prime}[\mathrm{t}](\mathrm{p})^{\prime}[\mathrm{t}](\mathrm{q})}$ and a signed dihedral angle $[t ; j](p q)$ at ${ }^{\prime}[t](p){ }^{\prime}[t](q)$ and the ${ }^{\prime}[t](p){ }^{\prime}[t](q)$ average $g[t ; j](p q)$ of $g[t]$.
2.2.10 As in 2.1.10 we associate with each triangulation $T(j ; t)$ of $M_{t} a$ polyhedral approximation $N[T(\mathrm{j} ; \mathrm{t})]$ and an integral varifold

$$
V[T(j ; t)]=\mathbf{v N}[T(j ; t)]=X_{\text {hogri2 } T_{1}(j)}^{X} \quad v^{\prime[t](p)^{\prime}[t](q)^{\prime}[t](r)}
$$

with rst variation distribution

$$
\mathrm{V}[\mathrm{~T}(\mathrm{j} ; \mathrm{t})]=\underset{\text { hpai } 2 \mathrm{~T}_{1}(\mathrm{j})}{\mathrm{X}} \mathrm{H}^{1} \mathrm{~L}^{\prime} \overline{[\mathrm{t}]) \mathrm{p})^{\prime}[\mathrm{t}](\mathrm{q})} \wedge 2 \sin \frac{[\mathrm{t} ; \mathrm{j}](\mathrm{pq})}{2} \quad \mathbf{n}[\mathrm{t} ; \mathrm{j}](\mathrm{pq}):
$$

so that

$\mathrm{V}[\mathrm{T}(\mathrm{j} ; \mathrm{t})] \mathrm{g}[\mathrm{t}]$
$={ }_{\text {hpai } 2 \mathrm{~T}_{1}(\mathrm{j})}^{\mathrm{X}} \quad,[\mathrm{t}](\mathrm{p})-^{\prime}[\mathrm{t}](\mathrm{q}) \quad 2 \sin \frac{[\mathrm{t} ; \mathrm{j}](\mathrm{pq})}{2} \quad \mathbf{n}[\mathrm{t} ; \mathrm{j}](\mathrm{pq}) \quad \mathrm{g}[\mathrm{t} ; \mathrm{j}](\mathrm{pq}):$
2.2.11 The quantity we wish to show is constant in time is

$$
\mathrm{M}_{\mathrm{t}} \mathrm{H}_{\mathrm{t}} \mathrm{dH} H^{2}=-\frac{1}{2} \quad \mathrm{~V}_{\mathrm{t}} \mathrm{~g}[\mathrm{t}]:
$$

Since, for each time t,

$$
V_{t}=\lim _{j!1} V[T(j ; t)] \quad \text { (as varifolds) }
$$

we know, for each t ,

$$
\left.V_{t} g[t]\right)=\lim _{j!1} V[T(j ; t)] g[t]:
$$

We are thus led to seek to estimate

$$
\frac{d}{d t} V[T(j ; t)] g[t]
$$

using the formula in 2.2.10. A key equality it provided by Schlafli's theorem mentioned above which, in the present terminology, asserts for eech j and t,

$$
{\operatorname{hpqi} 2 T_{1}(\mathrm{j})}_{\prime}^{\prime}[\mathrm{t}](\mathrm{p})-\mathbf{-}^{\prime}[\mathrm{t}](\mathrm{q}) \quad \frac{\mathrm{d}}{\mathrm{dt}} \quad[\mathrm{t} ; \mathrm{j}](\mathrm{pq})=0:
$$

2.2.12 Fact Since, for each hppqi in $\mathrm{T}_{2}(\mathrm{j})$, ©ppri consists of exactly three edges, and, for each hpqi in $T_{1}(j)$, there are exactly two distinct facets hpqri in $T_{2}(j)$ for which hpqi 2 @pqri we infer that, for each j,

$$
\operatorname{card} \mathrm{T}_{1}(\mathrm{j})=\frac{3}{2} \operatorname{card} \mathrm{~T}_{2}(\mathrm{j}):
$$

We then use the ; regularity of the the $\mathrm{T}(\mathrm{j})$'s to check that that, for each time t and each hppgi in $T_{2}(j)$ the following four numbers have bounded ratios (independent of j, t, and hppqi) with each other

$$
H^{2} \overline{\prime[t](p)^{\prime}[t](q)^{\prime}[t](r)} ; \quad,[t](p)-{ }^{\prime}[t](q)^{2} ; \quad L(j ; t)^{2} ; \quad L(j)^{2}:
$$

Since

$$
\lim _{j!1} H^{2} N[j ; t]=H^{2} M_{t}=H^{2} M \text {; }
$$

we infer

$$
\sup _{j} X \quad L(j)^{2}<1 ; \quad \lim _{j!1} X \quad X \quad L(j)^{3}=0:
$$

3 Modi cations of the flow

3.1 J usti cation for computing with modi ed flows

As indicated in 2.2, we wish to estimate the time derivatives of

$$
V[T(j ; t)] g[t]
$$

$$
=X_{\text {hpqi } 2 T_{1}(j)}^{X} \quad,[t](p)-{ }^{\prime}[t](q) \quad 2 \sin \frac{[t ; j](p q)}{2} \quad \mathbf{n}[t ; j](p q) \quad g[t ; j](p q):
$$

In each of the hpqi summands, each of the three factors

$$
,^{\prime}[t](p)-{ }^{\prime}[t](q) \quad ; \quad 2 \sin \frac{[t ; j](p q)}{2} ; \quad \mathbf{n}[t ; j](p q) \quad g[t ; j](p q)
$$

is an intrinsic geometric quantity (at each time) whose value does not change under isometries of the ambient \mathbb{R}^{3}. With hpqri and hposi denoting the two facets sharing edge hpqi, we infer that each of the factors depends at most on the relative positions of ' $[t](p)$, ' $[t](q)$, ' $[t](r), '[t](s)$ and ${ }^{\prime}[t] M$. Suppose $:(-1 ; 1) \mathbb{R}^{3}!\mathbb{R}^{3}$ is continuously di erentiable, and for eech t, the function
$[t]=(t ;): \mathbb{R}^{3}!\mathbb{R}^{3}$ is an isometry. Suppose further, we set

$$
{ }^{\prime}(\mathrm{t} ; \mathrm{p})=\mathrm{t} ;{ }^{\prime}(\mathrm{t} ; \mathrm{p}) ; \quad, \quad[\mathrm{t}]={ }^{\prime}(\mathrm{t} ;)
$$

for each t and p so that ' $[t]=[t]$ ' $[t]$. If we replace M by $M=[0] M$ and ' by ' then we could follow the procedures of 2.1 and 2.2 to construct triangulations and polyhedral approximations $\mathrm{T}[\mathrm{j} ; \mathrm{t}]$ and varifolds V , etc. with

$$
V[T(j ; t)] g[t]=V[T(j ; t)] g[t]:
$$

Not only do we have equality in the sum, but, for each hpqi the corresponding summands are identical numerically. Hence, in evaluating $V[T(j ; t)] g[t]$ we are fre to (and will) use a di erent and ' for each summand.

3.2 C onventions for derivatives

Suppose W is an open subset of \mathbb{R}^{M} and $f=f^{1} ; f^{2} ;::: f^{N}: W!\mathbb{R}^{N}$ is K times continuously di erentiable We denote by

$$
j j j D^{K} \mathrm{f} j \mathrm{jj}
$$

the supremum of the partial derivatives

$$
\frac{@ f^{k}}{@ x_{i(1)} @ x_{i(2)}::!\propto_{i(k)}}(p)
$$

corresponding to all points p 2 W , all $\mathrm{i}(1)$; $\mathrm{i}(2)$;:::; $i(\mathrm{~K}) \quad 1 ;::: ; \mathrm{M}$ and $\mathrm{k}=1 ;::: ; \mathrm{N}$, all choices of orthonormal coordinates $\left(\mathrm{x}_{1} ;::: ; \mathrm{x}_{\mathrm{M}}\right)$ for \mathbb{R}^{M} and all choices of orthonormal coordinates $\left(y_{1} ;::: ; y_{N}\right)$ for \mathbb{R}^{N}.

3.3 Conventions for inequalities

In making various estimates we will use use the largest edge length of the j th triangulation, typically called L , and a general purpose constant C . The constant C will have di erent values in di erent contexts (even in the same formula). What is implied is that, with M and ' xed, the constants C can be chosen independent of the level of triangulation (once it is ne enough) and independent of time t and independent of the various modi cations of our flow which are used in obtaining our estimates. As a representative example of our terminology, the expression

$$
A=B \quad C L^{2}
$$

means

$$
-C L^{2} \quad A-B \quad C L^{2}:
$$

3.4 Fixing a vertex at the origin

Suppose p is a vertex in M and

$$
(-1 ; 1) \quad U_{0}!\mathbb{R}^{3} ; \quad,(\mathrm{t} ; \mathrm{q})==^{\prime}(\mathrm{t} ; \mathrm{q})-^{\prime}(\mathrm{t} ; \mathrm{p}) \quad \text { for each } \mathrm{q}:
$$

Then' $(t ; p)=(0 ; 0 ; 0)$ for each t. One checks, for $K=0 ; 1 ; 2 ; 3$ that

$$
\mathrm{jjj} D^{K}, \quad \mathrm{jjj} \quad 2 \mathrm{jjj} D^{K}{ }^{\prime} \mathrm{jjj} ; \quad \mathrm{jjj} D^{K}{ }^{\prime} \quad[t] j \mathrm{jj}=\mathrm{jjj} D^{K}{ }^{\prime}[t] \mathrm{jjj}
$$

for each t .

3.5 Mapping a frame to the basis vectors

Suppose ($0 ; 0 ; 0$) 2 M and that \mathbf{e}_{1} and \mathbf{e}_{2} are tangent to M at $(0 ; 0 ; 0)$. Suppose also ' $(t ; 0 ; 0 ; 0)=(0 ; 0 ; 0)$ for each t. Then the mapping ' given by setting
satis es

$$
[t](0 ; 0 ; 0)=(0 ; 0 ; 0) ; \quad D^{\prime} \quad[t](0 ; 0 ; 0)=\mathbf{1}_{\mathbf{R}^{3}}
$$

with

$$
j \mathrm{jjj} \mathrm{D}^{K} \quad[\mathrm{t}] \mathrm{jjj}=\mathrm{jjj} \mathrm{D}^{K}{ }^{\prime}[\mathrm{t}] \mathrm{jjj}
$$

for each $K=1 ; 2 ; 3$ and each t, and

$$
\frac{@}{@ t}(\mathrm{t} ;) \quad 3 \mathrm{jjjD}{ }^{0}{ }^{0} \mathrm{jjj} \mathrm{jjjD}^{2}{ }^{\prime} \mathrm{jjj}+\mathrm{jjjD}{ }^{1}{ }^{\prime}[\mathrm{t}] \mathrm{jj} \mathrm{j}^{2}:
$$

3.6 Theorem There is $C<1$ such that the following is true for all su ciently small >0. Suppose y_{0} : $[0 ; \mathrm{B}$! M is an arc length parametrization of a length minimizing geodesic in M and set

$$
\gamma(s ; t)={ }^{\prime}[t] Y_{0}(s) \quad \text { for each } s \text { and } t
$$

so that $s!\gamma(s ; t)$ is an arc length parametrization of a geodesic in M_{t}. We also set

$$
r(s ; t)=\gamma(0 ; t)-\gamma(s ; t) \quad \text { for each } s \text { and } t
$$

and, for ($x e d$) $0<R<$, consider

$$
r(R ; t)=\gamma(0 ; t)-\gamma(R ; t) \quad \text { for each } t .
$$

Then

$$
\frac{d}{d t} r(R ; t)=C R^{2}
$$

and

$$
\lim _{R \neq 0} R^{-1} \frac{d}{d t} r(R ; t)=0:
$$

Proof We will show

$$
\frac{\mathrm{d}}{\mathrm{dt}} \mathrm{r}(\mathrm{R} ; \mathrm{t})_{\mathrm{t}=0}=C R^{2}:
$$

Step 1 Replacing ' (t; p) by ' (t ; p) = ' (t; p) - ' (t ; $\mathrm{y}_{0}(0)$) as in 3.4 if necessary we assume without loss of generality that $\gamma(0 ; t)=(0 ; 0 ; 0)$ for each t.

Step 2 Rotating coordinates if necessary we assume without loss of generality that \mathbf{e}_{1} and \mathbf{e}_{2} are tangent to M_{0} at $(0 ; 0 ; 0)$ and that $\gamma_{0}^{0}(0)=\mathbf{e}_{1}$

Step 3 Rotating coordinates as time changes as in 3.5 if necessary we assume without loss of generality that $D^{\prime}[t](0 ; 0 ; 0)=\mathbf{1}_{\mathbf{R}^{3}}$ for each t.

Step 4 We de ne

$$
X(s ; t)=\gamma(s ; t) \quad \mathbf{e}_{1} ; \quad Y(s ; t)=\gamma(s ; t) \quad \mathbf{e}_{2} ; \quad Z(s ; t)=\gamma(s ; t) \quad \mathbf{e}_{3}
$$

so that

$$
Y(\mathrm{~s} ; \mathrm{t})=\mathrm{X}(\mathrm{~s} ; \mathrm{t}) ; \mathrm{Y}(\mathrm{~s} ; \mathrm{t}) ; \mathrm{Z}(\mathrm{~s} ; \mathrm{t})
$$

and estimate for each s and t :
(a) $\mathrm{X}(0 ; \mathrm{t})=\mathrm{Y}(0 ; \mathrm{t})=\mathrm{Z}(0 ; \mathrm{t})=0$ (by step 1)
(b) $X_{t}(0 ; 0)=Y_{t}(0 ; 0)=Z_{t}(0 ; 0)=0$
(c) $X_{s}(\mathrm{~s} ; \mathrm{t})^{2}+Y_{\mathrm{s}}(\mathrm{s} ; \mathrm{t})^{2}+\mathrm{Z}_{\mathrm{s}}(\mathrm{s} ; \mathrm{t})^{2}=1$
(d) $X_{s}(\mathrm{~s} ; \mathrm{t})=1 ; \mathrm{Y}_{\mathrm{s}}(\mathrm{s} ; \mathrm{t})=1 ; \mathrm{Z}_{\mathrm{s}}(\mathrm{s} ; \mathrm{t})=1$
(e) $1=2 r(s ; t) \neq j \mathrm{sj} 1$ (since is small)
(f) $X(s ; 0)=C s, Y(s ; 0)=C s, Z(s ; 0)=C s$
(g) $X_{s}(0 ; t)=X_{s}(0 ; 0), Y_{s}(0 ; t)=Y_{s}(0 ; 0), Z_{s}(0 ; t)=Z_{s}(0 ; 0)$ (by step 3)
(h) $X_{s t}(0 ; 0)=Y_{s t}(0 ; 0)=Z_{s t}(0 ; 0)=0$
(i) $X_{s t}(s ; 0)=X_{s t}(0 ; 0)+{ }_{0}^{Z_{s}} X_{\text {stt }}(; 0) d=0 \quad$ s sup $X_{\text {stt }}=C s$;

$$
Y_{s t}(s ; 0)=C s ; \quad Z_{\text {st }}(s ; 0)=C s
$$

(j) $\quad X_{t}(s ; 0)=X_{t}(0 ; 0)+{ }_{0}^{Z_{s}} X_{s t}(; 0) d=0 \quad \mathrm{Cs}^{2}$;

$$
Y_{t}(s ; 0)=C s^{2} ; \quad Z_{t}(s ; 0)=C s^{2}
$$

(k) $r^{2}=X^{2}+Y^{2}+Z^{2}$
(')

$$
r r_{\mathrm{s}}=X X_{\mathrm{s}}+Y Y_{\mathrm{s}}+Z Z_{\mathrm{s}} ; \quad r_{\mathrm{s}}=\frac{1}{\mathrm{r}} X X_{\mathrm{s}}+Y Y_{\mathrm{s}}+Z Z_{\mathrm{s}}
$$

(m) $\quad r r_{t}=X X_{t}+Y Y_{t}+Z Z_{t} ; \quad r_{t}=\frac{1}{r} X X_{t}+Y Y_{t}+Z Z_{t}$
(n) $r_{s} r_{t}+r r_{s t}=X_{s} X_{t}+X X_{s t}+Y_{s} Y_{t}+Y Y_{s t}+Z_{s} Z_{t}+Z Z_{s t}$
(o) evaluating (n) at $\mathrm{t}=0, r>0$ we see

$$
\begin{aligned}
\frac{1}{r(s ; 0)^{2}}(\mathrm{Cs})(1)(\mathrm{Cs})\left(C s^{2}\right) & +r(\mathrm{~s} ; 0) r_{\mathrm{st}}(\mathrm{~s} ; 0) \\
= & (1)\left(\mathrm{Cs}^{2}\right)+(\mathrm{Cs})(\mathrm{Cs})
\end{aligned}
$$

(p) $r_{s t}(s ; 0)=C s$
(q) $\quad r_{t}(R ; 0)=r_{t}(0 ; 0)+Z_{0}^{Z_{R}} r_{s t}(s ; 0) d s=0+{ }_{0}^{Z_{R}} C s d s=C R^{2}$:
3.7 C orollary Suppose triangulation $T(j)$ has maximum edge length $L=$ $L(j)$ and tpai is an edge in $T_{1}(j)$. Then, for each t,

$$
\prime^{\prime}[t](p)--^{\prime}[t](q)=C L \text { and } \frac{d}{d t},^{\prime}[t](p)--^{\prime}[t](q)=C L^{2}:
$$

3.8 Stabilizing the facets of an edge

Suppose $T(j)$ is a triangulation with maximum edge length $L=L(j)$ and that hABCi; hACDi are facets in $T_{2}(j)$ as illustrated

$$
D=(e ; f ; 0)
$$

$$
\begin{array}{lcc}
(0 ; 0 ; 0)=A & & \vdots \\
& \& & \\
& & C=(a ; b ; 0 ; 0):
\end{array}
$$

Interchanging B and D if necessary we assume without loss of generality the the average normal $\mathbf{n}[0 ; A C]$ to M_{0} at A has positive inner product with $(C-A) \quad(D-A)$.

1) Fixing A at the origin Modifying' if necessary as in 3.4 if necessary we can assume without loss of generality that ' $[t](A)=(0 ; 0 ; 0)$ for each t. As indicated there, various derivative bounds are increased by, at most, a controlled amount.
2) Convenient rotations We set $u(t)={ }^{\prime}[t](C)$; $v(t)={ }^{\prime}[t](D)$ and use the Gramm\{Schmidt orthonormalization process to construct

$$
U(\mathrm{t})=\frac{\mathrm{u}(\mathrm{t})}{\mathrm{ju}(\mathrm{t}) \mathrm{j}} ; \quad \mathrm{V}(\mathrm{t})=\frac{\mathrm{v}(\mathrm{t})-\mathrm{v}(\mathrm{t}) \quad \mathrm{U}(\mathrm{t}) \mathrm{U}(\mathrm{t})}{\mathrm{jv}(\mathrm{t})-\mathrm{v}(\mathrm{t}) \quad \mathrm{U}(\mathrm{t}) \mathrm{U}(\mathrm{t}) j} ; \quad \mathrm{W}(\mathrm{t})=\mathrm{U}(\mathrm{t}) \quad \mathrm{V}(\mathrm{t}):
$$

One uses the mean value theorem in checking

$$
\mathrm{jjjD}^{K} U(t) \mathrm{jjj} \quad C @_{j=0}^{\mathrm{QX}^{+1}} \mathrm{jjjD}^{j}, \quad 1 \mathrm{jjj} \mathrm{~A} ; \quad \text { etc }
$$

for each $\mathrm{K}=0 ; 1 ; 2$. We denote by $\mathrm{Q}(\mathrm{t})$ the orthogonal matrices having columns equal to $\mathrm{U}(\mathrm{t}), \mathrm{V}(\mathrm{t}), \mathrm{W}(\mathrm{t})$ respectively (which is the inverse matrix to its transpose). Replacing 't by $\mathrm{Q}(\mathrm{t})$ ' t if necessary, we assume without loss of generality that there arefunctions $a(t), b(t), c(t), d(t), e(t), f(t)$, such that

$$
\begin{aligned}
& { }^{\prime}[t](A)=(0 ; 0 ; 0) ; \quad \quad[t](B)=(a(t) ; b(t) ; c(t)) ; \\
& \left.{ }^{\prime}[\mathrm{t}](\mathrm{C})=(\mathrm{d}(\mathrm{t}) ; 0 ; 0) ; \quad \mathrm{lt}\right](\mathrm{D})=(\mathrm{e}(\mathrm{t}) ; \mathrm{f}(\mathrm{t}) ; 0) \text { : }
\end{aligned}
$$

We assume without loss of generality the existence of functions $F[t] x ; y d e$ ned for ($x ; y$) near ($0 ; 0$) such that, near ($0 ; 0 ; 0$) our manifold M_{t} is the graph of $\mathrm{F}[\mathrm{t}]$. In particular,

$$
c(t)=F[t] a(t) ; b(t):
$$

We assert that if jpj $C L$, then

$$
\begin{equation*}
\mathrm{jF}[\mathrm{t}](\mathrm{p}) \mathrm{j} \quad \mathrm{CL}{ }^{2} ; \quad \mathrm{jr} \mathrm{~F}[\mathrm{t}](\mathrm{p}) \mathrm{j} \quad \mathrm{CL}: \tag{3:8:1}
\end{equation*}
$$

To see this, rst we note that $F[t](A)=F[t](C)=F[t](D)=0$. Next we invoke Rolle's theorem to conclude the existence of c_{1} on segment $A D$ and c_{2} on segment CD such

$$
\frac{D-A}{j D-A j} ; D F[t]\left(c_{1}\right)=0=\frac{D-C}{j D-C j} ; D F[t]\left(c_{2}\right):
$$

Since jpj CL we infer

$$
\frac{D-A}{j D-A j} ; D F[t](p)=C L ; \quad \frac{D-C}{j D-C j} ; D F[t](p)=C L:
$$

In view of 2.1.6(vi)(vii)(viii) and 2.2.7 we infer that \mathbf{e}_{1} and \mathbf{e}_{2} are bounded linear combinations of $(D-A) \rightleftharpoons D-A j$ and $(D-C)=D-C j$ from which we conclude that $\operatorname{jr} \operatorname{F}[t](p) j \quad C L$. This in turn implies that $j F[t](p) j \quad L^{2}$ as asserted.
Since

$$
\frac{@_{@}^{a}}{} F[t](0 ; 0)=0
$$

we infer

$$
\begin{equation*}
\frac{@}{@} F[t](p)=C L \tag{3:8:2}
\end{equation*}
$$

and since

$$
\frac{@}{@}\left(\prime[t](A) \quad e_{3}\right)=0
$$

we infer

$$
\begin{equation*}
c(t)=\frac{@}{@} F[t](a(t) ; b(t))=\frac{@}{@ t}\left({ }^{\prime}[t](B) \mathbf{e}_{3}\right)=C L: \tag{3:8:3}
\end{equation*}
$$

3.9 Proposition Let L; A; B; C; D; a; b; c; d; e; f be as in 3.8. Then
(1) $a^{9}(t)=C L^{2}$
(2) $\mathrm{b}^{\prime}(\mathrm{t})=\mathrm{CL}{ }^{2}$
(3) $c^{9}(t)=C L$
(4) $d^{0}(t)=C L^{2}$
(5) $e^{0}(t)=C L^{2}$
(6) $f^{\rho}(t)=C L^{2}$.

Proof According to 3.7, if $r(t)$ denotes the distance between the endpoints of an edge of arc length L at time t, then

$$
r^{0}(t)=C L^{2}:
$$

(i) We invoke 3.7 directly to infer (4) above.
(ii) We apply 3.7 to the distance betweon ($0 ; 0 ; 0$) and (e; $f ; 0$) to infer

$$
\frac{d}{d t} e^{2}+f^{2} \frac{1}{2}=\frac{e e^{0}+f f^{0}}{e^{2}+f^{2 \frac{1}{2}}}=C L^{2} ; \quad e^{0}+f^{0}=C L^{3}:
$$

(iii) We apply 3.7 to the distance between (d; $0 ; 0$) and (e;f;0) to infer

$$
\begin{gathered}
\frac{d}{d t}(e-d)^{2}+f^{2} \frac{\frac{1}{2}}{2}=\frac{e-d)\left(e^{0}-d 9+f f^{0}\right.}{(e-d)^{2}+f^{2}{ }^{\frac{1}{2}}}=C L^{2} ; \\
(e-d)\left(e^{0}-d^{9}\right)+f f^{0}=C L^{3}:
\end{gathered}
$$

We subtract the rst inequality from the second to infer

$$
e d^{0}-d^{0}+d^{0}=C L^{3} ; \quad d e^{0} \quad C L^{3} ; \quad e^{0}=C L^{2}:
$$

Assertions (5) and (6) follow readily.
(iv) We apply 3.7 to the distance between ($0 ; 0 ; 0$) and ($a ; b ; c$) to infer

$$
\frac{d}{d t} a^{2}+b^{2}+c^{2} \frac{1}{2}=\frac{a a^{0}+b b^{0}+c c^{0}}{a^{2}+b^{2}+c^{2} \frac{1}{2}}=C L^{2} ; \quad a a^{0}+b b^{0}+c c^{0}=C L^{3}:
$$

(v) We apply 3.7 to the distance between (d; 0;0) and (a; b; c) to infer

$$
\begin{gathered}
\frac{d}{d t}(a-d)^{2}+b^{2}+c^{2} \frac{1}{2}=\frac{(a-d)\left(a^{0}-d^{9}\right)+b b^{0}+c c^{0}}{(a-d)^{2}+b^{2}+c^{2} \frac{1}{2}}=C L^{2} ; \\
(a-d)\left(a^{0}-d^{9}\right)+b b^{0}+c c^{0}=C L^{3}:
\end{gathered}
$$

We subtract the rst inequality form the second to infer

$$
a d^{0}-d a^{0}+d d^{0}=C L^{3} ; \quad d a^{0} \quad C L^{3} ; \quad a^{0}=C L^{2} ;
$$

which gives assertion (1).
(vi) We estimate from 3.8 that

$$
\mathrm{c}=\mathrm{F}[\mathrm{t}](\mathrm{a} ; \mathrm{b})=\mathrm{CL} L^{2} ; \quad \mathrm{c}^{0}=\frac{\mathrm{d}}{\mathrm{dt}} \mathrm{~F}[\mathrm{t}](\mathrm{a} ; \mathrm{b})+\mathrm{r} F[\mathrm{t}](\mathrm{a} ; \mathrm{b}) \quad\left(\mathrm{a}^{0} ; \mathrm{b}^{0}\right)=\mathrm{CL} ;
$$

which gives (3) above. We have also $\mathrm{cc}^{0}=\mathrm{CL}^{3}$. We recall (iv) above and estimate

$$
\mathrm{aa}^{0}+\mathrm{bb}^{0}+\mathrm{cc}^{0}=C L^{3} ; \quad \mathrm{b} b^{0}=C L^{3} ; \quad \mathrm{b}^{0}=C L^{2} ;
$$

which is (2) above
3.10 Proposition Suppose $T(j)$ is a triangulation with maximum edgelength $\mathrm{L}=\mathrm{L}(\mathrm{j})$ and hpqi is an edge in $\mathrm{T}_{1}(\mathrm{j})$. Abbreviate $(\mathrm{t})=[\mathrm{t} ; \mathrm{j}](\mathrm{pq})$. Then, for each t,
(1)

$$
(\mathrm{t})=\mathrm{CL}
$$

$$
2 \sin \frac{(t)}{2}=C L
$$

$$
\begin{equation*}
{ }^{\prime}(\mathrm{t})=\mathrm{C} \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\frac{d}{d t} 2 \sin \frac{(t)}{2}=C \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{dt}} 2 \sin \frac{(\mathrm{t})}{2}-=C L^{2}: \tag{5}
\end{equation*}
$$

Proof Making the modi cations of 3.8 if necessary, we assume without loss of generality (in the terminology there) that ' $[t](p)=A=(0 ; 0 ; 0)$, ' $[t](q)=$ $\mathrm{C}=(\mathrm{d}(\mathrm{t}) ; 0 ; 0)$, and that there are $\mathrm{pqqB} \mathrm{i} ; \mathrm{hpqD}$ i $2 \mathrm{~T}_{2}(\mathrm{j})_{0}$ with ${ }^{\prime}[\mathrm{t}](\mathrm{B})=$ $B=(a(t) ; b(t) ; c(t)), \quad[t](D)=D=(e(t) ; f(t) ; 0)$.

The unit normal to $\overline{A C D}$ is $(0 ; 0 ; 1)$ while the unit normal to $\overline{A B C}$ is

$$
\frac{(0 ;-c ; b)}{\left(b^{2}+c^{2}\right)^{\frac{1}{2}}}
$$

so that $\quad \cos =\frac{b}{\left(b^{2}+c^{2}\right)^{\frac{1}{2}}}$,

$$
\sin =1-\cos ^{2} \frac{\frac{1}{2}}{}=1-{\frac{b^{2}}{b^{2}+c^{2}}}^{\frac{1}{2}}=\frac{c}{\left(b^{2}+c^{2}\right)^{\frac{1}{2}}}=C L
$$

in view of 3.8. Assertions (1) and (2) follow. We compute further

$$
(\sin)^{0}=\cos \quad 0=\frac{\left(b^{2}+c^{2}\right)^{\frac{1}{2}} c^{0}-c \frac{b b^{0}+c c^{0}}{\left(b^{2}+c^{2}\right)^{\frac{1}{2}}}}{b^{2}+c^{2}}=C
$$

in view of 3.9(1)(2)(3) and 3.8. Assertion (3) and (4) follow. Assertion (5) follows from di erentiation and assertions (1) and (3).
3.11 Proposition Suppose $T(j)$ is a triangulation with maximum edgelength $L=L(j)$ and hpqi is an edge in $T_{1}(j)$. Then
(1) $\mathbf{n}[t ; j](p q)=0 ; \quad C L ; 1 \quad C L^{4}$
(2) $(\mathrm{d}=\mathrm{dt}) \mathbf{n}[t ; j](\mathrm{pq})=0 ; \mathrm{C} ; \mathrm{CL}+\mathrm{CL} ; \mathrm{CL} ; \mathrm{CL}$
(3) $\mathrm{g}[\mathrm{t} ; \mathrm{j}](\mathrm{pq})=\mathrm{CL} ; \mathrm{CL} ; 1 \quad \mathrm{CL}^{2}$
(4) $(\mathrm{d}=\mathrm{dt}) \mathrm{g}[\mathrm{t} ; \mathrm{j}](\mathrm{pq})=\mathrm{C} ; \mathrm{C} ; 0+\mathrm{CL} ; \mathrm{CL} ; \mathrm{CL}$
(5) $\mathbf{n}[t ; j](p q) \quad g[t ; j](p q)=1 \quad C L^{2}$
(6) (d=dt) $\mathbf{n}[t ; j](p q) \quad g[t ; j](p q)=C L$
(7) $1-\mathbf{n}[t ; j](p q) g[t ; j](p q)=C L^{2}$.

Proof We let A, B, C, D, F[t], b(t), c(t), d(t) be as in 3.8. We abbreviate $\mathbf{n}=\mathbf{n}[\mathrm{t} ; \mathrm{j}](\mathrm{pq})$ and estimate

$$
\begin{aligned}
\mathbf{n} & =\frac{(0 ; 0 ; 1)+(0 ;-c ; b)=\left(b^{2}+c^{2}\right)^{\frac{1}{2}}}{(0 ; 0 ; 1)+(0 ;-c ; b)=\left(b^{2}+c^{2}\right)^{\frac{1}{2}}} \\
& =\frac{0 ;-c ; b+\left(b^{2}+c^{2}\right)^{\frac{1}{2}}}{2^{\frac{1}{2}} b^{2}+c^{2}+b\left(b^{2}+c^{2}\right)^{\frac{1}{2}}}:
\end{aligned}
$$

The rst assertion follows from 3.8.1. We di erentiate to conclude $\mathbf{n}^{0}=$

$$
\begin{aligned}
& C L 0 ;-c^{0} ; b^{\rho} C\left(b b^{\rho}+c c^{9} \neq-(L \neq \pm) b b^{\rho}+c c^{0} \quad b q+C(b=L)\left(b b^{\rho}+c c^{9}\right)\right. \\
& \quad=0 ; C ; C L+C L ; C L ; C L
\end{aligned}
$$

in view of 3.9(2)(3). This is assertion (2).
We abbreviate $\mathrm{g}=\mathrm{g}[\mathrm{t} ; \mathrm{j}](\mathrm{pq})$ and estimate

$$
\begin{aligned}
\mathrm{g} & =\frac{1}{\mathrm{~d}(\mathrm{t})} \mathrm{Z}_{\mathrm{d}(\mathrm{t})}^{0} \frac{-\mathrm{F}[\mathrm{t}]_{x} ;-\mathrm{F}[\mathrm{t}]_{y} ; 1}{-\mathrm{F}[\mathrm{t}]_{x} ;-\mathrm{F}[\mathrm{t}]_{y} ; 1} \\
& =\frac{1}{\mathrm{~d}(\mathrm{t})} \mathrm{Z}_{\mathrm{d}(\mathrm{t})} \frac{-\mathrm{F}[\mathrm{t}]_{x} ;-\mathrm{F}[\mathrm{t}]_{y} ; 1}{\mathrm{~F}[\mathrm{t}]_{x}^{2} \mathrm{~F}[\mathrm{t}]_{y}^{2}+1}
\end{aligned}
$$

The third assertion follows from 3.8.1. We di erentiate to estimate that $\mathrm{dg}=\mathrm{dt}$ equals

$$
\begin{aligned}
& \frac{-d^{0}}{d^{2}} Z_{d(t)} \frac{-F[t]_{x} ;-F[t]_{y} ; 1}{1+F[t]_{x}^{2}+F[t]_{y}^{2}}+\frac{d^{0}}{d} \frac{-F[t]_{x} ;-F[t]_{y} ; 1}{1+F[t]_{x}^{2}+F[t]_{y}^{2}} \\
& \quad+\frac{1}{d} Z_{d}^{\frac{1}{2}} \frac{C L-F[t]_{t x} ;-F[t]_{t y} ; 0}{1+F[t]_{x}^{2}+F[t]_{y}^{2}} \\
& \quad-\frac{1}{d} Z_{d}^{0} \frac{-F[t]_{x} ;-F[t]_{y} ; 1(C t) F[t]_{x} F[t]_{t x}+F[t]_{y} F[t]_{t y}}{1+F[t]_{x}^{2}+F[t]_{y}^{2}}=
\end{aligned}
$$

L
C; C; C +L
$\mathrm{C} ; \mathrm{C} ; \mathrm{C}+$
C; C; $0+L$
C; C; C
which gives assertion (4). Assertion (5) follows from assertions (1) and (3). Assertion (6) follows from assertions (1), (2), (3), (4) and integration by parts. Assertion (7) follows from assertions (1) and (3).

4 Constancy of the mean curvature integral

4.1 The derivative estimates

Suppose triangulation $T(j)$ has maximum edge length $L=L(j)$. We recall from 2.2.10 that

$$
\begin{aligned}
& V[T(j ; t)] g[t] \\
& ={\underset{\text { hpqi } 2 T_{1}(j)}{X}}_{\prime}^{\prime}[t](p)--^{\prime}[t](q) \quad 2 \sin \frac{[t ; j](p q)}{2} \quad \mathbf{n [t ; j] (p q)} \quad \mathrm{~g}[t ; j](p q)
\end{aligned}
$$

and we estimate, for each t that

[^0]We assert that

To see this we will estimate each of the three summands above
First summand We use 3.7, 3.10(2), 3.11(5) to estimate for each pq,

$$
\begin{array}{ccll}
,[t](p)-L^{\prime}[t](q) & 0 \sin \frac{[t ; j](p q)}{2} & \mathbf{n}[t ; j](p q) & g[t ; j](p q) \\
& =\mathrm{CL}^{2} \mathrm{CL} & 1 & \mathrm{CL}^{2}:
\end{array}
$$

Second summand We use 3.10(5), 3.11(7) to estimate for each pq,

$$
\begin{aligned}
& \prime^{\prime}[t](p)-^{\prime}[t](q) \quad 2 \sin \frac{[t ; j](p q)}{2} \quad 0 \quad n[t ; j](p q) \quad g[t ; j](p q) \\
& ={ }^{\prime}[t](p)-{ }^{\prime}[t](q) \quad[t ; j](p q) \\
& +{ }^{\prime}[t](p)-{ }^{\prime}[t](q) \quad 2 \sin \frac{[t ; j](p q)}{2}-[t ; j](p q)^{0} \\
& +{ }^{\prime}[t](p)-{ }^{\prime}[t](q) \quad 2 \sin \frac{[t ; j](p q)}{2} \quad \mathbf{n}[t ; j](p q) \quad g[t ; j](p q)-1 \\
& ={ }^{\prime}[t](p)-{ }^{\prime}[t](q) \quad[t ; j](p q) \quad C L \quad L^{2} \quad C L \quad C \quad C L^{2}:
\end{aligned}
$$

Third summand We use 3.10(2) and 3.11(6) to estimate

$$
\begin{aligned}
& { }^{\prime}[t](p)-^{\prime}[t](q) \quad 2 \sin \frac{[t ; j](p q)}{2} \quad \mathbf{n}[t ; j](p q) \quad g[t ; j](p q){ }^{0} \\
& =C L \quad C L \quad C L:
\end{aligned}
$$

According to Schlafli's formula [7],

$$
\begin{gathered}
X \\
\text { hpqi } 2 T_{1}(j)
\end{gathered} \quad[t](p)-{ }^{\prime}[t](q) \quad[t ; j](p q)^{0}=0:
$$

Our assertion follows.

4.2 Main Theorem

(1) For each xed time t,

$$
\lim _{j!1} V[T(j ; t)] g[t]=V_{t} g[t]:
$$

(2) For each $x e d j, V\left[T(j)_{t}\right] g[t]$ is a di erentiable function of t and

$$
\lim _{j!1} \frac{d}{d t} \quad V\left[T(j)_{t}\right] g[t]=0
$$

uniformly in t.
(3) For each t

$$
\mathrm{Z}_{\mathrm{t}} \mathrm{H}_{\mathrm{t}} \mathrm{dH}^{2}={ }_{M}^{\mathrm{Z}} \mathrm{HdH} \text { : }
$$

This is the main result of this note.

Proof To prove the rst assertion, we check that

$$
(\mathrm{t})_{]} \mathrm{V}[T(\mathrm{j} ; \mathrm{t})]=\mathrm{V}_{\mathrm{t}}
$$

for each t and all large j . Indeed, the regularity of our triangulations implies that the normal directions of the $N\left[T(j)_{t}\right]$ are very nearly equal to the normal directions of nearby points on M_{t} and that the restriction of D_{t} to thetangent planes of the $N\left[T(j)_{t}\right]$ is very nearly an orthogonal injection. The rst assertion follows with use of the rst variation formula given in [14.1, 4.2]. Assertion (2) follows from 4.1 since

```
                    X
                                    L(j)}\mp@subsup{)}{}{2
hpqi 2T (j ( )
```

is dominated by the area of M (see 2.2.12) and $\lim _{\mathrm{j}!1} \mathrm{~L}(\mathrm{j})=0$. Assertion (3) follows from assertions (1) and (2) and our observation in 2.1.4.

Acknowledgements Fred Almgren tragically passed away shortly after this note was written. Since then, the main result for smooth surfaces has been reproved in an easier way and generalized to the setting of Einstein manifolds by J-M Schlenker together with the second author of the current paper [6]. Nonetheless, it seems clear that the methods used here can be used to extend these results in other directions.

References

[1] W K Allard, On the rst variation of a varifold, Annals of Math. 95 (1972) 417\{491
[2] M Berger, B G ostiaux, Geometrie di erentielle: varietes, courbes et surfaces, Presses Universitaires de France, III (1987)
[3] J C heeger, W M üller, R Schrader, On the curvature of piecewiseflat spaces, Comm. Math. Phys. 92 (1984) 405\{454
[4] R Connelly, I Sabitov, A Walz, The bellows conjecture, Beiträge Algebra Geom. 38 (1997) 1 \{10
[5] G Herglotz, Ueber der Starrheit der Eiflachen, Abh. Math. Semin. Hansische Univ. 92 (1943) 127\{129
[6] I Rivin, J-M Schlenker, Schläfli formula and Einstein manifolds, IHES pre print (1998)
[7] D V Alekseevsky, E B Vinberg, A S Solodovnikov, Geometry of spaces of constant curvature, from: \Geometry II", Encyclopaedia Math. Sci. 29, Springer \{ Verlag, Berlin (1993)
[8] M Spivak, A Comprehensive Introduction to Di erential Geometry, (Second Edition) Publish or Perish, Berkeley (1979)

Mathematics Institute, University of Warwick Coventry, CV4 7AL, UK
Email: i gor @nat hs. narwi ck. ac. uk
Received: 10 May 1998

[^0]: Geometry and Topology Monographs, Volume 1 (1998)

