At most 27 length inequalities de ne Maskit's fundamental domain for the modular group in genus 2

David Griffit hs

Abstract

In recently published work Maskit constructs a fundamental domain D_{g} for the Teichmüller modular group of a closed surface S of genus g 2. Maskit's technique is to demand that a certain set of $2 g$ non-dividing geodesics $\mathrm{C}_{2 g}$ on S satis es certain shortness criteria. This gives an a priori in nite set of length inequalities that the geodesics in $\mathrm{C}_{2 g}$ must satisfy. Maskit shows that this set of inequalities is nite and that for genus $\mathrm{g}=2$ there are at most 45. In this paper we improve this number to 27. Each of these inequalities: compares distances between Weierstrass points in the fundamental domain $\mathrm{S} \mathrm{nC}_{4}$ for S ; and is realised (as an equality) on one or other of two special surfaces.

AMS Classi cation 57M50; 14H55, 30F60
Keywords Fundamental domain, non-dividing geodesic, Teichmüller modular group, hyperelliptic involution, Weierstrass point

0 Introduction and preliminaries

In this paper we consider a fundamental domain de ned by Maskit in [8] for the action of the Teichmüller modular group on the Teichmüller space of a closed surface of genus $g \quad 2$ in the special case of genus $g=2$. McCarthy and Papadopoulos [9] have also de ned such a fundamental domain, modelled on a Dirichlet region; for punctured surfaces there is the celebrated cell decomposition and associated fundamental domain due to Penner [10]. For genus $\mathrm{g}=2$ Semmler [11] has de ned a fundamental domain based on locating the shortest dividing geodesic. Also for low signature surfaces the reader is referred to the papers of Keen [3] and of Maskit [7], [8].

Throughout S will denote a closed orientable surface of genus $g=2$, with some xed hyperbolic metric. We say that a simple closed geodesic γ on S
is: dividing if $\mathrm{S} n \gamma$ has two components; or non-dividing if $\mathrm{S} n \gamma$ has one component. By non-dividing geodesic we shall al ways mean simple closed nondividing geodesic. We denote the length of γ with respect to the hyperbolic metric on S by $\mathrm{I}(\mathrm{\gamma})$. Let $\mathrm{j} \ \mathrm{j}$ denote the number of intersection points of two distinct geodesics ; .

Wede nea chain $C_{n}=\gamma_{1} ;::: ; \gamma_{n}$ to bean ordered set of non-dividing geodesics such that: $j \gamma_{i} \backslash \gamma_{i+1} j=1$ for $1 \quad \mathrm{i} \quad \mathrm{n}-1$ and $\gamma_{i} \backslash \gamma_{i}{ }^{0}=$; otherwise. We say that a chain C_{n} has length n, where $1 \quad n \quad 5$. Likewise we de ne a bracelet $B_{n}=\gamma_{1} ;::: ; \gamma_{n}$ to be an ordered set of non-dividing geodesics such that: $j \gamma_{i} \backslash \gamma_{i+1} j=1$ for $1 \quad i \quad n-1 ; j \gamma_{n} \backslash \gamma_{1} j=1$ and $\gamma_{i} \backslash \gamma_{i}{ }^{0}=$; otherwise Again we say that B_{n} has length n, where $3 \quad n \quad 6$. Following Maskit, we call a bracelet of length 6 a necklace.

For n 4 a dhain of length n can be always be extended to a chain of length $\mathrm{n}+1$. For $\mathrm{n}=4$ this extension is unique Likewise a chain of length 5 extends uniquely to a necklace. So dhains of length 4 or 5 and necklaces can be considered equivalent. We shall usually work with length 4 chains, which we call standard. (Maskit, for genus g, usually works with chains of length $2 g+1$, which he calls standard.)

As Maskit shows in [8] each surface, standard dhain pair S ; C_{4} gives a canonical choice of generators for the Fuchsian group F such that $\mathbb{H}^{2} F=S$ and hence a point in $\operatorname{DF}\left({ }_{1}(S) ; \operatorname{PSL}(2 ; \mathbb{R})\right)$, the set of discrete faithful representations of ${ }_{1}(\mathrm{~S})$ into $\mathrm{PSL}(2 ; \mathbb{R})$. Essentially this representation corresponds to the fundamental domain SnC_{4} together with orientations for its side pairing elements. As Maskit observes, it is well known that DF ($\left.{ }_{1}(S) ; \operatorname{PSL}(2 ; \mathbb{R})\right)$ is real analytically equivalent to Teichmüller space. So, we de netheTeichmüller space of closed orientable genus $\mathrm{g}=2$ surfaces T_{2} to be the set of pairs $\mathrm{S} ; \mathrm{C}_{4}$.

We say that a standard chain $C_{4}=\gamma_{1} ;::: ; \gamma_{4}$ is minimal if for any chain $C_{m}^{0}=\gamma_{1} ;::: ; \gamma_{m-1} ; m$ we have $I\left(\gamma_{m}\right) \quad l(\mathrm{~m})$ for 1 m 4. We then de ne the Maskit domain $D_{2} \quad T_{2}$ to be the set of surface, standard chain pairs $S ; C_{4}$ with C_{4} minimal.

For C_{4} to be minimal the geodesics $\gamma_{1} ;::: ; \gamma_{4}$ must satisfy an a priori in nite set of length inequalities. For genus g , Maskit gives an algorithm using cut-and-paste to show that only a nitenumber N_{g} of length inequalities need to be satis ed. Applying his algorithm to genus $\mathrm{g}=2$, Maskit showed that $\mathrm{N}_{2} 45$. We establish an independent proof that N_{2} 27. We could have shown that 18 of Maskit's 45 inequalities follow from the other 27. However, by tayloring all our techniques to the special case of genus 2 , we are able to produce a much shorter proof.

The fact that 18 of Maskit's 45 inequalities follow from the other 27 follows from applications of Theorem 2.2 (which appeared as Theorem 1.1 in [4]) and of Corollary 2.5. The latter follows immediately from Theorem 2.4, for which wegive a proof in this paper. This is a characterisation of theoctahedral surface Oct (the well known genus two surface of maximal symmetry group) in terms of a nite set of length inequalities.

The 27 length inequalities have the properties that: each is realised on one or other of two special surfaces (for all but 2 this special surface is Oct); and each compares distances between Weierstrass points in the fundamental domain $S n C_{4}$ for S.

The author would like to thank Bill Harvey, Bernie Maskit, Peter Buser, K lausDieter Semmler and Christophe Bavard for hospitality and helpful discussions. The author was supported for this work by the Swiss National Science Foundation on a Royal Society Exchange Fellowship at EPFL, Lausanne, Switzerland and is currently supported by the French Government as a boursier on a Sejour Scienti que.

1 The hyperelliptic involution and the main result

It is well known that every closed genus two surface without boundary S admits a uniquely determined hyperelliptic involution, an isometry of order two with six xed points, which we denote by J. The xed points of J are known as Weierstrass points. Every simple closed geodesic $\gamma \quad S$ is setwise xed by J, and the restriction of J to γ has no xed points if γ is dividing and two xed points if γ is non-dividing (see Haas\{Susskind [2]). So every non-dividing geodesic on S passes through two Weierstrass points. It is a simple consequence that sequential geodesics in a chain intersect at Weierstrass points. We say that two non-dividing geodesics ; cross if \mathcal{G} and \backslash contains a point that is not a Weierstrass point.

The quotient orbifold $O=S \neq$ is a sphere with six order two cone points, endowed with a xed hyperbolic metric. Each cone point on O is the image of a Weierstrass point under the projection J : S! O and each non-dividing geodesic on S projects to a simple geodesic between distinct cone points on O \{ what we shall call an arc. De nitions of chains, bracelets and crossing all pass naturally to the quotient.

Let C_{4} be a standard chain on S , which extends to a necklace N . We number Weierstrass points on N so that $!_{i}=\gamma_{i-1} \backslash \gamma_{i}$ for $2 \quad i \quad 6$ and $!_{1}=\gamma_{6} \backslash \gamma_{1}$.

Choose an orientation upon S and project to the quotient orbifold $\mathrm{O}=\mathrm{S} \neq$ \{ for the rest of the paper we shall work on thequotient orbifold O . We label the components of OnN by $\mathrm{H} ; \overline{\mathrm{H}}$ so that $\gamma_{1} ;::: ; \gamma_{6}$ lie anticlockwise around H .
 $!_{\mathrm{j}} ;!_{\mathrm{k}}(\mathrm{j}<\mathrm{k})$ crossing the sequence of arcs $\gamma_{i_{1}} ; \gamma_{i_{2}} ;::: ; \gamma_{i_{n}}$ and having the subarc between! $j_{j} \gamma_{i_{1}}$ lying in H (respectively $\overline{\mathrm{H}}$).
Our main result is then the following. (We abuse notation so that 1;6 $=\overline{1 ; 6}=$ γ_{6} and $2 ; 3=\overline{2 ; 3}=\gamma_{2}$. We then have repetitions, $I\left(\gamma_{2}\right) \quad I\left(\gamma_{6}\right)$ twice, and redundancies, $I\left(\gamma_{2}\right) \quad I\left(\gamma_{2}\right)$ also twice $)$

Theorem 1.1 The standard chain C_{4} is minimal if the following are satis ed:
(1) $I\left(\gamma_{1}\right) \quad I\left(\gamma_{i}\right) ; i 2 f 2 ; 3 ; 4 ; 5 g$
(2) $I\left(\gamma_{2}\right) \quad I(i ; j) ; I(\overline{i ; j}) ; 1\left(\begin{array}{c}\frac{6}{2} ; 5\end{array}\right) ;\left(\overline{\frac{6}{2} ; 5}\right), i 2 f 1 ; 2 g$, j $2 f 3 ; 4 ; 5 ; 6$

(4) $I\left(\gamma_{4}\right) \quad I(4 ; 6) ; I(\overline{4} ; 6)$.

Each length $I\left(\gamma_{i}\right)$ or $I(j ; k)$ (respectively $I(\overline{j ; k})$) is a distance between cone points in H (respectively \bar{H}). Likewise each length $I(, j ; k), I\left(\bar{i} ; ;{ }^{6}\right)$ is a distance between cone points in OnC_{5}. So eech length inequality in Theorem 1.1 compares distances between cone points in $\mathrm{O}_{\mathrm{n}} \mathrm{C}_{5}$ (and hence distances between Weierstrass points in SnC_{4}).

Figure 1: How the length inequalities in Theorem 1.1 are realized on Oct and E
Theorem 1.1 gives a su cient list of inequalities. As to the necessity each inequal ity, we make the following observation. Each inequality is reelised (as an equality) on either Oct or E \{ cf Theorem 1.1 in [5]. The octahedral orbifold Oct is the well known orbifold of maximal conformal symmetry group. Any minimal standard chain on Oct lies in its set of shortest arcs. This arc set has the combinatorial edgepattern of thePlatonic solid. Theexceptional orbifold E, which was constructed in [5], has conformal symmetry group $\mathbb{Z}_{2} \quad \mathbb{Z}_{2}$. However
it is not de ned by the action of its symmetry group alone, it also requires a certain length inequality to be satis ed. Any minimal standard chain on E lies in its set of shortest and second shortest arcs.

In Figure1 wehave illustrated necklaces on Oct and E that aretheextentions of minimal standard chains. As with other gures in this paper, we use wire frame diagrams to illustrate the orbifolds. Solid (respectively dashed) lines represent arcs in front (respectively behind) the gure. Thick lines represent arcs in the nedklace N . The minimal standard chain on E in Figure 1 has: $I\left(\gamma_{1}\right)=I\left(\gamma_{5}\right)$; $I\left(\gamma_{2}\right)=I(\overline{1 ; 3})=I(1 ; 4)=I(2 ; 4) ; I\left(\gamma_{3}\right)=I\left(\overline{\frac{6}{3 ; 4}}\right)=I(\overline{3 ; 5})=I(\overline{3 ; 6}) ; I\left(\gamma_{4}\right)=$ I($4 ; 6$). Making such a list for all the orbifolds in Figure 1, together with their mirror images, we see that all the inequalities in Therem 1.1 are realised as equalities on either Oct or E.

2 Length inequalities for systems of arcs

In order to prove Theorem 1.1 we need a number of length inequality results for systems of arcs. Let $K_{4}=0 ; 1 ;::: ; 3 ; 0$ denote a length 4 bracelet such that each component of $\mathrm{O} \mathrm{nK}_{4}$ contains an interior cone point. Using mod 4 addition throughout, label cone points: on K_{4} by $c_{k}={ }_{k-1 ; k} \backslash{ }_{k ; k+1}$ for $\mathrm{k} 2 \mathrm{f0}$;:: : ; 3 g ; and o K_{4} by c for $12 \mathrm{f} 4 ; 5 \mathrm{~g}$. Label by O_{I} the component of On containing G and label arcs in $\mathrm{O}_{\text {l }}$ so that $\mathrm{k} ; \mathrm{l}$ is between $\mathrm{c}_{\mathrm{k}} ; \mathrm{q}$. Let k denote the arc between $c_{4} ; c_{5}$ crossing only $\quad k ; k+1 \quad K_{4}$.

Thefollowing two results appeared as Lemma 2.3 in [5] (in Maskit's terminology this is a cut-and-paste) and as Theorem 1.1 in [4] respectively.

Lemma 2.1 (i) $2 \mathrm{I}(0 ; 4)<\mathrm{I}(0)+\mathrm{I}\left(\begin{array}{ll}3\end{array}\right)$ (ii) $2 \mathrm{I}(3 ; 0)<\mathrm{I}(0)+\mathrm{I}(2)$.
Theorem 2.2 If $I(3 ; 4) \quad I(0 ; 4), I(3 ; 5) \quad I(0 ; 5), I(0) \quad I(2)$ then $I(3 ; 4)=I(0 ; 4), I(3 ; 5)=I(0 ; 5), I(0)=I(2)$.

Corollary 2.3 If I($3 ; 4$) I($0 ; 4$), I($3 ; 5$) I($0 ; 5)$, I($1 ; 4$) I($2 ; 4$) then I($1 ; 5$) I($2 ; 5$):

Proof of Corollary 2.3 Sincel($3 ; 4$) $\quad I(0 ; 4), I(3 ; 5) \quad I(0 ; 5)$ Theorem 2.2 implies that I(0) I(2). Moreover I($1 ; 4$) I($2 ; 4$) and so again, by Theorem 2.2, I($1 ; 5$) I($2 ; 5$).

Figure 2: Arc sets for Lemma 2.1, for Theorem 2.2 and for Corollary 2.3
Theorem 2.4 Suppose I($2 ; 3$) I($2 ; 1)$, I($3 ; 0$) I($1 ; 2$) fl($0 ; 1) ; I(1 ; 1) g$ and $I(0 ; 1) \quad f I(0 ; 1) ; I(3 ; 1) g$ then $I(k ; l)=I(k ; k+1)$ for each $k ; I$ and O is the octahedral orbifold.

Proof of Theorem 2.4 We postpone this until Section 3.
Corollary 2.5 Suppose $I(2 ; 3) \quad I(2 ; 1), I(1 ; 2) \quad f I(0 ; 1) ; l(1 ; 1) g$ and I($0 ; 1$) $\mathrm{fI}(0 ; 1) ; 1(3 ; 1) \mathrm{g}$ then $\mathrm{I}(3 ; 0) \quad \mathrm{I}(1 ; 2)$.

Proof of Corollary 2.5 If $I(3 ; 0) \quad I(1 ; 2)$ then by Theorem $2.4 \mathrm{I}(\mathrm{k} ; \mathrm{l})=$ $I(k ; k+1)$ for each $k ; I$. In particular $I(3 ; 0)=I(1 ; 2)$. So $I(3 ; 0) \quad I(1 ; 2)$.

3 The proofs

Proof of Theorem 1.1 Let m denote an arc such that $C_{m}^{0}=\gamma_{1} ;::: ; \gamma_{m-1}$; m is a chain, for $1 \quad \mathrm{~m} \quad 4 ; \mathrm{m} \in \gamma_{\mathrm{m}}$. We will show that $I\left(\gamma_{m}\right) \quad I(\mathrm{~m})$ for arcs of the form ${ }_{j}^{i_{1} ; i_{2} ; \ldots ; ; i_{n}}$. The same arguments work for arcs of the form $i_{i_{1} ; i_{2} ; \ldots: ; i_{n}}^{j}$. Let $X(;)$ denote the number of crossing points of a distinct pair of arcs ; \{ ie the number of intersection points of ; that are not cone points. Let $\mathrm{n}=1$, if $\mathrm{X}\left(\mathrm{\gamma}_{\mathrm{m}} ; \mathrm{i}\right)=0$ for i $2 \mathrm{f} 1 ;::: ; \mathrm{g}$; otherwise, let $\mathrm{n}=\min \mathrm{i} 2 \mathrm{f} 1 ;::: ; 6 \mathrm{~g}$ such that $\mathrm{X}\left(\mathrm{y}_{\mathrm{n}} ; \mathrm{i}\right)>0$. We note that n m .
Let $P_{m ; n ; p}$ be the proposition that $I\left(\gamma_{m}\right) \quad I(m)$ for $X\left(m ; Y_{n}\right)=p$. Clearly, if $n=1$ then $p=0$. For $n 2 f 5 ; 6 g$ it is not hard to show that $p=1$. For $n 2$ $f 1 ;::: ; 4 g$ we consider $p=1$ and $p>1$. We order the propositions as follows:
 by $P_{4 ; 4 ; 1} ; P_{4 ; 4 ; p>1}$ which is followed by $P_{3 ; 4 ; 1} ; P_{3 ; 4 ; p>1} ; P_{3 ; 3 ; 1} ; P_{3 ; 3 ; p>1}$ followed by $\mathrm{P}_{2 ; 4 ; 1} ; \mathrm{P}_{2 ; 4 ; \mathrm{p}>1} ;::: ; \mathrm{P}_{2 ; 2 ; 1} ; \mathrm{P}_{2 ; 2 ; \mathrm{p}>1}$ followed by $\mathrm{P}_{1 ; 4 ; 1} ; \mathrm{P}_{1 ; 4 ; \mathrm{p}>1 ;} ;:: ; \mathrm{P}_{1 ; 1 ; 1} ; \mathrm{P}_{1 ; 1 ; p>1}$.
Suppose $\mathrm{n}=1$; m does not cross N . If $\mathrm{m}>1$ then $\mathrm{P}_{\mathrm{m} ; 1 ; 0}$ is a hypothesis. If $\mathrm{m}=1$ then either $\mathrm{P}_{1 ; 1 ; 0}$ is a hypothesis, $\quad 1=\gamma_{i}$ for some i $2 \mathrm{f} 2 ;::: ; 5 \mathrm{~g}$,
or $P_{1 ; 1 ; 0}$ follows from the hypotheses, $I\left(\gamma_{1}\right) \quad I\left(\gamma_{i}\right) ; I\left(\gamma_{i}\right) \quad I\left({ }_{1}\right)$ for some i $2 \mathrm{f} 2 ; 3 ; 4 \mathrm{~g}$.
Suppose $\mathrm{n} 2 \mathrm{f} ; \mathbf{6 \mathrm { g }}$; m crosses N but does not cross C_{4}.
For $m=4$, by inspection, $4={ }_{4 ; 5}^{6}$. So $m ; Y_{m}$ share endpoints, $n>m+1$ and we can apply the argument (i) below. So we have $P_{4 ; n ; 1}$ for $n 2 f 5 ; 6 \mathrm{~g}$.
In Figures 3,4,5 we illustrate applications of length inequalities results to the proof. As above we use wire frame gures of the octahedral orbifold, with the nedklace N in thick black. Other arcs are in thick grey. Figures have been drawn so arcs in the application correspond to arcs in the length inequality result.

Figure 3: Application (i) for $4=\underset{4 ; 5}{6} ; 3=\underset{3 ; 4}{5}$ and $\underset{3 ; 4}{6 ; 5}$ and of Theorem 2.2, (ii) for $3=\frac{6}{3 ; 5}$
 Y_{m}; m share endpoints, $n>m+1$ and so we can apply either argument (i) or (ii) below. For ${ }_{3 ; 5}^{6}$ we can apply Theorem 2.2 in conjunction with argument (ii): by hypothesis $I\left(\gamma_{4}\right) \quad I(4 ; 6)$ and by argument (ii) $I\left(\gamma_{3}\right) \quad I(\underset{3 ; 4}{6})$ and so $I\left({ }_{3 ; 5}^{6}\right) \quad I(3 ; 6)$. Again by hypothesis $I\left(\gamma_{3}\right) \quad I(3 ; 6)$ and so $I\left(\gamma_{3}\right) \quad I(3 ; 6)$ $1\left(\begin{array}{l}6 ; 5\end{array}\right)$. This gives $P_{3 ; n ; 1}$ for $n 2 f 5 ; 6 \mathrm{~g}$.
 By hypothesis $I\left(\gamma_{2}\right) \quad I\binom{6 ; 5}{2 ; 5}$. For ${\underset{2}{2} ; 7}_{6}^{6 ; 5} \underset{2 ; 3}{6 ;}{ }_{2 ; 3}$, we can again apply either argument (i) or (ii). For $\quad \underset{2}{5} 4 ; \quad 2 ; 4 ; \quad 6 ; 4 ; \quad 1 ; 3$ we apply Theorem 2.2 in conjunction with argument (ii). We give the argument for ${ }_{2 ; 4}^{5}$. By argument (ii), we have $I\left(\gamma_{2}\right)<I\left(\begin{array}{c}5 ; 3\end{array}\right)$. Also, by hypothesis, $I\left(\gamma_{3}\right) \quad I(3 ; 5)$ and so by
 $I\left(\gamma_{2}\right) \quad I(2 ; 5)<I\binom{5 ; 4}{2}$.
For $\quad 2={ }_{1 ; 4}^{5}$ we argue as follows. By hypothesis we have $I\left(\gamma_{3}\right) \quad I\left(\begin{array}{l}3 ; 5) ; I(\overline{3 ; 6})\end{array}\right.$ and $I\left(\gamma_{2}\right) \quad I(1 ; 5) ; I\left(\gamma_{6}\right) ; I(2 ; 5) ; I(\overline{2} ; 6)$ and $I\left(\gamma_{1}\right) \quad I(1 ; 5) ; I\left(\gamma_{6}\right) ; I\left(\gamma_{4}\right) ; I(\overline{4} ; 6)$. By Corollary 2.5: I($\left.\begin{array}{c}5 ; 4\end{array}\right) \quad I\left(\gamma_{2}\right)$. Hence $P_{2 ; n ; 1}$ for $n 2 f 5 ; 6 \mathrm{~g}$.

Figure 4: Applications of (i) or (ii) for $2=\begin{gathered}5 \\ 2 ; 3\end{gathered} \quad \stackrel{6}{2 ; 3}$ and $\begin{gathered}6 ; 5 \\ 2 ; 3\end{gathered}$; of Theorem 2.2, (ii) for $\quad 2=\underset{2}{5} ; 4 ; \quad \begin{aligned} 6 ; 4\end{aligned} \quad \begin{aligned} 6 ; 5 \\ 2 ; 4\end{aligned}$ and $\quad \underset{1 ; 3}{5}$; and of Corollary 2.5 for $\quad 2=\begin{gathered}5 \\ 1 ; 4\end{gathered}$
 are hypotheses, or preceding propositions, for some i $2 \mathrm{f} 2 ; 3 ; 4 \mathrm{~g}$. If fj; $\mathrm{kg}=$ f1; 2 g then, by inspection, $1=\frac{5}{1 ; 2}$ we can again apply argument (i). By inspection there is no such $\quad 1$ for $\mathrm{fj} ; \mathrm{kg}=\mathrm{f} 5 ; 6 \mathrm{~g}$. This completes $\mathrm{P}_{\mathrm{m} ; \mathrm{n} ; 1}$ for n 2 f5; 6g.

We now give the arguments for: $m ; Y_{m}$ share endpoints and $n>m+1$. The arc set $\Gamma:=\mathrm{m}\left[\gamma_{\mathrm{m}}\right.$ divides O into two components. Either: (i) Γ divides one cone point (c) from three; or (ii) Γ divides two cone points from two. For (i) we let $\mathrm{O}_{\mathrm{c}} ; \mathrm{O}_{\mathrm{c}}^{0}$ denote the components of $\mathrm{O} \mathrm{n} \Gamma$ so that $\mathrm{c} 2 \mathrm{O}_{\mathrm{c}}$ and we let $\quad \stackrel{0}{\mathrm{~m}}$ (respectively $\underset{\mathrm{m}}{\infty}$) denote the arc between ! m; c (respectively between ! m+1;c) in O_{c}.

First $m=4$, (i), $n=6$. None of $\gamma_{1} ; \gamma_{2} ; \gamma_{3}$ crosses $\Gamma={ }_{4}\left[\gamma_{4}\right.$, so $C_{3}=\gamma_{1} ; \gamma_{2} ; \gamma_{3}$ lies in one or other component of $\mathrm{O} n \Gamma$. Now C_{3} contains thre cone points disjoint from Γ, so $C_{3} \quad O_{c}^{0}$. So $c=!!_{6}$ and $C_{4}^{0}=\gamma_{1} ; \gamma_{2} ; \gamma_{3} ;{ }_{4}^{0}$ is a chain. We observe $\left\{\right.$ see F igure 3 \{ that $\quad{ }_{4}^{0}=4 ; 6$ and hence $I\left(\gamma_{4}\right) \quad I\binom{0}{4}$ is a hypothesis. By Lemma 2.1(i): $2 l\binom{0}{4}<I\left(\gamma_{4}\right)+I\left(\begin{array}{l}4\end{array}\right)$ and so $I\left(\gamma_{4}\right) \quad l\binom{0}{4}<I\left(\begin{array}{l}4\end{array}\right)$.

Second $m=3$, (i), n 2 f5; 6 g . Neither γ_{1} nor γ_{2} crosses $\Gamma=3\left[\gamma_{3}\right.$, so $C_{2}=\gamma_{1} ; \gamma_{2}$ lies in one or other component of $O n \Gamma$. Now C_{2} contains two cone points disjoint from Γ, so $C_{2} \quad O_{C}^{0} ; c=!{ }_{5}$ or $!_{6}$ and $C_{3}^{0}=\gamma_{1} ; \gamma_{2} ;{ }_{3}^{0}$ is a chain. We observe \{ se Figure 3 \{ that ${ }_{3}^{0}=3 ; 5$ or ${ }_{3}^{0}=3 ; 6$ and hence $l\left(\gamma_{3}\right) \quad l\binom{0}{3}$ is hypothesis. Again, by Lemma 2.1(i): $2 l\binom{0}{3}<I\left(\gamma_{3}\right)+I\left(\begin{array}{l}3\end{array}\right)$ and
so $I\left(\gamma_{3}\right) \quad I\binom{0}{3}<I\left(\begin{array}{l}\text { 3 }\end{array}\right)$. For (ii) we have that $\quad 3={\underset{3}{6} ; 4}_{6}^{2}$ and $I\left(\gamma_{3}\right) \quad I(\underset{3}{6} ; 4)$ is a hypothesis.

Next $m=2$, (i), $n 2$ f4; 5; 6g. The arc γ_{1} does not cross $\Gamma=2\left[\gamma_{2}\right.$, so $\gamma_{1} \quad O_{c}^{0}$ and c $2 \mathrm{f}!{ }_{4} ;!_{5} ;!{ }_{6}$ (respectively $\gamma_{1} \quad O_{c}$ and $c=!_{1}$). For n 2 f5; 6 g \{ see Figure 4 \{ we have that ${ }_{2}^{0}=2 ; 6$ (respectively ${ }_{2}^{\infty}=1 ; 3$). For $\mathrm{n}=4$ \{ see Figure 5 \{ we have that ${ }_{2}^{0}=2 ; 4$ or $2 ; 5$ (respectively there is no such 2). So $I\left(\gamma_{2}\right) \quad I\binom{0}{2}$ (respectively $I\left(\gamma_{2}\right) \quad I\binom{0}{2}$) is a hypothesis. By
 (respectively $\left.I\left(\gamma_{2}\right) \quad I\binom{a}{2}<I(2)\right)$.

For (ii), again, γ_{1} lies in one component of $\mathrm{O} n \Gamma$. Let ${ }_{2}^{\infty}$ denote the unique arc disjoint from Γ in this component of $\mathrm{O} n \Gamma$. For $n 2 f 5 ; 6 \mathrm{~g}$ \{ again see Figure $4\left\{\right.$ we have that ${ }_{2}^{\infty}=\gamma_{6}$. For $n=4$ \{ again see Figure 5 \{ we have ${ }_{2}^{\infty}={ }_{1 ; 4}$ or $1 ; 5$. So $I\left(\gamma_{2}\right) \quad I\left(\frac{a d}{2}\right)$ is a hypothesis. By Lemma 2.1(ii): $2 \mathrm{I}\binom{\infty}{2}<\mathrm{I}\left(\gamma_{2}\right)+\mathrm{I}(2)$ and so $\left(\gamma_{2}\right) \quad \mathrm{I}\binom{\infty}{2}<\mathrm{I}(2)$.
Finally, m=1, (i), n $2 \mathrm{f} 3 ;::: ; 6 \mathrm{~g}$. For $\mathrm{n} 2 \mathrm{f} 5 ; 6 \mathrm{~g}: \quad{ }_{1}^{0}=\overline{2 ; 6}$ and $\mathrm{I}\left(\gamma_{2}\right)$ $I\binom{0}{1}$ is a hypothesis. For $\mathrm{n} 2 \mathrm{f} 3 ; 4 \mathrm{~g}: I\left(\gamma_{2}\right) \quad I\binom{0}{1}$ is a proceeding proposition. Since $I\left(\gamma_{1}\right) \quad I\left(\gamma_{2}\right)$ is a hypothesis, we have that $I\left(\gamma_{1}\right) \quad I\left(\gamma_{2}\right) \quad I\binom{0}{1}$. By Lemma 2.1(i): $2\binom{0}{1}<I\left(\gamma_{1}\right)+I\left(\begin{array}{ll}1\end{array}\right)$ and so $I\left(\gamma_{1}\right) \quad I\binom{0}{1}<I\left(\begin{array}{l}1\end{array}\right)$.

For (ii), n $2 \mathrm{f} 5 ; 6 \mathrm{~g}$, there is no such 1 . For $\mathrm{n} 2 \mathrm{f} 3 ; 4 \mathrm{~g}$, we let ${ }_{3}^{0}$ denote the unique arc disjoint from Γ in the same component of $\mathrm{O} \mathrm{n} \Gamma$ as γ_{2}. Here $C_{3}^{0}=\gamma_{1} ; \gamma_{2} ;{ }_{3}^{0}$ is a chain and so $I\left(\gamma_{3}\right) \quad I\binom{0}{3}$ is a proceeding proposition. Since $I\left(\gamma_{1}\right) \quad I\left(\gamma_{3}\right)$ is a hypothesis, we have that $I\left(\gamma_{1}\right) \quad I\left(\gamma_{3}\right) \quad I\binom{0}{3}$. By Lemma 2.1(ii): $2 I\binom{0}{3}<I\left(\gamma_{1}\right)+I\left(\begin{array}{l}1\end{array}\right)$ and so $I\left(\gamma_{1}\right) \quad I\binom{0}{3}<I\left(\begin{array}{l}1\end{array}\right)$.

Now suppose $\mathrm{n} 2 \mathrm{f} 1 ;:::$; 4g; m crosses C_{4}.
Lemma 3.1 Suppose that either $X\left(m ; Y_{n}\right)>1$ or $m ; Y_{n}$ share an endpoint. Then there exist arcs ${ }_{m}^{0} ; \gamma_{n}^{0}$ between the same respective endpoints as m; Y_{n} such that $I\binom{0}{m}<I(m)$ or $I\left(\gamma_{n}^{0}\right)<I\left(\gamma_{n}\right) ; X\left(\begin{array}{l}0 \\ m\end{array} Y_{n}\right) ; X\left(\gamma_{n}^{0} ; Y_{n}\right)<$ $X\left(m ; Y_{n}\right)$; and $X\left({ }_{m}^{0} ; Y_{i}\right)=X\left(Y_{n}^{0} ; \gamma_{i}\right)=0$ for $i \quad n-1$. In particular $C_{m}^{0}=\gamma_{1} ;::: ; \gamma_{m-1} ;{ }_{m}^{0} ; C_{n}^{(1)}=\gamma_{1} ;::: ; \gamma_{n-1} ; \gamma_{n}^{0}$ are both chains.

Proof This result is essentially Proposition 3.1 in [5], with additional observations upon the number of crossing points. However, upon going through the proof, these observations become clear.

The following argument gives $P_{m ; n ; p>1}$: it uses induction on p, the rst induction step being the set of propositions that precede $\mathrm{P}_{\mathrm{m} ; \mathrm{n} ; \mathrm{p>1}}$.

Let $X\left(m ; Y_{n}\right)=p>1$ and so by Lemma 3.1 there exist arcs ${ }_{m}^{0} ; Y_{n}^{0}$ as stated. Le $\mathrm{p}^{0}=\mathrm{X}\left(\begin{array}{l}0 \\ m\end{array} \mathrm{Y}_{\mathrm{n}}\right)<\mathrm{p} ; \mathrm{p}^{\infty}=\mathrm{X}\left(\mathrm{Y}_{\mathrm{m}}^{0} ; Y_{n}\right)<\mathrm{p}$. We note that $\mathrm{I}\left(\mathrm{Y}_{\mathrm{m}}\right) \quad \mathrm{I}\binom{0}{m}$ is either: $P_{m ; n ; p^{p}>1}$ if $p^{0}>1$; or a preceding proposition if $p^{0} \quad 1$. Likewise, $I\left(\gamma_{n}\right) \quad I\left(\gamma_{n}^{0}\right)$ is either: $P_{m ; n ; p^{0}>1}$ if $n=m$ and $p^{\infty}>1$; or a preceding proposition if $n>m$ or $\mathrm{p}^{\infty} 1$. Since $\mathrm{I}\binom{0}{m}<\mathrm{I}(\mathrm{m})$ or $\mathrm{I}\left(\gamma_{n}^{0}\right)<\mathrm{I}\left(\gamma_{n}\right)$ it follows, by induction on p , that $\mathrm{I}\left(\mathrm{Y}_{\mathrm{m}}\right) \quad \mathrm{I}\binom{0}{\mathrm{~m}}<\mathrm{I}\left(\begin{array}{l}\mathrm{m}\end{array}\right)$.
So, for the rest of the proof, we may suppose that $X\left(m ; \gamma_{n}\right)=1$.
Lemma 3.2 Supposethat $m ; \gamma_{n}$ have distinct endpoints and that $k>n+1$. Then there exist arcs ${ }_{m}^{0} ; V_{n}^{0}$ between $!_{j} ;!n_{n+1}$ and $!_{n} ;!_{k}$ such that $I\binom{0}{m}<$ $\mathrm{I}(\mathrm{m})$ or $\mathrm{I}\left(\gamma_{n}^{0}\right)<\mathrm{I}\left(\gamma_{n}\right)$ and $\mathrm{X}\left({ }_{\mathrm{m}}^{0} ; \gamma_{i}\right)=\mathrm{X}\left(\gamma_{n}^{0} ; \gamma_{i}\right)=0$ for $\mathrm{i} \quad \mathrm{n}$. In particular $C_{m}^{0}=\gamma_{1} ;::: ; \gamma_{m-1} ;{ }_{m}^{0} ; C_{n}^{\infty}=\gamma_{1} ;::: ; \gamma_{n-1} ; \gamma_{n}^{0}$ are both chains.

Proof This is essentially Lemma 3.3 in [5], again with additional observations upon the number of crossing points. Again, these observations are clear.

We now give two general arguments using these two lemmas.
Suppose: (1) $m ; Y_{n}$ share an endpoint. Again we can apply Lemma 3.1: there exist arcs ${ }_{m}^{0} ; Y_{n}^{0}$ as stated. In particular $X\left(\begin{array}{l}0 \\ m\end{array} \gamma_{i}\right)=X\left(Y_{n}^{0} ; Y_{i}\right)=0$ for i n. So I (Y_{m}) I($\left.\begin{array}{l}0 \\ m\end{array}\right) ; I\left(Y_{n}\right) \quad I\left(\gamma_{n}^{0}\right)$ are both preceding propositions. Since $\mathrm{I}\binom{0}{m}<\mathrm{I}\left(\begin{array}{l}\mathrm{m}\end{array}\right)$ or $\mathrm{I}\left(\gamma_{n}^{0}\right)<\mathrm{I}\left(\gamma_{n}\right)$, it follows that $\mathrm{I}\left(\gamma_{m}\right) \quad \mathrm{I}\binom{0}{m}<\mathrm{I}(\mathrm{m})$.
Suppose: (2) m; V_{n} have distinct endpoints and $\mathrm{k}>\mathrm{n}+1$. By Lemma 3.2 there exist arcs ${ }_{m}^{0} ; \gamma_{n}^{0}$ as stated. Again $I\left(\gamma_{m}\right) \quad I\left({ }_{m}^{0}\right) ; I\left(\gamma_{n}\right) \quad I\left(\gamma_{n}^{0}\right)$ are both preceding propositions. As $\mathrm{I}\binom{0}{\mathrm{~m}}<\mathrm{I}(\mathrm{m})$ or $\mathrm{I}\left(\mathrm{Y}_{\mathrm{n}}^{0}\right)<\mathrm{I}\left(\mathrm{V}_{\mathrm{n}}\right)$, we have that $I\left(\gamma_{m}\right) \quad I\binom{0}{m}<l(m)$.
For $m=4: j=4 ; k 2 f 5 ; 6 g$ and $n=4$: 4; V_{4} share the endpoint $!_{4}(1)$.
For $m=3: j=3 ; k 2 f 4 ; 5 ; 6 g$. For $n=4$ if $k 2 f 4 ; 5 g$ then $3 ; \mathrm{V}_{4}$ share the endpoint $!_{k}(1)$; if $k=6$ then $\quad 3 ; \gamma_{4}$ have distinct endpoints and $k>n+1$ (2). For $n=3: 3 ; \gamma_{3}$ share the endpoint $!_{3}(1)$.

For $m=2: j 2 f 1 ; 2 \mathrm{~g} ; \mathrm{k} 2 \mathrm{f} 3 ;::: ; 6 \mathrm{~g}$. For $\mathrm{n}=4$ if $\mathrm{k}=3$ then, by inspection,
 or is one of ${ }_{1 ; 3} ;$ argument (ii) \{ see Figure 5. If $k 2 \mathrm{f} 4 ; 5 \mathrm{~g}$ (1); if $\mathrm{k}=6$ (2). For $\mathrm{n}=3$ if k 2 f 3 ; 4 g (1); if k 2 f 5 ; 6 g (2). For $\mathrm{n}=2$ if $\mathrm{k}=3$ (1); if k $2 \mathrm{f} 4 ; 5 ; 6 \mathrm{~g}$ (2).

Finally $m=1$. Suppose $n=4$. If $f j ; k g \in f 1 ; 2 g$ or $f j ; k g \in f 5 ; 6$ then $I\left(\gamma_{1}\right) \quad I\left(\gamma_{i}\right) ; I\left(\gamma_{i}\right) \quad I\left(1_{1}\right)$ are both preceding propositions for some

 $2={ }_{1 ; 3}^{4} ; \quad 4 ; 5 ; 6$ and $\begin{aligned} & 5 ; 4 \\ & 1 ; 3\end{aligned}$ applications of Theorem 2.2, (ii)
i 2 f2; $3 ; 4 \mathrm{~g}$. If $\mathrm{fj} ; \mathrm{kg}=\mathrm{f} 1 ; 2 \mathrm{~g}$ we can apply (i) or (ii). There is no such 1 for $\mathrm{fj} ; \mathrm{kg}=\mathrm{f} 5 ; 6 \mathrm{~g}$.

Now suppose $\mathrm{n}=3$. If $\mathrm{fj} ; \mathrm{kg} G \mathrm{f} 1 ; 2 \mathrm{~g}$ or $\mathrm{fj} ; \mathrm{kg} 6 \mathrm{f} 4 ; 5 ; 6 \mathrm{~g}$ then $\mathrm{I}\left(\mathrm{\gamma}_{1}\right)$ $I\left(\gamma_{i}\right) ; I\left(\gamma_{i}\right) \quad I(1)$ are both preceding propositions for some i $2 \mathrm{f} 2 ; 3 \mathrm{~g}$. Again, if $\mathrm{fj} ; \mathrm{kg}=\mathrm{f} 1 ; 2 \mathrm{~g}$ we can apply (i) or (ii). For $\mathrm{fj} ; \mathrm{kg} \mathrm{f} 4 ; 5 ; 6 \mathrm{~g}$ either $\mathrm{j}=4$ (1) or $\mathrm{j}=5$ (2).
Now suppose $n=2$. If $\mathrm{fj} ; \mathrm{kg}$ Gf1;2g or fj; kg $6 \mathrm{f} 3 ;:$:: ; 6 g (iej $2 \mathrm{f} 1 ; 2 \mathrm{~g} ; \mathrm{k} 2$ $f 3 ;::: ; 6 \mathrm{~g})$ then $\mathrm{I}\left(\gamma_{1}\right) \quad \mathrm{I}\left(\gamma_{2}\right) ; \mathrm{I}\left(\gamma_{2}\right) \quad \mathrm{I}\left(\mathrm{l}_{1}\right)$ are both preceding propositions. For $\mathrm{fj} ; \mathrm{kg}=\mathrm{f} 1 ; 2 \mathrm{~g}(1)$. For $\mathrm{fj} ; \mathrm{kg} \mathrm{f} 3 ;::: ; 6 \mathrm{~g}$ either $\mathrm{j}=3(1)$; or $\mathrm{j} 2 \mathrm{f} 4 ; 5 ; 6 \mathrm{~g}$ (2).

Finally $\mathrm{n}=1$. Either j or $\mathrm{k} 2 \mathrm{f} 1 ; 2 \mathrm{~g}(1)$; or $\mathrm{fj} ; \mathrm{kg} \mathrm{f} 3 ;::: ; 6 \mathrm{~g}(2)$.
Proof of Theorem 2.4 AsI($3 ; 0$) $\quad I(0 ; 5) ; I(2 ; 3) \quad I(2 ; 5) ; 1(0 ; 1) \quad I(0 ; 4)$, by Corollary 2.3, we have that I($1 ; 2$) I($2 ; 4$). Likewise, since I($3 ; 0$)
 l($1 ; 2$) l($2 ; 1$).
The arc set K divides O into eight triangles. We labe these as follows: It t_{k} (respectively T_{k}) denote the triangle with one edge ${ }_{k ; k+1}$ and one vertex C_{4} (respectively c_{5}). We shall use $\angle \mathrm{q}_{\mathrm{t}}$ to denote the angle at the c_{q} \{vertex of t_{k}, et cetera. Cut O open along 3;0 [0;1 [1;4[1;2 [1;5 to obtain a domain Ω.

We show that I($2 ; 3$) I($2 ; 1) ; 1(3 ; 0) \quad l(1 ; 2) \quad f((0 ; 1) ; I(1 ; 1) g ; 1(0 ; 1)$ $I(0 ; 1)$ implies that $\min _{1} I\binom{1}{)} \quad I(0 ; 1)$ with equality if and only if O is the octahedral orbifold. First we show that: $\angle \mathrm{c}_{2} \mathrm{t}_{2} \quad \angle \mathrm{c}_{4} \mathrm{t}_{0}$ or $\angle \mathrm{c}_{2} \mathrm{~T}_{2} \quad \angle \mathrm{c}_{5} \mathrm{~T}_{0}$.
Now I($1 ; 2$) I($1 ; 1), I(3 ; 0) \quad I\left(0 ; 1\right.$ so $\angle c_{2} t_{1} \quad \angle c_{4} t_{1}, \angle c_{2} T_{1} \quad \angle c_{5} T_{1}$, $\angle c_{3} t_{3} \quad \angle c_{4} t_{3}, \angle c_{3} T_{3} \quad \angle c_{5} T_{3}$, which imply

$$
\begin{aligned}
& \angle \mathrm{c}_{2} \mathrm{t}_{1}+\angle \mathrm{c}_{2} \mathrm{~T}_{1}+\angle \mathrm{c}_{3} \mathrm{t}_{3}+\angle \mathrm{c}_{3} \mathrm{~T}_{3} \quad \angle \mathrm{c}_{4} \mathrm{t}_{1}+\angle \mathrm{c}_{5} \mathrm{~T}_{1}+\angle \mathrm{c}_{4} \mathrm{t}_{3}+\angle \mathrm{c}_{5} \mathrm{~T}_{3} \\
& \text {, }\left(-\angle \mathrm{c}_{2} \mathrm{t}_{1}-\angle \mathrm{c}_{2} \mathrm{~T}_{1}\right)+\left(-\angle \mathrm{c}_{3} \mathrm{t}_{3}-\angle \mathrm{c}_{3} \mathrm{~T}_{3}\right) \\
& \left(-\angle \mathrm{c}_{4} \mathrm{t}_{1}-\angle \mathrm{c}_{4} \mathrm{t}_{3}\right)+\left(-\angle \mathrm{c}_{5} \mathrm{~T}_{1}-\angle \mathrm{c}_{5} \mathrm{~T}_{3}\right) \\
& \text {, }\left(\angle \mathrm{c}_{2} \mathrm{t}_{2}+\angle \mathrm{c}_{2} \mathrm{~T}_{2}\right)+\left(\angle \mathrm{c}_{3} \mathrm{t}_{2}+\angle \mathrm{c}_{3} \mathrm{~T}_{2}\right) \quad\left(\angle \mathrm{c}_{4} \mathrm{t}_{2}+\angle \mathrm{c}_{4} \mathrm{t}_{0}\right)+\left(\angle \mathrm{c}_{5} \mathrm{~T}_{2}+\angle \mathrm{c}_{5} \mathrm{~T}_{0}\right)
\end{aligned}
$$

and I(2;3) I(2;1) so $\left.\angle \mathrm{c}_{3} \mathrm{t}_{2} \quad \angle \mathrm{c}_{4} \mathrm{t}_{2} ; \angle \mathrm{c}_{3} \mathrm{~T}_{2} \quad \angle \mathrm{C}_{5} \mathrm{~T}_{2}\right) \quad \angle \mathrm{c}_{2} \mathrm{t}_{2}+\angle \mathrm{c}_{2} \mathrm{~T}_{2}$ $\left.\angle \mathrm{c}_{4} \mathrm{t}_{0}+\angle \mathrm{c}_{5} \mathrm{~T}_{0}\right) \quad \angle \mathrm{c}_{2} \mathrm{t}_{2} \quad \angle \mathrm{c}_{4} \mathrm{t}_{0}$ or $\angle \mathrm{c}_{2} \mathrm{~T}_{2} \quad \angle \mathrm{C}_{5} \mathrm{~T}_{0}$:

Figure 6: The triangles $\mathrm{t}_{\mathrm{k}} ; \mathrm{T}_{\mathrm{k}}$ in the domain Ω
Up to relabelling, we may suppose that $\angle \mathrm{c}_{2} \mathrm{t}_{2} \quad \angle \mathrm{c}_{4} \mathrm{t}_{0}$. We now show that I($3 ; 4$) I(0;1). Therearetwo arguments. Firstly we show that if $\angle \mathrm{C}_{3} \mathrm{t}_{2} \quad$ then $\mathrm{I}(0 ; 4)<\mathrm{I}(3 ; 0)$ \{ contradicting a hypothesis. So $\angle \mathrm{C}_{3} \mathrm{t}_{2}<-$ and we then show that $I(3 ; 4) \quad I(0 ; 1)$. The angle is given as follows. Let I_{2} be an isoceles triangle with vertices $\mathrm{v}_{2} ; \mathrm{v}_{3} ; \mathrm{v}_{4}$ and edges ${ }^{2} 2 ; 3 ;{ }^{2} ; 4 ;$ " $3 ; 4$ such that $\mathrm{I}\left({ }_{2} ; 3\right)=\mathrm{I}\left({ }_{2} ; 4\right)=\mathrm{I}(2 ; 4)$ and $\angle \mathrm{V}_{2} \mathrm{I}_{2}=\angle \mathrm{C}_{2} \mathrm{t}_{2}$. Then $=\angle \mathrm{V}_{3} \mathrm{I}_{2}=\angle \mathrm{V}_{4} \mathrm{I}_{2}$.
Let $\mathrm{C}_{2} ; \mathrm{C}_{4}$ denote circles of radius $\mathrm{I}(2 ; 4)$ about $\mathrm{C}_{2} ; \mathrm{C}_{4}$ respectively. As in Figure $7 C_{3}$ must lie inside C_{2} since $I(2 ; 3) \quad I(2 ; 4)$. Likewise c_{0} must lie outside C_{4} since $I(0 ; 4) \quad I(1 ; 2) \quad I(2 ; 4)$. Similarly C_{1} must lie outside C_{4} since $I(1 ; 4) \quad l(1 ; 2) \quad I(2 ; 4)$. Moreover since the angle sum at any cone point is : $\angle \mathrm{c}_{3} \mathrm{t}_{2}+\angle \mathrm{c}_{3} \mathrm{t}_{3}<$. In Figure 6 we have also constructed the point x as
the intersection of the radius through 2;3 and C_{4}. Let t_{x} denote the triangle spanning $x ; c_{3} ; c_{4}$.
Now $\angle \mathrm{c}_{3} \mathrm{t}_{2} \quad-\quad$ is equivalent to $\angle \mathrm{c}_{3} \mathrm{t}_{\mathrm{x}}$. It follows that $\angle \mathrm{c}_{4} \mathrm{t}_{\mathrm{x}} \quad \angle \mathrm{c}_{3} \mathrm{t}_{x}$. By inspection $\angle \mathrm{c}_{4} \mathrm{t}_{3}>\angle \mathrm{c}_{4} \mathrm{t}_{x}$ and $\angle \mathrm{c}_{3} \mathrm{t}_{x}>\angle \mathrm{c}_{3} \mathrm{t}_{3}$. So $\angle \mathrm{c}_{4} t_{3}>\angle \mathrm{c}_{4} \mathrm{t}_{x} \quad \angle \mathrm{c}_{3} \mathrm{t}_{x}>$ $\angle \mathrm{C}_{3} \mathrm{t}_{3}$ or equivalently $\mathrm{I}(0 ; 4)<\mathrm{I}(0 ; 3)$.
So $\angle \mathrm{C}_{3} \mathrm{t}_{2}<-$ and we will compare $\mathrm{t}_{2} ; \mathrm{t}_{0}$. Firstly, $\angle \mathrm{C}_{3} \mathrm{t}_{2}<-$ implies that $I(3 ; 4) \quad I\left({ }_{3 ; 4}\right)$. (Recall that ${ }_{3 ; 4}$ is an edge of I_{2}.) Let I_{0} be an isoceles triangle with vertices $v_{0} ; v_{1} ; v_{4}$ and edges ${ }_{0 ; 1} ; " 1 ; 4 ; " 0 ; 4$ such that $I\left({ }_{1 ; 4}\right)=I\left({ }^{0 ; 4}\right)=$ $I(2 ; 4)$ and $\angle \mathrm{V}_{4} \mathrm{I}_{0}=\angle \mathrm{c}_{4} \mathrm{t}_{0}$. Since $\mathrm{I}(0 ; 4) ; \mathrm{I}(1 ; 4) \quad \mathrm{I}(1 ; 2) \quad I(2 ; 4)$ we then observe that $\mathrm{I}(0 ; 1) \quad \mathrm{I}\left({ }_{0} ; 1\right)$. As $\angle \mathrm{c}_{2} \mathrm{t}_{2} \quad \angle \mathrm{c}_{4} \mathrm{t}_{0}$ we have that $\mathrm{I}\left({ }^{2} ; 4\right) \quad \mathrm{I}\left({ }_{0 ; 1}\right)$. Therefore $I(0 ; 1) \quad I\left({ }^{\prime} 0 ; 1\right) \quad I(" 3 ; 4) \quad I(3 ; 4)$.
We have equality if and only if $\angle \mathrm{C}_{2} \mathrm{t}_{2}=\angle \mathrm{C}_{4} \mathrm{t}_{0}$ and $\mathrm{I}(2 ; 3)=\mathrm{I}(2 ; 4)=\mathrm{I}(0 ; 4)=$ $I(1 ; 4)$. From above $\angle c_{2} t_{2}=\angle c_{4} t_{0}$ if and only if $I(1 ; 2)=I(1 ; 1) ; I(3 ; 0)=$ $I(0 ; 1)$ and $I(2 ; 3)=I(2 ; 1)$. So we have that $I(0 ; 1)=I(3 ; 4)$ and $I(1 ; 2)=$ $I(2 ; 3)=I(3 ; 0)=I(0 ; 1)=I(1 ; 1)=I(2 ; I)$.
That is: $t_{1} ; T_{1}$ are isometric equilateral triangles and $t_{0} ; T_{0} ; t_{2} ; t_{3}$ (respectively $T_{2} ; T_{3}$) are isometric isoceles triangles. By considering angle sums at $c_{4} ; c_{5}$: $\angle c_{4} t_{2}=\angle c_{4} t_{3}=\angle c_{5} T_{2}=\angle c_{5} T_{3}$. So: $t_{1} ; T_{1}$ are isometric equilateral triangles and $t_{0} ; T_{0} ; t_{2} ; t_{3} ; T_{2} ; T_{3}$ are isometric isoceles triangles. By the angle sum at $c_{3}: \angle c_{3} t_{2}=\angle c_{3} t_{3}=\angle c_{3} T_{2}=\angle c_{3} T_{3}=4$ and so $\angle c_{0} t_{0}=\angle c_{1} t_{0}=\angle c_{0} T_{0}=$ $\angle c_{1} T_{0}==4$. A gain, by considering angle sums at $c_{0} ; c_{1}$ all the angles are $=4$, all of the edges are of equal length. So O is the octahedral orbifold.

Figure 7: Arguments for $\angle \mathrm{C}_{3} \mathrm{t}_{2}$

- and for $\angle \mathrm{C}_{3} \mathrm{t}_{2}<$ -

References

[1] P Buser, Geometry and Spectra of Compact Riemann Surfaces, Birkhäuser (1992) 459\{274
[2] A Haas, \mathbf{P} Susskind, The geometry of the hyperelliptic involution in genus two, Proc. Amer. Math. Soc. 105 (1989) $159\{165$
[3] L K een, On fundamental domains and the Teichmüller modular group, from: \Contributions to Analysis", Academic Press, New York and London (1974) 185\{194
[4] D Gri ths, Length inequalities for systems of geodesic loops on a surface of genus two: 1, Bulletin of the LMS, 28 (1996) $505\{508$
[5] D Gri ths, The side-pairing elements of Maskit's fundamental domain for the modular group in genus two, Annal. Acad. Sci. Fenn. (to appear)
[6] B M askit, Parameters for Fuchsian groups I: Signature (0,4), from; \Holomorphic Functions and Moduli I", Math. Sci Res. Inst. Pub. 11, Springer\{Verlag, New York (1988) 251\{265
[7] B Maskit, Parameters for Fuchsian groups II: topological type (1,1), Annal. Acad. Sci. Fenn. Ser. A.I. 14 (1990) $265\{275$
[8] B M askit, A Picture of Moduli Space, Invent. Math. 126 (1996) $341\{390$
[9] J M cC arthy, A Papadopoulos, Fundamental Domains in Teichmüller Space, Annal. Acad. Sci. Fenn. Ser. A.I. 21 (1996) 151\{166
[10] R C Penner, Weil\{Petersson Volumes, J. Di . Geo. 35 (1992) 559\{608
[11] K-D Semmler, An explicit Fundamental Domain for theTeichmüller, Doctoral Thesis, EPFL (1988)

Laboratoire de Mathematiques Pures de Bordeaux
Universite Bordeaux 1, 351 cours de la liberation
Talence 33405, Cedex, France
Email: griffith@math. u-bor deaux. fr
Received: 18 November 1997

