Geometry & Topology Monographs Volume 3: Invitation to higher local fields Part I, section 2, pages 19–29

2. p-primary part of the Milnor K-groups and Galois cohomologies of fields of characteristic p

Oleg Izhboldin

2.0. Introduction

Let F be a field and F^{sep} be the separable closure of F. Let F^{ab} be the maximal abelian extension of F. Clearly the Galois group $G^{\text{ab}} = \operatorname{Gal}(F^{\text{ab}}/F)$ is canonically isomorphic to the quotient of the absolute Galois group $G = \operatorname{Gal}(F^{\text{sep}}/F)$ modulo the closure of its commutant. By Pontryagin duality, a description of G^{ab} is equivalent to a description of

$$\operatorname{Hom}_{\operatorname{cont}}(G^{\operatorname{ab}},\mathbb{Z}/m) = \operatorname{Hom}_{\operatorname{cont}}(G,\mathbb{Z}/m) = H^1(F,\mathbb{Z}/m).$$

where m runs over all positive integers. Clearly, it suffices to consider the case where m is a power of a prime, say $m = p^i$. The main cohomological tool to compute the group $H^1(F, \mathbb{Z}/m)$ is a pairing

$$(,)_m: H^1(F, \mathbb{Z}/m) \otimes K_n(F)/m \to H_m^{n+1}(F)$$

where the right hand side is a certain cohomological group discussed below.

Here $K_n(F)$ for a field F is the nth Milnor K-group $K_n(F) = K_n^M(F)$ defined as

$$(F^*)^{\otimes n}/J$$

where J is the subgroup generated by the elements of the form $a_1 \otimes ... \otimes a_n$ such that $a_i + a_j = 1$ for some $i \neq j$. We denote by $\{a_1, ..., a_n\}$ the class of $a_1 \otimes ... \otimes a_n$. Namely, $K_n(F)$ is the abelian group defined by the following generators: symbols $\{a_1, ..., a_n\}$ with $a_1, ..., a_n \in F^*$ and relations:

$${a_1, ..., a_i a'_i, ...a_n} = {a_1, ..., a_i, ...a_n} + {a_1, ..., a'_i, ...a_n}$$

 ${a_1, ..., a_n} = 0$ if $a_i + a_j = 1$ for some i and j with $i \neq j$.

We write the group law additively.

Published 10 December 2000: (c) Geometry & Topology Publications

Consider the following example (definitions of the groups will be given later).

Example. Let F be a field and let p be a prime integer. Assume that there is an integer n with the following properties:

- (i) the group $H_n^{n+1}(F)$ is isomorphic to \mathbb{Z}/p ,
- (ii) the pairing

$$(\ ,\)_p: H^1(F,\mathbb{Z}/p)\otimes K_n(F)/p \to H^{n+1}_p(F)\simeq \mathbb{Z}/p$$

is non-degenerate in a certain sense.

Then the \mathbb{Z}/p -linear space $H^1(F,\mathbb{Z}/p)$ is obviously dual to the \mathbb{Z}/p -linear space $K_n(F)/p$. On the other hand, $H^1(F,\mathbb{Z}/p)$ is dual to the \mathbb{Z}/p -space $G^{ab}/(G^{ab})^p$. Therefore there is an isomorphism

$$\Psi_{F,p}$$
: $K_n(F)/p \simeq G^{ab}/(G^{ab})^p$.

It turns out that this example can be applied to computations of the group $G^{ab}/(G^{ab})^p$ for multidimensional local fields. Moreover, it is possible to show that the homomorphism $\Psi_{F,p}$ can be naturally extended to a homomorphism $\Psi_F: K_n(F) \to G^{ab}$ (the so called reciprocity map). Since G^{ab} is a profinite group, it follows that the homomorphism $\Psi_F: K_n(F) \to G^{ab}$ factors through the homomorphism $K_n(F)/DK_n(F) \to G^{ab}$ where the group $DK_n(F)$ consists of all divisible elements:

$$DK_n(F) := \bigcap_{m \ge 1} mK_n(F).$$

This observation makes natural the following notation:

Definition (cf. section 6 of Part I). For a field F and integer $n \ge 0$ set

$$K_n^t(F) := K_n(F)/DK_n(F),$$

where $DK_n(F) := \bigcap_{m \ge 1} mK_n(F)$.

The group $K_n^t(F)$ for a higher local field F endowed with a certain topology (cf. section 6 of this part of the volume) is called a topological Milnor K-group $K^{top}(F)$ of F.

The example shows that computing the group G^{ab} is closely related to computing the groups $K_n(F)$, $K_n^t(F)$, and $H_m^{n+1}(F)$. The main purpose of this section is to explain some basic properties of these groups and discuss several classical conjectures. Among the problems, we point out the following:

- discuss p-torsion and cotorsion of the groups $K_n(F)$ and $K_n^t(F)$,
- study an analogue of Satz 90 for the groups $K_n(F)$ and $K_n^t(F)$,
- compute the group $H_m^{n+1}(F)$ in two "classical" cases where F is either the rational function field in one variable F = k(t) or the formal power series F = k(t).

We shall consider in detail the case (so called "non-classical case") of a field F of characteristic p and m=p.

2.1. Definition of $H_m^{n+1}(F)$ and pairing $(\ ,\)_m$

To define the group $H_m^{n+1}(F)$ we consider three cases depending on the characteristic of the field F.

Case 1 (Classical). Either char (F) = 0 or char (F) = p is prime to m. In this case we set

$$H_m^{n+1}(F) := H^{n+1}(F, \mu_m^{\otimes n}).$$

The Kummer theory gives rise to the well known natural isomorphism $F^*/F^{*m} \to H^1(F, \mu_m)$. Denote the image of an element $a \in F^*$ under this isomorphism by (a). The cup product gives the homomorphism

$$\underbrace{F^* \otimes \cdots \otimes F^*}_n \to H^n(F, \mu_m^{\otimes n}), \qquad a_1 \otimes \cdots \otimes a_n \to (a_1, \ldots, a_n)$$

where $(a_1, \ldots, a_n) := (a_1) \cup \cdots \cup (a_n)$. It is well known that the element (a_1, \ldots, a_n) is zero if $a_i + a_j = 1$ for some $i \neq j$. From the definition of the Milnor K-group we get the homomorphism

$$\eta_m: K_n^M(F)/m \to H^n(F, \mu_m^{\otimes n}), \qquad \{a_1, \dots, a_n\} \to (a_1, \dots, a_n).$$

Now, we define the pairing $(,)_m$ as the following composite

$$H^1(F,\mathbb{Z}/m)\otimes K_n(F)/m\xrightarrow{\mathrm{id}\otimes\eta_m} H^1(F,\mathbb{Z}/m)\otimes H^n(F,\mu_m^{\otimes n})\xrightarrow{\cup} H_m^{n+1}(F,\mu_m^{\otimes n}).$$

Case 2. char $(F) = p \neq 0$ and m is a power of p.

To simplify the exposition we start with the case m = p. Set

$$H_p^{n+1}(F) = \operatorname{coker}\left(\Omega_F^n \xrightarrow{\wp} \Omega_F^n / d\Omega_F^{n-1}\right)$$

where

$$d(adb_2 \wedge \cdots \wedge db_n) = da \wedge db_2 \wedge \cdots \wedge db_n,$$

$$\wp\left(a\frac{db_1}{b_1} \wedge \cdots \wedge \frac{db_n}{b_n}\right) = (a^p - a)\frac{db_1}{b_1} \wedge \cdots \wedge \frac{db_n}{b_n} + d\Omega_F^{n-1}$$

($\wp = C^{-1} - 1$ where C^{-1} is the inverse Cartier operator defined in subsection 4.2). The pairing $(,)_p$ is defined as follows:

$$(,)_p: F/\wp(F) \times K_n(F)/p \to H_p^{n+1}(F),$$

$$(a, \{b_1, \dots, b_n\}) \mapsto a \frac{db_1}{b_1} \wedge \dots \wedge \frac{db_n}{b_n}$$

where $F/\wp(F)$ is identified with $H^1(F,\mathbb{Z}/p)$ via Artin–Schreier theory.

To define the group $H_{p^i}^{n+1}(F)$ for an arbitrary $i \geqslant 1$ we note that the group $H_p^{n+1}(F)$ is the quotient group of Ω_F^n . In particular, generators of the group $H_p^{n+1}(F)$ can be written in the form $adb_1 \wedge \cdots \wedge db_n$. Clearly, the natural homomorphism

$$F \otimes \underbrace{F^* \otimes \cdots \otimes F^*}_{p} \to H_p^{n+1}(F), \qquad a \otimes b_1 \otimes \cdots \otimes b_n \mapsto a \frac{db_1}{b_1} \wedge \cdots \wedge \frac{db_n}{b_n}$$

is surjective. Therefore the group $H_p^{n+1}(F)$ is naturally identified with the quotient group $F \otimes F^* \otimes \cdots \otimes F^*/J$. It is not difficult to show that the subgroup J is generated by the following elements:

$$(a^p-a)\otimes b_1\otimes \cdots \otimes b_n,$$

 $a\otimes a\otimes b_2\otimes \cdots \otimes b_n,$
 $a\otimes b_1\otimes \cdots \otimes b_n$, where $b_i=b_j$ for some $i\neq j$.

This description of the group $H_p^{n+1}(F)$ can be easily generalized to define $H_{p^i}^{n+1}(F)$ for an arbitrary $i \ge 1$. Namely, we define the group $H_{p^i}^{n+1}(F)$ as the quotient group

$$W_i(F) \otimes \underbrace{F^* \otimes \cdots \otimes F^*}_{n} / J$$

where $W_i(F)$ is the group of Witt vectors of length i and J is the subgroup of $W_i(F) \otimes F^* \otimes \cdots \otimes F^*$ generated by the following elements:

$$(\mathbf{F}(w) - w) \otimes b_1 \otimes \cdots \otimes b_n,$$

 $(a, 0, \dots, 0) \otimes a \otimes b_2 \otimes \cdots \otimes b_n,$
 $w \otimes b_1 \otimes \cdots \otimes b_n,$ where $b_i = b_j$ for some $i \neq j$.

The pairing $(,)_{p^i}$ is defined as follows:

$$(,)_p: W_i(F)/\wp(W_i(F)) \times K_n(F)/p^i \to H_{p^i}^{n+1}(F),$$

 $(w, \{b_1, \ldots, b_n\}) \mapsto w \otimes b_1 \otimes \cdots \otimes b_n$

where $\wp = \mathbf{F} - \mathrm{id} : W_i(F) \to W_i(F)$ and the group $W_i(F)/\wp(W_i(F))$ is identified with $H^1(F, \mathbb{Z}/p^i)$ via Witt theory. This completes definitions in Case 2.

Case 3. char(F) = $p \neq 0$ and $m = m'p^i$ where m' > 1 is an integer prime to p and $i \geq 1$.

The groups $H_{m'}^{n+1}(F)$ and $H_{p^i}^{n+1}(F)$ are already defined (see Cases 1 and 2). We define the group $H_m^{n+1}(F)$ by the following formula:

$$H_m^{n+1}(F) := H_{m'}^{n+1}(F) \oplus H_{p^i}^{n+1}(F)$$

Since $H^1(F,\mathbb{Z}/m) \simeq H^1(F,\mathbb{Z}/m') \oplus H^1(F,\mathbb{Z}/p^i)$ and $K_n(F)/m \simeq K_n(F)/m' \oplus K_n(F)/p^i$, we can define the pairing $(\ ,\)_m$ as the direct sum of the pairings $(\ ,\)_{m'}$ and $(\ ,\)_{p^i}$. This completes the definition of the group $H_m^{n+1}(F)$ and of the pairing $(\ ,\)_m$.

Remark 1. In the case n = 1 or n = 2 the group $H_m^n(F)$ can be determined as follows:

$$H_m^1(F) \simeq H^1(F, \mathbb{Z}/m)$$
 and $H_m^2(F) \simeq {}_m \operatorname{Br}(F)$.

Remark 2. The group $H_m^{n+1}(F)$ is often denoted by $H^{n+1}(F, \mathbb{Z}/m(n))$.

2.2. The group $H^{n+1}(F)$

In the previous subsection we defined the group $H_m^{n+1}(F)$ and the pairing $(,)_m$ for an arbitrary m. Now, let m and m' be positive integers such that m' is divisible by m. In this case there exists a canonical homomorphism

$$i_{m,m'}: H_m^{n+1}(F) \to H_{m'}^{n+1}(F).$$

To define the homomorphism $i_{m,m'}$ it suffices to consider the following two cases:

Case 1. Either char (F) = 0 or char (F) = p is prime to m and m'.

This case corresponds to Case 1 in the definition of the group $H_m^{n+1}(F)$ (see subsection 2.1). We identify the homomorphism $i_{m,m'}$ with the homomorphism

$$H^{n+1}(F,\mu_m^{\otimes n}) \to H^{n+1}(F,\mu_{m'}^{\otimes n})$$

induced by the natural embedding $\mu_m \subset \mu_{m'}$.

Case 2. m and m' are powers of p = char(F).

We can assume that $m=p^i$ and $m'=p^{i'}$ with $i\leqslant i'$. This case corresponds to Case 2 in the definition of the group $H_m^{n+1}(F)$. We define $i_{m,m'}$ as the homomorphism induced by

$$W_i(F) \otimes F^* \otimes \dots F^* \to W_{i'}(F) \otimes F^* \otimes \dots F^*,$$

$$(a_1, \dots, a_i) \otimes b_1 \otimes \dots \otimes b_n \mapsto (0, \dots, 0, a_1, \dots, a_i) \otimes b_1 \otimes \dots \otimes b_n.$$

The maps $i_{m,m'}$ (where m and m' run over all integers such that m' is divisible by m) determine the inductive system of the groups.

Definition. For a field F and an integer n set

$$H^{n+1}(F) = \varinjlim_{m} H^{n+1}_m(F).$$

Conjecture 1. The natural homomorphism $H_m^{n+1}(F) \to H^{n+1}(F)$ is injective and the image of this homomorphism coincides with the m-torsion part of the group $H^{n+1}(F)$.

This conjecture follows easily from the Milnor–Bloch–Kato conjecture (see subsection 4.1) in degree n. In particular, it is proved for $n \leq 2$. For fields of characteristic p we have the following theorem.

Theorem 1. Conjecture 1 is true if char (F) = p and $m = p^i$.

2.3. Computing the group $H_m^{n+1}(F)$ for some fields

We start with the following well known result.

Theorem 2 (classical). Let F be a perfect field. Suppose that char(F) = 0 or char(F) is prime to m. Then

$$\begin{split} &H_{m}^{n+1}\left(F\left((t)\right)\right)\simeq H_{m}^{n+1}(F)\oplus H_{m}^{n}(F)\\ &H_{m}^{n+1}\left(F\left(t\right)\right)\simeq H_{m}^{n+1}(F)\oplus \coprod_{\text{monic irred }f\left(t\right)}H_{m}^{n}\left(F\left[t\right]/f(t)\right). \end{split}$$

It is known that we cannot omit the conditions on F and m in the statement of Theorem 2. To generalize the theorem to the arbitrary case we need the following notation. For a complete discrete valuation field K and its maximal unramified extension $K_{\rm ur}$ define the groups $H^n_{m,{\rm ur}}(K)$ and $\widetilde{H}^n_m(K)$ as follows:

$$H^n_{m,\mathrm{ur}}(K) = \ker(H^n_m(K) \to H^n_m(K_{\mathrm{ur}}))$$
 and $\widetilde{H}^n_m(K) = H^n_m(K)/H^n_{m,\mathrm{ur}}(K)$.

Note that for a field K = F((t)) we obviously have $K_{ur} = F^{sep}((t))$. We also note that under the hypotheses of Theorem 2 we have $H^n(K) = H^n_{m,ur}(K)$ and $H^n(K) = 0$. The following theorem is due to Kato.

Theorem 3 (Kato, [K1, Th. 3 $\S 0$]). Let K be a complete discrete valuation field with residue field k. Then

$$H_{m,\mathrm{ur}}^{n+1}(K) \simeq H_m^{n+1}(k) \oplus H_m^n(k).$$

In particular, $H_{m,\mathrm{ur}}^{n+1}(F((t))) \simeq H_m^{n+1}(F) \oplus H_m^n(F)$.

This theorem plays a key role in Kato's approach to class field theory of multidimensional local fields (see section 5 of this part).

To generalize the second isomorphism of Theorem 2 we need the following notation. Set

$$\begin{split} &H^{n+1}_{m,\text{sep}}(F(t)) = \ker{(H^{n+1}_m(F(t)) \to H^{n+1}_m(F^{\text{sep}}(t)))} \text{ and } \\ &\widetilde{H}^{n+1}_m(F(t)) = H^{n+1}_m(F(t))/H^{n+1}_{m,\text{sep}}(F(t)). \end{split}$$

If the field F satisfies the hypotheses of Theorem 2, we have

$$H^{n+1}_{m,\text{sep}}(F(t)) = H^{n+1}_m(F(t)) \text{ and } \widetilde{H}^{n+1}_m(F(t)) = 0.$$

In the general case we have the following statement.

Theorem 4 (Izhboldin, [I2, Introduction]).

$$\begin{split} H^{n+1}_{m,\text{sep}}(F\left(t\right)) &\simeq H^{n+1}_{m}(F) \oplus \coprod_{\text{monic irred } f\left(t\right)} H^{n}_{m}\left(F[t]/f(t)\right), \\ &\widetilde{H}^{n+1}_{m}\left(F\left(t\right)\right) \simeq \coprod_{v} \widetilde{H}^{n+1}_{m}(F(t)_{v}) \end{split}$$

where v runs over all normalized discrete valuations of the field F(t) and $F(t)_v$ denotes the v-completion of F(t).

2.4. On the group $K_n(F)$

In this subsection we discuss the structure of the torsion and cotorsion in Milnor K-theory. For simplicity, we consider the case of prime m=p. We start with the following fundamental theorem concerning the quotient group $K_n(F)/p$ for fields of characteristic p.

Theorem 5 (Bloch–Kato–Gabber, [BK, Th. 2.1]). Let F be a field of characteristic p. Then the differential symbol

$$d_F: K_n(F)/p \to \Omega_F^n, \qquad \{a_1, \ldots, a_n\} \mapsto \frac{da_1}{a_1} \wedge \cdots \wedge \frac{da_n}{a_n}$$

is injective and its image coincides with the kernel $\nu_n(F)$ of the homomorphism \wp (for the definition see Case 2 of 2.1). In other words, the sequence

$$0 \longrightarrow K_n(F)/p \stackrel{d_F}{\longrightarrow} \Omega^n_F \stackrel{\wp}{\longrightarrow} \Omega^n_F/d\Omega^{n-1}_F$$

is exact.

This theorem relates the Milnor K-group modulo p of a field of characteristic p with a submodule of the differential module whose structure is easier to understand. The theorem is important for Kato's approach to higher local class field theory. For a sketch of its proof see subsection A2 in the appendix to this section.

There exists a natural generalization of the above theorem for the quotient groups $K_n(F)/p^i$ by using De Rham–Witt complex ([BK, Cor. 2.8]).

Now, we recall well known Tate's conjecture concerning the torsion subgroup of the Milnor K-groups.

Conjecture 2 (Tate). Let F be a field and p be a prime integer.

- (i) If char $(F) \neq p$ and $\zeta_p \in F$, then ${}_pK_n(F) = \{\zeta_p\} \cdot K_{n-1}(F)$.
- (ii) If char (F) = p then $_pK_n(F) = 0$.

This conjecture is trivial in the case where $n \leq 1$. In the other cases we have the following theorem.

Theorem 6. Let F be a field and n be a positive integer.

- (1) Tate's Conjecture holds if $n \leq 2$ (Suslin, [S]),
- (2) Part (ii) of Tate's Conjecture holds for all n (Izhboldin, [I1]).

The proof of this theorem is closely related to the proof of Satz 90 for K-groups. Let us recall two basic conjectures on this subject.

Conjecture 3 (Satz 90 for K_n). If L/F is a cyclic extension of degree p with the Galois group $G = \langle \sigma \rangle$ then the sequence

$$K_n(L) \xrightarrow{1-\sigma} K_n(L) \xrightarrow{N_{L/F}} K_n(F)$$

is exact.

There is an analogue of the above conjecture for the quotient group $K_n(F)/p$. Fix the following notation till the end of this section:

Definition. For a field F set

$$k_n(F) = K_n(F)/p$$
.

Conjecture 4 (Small Satz 90 for k_n). If L/F is a cyclic extension of degree p with the Galois group $G = \langle \sigma \rangle$, then the sequence

$$k_n(F) \oplus k_n(L) \xrightarrow{i_{F/L} \oplus (1-\sigma)} k_n(L) \xrightarrow{N_{L/F}} k_n(F)$$

is exact.

The conjectures 2,3 and 4 are not independent:

Lemma (Suslin). Fix a prime integer p and integer n. Then in the category of all fields (of a given characteristic) we have

(Small Satz 90 for k_n) + (Tate conjecture for ${}_{v}K_n$) \iff (Satz 90 for K_n).

Moreover, for a given field F we have

(Small Satz 90 for k_n) + (Tate conjecture for $_pK_n$) \Rightarrow (Satz 90 for K_n)

and

$$(Satz\ 90\ for\ K_n) \Rightarrow (small\ Satz\ 90\ for\ k_n).$$

Satz 90 conjectures are proved for $n \le 2$ (Merkurev-Suslin, [MS1]). If p = 2, n = 3, and char $(F) \ne 2$, the conjectures were proved by Merkurev and Suslin [MS] and Rost. For p = 2 the conjectures follow from recent results of Voevodsky. For fields of characteristic p the conjectures are proved for all n:

Theorem 7 (Izhboldin, [I1]). Let F be a field of characteristic p and L/F be a cyclic extension of degree p. Then the following sequence is exact:

$$0 \to K_n(F) \to K_n(L) \xrightarrow{1-\sigma} K_n(L) \xrightarrow{N_{L/F}} K_n(F) \to H_n^{n+1}(F) \to H_n^{n+1}(L)$$

2.5. On the group $K_n^t(F)$

In this subsection we discuss the same issues, as in the previous subsection, for the group $K_n^t(F)$.

Definition. Let F be a field and p be a prime integer. We set

$$DK_n(F) = \bigcap_{m \geqslant 1} mK_n(F)$$
 and $D_pK_n(F) = \bigcap_{i \geqslant 0} p^iK_n(F)$.

We define the group $K_n^t(F)$ as the quotient group:

$$K_n^t(F) = K_n(F)/DK_n(F) = K_n(F)/\bigcap_{m \geqslant 1} mK_n(F).$$

The group $K_n^t(F)$ is of special interest for higher class field theory (see sections 6, 7 and 10). We have the following evident isomorphism (see also 2.0):

$$K_n^t(F) \simeq \operatorname{im} \left(K_n(F) \to \varprojlim_m K_n(F)/m \right).$$

The quotient group $K_n^t(F)/m$ is obviously isomorphic to the group $K_n(F)/m$. As for the torsion subgroup of $K_n^t(F)$, it is quite natural to state the same questions as for the group $K_n(F)$.

Question 1. Are the K^t -analogue of Tate's conjecture and Satz 90 Conjecture true for the group $K_n^t(F)$?

If we know the (positive) answer to the corresponding question for the group $K_n(F)$, then the previous question is equivalent to the following:

Question 2. Is the group $DK_n(F)$ divisible?

At first sight this question looks trivial because the group $DK_n(F)$ consists of all divisible elements of $K_n(F)$. However, the following theorem shows that the group $DK_n(F)$ is not necessarily a divisible group!

Theorem 8 (Izhboldin, [I3]). For every $n \ge 2$ and prime p there is a field F such that $char(F) \ne p$, $\zeta_p \in F$ and

(1) The group $DK_n(F)$ is not divisible, and the group $D_pK_2(F)$ is not p-divisible,

(2) The K^t -analogue of Tate's conjecture is false for K_n^t :

$$_{p}K_{n}^{t}(F) \neq \{\zeta_{p}\} \cdot K_{n-1}^{t}(F).$$

(3) The K^t -analogue of Hilbert 90 conjecture is false for group $K_n^t(F)$.

Remark 1. The field F satisfying the conditions of Theorem 8 can be constructed as the function field of some infinite dimensional variety over any field of characteristic zero whose group of roots of unity is finite.

Quite a different construction for irregular prime numbers p and $F = \mathbb{Q}(\mu_p)$ follows from works of G. Banaszak [B].

Remark 2. If F is a field of characteristic p then the groups $D_pK_n(F)$ and $DK_n(F)$ are p-divisible. This easily implies that ${}_pK_n^t(F)=0$. Moreover, Satz 90 theorem holds for K_n^t in the case of cyclic p-extensions.

Remark 3. If F is a multidimensional local fields then the group $K_n^t(F)$ is studied in section 6 of this volume. In particular, Fesenko (see subsections 6.3–6.8 of section 6) gives positive answers to Questions 1 and 2 for multidimensional local fields.

References

- [B] G. Banaszak, Generalization of the Moore exact sequence and the wild kernel for higher K-groups, Compos. Math., 86(1993), 281–305.
- [BK] S. Bloch and K. Kato, *p*-adic étale cohomology, Inst. Hautes Études Sci. Publ. Math. 63, (1986), 107–152.
- [F] I. Fesenko, Topological Milnor K-groups of higher local fields, section 6 of this volume.
- [I1] O. Izhboldin, On p-torsion in K_*^M for fields of characteristic p, Adv. Soviet Math., vol. 4, 129–144, Amer. Math. Soc., Providence RI, 1991
- [I2] O. Izhboldin, On the cohomology groups of the field of rational functions, Mathematics in St.Petersburg, 21–44, Amer. Math. Soc. Transl. Ser. 2, vol. 174, Amer. Math. Soc., Providence, RI, 1996.
- [I3] O. Izhboldin, On the quotient group of $K_2(F)$, preprint, www.maths.nott.ac.uk/personal/ibf/stqk.ps
- [K1] K. Kato, Galois cohomology of complete discrete valuation fields, In Algebraic *K*-theory, Lect. Notes in Math. 967, Springer-Verlag, Berlin, 1982, 215–238.
- [K2] K. Kato, Symmetric bilinear forms, quadratic forms and Milnor K-theory in characteristic two, Invent. Math. 66(1982), 493–510.
- [MS1] A. S. Merkur'ev and A. A. Suslin, *K*-cohomology of Severi-Brauer varieties and the norm residue homomorphism, Izv. Akad. Nauk SSSR Ser. Mat. 46(1982); English translation in Math. USSR Izv. 21(1983), 307–340.

- [MS2] A. S. Merkur'ev and A. A. Suslin, The norm residue homomorphism of degree three, Izv. Akad. Nauk SSSR Ser. Mat. 54(1990); English translation in Math. USSR Izv. 36(1991), 349–367.
- [MS3] A. S. Merkur'ev and A. A. Suslin, The group K_3 for a field, Izv. Akad. Nauk SSSR Ser. Mat. 54(1990); English translation in Math. USSR Izv. 36(1991), 541–565.
- [S] A. A. Suslin, Torsion in K_2 of fields, K-theory 1(1987), 5–29.