Geometry & Topology Monographs Volume 3: Invitation to higher local fields Part I, section 7, pages 75–79

7. Parshin's higher local class field theory in characteristic p

Ivan Fesenko

Parshin's theory in characteristic p is a remarkably simple and effective approach to all the main theorems of class field theory by using relatively few ingredients.

Let $F = K_n, \ldots, K_0$ be an *n*-dimensional local field of characteristic *p*.

In this section we use the results and definitions of 6.1-6.5; we don't need the results of 6.6-6.8.

7.1

Recall that the group V_F is topologically generated by

$$1 + \theta t_n^{i_n} \dots t_1^{i_1}, \quad \theta \in \mathbb{R}^*, p \nmid (i_n, \dots, i_1)$$

(see 1.4.2). Note that

$$i_1 \dots i_n \{ 1 + \theta t_n^{i_n} \dots t_1^{i_1}, t_1, \dots, t_n \} = \{ 1 + \theta t_n^{i_n} \dots t_1^{i_1}, t_1^{i_1}, \dots, t_n^{i_n} \}$$
$$= \{ 1 + \theta t_n^{i_n} \dots t_1^{i_1}, t_1^{i_1} \dots t_n^{i_n}, \dots, t_n^{i_n} \} = \{ 1 + \theta t_n^{i_n} \dots t_1^{i_1}, -\theta, \dots, t_n^{i_n} \} = 0,$$

since $\theta^{q-1} = 1$ and V_F is (q-1)-divisible. We deduce that

$$K_{n+1}^{\text{top}}(F) \simeq \mathbb{F}_q^*, \quad \{\theta, t_1, \dots, t_n\} \mapsto \theta, \quad \theta \in \mathbb{R}^*.$$

Recall that (cf. 6.5)

$$K_n^{\operatorname{top}}(F) \simeq \mathbb{Z} \oplus \left(\mathbb{Z}/(q-1)\right)^n \oplus VK_n^{\operatorname{top}}(F),$$

where the first group on the RHS is generated by $\{t_n, \ldots, t_1\}$, and the second by $\{\theta, \ldots, \hat{t}_l, \ldots\}$ (apply the tame symbol and valuation map of subsection 6.4).

Published 10 December 2000: (c) Geometry & Topology Publications

I. Fesenko

7.2. The structure of $VK_n^{top}(F)$

Using the Artin–Schreier–Witt pairing (its explicit form in 6.4.3)

$$(,]_r: K_n^{\text{top}}(F)/p^r \times W_r(F)/(\mathbf{F}-1)W_r(F) \to \mathbb{Z}/p^r, r \ge 1$$

and the method presented in subsection 6.4 we deduce that every element of $VK_n^{\text{top}}(F)$ is uniquely representable as a convergent series

$$\sum a_{\theta,i_n,\ldots,i_1} \{1 + \theta t_n^{i_n} \ldots t_1^{i_1}, t_1, \ldots, \widehat{t_l}, \ldots, t_n\}, \quad a_{\theta,i_n,\ldots,i_1} \in \mathbb{Z}_p,$$

where θ runs over a basis of the \mathbb{F}_p -space K_0 , $p \nmid \gcd(i_n, \ldots, i_1)$ and $l = \min\{k : p \nmid i_k\}$. We also deduce that the pairing $(,]_r$ is non-degenerate.

Theorem 1 (Parshin, [P2]). Let $J = \{j_1, \ldots, j_{m-1}\}$ run over all (m-1)-elements subsets of $\{1, \ldots, n\}$, $m \leq n+1$. Let \mathcal{E}_J be the subgroups of V_F generated by $1 + \theta t_n^{i_n} \ldots t_1^{i_1}$, $\theta \in \mu_{q-1}$ such that $p \nmid \gcd(i_1, \ldots, i_n)$ and $\min \{l : p \nmid i_l\} \notin J$. Then the homomorphism

$$h: \prod_{J}^{*-\text{topology}} \mathcal{E}_{J} \to VK_{m}^{\text{top}}(F), \quad (\varepsilon_{J}) \mapsto \sum_{J=\{j_{1},\dots,j_{m-1}\}} \{\varepsilon_{J}, t_{j_{1}},\dots,t_{j_{m-1}}\}$$

is a homeomorphism.

Proof. There is a sequentially continuous map $f: V_F \times F^{* \oplus m-1} \to \prod_J \mathcal{E}_J$ such that its composition with h coincides with the restriction of the map $\varphi: (F^*)^m \to K_m^{\text{top}}(F)$ of 6.3 on $V_F \oplus F^{* \oplus m-1}$.

So the topology of $\prod_{J}^{*-\text{topology}} \mathcal{E}_{J}$ is $\leq \lambda_{m}$, as follows from the definition of λ_{m} .

Let U be an open subset in $VK_m(F)$. Then $h^{-1}(U)$ is open in the *-product of the topology $\prod_J \mathcal{E}_J$. Indeed, otherwise for some J there were a sequence $\alpha_J^{(i)} \notin h^{-1}(U)$ which converges to $\alpha_J \in h^{-1}(U)$. Then the sequence $\varphi(\alpha_J^{(i)}) \notin U$ converges to $\varphi(\alpha_J) \in U$ which contradicts the openness of U.

Corollary. $K_m^{\text{top}}(F)$ has no nontrivial *p*-torsion; $\cap p^r V K_m^{\text{top}}(F) = \{0\}.$

Geometry & Topology Monographs, Volume 3 (2000) - Invitation to higher local fields

7.3

Put $\widetilde{W}(F) = \varinjlim_{r \to r} W_r(F)/(\mathbf{F} - 1)W_r(F)$ with respect to the homomorphism $\mathbf{V}: (a_0, \ldots, a_{r-1}) \to (0, a_0, \ldots, a_{r-1})$. From the pairings (see 6.4.3)

$$K_n^{\text{top}}(F)/p^r \times W_r(F)/(\mathbf{F}-1)W_r(F) \xrightarrow{(\,,\,]_r} \mathbb{Z}/p^r \to \frac{1}{p^r}\mathbb{Z}/\mathbb{Z}$$

one obtains a non-degenerate pairing

$$(,]: \widetilde{K}_n(F) \times \widetilde{W}(F) \to \mathbb{Q}_p/\mathbb{Z}_p$$

where $\widetilde{K}_n(F) = K_n^{\text{top}}(F) / \bigcap_{r \ge 1} p^r K_n^{\text{top}}(F)$. From 7.1 and Corollary of 7.2 we deduce

$$\bigcap_{r \ge 1} p^r K_n^{\text{top}}(F) = \text{Tors}_{p'} K_n^{\text{top}}(F) = \text{Tors} K_n^{\text{top}}(F),$$

where $\text{Tors}_{p'}$ is prime-to-*p*-torsion.

Hence

$$\widetilde{K}_n(F) = K_n^{\text{top}}(F) / \text{Tors } K_n^{\text{top}}(F)$$

7.4. The norm map on K^{top} -groups in characteristic p

Following Parshin we present an alternative description (to that one in subsection 6.8) of the norm map on K^{top} -groups in characteristic p.

If L/F is cyclic of prime degree l, then it is more or less easy to see that

$$K_n^{\mathrm{top}}(L) = \left\langle \{L^*\} \cdot i_{F/L} K_{n-1}^{\mathrm{top}}(F) \right\rangle$$

where $i_{F/L}$ is induced by the embedding $F^* \to L^*$. For instance, if f(L|F) = l then L is generated over F by a root of unity of order prime to p; if $e_i(L|F) = l$, then there is a system of local parameters $t_1, \ldots, t'_i, \ldots, t_n$ of L such that $t_1, \ldots, t_i, \ldots, t_n$ is a system of local parameters of F.

For such an extension L/F define [P2]

$$N_{L/F}: K_n^{\text{top}}(L) \to K_n^{\text{top}}(F)$$

as induced by $N_{L/F}: L^* \to F^*$. For a separable extension L/F find a tower of subextensions

$$F = F_0 - F_1 - \dots - F_{r-1} - F_r = L$$

such that F_i/F_{i-1} is a cyclic extension of prime degree and define

$$N_{L/F} = N_{F_1/F_0} \circ \dots \circ N_{F_r/F_{r-1}}$$

Geometry & Topology Monographs, Volume 3 (2000) – Invitation to higher local fields

To prove correctness use the non-degenerate pairings of subsection 6.4 and the properties

$$(N_{L/F}\alpha,\beta]_{F,r} = (\alpha,i_{F/L}\beta]_{L,r}$$

for *p*-extensions;

$$t\left(N_{L/F}\alpha,\beta\right)_{F} = t(\alpha,i_{F/L}\beta)_{L}$$

for prime-to-p-extensions (t is the tame symbol of 6.4.2).

7.5. Parshin's reciprocity map

Parshin's theory [P2], [P3] deals with three partial reciprocity maps which then can be glued together.

Proposition ([P3]). Let L/F be a cyclic *p*-extension. Then the sequence

$$0 \to \widetilde{K}_n(F) \xrightarrow{i_{F/L}} \widetilde{K}_n(L) \xrightarrow{1-\sigma} \widetilde{K}_n(L) \xrightarrow{N_{L/F}} \widetilde{K}_n(F)$$

is exact and the cokernel of $N_{L/F}$ is a cyclic group of order |L:F|.

Proof. The sequence is dual (with respect to the pairing of 7.3) to

$$\widetilde{W}(F) \to \widetilde{W}(L) \xrightarrow{1-\sigma} \widetilde{W}(L) \xrightarrow{\operatorname{Tr}_{L/F}} \widetilde{W}(F) \to 0.$$

The norm group index is calculated by induction on degree.

Hence the class of p-extensions of F and $\widetilde{K}_n(F)$ satisfy the classical class formation axioms. Thus, one gets a homomorphism $\widetilde{K}_n(F) \to \text{Gal}(F^{\text{abp}}/F)$ and

$$\Psi_F^{(p)}: K_n^{\mathrm{top}}(F) \to \mathrm{Gal}(F^{\mathrm{abp}}/F)$$

where F^{abp} is the maximal abelian *p*-extension of *F*. In the one-dimensional case this is Kawada–Satake's theory [KS].

The valuation map v of 6.4.1 induces a homomorphism

$$\Psi_F^{(\mathrm{ur})}: K_n^{\mathrm{top}}(F) \to \mathrm{Gal}(F_{\mathrm{ur}}/F),$$

 $\{t_1, \ldots, t_n\} \rightarrow$ the lifting of the Frobenius automorphism of K_0^{sep}/K_0 ;

and the tame symbol t of 6.4.2 together with Kummer theory induces a homomorphism

$$\Psi_F^{(p')}: K_n^{\text{top}}(F) \to \text{Gal}(F(\sqrt[q-1]{t_1}, \ldots, \sqrt[q-1]{t_n})/F)$$

The three homomorphisms $\Psi_F^{(p)}$, $\Psi_F^{(ur)}$, $\Psi_F^{(p')}$ agree [P2], so we get the reciprocity map

$$\Psi_F: K_n^{\text{top}}(F) \to \text{Gal}(F^{\text{ab}}/F)$$

with all the usual properties.

Geometry & Topology Monographs, Volume 3 (2000) - Invitation to higher local fields

11		

Remark. For another rather elementary approach [F1] to class field theory of higher local fields of positive characteristic see subsection 10.2. For Kato's approach to higher class field theory see section 5 above.

References

- [F1] I. Fesenko, Multidimensional local class field theory II, Algebra i Analiz (1991); English translation in St. Petersburg Math. J. 3(1992), 1103–1126.
- [F2] I. Fesenko, Abelian local *p*-class field theory, Math. Ann. 301(1995), 561–586.
- [KS] Y. Kawada and I. Satake, Class formations II, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 7(1956), 353–389.
- [P1] A. N. Parshin, Class fields and algebraic *K*-theory, Uspekhi Mat. Nauk 30(1975), 253–254; English translation in Russian Math. Surveys.
- [P2] A. N. Parshin, Local class field theory, Trudy Mat. Inst. Steklov. (1985); English translation in Proc. Steklov Inst. Math. 1985, issue 3, 157–185.
- [P3] A. N. Parshin, Galois cohomology and Brauer group of local fields, Trudy Mat. Inst. Steklov. (1990); English translation in Proc. Steklov Inst. Math. 1991, issue 4, 191–201.

Department of Mathematics University of Nottingham Nottingham NG7 2RD England E-mail: ibf@maths.nott.ac.uk