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1. Higher dimensional local fields and L-functions

A. N. Parshin

1.0. Introduction

1.0.1. Recdl [P1], [FP] that if X isascheme of dimension » and
XoCcX1C ... X,1CX,=X
isaflag of irreducible subschemes (dim(X;) =), then one can define aring

KXo ,,,, Xn-1

associated to the flag. In the case where everything is regularly embedded, the ring is
an n-dimensional local field. Then one can form an adelic object

where the product is taken over al the flags with respect to certain restrictions on
components of adeles[P1], [Be], [Hu], [FP].

Example. Let X bean algebraic projectiveirreducible surface over afield k£ and let
P beaclosed point of X, C' C X beanirreducible curvesuchthat P € C.

If X and C aresmooth at P, thenwelet t € Ox p bealocal equation of C at
P and v € Ox p besuchthat u|c € O¢ p isalocal parameter at P. Denote by €
theideal defining the curve C' near P. Now we can introduce a two-dimensional local
field Kp ¢ attachedtothepair P, C by thefollowing procedureincluding completions
and localizations:

Ox.p = k(P)[u,t]] > € = (¢)
(6 X.,P)e = discrete valuation ring with residue field &£(P)((w))
|
Opc:=(Oxp)e = k(P)((u))[t]]
Kpo =Frac(Opc) = k(P)(w)(1))
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200 A. N. Parshin

Notethat theleft hand side construction ismeaningful without any smoothness condition.

Let Kp betheminimal subringof K p ~ whichcontains £(X) and Gx,p. Thering
Kp isnotafieldingeneral. Then K C Kp C Kp ¢ andthereisanother intermediate
subring K¢ = Frac(O¢) C Kp. Notethat in dimension 2 thereis a duality between
points P and curves C' (generalizing the classical duality between points and linesin
projective geometry). We can compare the structure of adelic componentsin dimension
one and two:

Kp Kpc
/" N\
Kp Ke
NS
K K

1.0.2. In the one-dimensional case for every character x: GaI(Kab/K) — C* we
have the composite

VoAt =] Ky P, Ga(k®/K) X .
J. Tate[T] and independently K. lwasawaintroduced an analytically defined L-function

L) = [ fay@laa

where d* isaHaar measureon A* andthefunction f belongsto the Bruhat—Schwartz
space of functionson A (for the definition of this space seefor instance[W1, Ch. V11]).
For aspecial choiceof f and x = 1 we get the {-function of the scheme X

(x(s) = [J@-N@™),

reX

if dim(X) =1 (adding the archimedean multipliersif necessary). Here x runsthrough
the closed points of the scheme X and N(z) = |k(z)|. The product converges for
Re(s) > dim X. For L(s,x, f) they proved the analytical continuation to the whole
s-plane and the functional equation

L(87 X f) = L(l - S, X_17 j.\)v
using Fourier transformation ( f — f) onthe space Ax (cf. [T], [W1], [W2]).
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Part 1. Section 1. Higher local fieldsand L-functions 201

1.0.3. Schemes can be classified according to their dimension

dim(X) geometric case arithmetic case

2 agebraic surface /F, arithmetic surface
1 agebraic curve /F, arithmetic curve
0 Spec(F,) Spec(F1)

where 1 isthe “field of one element”.

The analytical method worksfor the row of the diagram corresponding to dimension
one. The problem to prove analytical continuation and functional equation for the
¢-function of arbitrary scheme X (Hasse-Weil conjecture) was formulated by A. Weil
[W2] as a generalization of the previous Hasse conjecture for algebraic curves over
fields of algebraic numbers, see [S1],[S2]. It was solved in the geometric situation by
A. Grothendieck who employed cohomological methods [G]. Up to now there is no
extension of this method to arithmetic schemes (see, however, [D]). On the other hand,
a remarkable property of the Tate-lwasawa method is that it can be simultaneously
applied to the fields of algebraic numbers (arithmetic situation) and to the algebraic
curves over afinite field (algebraic situation).

For a long time the author has been advocating (see, in particular, [P4], [FP]) the
following:

Problem. Extend Tate-lwasawa's analytic method to higher dimensions.

The higher adeles were introduced exactly for this purpose. In dimension one the
adelic groups Ax and A% are locally compact groups and thus we can apply the
classical harmonic analysis. The starting point for that is the measure theory on locally
compact local fields such as Kp for the schemes X of dimension 1. So we have the
following:

Problem. Develop a measure theory and harmonic analysis on n-dimensional local
fields.

Note that n-dimensional local fields are not locally compact topological spaces for
n > 1 and by Weil’s theorem the existence of the Haar measure on atopological group
impliesits locally compactness [W3, Appendix 1].

In this work several first stepsin answering these problems are described.
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1.1. Riemann-Hecke method

When one tries to write the {-function of a scheme X as a product over loca fields
attached to the flags of subvarieties one meets the following obstacle. For dimension
greater than one the local fields are parametrized by flags and not by the closed points
itself asinthe Euler product. Thisproblemisprimary to any problemswith the measure
and integration. | think we have to return to the case of dimension one and reformulate
the Tate-lwasawa method. Actually, it means that we have to return to the Riemann—
Hecke approach [He] known long before the work of Tate and Iwasawa. Of coursg, it
was the starting point for their approach.

The main point is a reduction of the integration over ideles to integration over a
single (or finitely many) local field.

Let C' be asmooth irreducible complete curve defined over afield k£ = F,.

Put K = k(C). For aclosed point = € C' denote by K, the fraction field of the
completion 0, of thelocal ring O,.

Let P be afixed smooth k-rationa pointof C. Put U =C\ P, A=T(U,0¢).
Notethat A isadiscrete subgroup of Kp.

A classical method to calculate ¢-functionisto writeit asaDirichlet seriesinstead
of the Euler product:

o= > %
1€Div(O¢)

where Div (O¢) isthe semigroup of effective divisors, I =3 _ n.x, n, € Z and
n, =0 foramostal z € C,

|e = H q—an\k(m):k\.
zeX
Rewrite (c(s) as
Crs)Cr(s) = (Z |1|SU) ( > m;).
Icu supp(1)=P

Denote A’ = A\ {0}. For the sake of simplicity assume that Pic(U) = (0) and
introduce A” suchthat A” Nk* = (1) and A’ = A”k*. Thenforevery I C U there
isaunique b € A” suchthat I = (b). Wealso write |b|. =|(b)|. for « = P,U. Then
from the product formula |b|c = 1 we get |b|y = [b|5*. Hence

= (X ) (S am)= (X w) [ @

be A" m>o be A
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wherein the last equality we have used local Tate's calculation, f+ = i*56P’ it Ky —
Kp, 5613 is the characteristic function of the subgroup Op, d*(@*P) =1. Therefore

Cels) = Z / lab™ % fe(a)d*a

vear Jacks,

=S [ leprodes [ pdnE@d
be A c=ab—1 K%,
where F(c) =3, c 4/ f+(bo).

Thus, the calculation of (<(s) is reduced to integration over the single local field
Kp. Thenwe can proceed further using the Poisson summation formula applied to the
function F'.

This computation can be rewritten in amore functorial way as follows

Ce(®)=A] I*, fo)a (| I°s frye = I>i"(F))axa = (| I*,Js 0" (F))a,

where G = K}, (f,f')a = fG ff'dg and we introduced the functions fg = §4~ =
sumof Dirac’s §, overal a € A” and f; = §9, on Kp andthefunction F = fo® f1
on Kp x Kp. We aso have the norm map | |:G — C7*, the convolution map
j:G x G — G, j(z,y) =z 1ty andtheinclusion i:G x G — Kp x Kp.

For the appropriate classes of functions fo and f; there are (-functions with a
functional equation of the following kind

¢(s, for f1) = ¢ — s, fo, 1),

where f is a Fourier transformation of f. We will study the corresponding spaces of
functions and operationslike j, or i* in subsection 1.3.

Remark 1. We assumed that Pic(U) istrivial. To handle the general case one has to
consider the curve C' with several points removed. Finiteness of the Pic’(C)) implies
that we can get an open subset U with this property.

1.2. Restricted adelesfor dimension 2

1.2.1. Letusdiscussthesituation for dimension one once more. \We consider the case
of the algebraic curve C as above.
One-dimensional adelic complex

Ko ] 0. - H;ech”

zeC
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can be included into the following commutative diagram

K& [LecOs ——  Iliecks

l |

where the vertical map induces an isomorphism of cohomologies of the horizontal
complexes. Next, we have a commutative diagram

K&0p —— [[LpK./0, & Kp

| l

K/A —— H;;,PKI/@T

where the bottom horizontal arrow is an isomorphism (the surjectivity follows from
the strong approximation theorem). This shows that the complex A @ Op — Kp is
guasi-isomorphic to the full adelic complex. The construction can be extended to an
arbitrary locally free sheaf 3 on C' and we obtain that the complex

WaoTFp —Fp @5, Kp,

where W =T (F,C \ P) C K, computes the cohomology of the sheaf F.

This fact is essential for the analytical approach to the ¢-function of the curve C.
To understand how to generalize it to higher dimensions we have to recall another
applications of this diagram, in particular, the so called Krichever correspondencefrom
the theory of integrable systems.

Let ~ bealoca parameter at P, so 6]:' = k[[z]]. The Krichever correspondence
assigns points of infinite dimensional Grassmanians to (C, P, z) and a torsion free
coherent sheaf of Oc-moduleson C. In particular, there is an injective map from
classes of triples (C, P, z) to A C k((z)). In[P5] it was generalized to the case of
algebraic surfaces using the higher adelic language.

1.2.2. Let X beaprojectiveirreducible algebraic surface over afield k, C C X be
an irreducible projective curve, and P € C' be asmooth point on both C' and X.
In dimension two we start with the adelic complex

Ag® AL ©Ar — Aot © Agx @ A1 — Aoro,
where
Ag=K=k(X), A1=]]0c. A2=]] 0.,

cCcX zeX
! ! ! -~ /
A1 = HCCXKCaAOZ = HmeXK:mAH = HmeC@z,c,Amz =Ax = ][ Kec-
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In fact one can pass to another complex whose cohomologies are the same as of the
adelic complex and which is a generalization of the construction for dimension one. We
have to make the following assumptions: P € C' isasmooth point on both C' and X,
and the surface X \ C' isaffine. The desired complex is

A@Ac@apHBc@BP@aRC_’KP,C

wheretherings B, Bc, Ac and A havethefollowing meaning. Let z € C. Let

B.= ) (KN 693717) wherethe intersection istaken inside K ;
DFC
Be = Ke N () Bg) wheretheintersection istakeninside K, ¢;
7P

Ac=Bc N 60, A=Kn (ma:EX\C az)

This can be easily extended to the case of an arbitrary torsion free coherent sheaf F
on X.

1.2.3. Returning back to the question about the ¢-function of the surface X over
k =TF, wesuggest to write it as the product of three Dirichlet series

x()= e r@ = (X ) (X us) (X k).

Icx\C ICC\P IcSpec(E‘)\p,c)

Againwe can assumethat the surface U = X \ C' hasthe most trivial possible structure.
Namely, Pic(U) = (0) and Ch(U) = (0). Then every rank 2 vector bundle on U is
trivial. In the general case one can remove finitely many curves C from X to passto
the surface U satisfying these properties (the same idea was used in the construction of
the higher Bruhat—Tits buildings attached to an algebraic surface [ P3, sect. 3]).

Therefore any zero-ideal I with supportin X \ C, C'\ P or P can be defined
by functionsfromtherings A, A and Op, respectively. The fundamental difference
between the case of dimension one and the case of surfacesis that zero-cycles I and
ideals of finite colength on X are not in one-to-one correspondence.

Remark 2. In[P2], [FP] we show that the functiona equation for the L-function on
an algebraic surface over afinite field can be rewritten using the K»-adeles. Then it
has the same shape as the functional equation for algebraic curves written in terms of
A*-adeles (asin [W1]).
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1.3. Typesfor dimension 1
We again discuss the case of dimension one. If D isadivisor onthe curve C' then the
Riemann—Roch theorem says

(D) — (K¢ — D) = deg(D) + x(Oc),

whereasusua (D) =dim T'(C,0x (D)) and K¢ isthecanonical divisor. If A = A ¢
and A; = A(D) then

HY(C,0x(D) = A/(A(D)+K),  HC,0x(D))=AD)N K
where K =T,(C). We have the following topological properties of the groups:

A locally compact group,
A(D) compact group,
K discrete group,

AD)NK finite group,
AD)+ K group of finite index of A.

The group A isdual toitself. Fix arational differential form w € Q}., w # 0 and
an additive character ¢ of IF,. Thefollowing bilinear form

(), (92)) = > resu(fogaw), (fu):(92) € A

x

is non-degenerate and defines an auto-duality of A.
If wefix aHaar measure dx on A then we also have the Fourier transform

@)= F)= [ oty
for functionson A and for distributions F' defined by the Parseval equality
(F, ) = (F,9).

One can attach some functions and/or distributions to the subgroups introduced above

op = the characteristic function of A(D)

Ot = the characteristic function of A(D) + K

Sk = » 46, wheres, isthe delta-function at the point
yeK

Sgo =D by
~yeA(D)NK

There are two fundamental rules for the Fourier transform of these functions
dp = vol (A(D))dapy 5
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where

A(D)* = A((w) - D),
and

o = vol(A/I) Y6

for any discrete co-compact group . In particular, we can apply thatto I = K =T+,
We have
(0x,0p) = #(K N AD)) = ¢,
(Ox,0p) = VOl(A(D)VOI(A/K) Y6k, 65— p) = ¢U9P x(0) gl(Kc—D)
and the Parseval equality gives us the Riemann—Roch theorem.
Thefunctionsin these computations can be classified according to their types. There
are four types of functions which were introduced by F. Bruhat in 1961 [Br].

Let V' be a finite dimensional vector space over the adelic ring A (or over an
one-dimensional local field K with finite residue field I, ). We put

D = {locally constant functions with compact support},
& = {locally constant functions},

D’ ={dua toD = al distributions},

& ={dual to & = distributions with compact support}.

Every V hasafiltration P O Q D R by compact open subgroupssuchthat all quotients
P/@ arefinite dimensional vector spacesover F,,.

If V,V' arethevector spacesover I, of finite dimension then for every homomor-
phism i: V' — V' there are two maps

FV) L v, TV S F(),

of the spaces F(V) of dl functionson V (or V') with valuesin C. Here i* isthe
standard inverseimage and i, is defined by
, , 0, if o' ¢ im(7)
W f@) = { ¢ .
Y we f(v), otherwise.

The maps i, and i* are dual to each other.
We apply these constructions to give a more functorial definition of the Bruhat
spaces. For any triple P, @, R as above we have an epimorphism i: P/R — P/Q

with the corresponding map for functions F(P/Q) “, F(P/R) and amonomorphism
j:Q/R — P/R with the map for functions F(Q/R) > F(P/R).
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Now the Bruhat spaces can be defined as follows

The spaces don’t depend on the choice of the chain of subspaces P, Q, R. Clearly we
have

op € D(A),
5K S D/(A),
dyo € E'(A),
O € E(A).
Wehavethe samerelationsfor thefunctions §¢, and § 4~ onthegroup K p considered
in section 1.
The Fourier transform preservesthe spaces D and D’ but interchanges the spaces

€ and &’. Recalling the origin of the subgroups from the adelic complex we can say
that, in dimension one the types of the functions have the following structure

& 01
/ AN / AN
D D’ 1 0
AN / AN /
& 0
corresponding to the full simplicial division of an edge. The Fourier transform is a
reflection of the diagram with respect to the middle horizontal axis.
The main properties of the Fourier transform we need in the proof of the Riemann-
Roch theorem (and of the functional equation of the ¢-function) can be summarized as
the commutativity of the following cube diagram

j*

2l / i
D ® D/ i l 8/ a*
i ¢/ o F(Fy)
/ lﬁ* /
& B F(Fq)
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coming from the exact sequence
AbaeAla,
with i(a) = (a, a), j(a,b) =a — b, and the maps
Fr %A L F

with a(0) = 0, [(a) = 0. Here F; isthe field of one element, F(F,) = C and the
arrows with heads on both ends are the Fourier transforms.
In particular, the commutativity of the diagram implies the Parseval equality used

above:

(F,G)=B.oi"(Foq)

=, 0i"(F @ G) = B,5.(F © G)

=" 0 i(FRG)=pi0t"(FRG)

= (F, Q).

Remark 3. These constructions can be extended to the function spaces on the groups
G(A) or G(K) for alocal field K and agroup scheme G.

1.4. Typesfor dimension 2

In order to understand the types of functionsin the case of dimension 2 we haveto look
at the adelic complex of an algebraic surface. We will use physical notations and denote
a space by the discrete index which corresponds to it. Thus the adelic complex can be
written as

P —>0p1H2—-01602¢12 — 012,

where ) stands for the augmentation map corresponding to the inclusion of HO. Just
asin the case of dimension onewe have aduality of A = Agy»> = 012 withitself defined
by abilinear form

((f2.0), @z.0)) = Y 16y cfacgacw),  (f0) (grc) € A

z,C

which is also hon-degenerate and defines the autoduality of A.
It can be shown that

Ap=AorNAgp, Ay =Ag, Ap=Agp, A =Ag® Ag,
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and so on. The proofsdepend onthefollowing residuerelationsfor arational differential
form w € QF

foralz e X > res, o(w) =0,
Cox

forall C c X > res, o(w) = 0.
zeC
We see that the subgroups appearing in the adelic complex are not closed under the
duality. It means that the set of types in dimension two will be greater then the set of
types coming from the components of the adelic complex. Namely, we have:

Theorem 1 ([P4]). Fix adivisor D on an algebraic surface X and let A, = A(D).
Consider thelattice £ of the commensurability classes of subspacesin A x generated
by subspaces Ao]_, Aoz, Aqo.

Thelattice £ isisomorphic to a free distributive lattice in three generators and has
the structure shown in the diagram.

01+12 01+02 02+12
X S
/ \
2+01 0+12 1+02

Remark 4. Two subspaces V, V' are called commensurableif (V +V')/V NV’ isof
finite dimension. In the one-dimensional case all the subspaces of the adelic complex
are commensurable (even the subspaces corresponding to different divisors). In this
case we get a free distributive lattice in two generators (for the theory of lattices see

[Bi]).
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Just as in the case of curves we can attach to every node some space of functions
(or distributions) on A. We describe here a particular case of the construction, namely,
the space Fyp corresponding to the node 02. Also we will consider not the full adelic
group but asingle two-dimensional local field K =T, ((w))((t)).

In order to define the space we use the filtration in K by the powers M™ of the
maximal ideal M = F,((u))[[t]]t of K asadiscrete valuation (of rank 1) field. Then
we try to use the same procedure as for the local field of dimension 1 (see above).

If P D> Q D R aretheelements of the filtration then we need to define the maps

D(P/R) = D(P/Q),  D(P/R) *- D(Q/R)

corresponding to an epimorphism i: P/R — P/@Q and a monomorphism j:Q/R —
P/R. Themap j* isarestriction of thelocally constant functionswith compact support
and it is well defined. To define the direct image i, one needs to integrate along the
fibers of the projection . To do that we haveto choose a Haar measure on the fibersfor
all P, Q, R inaconsistent way. In other words, we need a system of Haar measures
on al quotients P/Q and by transitivity of the Haar measures in exact sequencesit is
enough to do that on all quotients M”™ /M™*L.

Since Ox /M = F,((u)) = K1 we can first choose a Haar measure on the residue
field K. It will depend on the choice of afractiona idea MﬁKl normalizing the Haar

measure. Next, we have to extend the measure on all M”/M"*1. Again, it is enough
to choose a second local parameter ¢ which gives an isomorphism

" O /M — M /ML
Having made these choices we can put as above
Foz = lim-lim; D(P/Q)

where the space D was introduced in the previous section.
We see that contrary to the one-dimensional case the space Fpp isnot intrinsically
defined. But the choice of al additional data can be easily controlled.

Theorem 2 ([P4]). The set of the spaces Fg, is canonically a principal homogeneous
space over the valuation group I i of thefield K.

Recall that I - isnhon-canonically isomorphic to thelexicographically ordered group
YASY/

One can extend this procedure to other nodes of the diagram of types. In particular,
for 012 we get the space which does not depend on the choice of the Haar measures.

The standard subgroup of thetype 02 is Bp = IFp[[u]]((t)) anditis clear that

5BP € Foo.

The functions ¢z, and 561:0 havethetypes 01, 12 respectively.
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Remark 5. Notethat the whole structure of all subspacesin A or K corresponding to
different divisorsor coherent sheavesismore complicated. Thespaces A(D) of type 12
are no more commensurable. To describe the whole lattice one has to introduce several
equivalence relations (commensurability up to compact subspace, a locally compact
subspace and so on).
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