Geometry $\mathcal{E}^{\mathcal{J}}$ Topology Monographs

Volume 4: Invariants of knots and 3-manifolds (Kyoto 2001)
Pages 55-68

On the quantum $s l_{2}$ invariants of knots and integral homology spheres

Kazuo Habiro

Abstract

We will announce some results on the values of quantum $s l_{2}$ invariants of knots and integral homology spheres. Lawrence's universal $s l_{2}$ invariant of knots takes values in a fairly small subalgebra of the center of the h-adic version of the quantized enveloping algebra of $s l_{2}$. This implies an integrality result on the colored Jones polynomials of a knot. We define an invariant of integral homology spheres with values in a completion of the Laurent polynomial ring of one variable over the integers which specializes at roots of unity to the Witten-Reshetikhin-Turaev invariants. The definition of our invariant provides a new definition of Witten-ReshetikhinTuraev invariant of integral homology spheres.

AMS Classification 57M27; 17B37
Keywords Quantum invariant, colored Jones polynomial, universal invariant, Witten-Reshetikhin-Turaev invariant

1 Introduction

The purpose of this note is to announce some new results on the values of quantum $s l_{2}$ invariants of knots and integral homology spheres. We give a fairly small subalgebra of the center of the quantized enveloping algebra $U_{h}\left(s l_{2}\right)$ of $s l_{2}$ in which Lawrence's universal $s l_{2}$ invariant of knots takes values (Theorem [2.1]. This implies a formula for the colored Jones polynomials of a knot (Theorem 3.11). We define an invariant $I(M)$ of integral homology spheres M with values in a completion of the Laurent polynomial ring $\mathbb{Z}\left[q, q^{-1}\right]$ which specializes at roots of unity to the $s l_{2}$ Witten-Reshetikhin-Turaev (WRT) invariants. (Theorem 4.1). The definition of $I(M)$ leads to a new definition of WRT invariant of integral homology spheres since we do not use the WRT invariant in defining $I(M)$. The invariant $I(M)$ is as strong as the totality of the WRT invariants at various roots of unity, and also as the Ohtsuki series (Theorem 4.8). The proofs, details and some generalizations will appear in separate papers [2].

Acknowledgement Part of this work was presented at the project "Invariants of Knots and 3-Manifolds" held at Research Institute for Mathematical Sciences, Kyoto University in September, 2001. I am grateful to Tomotada Ohtsuki for giving me the opportunities to give talks there. I also thank Thang Le for numerous conversations and correspondence.

2 Lawrence's universal $s l_{2}$-invariant of links

Let us recall the definition of the universal $s l_{2}$-invariant introduced by Lawrence [6]. She actually introduced the invariant for more general Lie algebra, but we will consider only the $s l_{2}$ case.

2.1 The algebra $U_{h}\left(s l_{2}\right)$

Let $U_{h}=U_{h}\left(s l_{2}\right)$ denote the quantized enveloping algebra of the Lie algebra $s l_{2}$, i.e., the h-adically complete $\mathbb{Q}[[h]]$-algebra topologically generated by H, E, F with the relations

$$
H E=E(H+2), H F=F(H-2), E F-F E=\frac{\exp (h H / 2)-\exp (-h H / 2)}{\exp (h / 2)-\exp (-h / 2)}
$$

It is useful to introduce the elements

$$
v=\exp (h / 2)
$$

and

$$
K=v^{H}=\exp (h H / 2) .
$$

For each $n \in \mathbb{Z}$, set

$$
[n]=\left(v^{n}-v^{-n}\right) /\left(v-v^{-1}\right) \in \mathbb{Z}\left[v, v^{-1}\right] .
$$

and for $n \geq 0$ set

$$
[n]!=[1][2] \ldots[n] .
$$

The algebra U_{h} has the structure of topological Hopf algebra given by

$$
\begin{gather*}
\Delta(H)=H \otimes 1+1 \otimes H, \quad \epsilon(H)=0, \quad S(H)=-H \tag{1}\\
\Delta(E)=E \otimes K+1 \otimes E, \quad \epsilon(E)=0, \quad S(E)=-E K^{-1} \tag{2}\\
\Delta(F)=F \otimes 1+K^{-1} \otimes F, \quad \epsilon(F)=0, \quad S(F)=-K F . \tag{3}
\end{gather*}
$$

Figure 1: The fundamental tangle diagrams

The Hopf algebra U_{h} has a universal R-matrix

$$
R=v^{\frac{1}{2} H \otimes H} \sum_{n \geq 0} v^{n(n-1) / 2} \frac{\left(v-v^{-1}\right)^{n}}{[n]!}\left(E^{n} \otimes F^{n}\right)
$$

and a ribbon element

$$
r=K^{-1} \sum S\left(R_{(2)}\right) R_{(1)},
$$

where we write $R=\sum R_{(1)} \otimes R_{(2)}$.

2.2 Definition of the universal $s l_{2}$ invariant

Let T be an oriented tangle diagram in $\mathbb{R} \times[0,1]$. By small isotopy we may assume that the critical points of the strings composed with the "height function" onto $[0,1]$ are nondegenerate. We may also assume that on each crossing the two intersecting strings are not critical. As is well known, T can be obtained from the fundamental tangle diagrams depicted in Figure by composition (i.e., pasting vertically) and tensor product (i.e., pasting horizontally) up to isotopy of $\mathbb{R} \times[0,1]$.
Let T be a tangle diagram as above consisting of l strings K_{1}, \ldots, K_{l} and m circle components $K_{1}^{\prime}, \ldots, K_{m}^{\prime}$. Choose a base point b_{i} of each K_{i}^{\prime} disjoint from the critical points and crossings.
We define below two elements J_{T}^{\prime} and J_{T} by pretending for simplicity that we have $R=R_{(1)} \otimes R_{(2)}$ with $R_{(1)}, R_{(2)} \in U_{h}$, though R actually is an (infinite) sum of elements of the form $a \otimes b \in U_{h} \otimes U_{h}$. The precise definition of J_{T}^{\prime} follows from multilinearity. We put elements of U_{h} on the two strings near each crossing and on the string near each right-directed critical points as depicted in Figure 2. Then apply the antipode S to each element put on up-oriented strings. For each K_{i}, let $J_{\left(K_{i}\right)}$ be the expression obtained by reading from left to right the elements on K_{i} in the opposite orientation. Similarly, let $J_{\left(K_{i}^{\prime}, b_{i}\right)}^{\prime}$ be the similarly obtained expression for K_{i}^{\prime} reading from the base points b_{i}. Then the expression

$$
J_{T}^{\prime}=\sum J_{\left(K_{1}\right)} \otimes \cdots \otimes J_{\left(K_{l}\right)} \otimes J_{\left(K_{1}^{\prime}, b_{1}\right)} \otimes \cdots \otimes J_{\left(K_{l}^{\prime}, b_{l}\right)}
$$

Figure 2: How to put elements of U_{h} on the strings
defines an element of $U_{h}^{\hat{\otimes}(l+m)}$, the h-adic completion of the $(l+m)$-fold tensor product of U_{h}.
Let I denote the h-adic closure of the $\mathbb{Q}[[h]]$-submodule of U_{h} generated by the commutators $x y-y x$ for $x, y \in U_{h}$. For $x \in U_{h}$, let $[x]_{I}$ denote the coset $x+I \in U_{h} / I$. For a tangle diagram T as above, set $J_{\left(K_{i}^{\prime}\right)}=\left[J_{\left(K_{i}^{\prime}, b_{i}\right)}\right]_{I}$, which does not depend on the choice of the base point of K_{i}^{\prime}. Then the expression

$$
J_{T}=\sum J_{\left(K_{1}\right)} \otimes \cdots \otimes J_{\left(K_{l}\right)} \otimes J_{\left(K_{1}^{\prime}\right)} \otimes \cdots \otimes J_{\left(K_{l}^{\prime}\right)}
$$

defines an element of $U_{h}^{\hat{\otimes} l} \hat{\otimes}\left(U_{h} / I\right)^{\hat{\otimes} m}$, where $\hat{\otimes}$ denote the h-adically completed tensor product. It is well known that J_{T} is invariant under isotopy of diagrams (fixing endpoints) and framed Reidemeister moves, and defines an invariant of framed tangles with total order on the set of components. J_{T} is called the universal $s l_{2}$ invariant of T.
In the case of string knot K (i.e., a 1 -string string link), the universal $s l_{2}$ invariant J_{K} of K is contained in U_{h}. It is well known that J_{K} is contained in the center $Z\left(U_{h}\right)$ of U_{h}. It is also well known that $Z\left(U_{h}\right)$ is as a complete $\mathbb{Q}[[h]]$-algebra topologically freely generated by the element

$$
c=F E+\frac{v K+v^{-1} K^{-1}-v-v^{-1}}{\left(v-v^{-1}\right)^{2}} .
$$

2.3 Integrality of the universal $s l_{2}$ invariant

Let C denote the well known central element of U_{h}

$$
C=\left(v-v^{-1}\right)^{2} F E+v K+v^{-1} K^{-1} \in Z\left(U_{h}\right)
$$

and set

$$
\sigma_{n}=\prod_{i=1}^{n}\left(C^{2}-\left(v^{i}+v^{-i}\right)^{2}\right) \in Z\left(U_{h}\right)
$$

We also set

$$
q=v^{2} \in \mathbb{Q}[[h]],
$$

and regard $\mathbb{Z}\left[q, q^{-1}\right]$ as a subring of $\mathbb{Q}[[h]]$.

Theorem 2.1 Let K be a string knot with 0 framing. Then there are unique elements $a_{n}(K) \in \mathbb{Z}\left[q, q^{-1}\right]$ for $n \geq 0$ such that

$$
J_{K}=\sum_{n \geq 0} a_{n}(K) \sigma_{n} .
$$

For a knot K with 0 -framing and an integer $n \geq 0$, let $a_{n}(K) \in \mathbb{Z}\left[q, q^{-1}\right]$ denote the element determined by Theorem [2.1. If K^{\prime} is a string knot with 0 -framing with the closure equivalent to K, then set $a_{n}\left(K^{\prime}\right)=a_{n}(K)$.

3 Colored Jones polynomials of links

3.1 Finite dimensional representations of U_{h}

By a finite dimensional representation of U_{h} we mean as usual a left U_{h}-module which is free of finite rank as a $\mathbb{Q}[[h]]$-module. For each nonnegative integer n, there is exactly one irreducible $(n+1)$-dimensional representation V_{n+1} of U_{h}, which corresponds to the unique $(n+1)$-dimensional representation of $s l_{2}$. The representation V_{n+1} is defined as follows. As a $\mathbb{Q}[[h]]$-module, V_{n+1} is freely generated by the elements $\mathrm{v}_{0}, \mathrm{v}_{1}, \ldots, \mathrm{v}_{n}$. The left action is given by

$$
H \mathrm{v}_{i}=(n-2 i) \mathrm{v}_{i}, \quad E \mathrm{v}_{i}=[n+1-i] \mathrm{v}_{i-1}, \quad F \mathrm{v}_{i}=[i+1] \mathrm{v}_{i+1},
$$

for $i=0, \ldots, n$, where we set $\mathrm{v}_{-1}=\mathrm{v}_{n+1}=0$.
For a finite dimensional representation V of U_{h} and a $\mathbb{Q}[[h]]$-module endomorphism $g: V \rightarrow V$, the (left) quantum trace $\operatorname{tr}_{q}^{V}(f)$ of f is defined by

$$
\operatorname{tr}_{q}^{V}(f)=\operatorname{tr}\left(\rho_{V}(K) f\right)
$$

where $\rho_{V}: U_{h} \rightarrow \operatorname{End} V$ is the action of U_{h} on V. By abuse of notation, we set for $x \in U_{h}$,

$$
\operatorname{tr}_{q}^{V}(x)=\operatorname{tr}_{q}^{V}\left(\rho_{V}(x)\right),
$$

and call it the (left) quantum trace of x in V. We have

$$
\operatorname{tr}_{q}^{V}(x)=\operatorname{tr}\left(\rho_{V}(K x)\right) .
$$

If $z \in Z\left(U_{h}\right)$, then z acts on each V_{n+1} as a scalar (i.e., an element of $\left.\mathbb{Q}[[h]]\right)$. We have for any $v \in V_{n+1}$

$$
z v=\frac{\operatorname{tr}_{q}^{V_{n+1}}(z)}{[n+1]} v
$$

Here we have $\operatorname{tr}_{q}^{V_{n+1}}(1)=[n+1]$. We have

$$
\frac{\operatorname{tr}_{q}^{V_{n+1}}(z)}{[n+1]}=s_{n}(\varphi(z))
$$

where $\varphi: U_{h} \rightarrow \mathbb{Q}[H][[h]]$ is the h-adically continuous $\mathbb{Q}[[h]]$-linear map defined on the topological basis of U_{h} by

$$
\varphi\left(F^{i} H^{j} E^{k}\right)=\delta_{i, 0} \delta_{k, 0} H^{j}
$$

for $i, j, k \geq 0$, and $s_{n}: \mathbb{Q}[H][[h]] \rightarrow \mathbb{Q}[[h]]$ denote the $\mathbb{Q}[[h]]$-algebra homomorphism defined by $s_{n}(g(H))=g(n)$. The restriction of φ onto the h-adic closure $\left(U_{h}\right)_{0}$ of the $\mathbb{Q}[[h]]$-subalgebra spanned by $F^{i} H^{j} E^{i}, i, j \geq 0$, is a $\mathbb{Q}[[h]]$-algebra homomorphism known as the Harish-Chandra homomorphism. It is well known that φ maps the center $Z\left(U_{h}\right) \subset\left(U_{h}\right)_{0}$ bijectively onto the $\mathbb{Q}[[h]]$-subalgebra of $\mathbb{Q}[H][[h]]$ topologically generated by $(H+1)^{2}$.

3.2 Colored Jones polynomial of links

Let $L=\left(L_{1}, \ldots, L_{l}\right)$ be an ordered oriented framed link in S^{3} consisting of l components L_{1}, \ldots, L_{l}. For nonnegative integers n_{1}, \ldots, n_{l}, we can define the colored Jones polynomial $J_{L}\left(V_{n_{1}+1}, \ldots, V_{n_{l}+1}\right)$ of L associated with the "colors" $\left(n_{1}+1, \ldots, n_{l}+1\right)$ by

$$
\begin{equation*}
J_{L}\left(V_{n_{1}+1}, \ldots, V_{n_{l}+1}\right)=\left(\tilde{\mathrm{r}}^{V_{n_{1}+1}} \otimes \cdots \otimes \tilde{\operatorname{tr}}^{V_{n_{l}+1}}\right)\left(J_{L}\right) \tag{4}
\end{equation*}
$$

Here $\tilde{\operatorname{tr}^{V_{n_{i}+1}}}: U_{h} / I \rightarrow \mathbb{Q}[[h]]$ is defined by

$$
\tilde{\operatorname{tr}}^{V_{n_{i}+1}}\left([x]_{I}\right)=\operatorname{tr}\left(\rho_{V_{n_{i}+1}}(x)\right)
$$

(Usual definition of colored Jones polynomial involves braiding operators on finite dimensional representations. Our definition here is equivalent to the usual one.)
We choose an l-component string link $T=\left(T_{1}, \ldots, T_{l}\right)$ such that the closure of T is ambient isotopic to L. Then we have

$$
J_{L}\left(V_{n_{1}+1}, \ldots, V_{n_{l}+1}\right)=\left(\operatorname{tr}_{q}^{V_{n_{1}}+1} \otimes \cdots \otimes \operatorname{tr}_{q}^{V_{n_{l}}+1}\right)\left(J_{T}\right)
$$

3.3 The case of knots of framing 0

Let K be a string knot with 0 framing. Since $J_{K} \in Z\left(U_{h}\right), J_{K}$ acts on each representation $V_{n+1}, n \geq 0$, as a scalar, which we will denote by $J_{K}\left(V_{n+1}\right)$. It is well known that $J_{K}\left(V_{n+1}\right) \in \mathbb{Z}\left[q, q^{-1}\right]$. We have

$$
J_{\mathrm{cl}(K)}\left(V_{n+1}\right)=\operatorname{tr}_{q}^{V_{n+1}}\left(J_{K}\right)=[n+1] J_{K}\left(V_{n+1}\right)
$$

On the quantum $s l_{2}$ invariants
and

$$
J_{K}\left(V_{n+1}\right)=s_{n}\left(\varphi\left(J_{K}\right)\right) .
$$

Theorem 3.1 Let K be a string knot with 0 framing and let $n \geq 0$ be an integer. Then we have

$$
\begin{equation*}
J_{K}\left(V_{n+1}\right)=\sum_{i=0}^{n} a_{i}(K) \prod_{n+1-i \leq j \leq n+1+i, j \neq n+1}\left(v^{j}-v^{-j}\right) . \tag{5}
\end{equation*}
$$

Note that this sum may be regarded as the infinite sum $\sum_{i=0}^{\infty}$ since the terms for $i>n$ vanishes.

Theorem 3.1 provides a new proof for Rozansky's integral version [15] of the Melvin-Morton expansion [11] of the colored Jones polynomials of knots. (We do not mean here that Theorem 3.1 implies the Melvin-Morton conjecture, proved in [1], involving the Alexander polynomial.) It follows from (5) that

$$
J_{K}\left(V_{n+1}\right)=\sum_{i=0}^{\infty} a_{i}(K) \prod_{j=1}^{i}\left(\alpha^{2}-\left(v^{j}-v^{-j}\right)^{2}\right),
$$

where $\alpha=v^{n+1}-v^{-n-1}$. The right hand side may be regarded as an element of the completion ring

$$
\varliminf_{n} \mathbb{Z}\left[q, q^{-1}, \alpha^{2}\right] /\left(\prod_{j=1}^{n}\left(\alpha^{2}-q^{j}-q^{-j}+2\right)\right),
$$

with α^{2} being regarded as an indeterminate. There is a natural injective homomorphism from this ring to the formal power series ring $\mathbb{Z}\left[\left[q-1, \alpha^{2}\right]\right]$.

By expanding in powers of α^{2}, we have

$$
J_{K}\left(V_{n+1}\right)=\sum_{k=0}^{\infty} \alpha^{2 k}\left(\sum_{i=k}^{\infty}(-1)^{k-i} \tau_{i, i-k} a_{i}(K)\right),
$$

where

$$
\tau_{i, k}=\sum_{1 \leq p_{1}<\cdots<p_{k} \leq i} \prod_{r=1}^{k}\left(v^{p_{r}}-v^{-p_{r}}\right)^{2} .
$$

It is not difficult to see that for each $k \geq 0$, the coefficient

$$
\sum_{i=k}^{\infty}(-1)^{k-i} \tau_{i, i-k} a_{i}(K)
$$

of $\alpha^{2 k}$ defines an element of the completion ring

$$
\widehat{\mathbb{Z}[q]}=\varliminf_{\rightleftarrows} i \mathbb{Z}[q] /\left((q-1)\left(q^{2}-1\right) \cdots\left(q^{i}-1\right)\right) .
$$

In particular, the constant term

$$
\sum_{i=0}^{\infty}(-1)^{i}\left(\prod_{p=1}^{i}\left(v^{p}-v^{-p}\right)^{2}\right) a_{i}(K)
$$

specializes to the Kashaev invariants (4) 13] of K by substituting roots of unity for q.

3.4 Examples

Let 3_{1}^{+}(resp. 3_{1}^{-}) denote the trefoil knot with positive (resp. negative) signature, and let 4_{1} denote the figure eight knot. Then we have for each $n \geq 0$

$$
\begin{gather*}
a_{n}(\text { unknot })=\delta_{n, 0}, \tag{6}\\
a_{n}\left(3_{1}^{+}\right)=(-1)^{n} q^{\frac{1}{2} n(n+3)}, \tag{7}\\
a_{n}\left(3_{1}^{-}\right)=(-1)^{n} q^{-\frac{1}{2} n(n+3)}, \tag{8}\\
a_{n}\left(4_{1}\right)=1 . \tag{9}
\end{gather*}
$$

A formula for 4_{1} in (10) follows from (9) and (15).

3.5 The algebra \mathcal{R} and the basis P_{n}^{\prime}

If $m, n \geq 0$, then we have a direct sum decomposition of left U_{h}-modules

$$
V_{m+1} \otimes V_{n+1} \cong \bigoplus_{|m-n| \leq i \leq m+n, i \equiv m+n} \bmod 2<
$$

The Grothendieck ring $\mathcal{R}_{\mathbb{Z}}$ of finite dimensional representations of U_{h} is freely spanned over \mathbb{Z} by $V_{1}=1, V_{2}, V_{3}, \ldots$, and is isomorphic to $\mathbb{Z}\left[V_{2}\right]$. For a commutative ring with unit k, set

$$
\mathcal{R}_{k}=\mathcal{R}_{\mathbb{Z}} \otimes_{\mathbb{Z}} k=k\left[V_{2}\right] .
$$

For $n \geq 0$, set

$$
P_{n}=\prod_{i=0}^{n-1}\left(V_{2}-v^{2 i+1}-v^{-2 i-1}\right) \in \mathcal{R}_{\mathbb{Z}\left[v, v^{-1}\right]}
$$

On the quantum $s l_{2}$ invariants

We will also use the following normalizations

$$
P_{n}^{\prime}=\left(v-v^{-1}\right)^{-n}([n]!)^{-1} P_{n} \in \mathcal{R}_{\mathbb{Q}(v)}
$$

and

$$
P_{n}^{\prime \prime}=\left(v-v^{-1}\right)^{-2 n}([2 n+1]!)^{-1} P_{n} \in \mathcal{R}_{\mathbb{Q}(v)}
$$

Let $L=\left(L_{1}, \ldots, L_{l}\right)$ be a framed link of l components in S^{3}. Extend (4) multilinearly to define

$$
J_{L}\left(x_{1}, \ldots, x_{l}\right) \in \mathbb{Q}\left(v^{1 / 2}\right)
$$

for $x_{1}, \ldots, x_{l} \in \mathcal{R}_{\mathbb{Q}(v)}$. If L is algebraically split (i.e., the linking numbers are all 0) and with all framings 0 , then we have

$$
J_{L}\left(x_{1}, \ldots, x_{l}\right) \in \mathbb{Q}(v)
$$

Theorem 3.2 If K is a string knot with 0 framing and if $n \geq 0$, then we have

$$
a_{n}(K)=J_{\mathrm{cl}(K)}\left(P_{n}^{\prime \prime}\right)
$$

In particular we have

$$
J_{\mathrm{cl}(K)}\left(P_{n}^{\prime \prime}\right) \in \mathbb{Z}\left[q, q^{-1}\right] .
$$

Let \mathcal{R} denote the $\mathbb{Z}\left[v, v^{-1}\right]$-subalgebra of $\mathcal{R}_{\mathbb{Q}(v)}$ generated by the elements P_{n}^{\prime} for $n \geq 1$. As an $\mathbb{Z}\left[v, v^{-1}\right]$-module, \mathcal{R} is freely generated by the $P_{n}^{\prime}, n \geq 0$. For each $m \geq 0$, let \mathcal{R}_{m} denote the $\mathbb{Z}\left[v, v^{-1}\right]$-submodule of \mathcal{R} spanned by $P_{m}^{\prime}, P_{m+1}^{\prime}, \ldots$, which turns out to be an ideal in \mathcal{R}. The following theorem is a generalization of Theorem 3.2 to algebraically split framed links.

Theorem 3.3 Let $L=\left(L_{1}, \ldots, L_{l}\right)$ be an algebraically split framed link of l components in S^{3} with all framings 0 . If $x_{1}, \ldots, x_{l} \in \mathcal{R}$, then we have

$$
J_{L}\left(x_{1}, \ldots, x_{l}\right) \in \mathbb{Z}\left[v, v^{-1}\right]
$$

If one of the x_{i} is contained in $\mathcal{R}_{m}, m \geq 0$, then we have

$$
J_{L}\left(x_{1}, \ldots, x_{l}\right) \in \frac{\left(v-v^{-1}\right)^{m}[2 m+1]!}{[m]!} \mathbb{Z}\left[v, v^{-1}\right]
$$

It follows from the first half of Theorem 3.3 that if $L=\left(L_{1}, \ldots, L_{l}\right)$ is an algebraically split framed link with 0 -framings in S^{3}, then the $\mathbb{Q}(v)$-multilinear map $J_{L}: \mathcal{R}_{\mathbb{Q}(v)} \times \cdots \times \mathcal{R}_{\mathbb{Q}(v)} \rightarrow \mathbb{Q}(v)$ restricts to the $\mathbb{Z}\left[v, v^{-1}\right]$-multilinear map

$$
\begin{equation*}
J_{L}: \mathcal{R} \times \cdots \times \mathcal{R} \rightarrow \mathbb{Z}\left[v, v^{-1}\right] \tag{10}
\end{equation*}
$$

which induce the $\mathbb{Z}\left[v, v^{-1}\right]$-linear map

$$
\begin{equation*}
J_{L}: \mathcal{R} \otimes_{\mathbb{Z}\left[v, v^{-1}\right]} \cdots \otimes_{\mathbb{Z}\left[v, v^{-1}\right]} \mathcal{R} \rightarrow \mathbb{Z}\left[v, v^{-1}\right] . \tag{11}
\end{equation*}
$$

Set

$$
\hat{\mathcal{R}}=\lim _{m} \mathcal{R} / \mathcal{R}_{m},
$$

which is a commutative $\mathbb{Z}\left[v, v^{-1}\right]$-algebra. $\hat{\mathcal{R}}$ consists of the infinite sums $\sum_{m \geq 0} b_{m} P_{m}^{\prime}$, where $b_{m} \in \mathbb{Z}\left[v, v^{-1}\right]$ for $m \geq 0$. It follows from the second half of Theorem 3.3] that J_{L} in (10) induces a $\mathbb{Z}\left[v, v^{-1}\right]$-linear map

$$
\begin{equation*}
J_{L}: \hat{\mathcal{R}}^{\hat{\otimes} l} \rightarrow \widehat{\mathbb{Z}[v]}, \tag{12}
\end{equation*}
$$

where $\hat{\mathcal{R}}^{\hat{\otimes} l}$ denote the completion of the l-fold tensor product $\hat{\mathcal{R}} \otimes_{\mathbb{Z}\left[v, v^{-1}\right]}$ $\cdots \otimes_{\mathbb{Z}\left[v, v^{-1}\right]} \hat{\mathcal{R}}$ with respect to the natural tensor product topology induced by the completion topology of $\hat{\mathcal{R}}$, and $\widehat{\mathbb{Z}[v]}=\widehat{\mathbb{Z}[q]} \otimes_{\mathbb{Z}\left[q, q^{-1}\right]} \mathbb{Z}\left[v, v^{-1}\right]$. (Here recall that we set $q=v^{2}$.)

4 A universal $s l_{2}$ invariant of integral homology spheres

In this section we define an invariant $I(M) \in \widehat{\mathbb{Z}[q]}$ of integral homology spheres M, which we call the "universal $s l_{2}$-invariant" of M, since $I(M)$ is "universal" over the $s l_{2}$ WRT invariants at various roots of unity.

Remark Recall that Le 9 defined an invariant of closed 3-manifolds M with values in a "functional space" such that the $s l_{2}$ WRT invariants of M recovers from it via certain ring homomorphisms. However, his "functional space" is rather large, and since it involves complex functions, it does not give any information on the value of the WRT invariant at each root of unity.

Remark The use of the word "universal" here is with respect to the roots of unity, but the use in Lawrence's $s l_{2}$ universal link invariant is with respect to finite dimensional representations. We can unify these two invariants into a "universal $s l_{2}$ invariant" $I(M, L)$ of links L in integral homology spheres M. This generalization is an easy modification of the definition of $I(M)$, and the details will appear in [2].

4.1 The definition of the invariant $I(M)$

Set

$$
\omega=\sum_{i \geq 0} v^{\frac{1}{2} i(i+3)} P_{i}^{\prime} \in \hat{\mathcal{R}},
$$

which is invertible in the algebra $\hat{\mathcal{R}}$ with the inverse

$$
\omega^{-1}=\sum_{i \geq 0}(-1)^{i} v^{-\frac{1}{2} i(i+3)} P_{i}^{\prime} .
$$

Let M be an integral homology 3 -sphere. It is well known that there is an algebraically split framed link $L=\left(L_{1}, \ldots, L_{l}\right)(l \geq 0)$ in S^{3} with all framings ± 1 such that the surgery $\left(S^{3}\right)_{L}$ on S^{3} along L is orientation-preserving homeomorphic to M. Set

$$
\begin{equation*}
I(L)=J_{L_{0}}\left(\omega^{-f_{1}}, \ldots, \omega^{-f_{l}}\right) \tag{13}
\end{equation*}
$$

where L_{0} denotes the framed link obtained from L by changing all the framings into 0 , and, for $i=1, \ldots, l, f_{i}= \pm 1$ denotes the framing of the component L_{i}. We have

$$
I(L) \in \widehat{\mathbb{Z}[q]} .
$$

Theorem 4.1 There is a well-defined invariant $I(M)$ of integral homology spheres M with values in $\widehat{\mathbb{Z}[q]}$ such that if L is a algebraically split framed link in S^{3} with all framings ± 1, then we have $I\left(\left(S^{3}\right)_{L}\right)=I(L)$.

Theorem 4.1 follows from Theorems 4.2 and 4.3 below.

Theorem 4.2 (Conjectured by Hoste (3) Let L and L^{\prime} be two algebraically split framed links in S^{3} with all the framings ± 1. Then L and L^{\prime} define orientation-preserving homeomorphic results of surgeries $\left(S^{3}\right)_{L}$ and $\left(S^{3}\right)_{L^{\prime}}$ if and only if L and L^{\prime} are related by a finite sequence of Hoste moves, i.e., the usual Fenn-Rourke moves (surgery on unknotted component of framing ± 1) through algebraically split framed links with ± 1 framings.

Theorem 4.3 The invariant $I(L)$ of algebraically split framed links L in S^{3} with ± 1 framings is invariant under Hoste moves.

4.2 Specializations to the WRT invariants at roots of unity

For each root of unity ζ, there is a well-defined ring homomorphism

$$
\left.(-)\right|_{q=\zeta}: \widehat{\mathbb{Z}[q]} \rightarrow \mathbb{Z}[\zeta],\left.\quad f(q) \mapsto f(q)\right|_{q=\zeta}=f(\zeta)
$$

For an integral homology sphere M and a root of unity ζ, let $\tau_{\zeta}(M)$ be the WRT invariant of M at ζ normalized so that $\tau_{\zeta}\left(S^{3}\right)=1$. (For definition of $\tau_{\zeta}(M)$, see [5], but $\tau_{r}(M)$ for $r \geq 3$ defined there corresponds to $\tau_{\exp (2 \pi i / r)}$. For the other primitive r th roots of unity $\zeta, \tau_{\zeta}(M)$ is obtained from $\tau_{r}(M)$ by the automorphism of $\mathbb{Z}[\zeta]$ which maps $\exp (2 \pi i / r)$ to ζ. For $\zeta= \pm 1$, set $\tau_{ \pm 1}(M)=1$.)

Theorem 4.4 For an integral homology sphere M and a root of unity ζ, we have

$$
\begin{equation*}
\left.I(M)\right|_{q=\zeta}=\tau_{\zeta}(M) . \tag{14}
\end{equation*}
$$

The proof of Theorem 4.1] does not involve the existence proofs of the variations of the WRT invariant in the literature. Hence the Theorems 4.1] provides a new definition of the WRT invariant of integral homology spheres via (14).

4.3 Consequences

In the rest of this paper, we list some consequences to Theorems 4.1 and 4.4
The following was first proved by H. Murakami [12 for the case ζ is a root of unity of odd prime order, and conjectured by Lawrence [8] in the general case.

Corollary 4.5 For an integral homology sphere M and a root ζ of unity, we have

$$
\tau_{\zeta}(M) \in \mathbb{Z}[\zeta] .
$$

By Lawrence's conjecture [7] proved by Rozansky [16], the Ohtsuki series [14] of an integral homology sphere M can be characterized as the formal power series $\tau(M) \in \mathbb{Z}[[q-1]]$ such that for each root of unity ζ of odd prime power order we have

$$
\begin{equation*}
\left.\tau(M)\right|_{q=\zeta}=\tau_{\zeta}(M), \tag{15}
\end{equation*}
$$

where both sides are regarded as the elements of $\mathbb{Z}_{p}[\zeta]$ with p the odd prime such that the order of q is a power of p. Here \mathbb{Z}_{p} denotes the ring of p-adic integers.

Theorem 4.4 provides a new proof of the existence of $\tau(M)$, and moreover the following version of Lawrence's p-adic convergence conjecture for $p=2$.

Theorem 4.6 If ζ is a primitive 2^{m} th root of unity ($m \geq 1$), then we have

$$
\begin{equation*}
\left.\tau(M)\right|_{q=\zeta}=\tau_{\zeta}(M) \in \mathbb{Z}_{2}[\zeta] . \tag{16}
\end{equation*}
$$

Let

$$
\iota_{1}: \widehat{\mathbb{Z}[q]} \rightarrow \mathbb{Z}[[q-1]]
$$

be the homomorphism induced by $\mathrm{id}_{\mathbb{Z}[q]}$.
Theorem 4.7 If M is an integral homology sphere, then we have

$$
\begin{equation*}
\iota_{1}(I(M))=\tau(M) . \tag{17}
\end{equation*}
$$

Since ι_{1} is injective, $I(M)$ is as strong as $\tau(M)$. The injectivity of ι_{1} is also independently proved by Vogel. We also have the following.

Theorem 4.8 Let M and M^{\prime} be two integral homology spheres. Then the following conditions are equivalent.
(1) $I(M)=I\left(M^{\prime}\right)$,
(2) $\tau(M)=\tau\left(M^{\prime}\right)$,
(3) $\tau_{\zeta}(M)=\tau_{\zeta}\left(M^{\prime}\right)$ for all roots of unity ζ,
(4) $\tau_{\zeta}(M)=\tau_{\zeta}\left(M^{\prime}\right)$ for infinitely many roots of unity ζ of prime power order.

Remark For each root of unity ζ, there is a natural homomorphism

$$
\iota_{\zeta}: \widehat{\mathbb{Z}}[q] \rightarrow \mathbb{Z}[\zeta][[q-\zeta]] .
$$

For an integral homology sphere M, we may think of $\iota_{\zeta}(M) \in \mathbb{Z}[\zeta][[q-\zeta]]$ as an "expansion of the WRT invariants of M at $q=\zeta$ ". This is a generalization of the Ohtsuki series to the expansion at ζ.

References

[1] D Bar-Natan, S Garoufalidis, On the Melvin-Morton-Rozansky conjecture, Invent. Math. 125 (1996) 103-133
[2] K Habiro, in preparation
[3] J Hoste, A formula for Casson's invariant, Trans. Amer. Math. Soc. 297 (1986) 547-562
[4] R M Kashaev, A link invariant from quantum dilogarithm, Modern Phys. Lett. A 10 (1995) 1409-1418
[5] R Kirby, P Melvin, The 3-manifold invariants of Witten and ReshetikhinTuraev for $\operatorname{sl}(2, C)$, Invent. Math. 105 (1991) 473-545
[6] R J Lawrence, A universal link invariant, The interface of mathematics and particle physics (Oxford, 1988), 151-156, Inst. Math. Appl. Conf. Ser. New Ser., 24, Oxford Univ. Press (1990)
[7] R J Lawrence, Asymptotic expansions of Witten-Reshetikhin-Turaev invariants for some simple 3-manifolds, J. Math. Phys. 36 (1995) 6106-6129
[8] R J Lawrence, Witten-Reshetikhin-Turaev invariants of 3-manifolds as holomorphic functions, from: "Geometry and physics (Aarhus, 1995)" Lecture Notes in Pure and Appl. Math. 184, Dekker (1997) 363-377
[9] TTQ Le, A quantum sle -invariant of 3-manifolds which contains all the Witten-Reshetikhin-Turaev invariants, from: "Geometry and physics (Aarhus, 1995)" Lecture Notes in Pure and Appl. Math. 184, Dekker (1997) 399-409
[10] T T Q Le, Quantum invariants of 3-manifolds: Integrality, splitting, and perturbative expansion, Proceedings of the Pacific Institute for the Mathematical Sciences Workshop "Invariants of Three-Manifolds" (Calgary, AB, 1999), Topology Appl. 127 (2003) 125-152
[11] P M Melvin, H R Morton, The coloured Jones function, Comm. Math. Phys. 169 (1995) 501-520
[12] H Murakami, Quantum $\mathrm{SU}(2)$-invariants dominate Casson's $\mathrm{SU}(2)$-invariant, Math. Proc. Cambridge Philos. Soc. 115 (1994) 253-281
[13] H Murakami, J Murakami, The colored Jones polynomials and the simplicial volume of a knot, Acta Math. 186 (2001) 85-104
[14] T Ohtsuki, A polynomial invariant of integral homology 3-spheres, Math. Proc. Cambridge Philos. Soc. 117 (1995) 83-112
[15] L Rozansky, A contribution of the trivial connection to the Jones polynomial and Witten's invariant of 3-d manifolds I, II, Comm. Math. Phys. 175 (1996) 275-296, 297-318
[16] L Rozansky, On p-adic properties of the Witten-Reshetikhin-Turaev invariant, arXiv:math.QA/9806075

Research Institute for Mathematical Sciences
Kyoto University, Kyoto, 606-8502, Japan
Email: habiro@kurims.kyoto-u.ac.jp
Received: 30 November 2001 Revised: 8 April 2002

