$$
\begin{gathered}
\mathcal{G}^{\mathcal{G}}{ }^{\mathcal{G}} \mathcal{T}^{\mathcal{T}} \mathcal{T}^{\mathcal{T}} \mathcal{T}_{\mathcal{T}} \\
\mathcal{G}^{\mathcal{T}}{ }^{\mathcal{T}}{ }^{\mathcal{G}}{ }^{\mathcal{T}}{ }^{\mathcal{T}} \\
{ }^{\mathcal{G}} \mathcal{G}_{\mathcal{G}}{ }^{\mathcal{T}} \mathcal{G}^{\mathcal{G}}{ }_{\mathcal{T}} \mathcal{T}^{\mathcal{T}} \\
\text { Geometry } \& \text { Topology M onographs } \\
\text { Volume } \mathbf{5} \text { (2002) }
\end{gathered}
$$

Four-manifolds, geometries and knots
J.A.Hillman

The University of Sydney
j onh@nat hs. usyd. edu. au

Geometry \& Topology M onographs ISSN 1464-8997 (on-line) 1464-8989 (printed) Volume 5 (2002)
Four-manifolds, geometries and knots, by J.A.Hillman
Published 9 December 2002
c Geometry \& Topology Publications
All commercial rights reserved

[^0]
Contents

Contents (iii)
Preface (ix)
Adknowledgement (xiii)
Part I : Manifolds and PD-complexes : 1
Chapter 1: Group theoretic preliminaries :3
1.1 Group theoretic notation and terminology :3
1.2 Matrix groups 5
1.3 The Hirsch-Plotkin radical 6
1.4 Amenable groups 8
1.5 Hirsch length 10
1.6 Modules and niteness conditions 13
1.7 Ends and cohomology with fre coe cients 16
1.8 Poincare duality groups 20
1.9 Hilbert modules 22
Chapter 2: 2-Complexes and PD_{3}-complexes 25
2.1 Notation 25
2.2 L²-Betti numbers 26
2.3 2-Complexes and nitely presentable groups 28
2.4 Poincare duality 32
$2.5 \mathrm{PD}_{3}$-complexes 33
2.6 The spherical cases 35
2.7 PD3-groups 37
2.8 Subgroups of PD_{3}-groups and 3-manifold groups 42
2.9 2(P) as a $\mathbb{Z}[$]-module 44
Chapter 3: Homotopy invariants of PD_{4}-complexes 47
3.1 Homotopy equivalence and asphericity 47
3.2 Finitely dominated covering spaces 53
3.3 Minimizing the Euler characteristic 57
3.4 Euler Characteristic 0 63
Chapter 4: Mapping tori and circle bundles 69
4.1 Some necessary conditions 69
4.2 Change of rings and cup products 71
4.3 The case $=1$ 74
4.4 Duality in in nite cydic covers 75
4.5 Homotopy mapping tori 76
4.6 Products 82
4.7 Subnormal subgroups 83
4.8 Circle bundles 84
Chapter 5: Surface bundles 89
5.1 Some general results 89
5.2 Bundles with base and bre aspherical surfaces 91
5.3 Bundles with aspherical base and bre S^{2} or RP^{2} 96
5.4 Bundles over S^{2} 102
5.5 Bundles over RP ${ }^{2}$ 105
5.6 Bundles over RP ${ }^{2}$ with $@=0$ 107
Chapter 6: Simple homotopy type and surgery 111
6.1 The Whitehead group 112
6.2 The s-cobordism structure set 116
6.3 Stabilization and h -cobordism 121
6.4 Manifolds with ${ }_{1}$ elementary amenable and $=0$ 122
6.5 Bundles over aspherical surfaces 125
Part II : 4-dimensional Geometries 129
Chapter 7: Geometries and decompositions 131
7.1 Geometries 132
7.2 Infranilmanifolds 133
7.3 Infrasolvmanifolds 135
7.4 Geometric decompositions 138
7.5 Orbifold bundles 141
7.6 Realization of virtual bundle groups 142
7.7 Seifert brations 144
7.8 Complex surfaces and related structures 146
Chapter 8: Solvable Lie geometries 151
8.1 The characterization 151
8.2 Flat 3-manifold groups and their automorphisms 153
8.3 Flat 4-manifold groups with in nite abelianization 157
8.4 Flat 4-manifold groups with nite abelianization 161
8.5 Distinguishing between the geometries 164
8.6 Mapping tori of self homeomorphisms of \mathbb{E}^{3}-manifolds 165
8.7 Mapping tori of self homeomorphisms of $\mathbb{N i l}^{3}$-manifolds 167
8.8 Mapping tori of self homeomorphisms of $\mathbb{S o l}^{3}$-manifolds 171
8.9 Realization and classi cation 173
8.10 Di eomorphism 175
Chapter 9: The other aspherical geometries 179
9.1 Aspherical Seifert bred 4-manifolds 179
9.2 The Seifert geometries: $\mathbb{H}^{2} \quad \mathbb{E}^{2}$ and क $^{2} \mathbb{E} \mathbb{E}^{1}$ 182
$9.3 \mathbb{H}^{3} \quad \mathbb{E}^{1}$-manifolds 185
9.4 Mapping tori 186
9.5 The semisimple geometries: $\mathbb{H}^{2} \quad \mathbb{H}^{2}, \mathbb{H}^{4}$ and $\mathbb{H}^{2}(\mathbb{C})$ 187
9.6 Miscellany 193
Chapter 10: Manifolds covered by $S^{2} R^{2}$ 195
10.1 Fundamental groups 195
10.2 Homotopy type 196
10.3 Bundle spaces are geometric 201
10.4 Fundamental groups of $\mathbb{S}^{2} \quad \mathbb{E}^{2}$-manifolds 206
10.5 Homotopy types of $\mathbb{S}^{2} \quad \mathbb{E}^{2}$-manifolds 208
10.6 Some remarks on the homeomorphism types 214
Chapter 11: Manifolds covered by $S^{3} R$ 217
11.1 Invariants for the homotopy type 217
11.2 The action of F on F 220
11.3 Extensions of D 223
$11.4 \mathbb{S}^{3} \mathbb{E}^{1}$-manifolds 224
11.5 Realization of the groups 226
11.6 T-and K b-bundles over RP ${ }^{2}$ with @ध 0 228
11.7 Some remarks on the homeomorphism types 231
Chapter 12: Geometries with compact models 233
12.1 The geometries \mathbb{S}^{4} and $\mathbb{C P}^{2}$ 234
12.2 The geometry $\mathbb{S}^{2} \mathbb{S}^{2}$ 235
12.3 Bundle spaces 236
12.4 Cohomology and Stiefel-Whitney classes 238
12.5 The action of on $2(M)$ 239
12.6 Homotopy type 241
12.7 Surgery 244
Chapter 13: Geometric decompositions of bundle spaces 247
13.1 Mapping tori 247
13.2 Surface bundles and geometries 252
13.3 Geometric decompositions of torus bundles 256
13.4 Complex surfaces and brations 257
13.5 S^{1}-Actions and foliations by circles 261
13.6 Symplectic structures 263
Part III: 2-Knots 265
Chapter 14: K nots and links 267
14.1 K nots 267
14.2 Covering spaces 269
14.3 Sums, factorization and satellites 270
14.4 Spinning and twist spinning 271
14.5 Ribbon and slice knots 272
14.6 The Kervaire conditions 273
14.7 Weight elements, classes and orbits 275
14.8 The commutator subgroup 276
14.9 De ciency and geometric dimension 279
14.10 Asphericity 281
14.11 Links 282
14.12 Link groups 286
14.13 Homology spheres 288
Chapter 15: Restrained normal subgroups 291
15.1 The group 291
15.2 Almost coherent, restrained and locally virtually indicable 293
15.3 Abelian normal subgroups 296
15.4 Finite commutator subgroup 299
15.5 The Tits alternative 302
15.6 Abelian HNN bases 302
15.7 Locally nite normal subgroups 304
Chapter 16: Abelian normal subgroups of rank 2 307
16.1 The Brieskorn manifolds $\mathrm{M}(\mathrm{p} ; \mathrm{q} ; \mathrm{r})$ 307
16.2 Rank 2 subgroups 308
16.3 Twist spins of torus knots 310
16.4 Solvable PD4-groups 314
Chapter 17: K not manifolds and geometries 323
17.1 Homotopy classi cation of $\mathrm{M}(\mathrm{K})$ 323
17.2 Surgery 324
17.3 The aspherical cases 325
17.4 Quasi bres and minimal Seifert hypersurfaces 327
17.5 The spherical cases 328
17.6 Finite geometric dimension 2 329
17.7 Geometric 2-knot manifolds 332
17.8 Complex surfaces and 2-knot manifolds 334
Chapter 18: Reflexivity 337
18.1 Reflexivity for bred 2-knots 337
18.2 Cappell-Shaneson knots 340
$18.3 \mathbb{N i l}^{3}$ - bred knots 343
18.4 Other geometrically bred knots 347
Bibliography 353
Index 375

Preface

Every closed surface admits a geometry of constant curvature, and may be classi ed topologically either by its fundamental group or by its Euler characteristic and orientation character. It is generally expected that all closed 3-manifolds have decompositions into geometric pieces, and are determined up to homeomorphism by invariants associated with the fundamental group (whereas the Euler characteristic is always 0). In dimension 4 the Euler characteristic and fundamental group are largely independent, and the class of closed 4-manifolds which admit a geometric decomposition is rather restricted. For instance, there are only 11 such manifolds with nite fundamental group. On the other hand, many complex surfaces admit geometric structures, as do all the manifolds arising from surgery on twist spun simple knots.

Thegoal of this book is to characterize algebraically the closed 4-manifolds that bre nontrivially or admit geometries, or which are obtained by surgery on 2knots, and to provide a reference for the topology of such manifolds and knots. In many cases the Euler characteristic, fundamental group and Stiefe-Whitney classes together form a complete system of invariants for the homotopy type of such manifolds, and the possible values of the invariants can be described explicitly. If the fundamental group is elementary amenable we may use topological surgery to obtain classi cations up to homeomorphism. Surgery techniques al so work well \stably" in dimension 4 (i.e., modulo connected sums with copies of $S^{2} S^{2}$). However, in our situation thefundamental group may have nonabelian fre subgroups and the Euler characteristic is usually the minimal possible for the group, and it is not known whether s-cobordisms between such 4-manifolds are always topologically products. Our strongest results are characterizations of manifolds which bre homotopically over S^{1} or an aspherical surface (up to homotopy equivalence) and infrasolvmanifolds (up to homeomorphism). As a consequence 2-knots whose groups are poly-Z are determined up to Gluck reconstruction and change of orientations by their groups alone.

We shall now outline the chapters in somewhat greater detail. The rst chapter is purely algebraic; here we summarize the relevant group theory and present the notions of amenable group, Hirsch length of an elementary amenable group, niteness conditions, criteria for the vanishing of cohomology of a group with coe cients in a free module, Poincare duality groups, and Hilbert modules over the von Neumann algebra of a group. The rest of the book may be divided into threeparts: general results on homotopy and surgery (Chapters 2-6), geometries
and geometric decompositions (Chapters 7-13), and 2-knots (Chapters 14-18).
Some of the later arguments are applied in microcosm to 2-complexes and $P D_{3}-$ complexes in Chapter 2, which presents equivariant cohomology, L^{2}-Betti numbers and Poincare duality. Chapter 3 gives general criteria for two closed 4 manifolds to be homotopy equivalent, and we show that a closed 4-manifold M is aspherical if and only if ${ }_{1}(M)$ is a $P D_{4}$-group of type FF and $(M)=()$. We show that if the universal cover of a closed 4-manifold is nitely dominated then it is contractible or homotopy equivalent to S^{2} or S^{3} or the fundamental group is nite We also consider at length therelationship between fundamental group and Euler characteristic for closed 4 -manifolds. In Chapter 4 we show that a closed 4-manifold M bres homotopically over S^{1} with bre a $P_{D_{3}}$ complex if and only if $(M)=0$ and ${ }_{1}(M)$ is an extension of Z by a nitely presentable normal subgroup. (There remains the problem of recognizing which PD_{3}-complexes are homotopy equivalent to 3-manifolds). The dual problem of dharacterizing the total spaces of S^{1}-bundles over 3 -dimensional bases seems more di cult. We give a criterion that applies under some restrictions on the fundamental group. In Chapter 5 we characterize the homotopy types of total spaces of surface bundles. (Our results are incomplete if the base is RP ${ }^{2}$). In particular, a closed 4-manifold M is simple homotopy equivalent to the total space of an F -bundle over B (where B and F are closed surfaces and B is aspherical) if and only if (M) = (B) (F) and ${ }_{1}(M)$ is an extension of ${ }_{1}(B)$ by a normal subgroup isomorphic to ${ }_{1}(F)$. (T he extension should split if $F=R P^{2}$). Any such extension is the fundamental group of such a bundle space; the bundle is determined by the extension of groups in the aspherical cases and by the group and Stiefe-Whitney classes if the bre is S^{2} or $R P^{2}$. This characterization is improved in Chapter 6, which considers Whitehead groups and obstructions to constructing s-cobordisms via surgery.

The next seven chapters consider geometries and geometric decompositions. Chapter 7 introduces the 4-dimensional geometries and demonstrates the limitations of geometric methods in this dimension. It also gives a brief outline of the connections between geometries, Seifert brations and complex surfaces. In Chapter 8 we show that a closed 4-manifold M is homeomorphic to an infrasolvmanifold if and only if $(M)=0$ and $1(M)$ has a locally nilpotent normal subgroup of Hirsch length at least 3, and two such manifolds are homeomorphic if and only if their fundamental groups are isomorphic. Moreover ${ }_{1}(M)$ is then a torsion free virtually poly-Z group of Hirsch length 4 and every such group is the fundamental group of an infrasolvmanifold. We also consider in detail the question of when such a manifold is the mapping torus of a self homeomorphism of a 3-manifold, and give a direct and elementary derivation of the fundamental
groups of flat 4-manifolds. At the end of this chapter we show that all orientable 4-dimensional infrasolvmanifolds are determined up to di eomorphism by their fundamental groups. (The corresponding result in other dimensions was known).

Chapters 9-12 consider the remaining 4-dimensional geometries, grouped according to whether the model is homeomorphic to $R^{4}, S^{2} \quad R^{2}, S^{3} \quad R$ or is compact. Aspherical geometric 4-manifolds are determined up to s-cobordism by their homotopy type However there are only partial characterizations of the groups arising as fundamental groups of $\mathbb{H}^{2} \quad \mathbb{E}^{2}$-, $\mathfrak{S} \mathbb{L} \quad \mathbb{E}^{1}-, \mathbb{H}^{3} \quad \mathbb{E}^{1}$ - or $\mathbb{H}^{2} \quad \mathbb{H}^{2}$-manifolds, while very little is known about \mathbb{H}^{4} - or $\mathbb{H}^{2}(\mathbb{C})$-manifolds. We show that the homotopy types of manifolds covered by $S^{2} \quad R^{2}$ are determined up to nite ambiguity by their fundamental groups. If the fundamental group is torsion free such a manifold is s-cobordant to the total space of an S^{2} bundle over an aspherical surface. Thehomotopy types of manifolds covered by $S^{3} \mathrm{R}$ are determined by the fundamental group and rst nonzero k -invariant; much is known about the possible fundamental groups, but less is known about which k -invariants are realized. Moreover, although the fundamental groups are all \good", so that in principle surgery may be used to give a classi cation up to homeomorphism, the problem of computing surgery obstructions seems very di cult. We conclude the geometric section of the book in Chapter 13 by considering geometric decompositions of 4 -manifolds which are also mapping tori or total spaces of surface bundles, and we characterize the complex surfaces which bre over S^{1} or over a dosed orientable 2-manifold.

The nal vechapters areon 2-knots. Chapter 14 is an overview of knot theory; in particular it is shown how the classi cation of higher-dimensional knots may be largely reduced to the dassi cation of knot manifolds. The knot exterior is determined by the knot manifold and the conjugacy class of a normal generator for the knot group, and at most two knots share a given exterior. An essential step is to characterize 2-knot groups. Kervaire gave homological conditions which characterize high dimensional knot groups and which 2-knot groups must satisfy, and showed that any high dimensional knot group with a presentation of de ciency 1 is a 2-knot group. Bridging the gap between the homological and combinatorial conditions appears to be a delicate task. In Chapter 15 we investigate 2-knot groups with in nite normal subgroups which have no noncydic fre subgroups. We show that under mild coherence hypotheses such 2-knot groups usually have nontrivial abelian normal subgroups, and we determine all 2-knot groups with nite commutator subgroup. In Chapter 16 we show that if thereis an abelian normal subgroup of rank > 1 then the knot manifold is either s-cobordant to a $\mathfrak{S L} \mathbb{E}^{1}$-manifold or is homeomorphic to an infrasolvmanifold.

In Chapter 17 we characterize the closed 4-manifolds obtained by surgery on certain 2-knots, and show that just eight of the 4-dimensional geometries are realised by knot manifolds. We also consider when the knot manifold admits a complex structure. The nal chapter considers when a bred 2-knot with geometric bre is determined by its exterior. We settle this question when the monodromy has nite order or when the bre is $R^{3}=Z^{3}$ or is a coset space of the Lie group Nil^{3}.

This book arose out of two earlier books of mine, on \2-K nots and their Groups" and \The Algebraic Characterization of Geometric 4-Manifolds", published by Cambridge University Press for the Australian Mathematical Society and for the London Mathematical Society, respectively.A bout a quarter of the present text has been taken from these books. ${ }^{1}$ However the arguments have been improved in many cases, notably in using Bowditch's homological criterion for virtual surface groups to streamline the results on surface bundles, using L^{2} methods instead of localization, completing the characterization of mapping tori, relaxing the hypotheses on torsion or on abelian normal subgroups in the fundamental group and in deriving the results on 2-knot groups from the work on 4-manifolds. The main tools used here beyond what can be found in Algebraic Topology [Sp] are cohomology of groups, equivariant Poincare duality and (to a lesser extent) L^{2}-(co)homology. Our references for these are the books Homological Dimension of Discrete Groups [Bi], Surgery on Compact Manifolds [WI] and L^{2}-Invariants: Theory and Applications to Geometry and K-Theory [Lü], respectively. We also use properties of 3-manifolds (for the construction of examples) and calculations of Whitehead groups and surgery obstructions.
This work has been supported in part by ARC small grants, enabling visits by Steve Plotnick, Mike Dyer, Charles Thomas and Fang Fuquan. I would like to thank them all for their advice, and in particular Steve Plotnick for the collaboration reported in Chapter 18. I would also like to thank Robert Bieri, Robin Cobb, Peter Linnell and Steve Wilson for their collaboration, and Warren Didks, William Dunbar, Ross Geoghegan, F.T.Farrell, Ian Hambleton, Derek Holt, K.F.Lai, Eamonn O'Brien, Peter Scott and Shmuel Weinberger for their correspondance and advice on aspects of this work.

J onathan Hillman

[^1]
Acknowledgment

I wish to thank Cambridge University Press for their permission to use material from my earlier books [H1] and [H2]. The textual borrowings in each Chapter are outlined below.

1. x1, Lemmas 1.7 and 1.10 and Theorem 1.11, x6 (up to the discussion of ()), the rst paragraph of $\mathrm{x7}$ and Theorem 1.16 are from [H2:Chapter I]. (Lemma 1.1 is from [H1]). x3 is from [H2:Chapter VI].
2. $x 1$, most of x 4 , part of $\mathrm{x5}$ and $\mathrm{x9}$ are from [H2:Chapter II and Appendix].
3. Lemma 3.1, Theorems 3.2, 3.7-3.9 and 3.12 and Corollaries 3.9.1-3.9.3 are from [H2:Chapter II]. (Theorems 3.9 and 3.12 have been improved).
4. The rst half of x 2 , the statements of Corollaries 4.5.1-4.5.3, Theorem 4.6 and its Corollaries, and most of x8 are from [H2:Chapter III]. (Theorem 11 and the subsequent discussion have been improved).
5. Part of Lemma 5.15, Theorem 5.16 and $\times 4-\times 5$ are from [H2:Chapter IV]. (Theorem 5.19 and Lemmas 5.21 and 5.22 have been improved).
6. x1 (excepting Theorem 6.1), Theorem 6.12 and the proof of Theorem 6.14 are from [H2:Chapter V].
7. Part of Theorem 8.1, $\times 6$, most of $\times 7$ and $\times 8$ are from [H2:Chapter VI].
8. Theorems 9.1, 9.2 and 9.7 are from [$\mathrm{H} 2:$ Chapter VI], with improvements.
9. Theorems 10.10-10.12 and $\times 6$ are largely from [H2:Chapter VII]. (Theorem 10.10 has been improved).
10. Theorem 11.1 is from [H2:Chapter II]. Lemma 11.3, x3 and the rst three paragraphs of $\times 5$ are from [H2:Chapter VIII]. $\times 6$ is from [H2:Chapter IV].
11. The introduction, $x 1-\times 3, \times 5$, most of $\times 6$ (from Lemma 12.5 onwards) and $x 7$ are from [H2:Chapter IX], with improvements (particularly in $\times 7$).
12. $\times 1-\times 5$ are from [H1:Chapter I]. $\times 6$ and $\times 7$ are from [H1:Chapter II].
13. Most of $x 3$ is from [H1:Chapter V].(Theorem 16.4 is new and Theorems 16.5 and 16.6 have been improved).
14. Lemma 2 and Theorem 7 arefrom [H1:Chapter VIII], whileCorollary 17.6.1 is from [$\mathrm{H} 1:$ Chapter VII]. The rst two paragraphs of $x 8$ and Lemma 17.12 are from [H2:Chapter X].

Part I

Manifolds and P D-complexes

Chapter 1

Group theoretic preliminaries

The key algebraic idea used in this book is to study the homology groups of covering spaces as modules over the group ring of the group of covering transformations. In this chapter we shall summarize the relevant notions from group theory, in particular, the Hirsch-Plotkin radical, amenablegroups, Hirsch length, niteness conditions, the connection between ends and the vanishing of cohomology with coe cients in a free module, Poincare duality groups and Hilbert modules.

Our principal references for group theory are [Bi], [DD] and [Ro].

1.1 Group theoretic notation and terminology

We shall reserve the notation Z for the fre (abelian) group of rank 1 (with a prefered generator) and \mathbb{Z} for the ring of integers. Let $F(r)$ be the free group of rank r.

Let G be a group. Then G^{0} and G denote the commutator subgroup and centre of G , respectively. The outer automorphism group of G is $\operatorname{Out}(\mathrm{G})=$ $\operatorname{Aut}(\mathrm{G}) \neq \mathrm{nn}(\mathrm{G})$, where $\mathrm{Inn}(\mathrm{G})=\mathrm{G}=\mathrm{G}$ is the subgroup of Aut(G) consisting of conjugations by elements of G. If H is a subgroup of G let $N_{G}(H)$ and $\mathrm{C}_{\mathrm{G}}(\mathrm{H})$ denote the normalizer and centralizer of H in G , respectively. The subgroup H is a characteristic subgroup of G if it is preserved under all automorphisms of G. In particular, $I(G)=f g 2 G j 9 n>0 ; g^{n} 2 G 9$ is a characteristic subgroup of G , and the quotient $\mathrm{G} \neq(\mathrm{G})$ is a torsion free abelian group of rank ${ }_{1}(\mathrm{G})$. A group G is indicable if there is an epimorphism $\mathrm{p}: \mathrm{G}!\mathrm{Z}$, or if $\mathrm{G}=1$. The normal closure of a subset $\mathrm{S} G$ is $\mathrm{HSii} \mathrm{G}_{\mathrm{G}}$, the intersection of the normal subgroups of G which contain S.
If P and Q are classes of groups let $P Q$ denote the class of ($\backslash P$ by Q ") groups G which have a normal subgroup H in P such that the quotient $G=H$ is in Q, and let ' P denote the class of (\backslash locally- P ") groups such that each nitely generated subgroup is in the class P. In particular, if F is the class of nite groups ' F is the class of locally- nite groups. In any group the union of all the locally- nite normal subgroups is the unique maximal locally- nite normal
subgroup. Clearly there are no nontrivial homomorphisms from such a group to a torsion free group. Let poly-P bethe dass of groups with a nite composition series such that each subquotient is in P. Thus if $A b$ is the class of abelian groups poly-Ab is the class of solvable groups.

Let P be a class of groups which is closed under taking subgroups. A group is virtually P if it has a subgroup of nite index in P. Let $v P$ be the class of groups which are virtually P . Thus a virtually poly-Z group is one which has a subgroup of nite index with a composition series whose factors are all in nite cydic. The number of in nite cyclic factors is independent of the choice of nite index subgroup or composition series, and is called the Hirsch length of the group. We shall also say that a space virtually has some property if it has a nite regular covering space with that property.

If p:G! Q is an epimorphism with kernel N we shall say that G is an extension of $\mathrm{Q}=\mathrm{G}=\mathrm{N}$ by the normal subgroup N . The action of G on N by conjugation determines a homomorphism from G to Aut(N) with kernel $\mathrm{C}_{\mathrm{G}}(\mathrm{N})$ and hence a homomorphism from $\mathrm{G}=\mathrm{N}$ to $\operatorname{Out}(\mathrm{N})=\operatorname{Aut}(\mathrm{N}) \neq \mathrm{nn}(\mathrm{N})$. If $\mathrm{G}=\mathrm{N}=\mathrm{Z}$ the extension splits: a choice of element t in G which projects to a generator of $\mathrm{G}=\mathrm{N}$ determines a right inverse to p . Let be the automorphism of N determined by conjugation by t in G . Then G is isomorphic to the semidirect product $\mathrm{N} \quad \mathrm{Z}$. Every automorphism of N arises in this way, and automorphisms whose images in $\operatorname{Out}(\mathrm{N})$ are conjugate determine isomorphic semidirect products. In particular, $\mathrm{G}=\mathrm{N} \quad \mathrm{Z}$ if is an inner automorphism.

Lemma 1.1 Let and automorphisms of a group G such that $H_{1}(; \mathbb{Q})-1$ and $H_{1}(; \mathbb{Q})-1$ are automorphisms of $H_{1}(G ; \mathbb{Q})=(G=G 9 \otimes \mathbb{Q}$. Then the semidirect products $=G \quad Z$ and $=G \quad Z$ are isomorphic if and only if is conjugate to or ${ }^{-1}$ in $\operatorname{Out}(\mathrm{G})$.

Proof Let t and u be xed dements of and , respectively, which map to 1 in Z. Since $H_{1}(; \mathbb{Q})=H_{1}(\quad ; \mathbb{Q})=Q$ the image of G in each group is characteristic. Hence an isomorphism h: ! induces an isomorphism $e: Z!Z$ of the quotients, for some $e=1$, and so $h(t)=u^{e} g$ for some g in G. Therefore $\left.h\left(\left(h^{-1}(j)\right)\right)\right)=h\left(t h^{-1}(j) t^{-1}\right)=u^{e} g j g^{-1} u^{-e}={ }^{e}\left(g j g^{-1}\right)$ for all j in G. Thus is conjugate to ${ }^{\mathrm{e}}$ in $\operatorname{Out}(\mathrm{G})$.

Conversely, if and are conjugate in Out(G) there is an f in $\operatorname{Aut}(G)$ and a g in G such that $(j)=f^{-1}$ ef $\left(g g^{-1}\right)$ for all j in G. Hence $F(j)=f(j)$ for all j in G and $F(t)=u^{e} f(g)$ de nes an isomorphism F :

1.2 Matrix groups

In this section we shall recall some useful facts about matrices over \mathbb{Z}.

Lemma 1.2 Let p bean odd prime. Then the kerne of the reduction modulo (p) homomorphism from $\mathrm{SL}(\mathrm{n} ; \mathbb{Z})$ to $\mathrm{SL}\left(\mathrm{n} ; \mathbb{F}_{\mathrm{p}}\right)$ is torsion free.

Proof This follows easily from the observation that if A is an integral matrix and $k=p^{v} q$ with q not divisibleby p then $\left(I+p^{r} A\right)^{k} \quad I+k p^{r} A \bmod \left(p^{2 r+v}\right)$, and $k p^{r} 60 \bmod \left(p^{2 r+v}\right)$ if $r \quad 1$.

The corresponding result for $p=2$ is that the kernel of reduction $\bmod (4)$ is torsion free.

Since $S L\left(n ; \mathbb{F}_{p}\right)$ has order $\left(\begin{array}{c}j=n-1 \\ j=0 \\ =0\end{array}\left(p^{n}-p^{j}\right)\right)=(p-1)$, it follows that the order of any nite subgroup of $\mathrm{SL}(\mathrm{n} ; \mathbb{Z})$ must divide the highest common factor of these numbers, as p varies over all odd primes. In particular, nite subgroups of $\operatorname{SL}(2 ; \mathbb{Z})$ have order dividing 24 , and so are solvable.
Let $A=\begin{array}{cc}0-1 \\ 1 & 0\end{array}, B={ }_{-1}^{0} \frac{1}{1}$ and $R=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$. Then $A^{2}=B^{3}=-1$ and $A^{4}=B^{6}=1$. The matrices A and R generate a dihedral group of order 8, while B and R generate a dihedral group of order 12.

Theorem 1.3 Le G be a nontrivial nite subgroup of $G L(2 ; \mathbb{Z})$. Then G is conjugate to one of the cydic groups generated by A, A^{2}, B, B^{2}, R or $R A$, or to a dihedral subgroup generated by one of the pairs $f A ; R g, f A^{2} ; R g$, $f A^{2} ; R A g, f B ; R g, f B^{2} ; R g$ or $f B^{2} ; R B g$.

Proof If $\mathrm{M} 2 \mathrm{GL}(2 ; \mathbb{Z})$ has nite order then its characteristic polynomial has
 (This uses the nite order of M.) If the characteristic polynomial is $X^{2}-1$ then M is conjugate to R or RA. If the characteristic polynomial is $X^{2}+1$, $X^{2}-X+1$ or $X^{2}+X+1$ then M is irreducible, and the corresponding ring of algebraic numbers is a PID. Since any \mathbb{Z}-torsion free module over such a ring is free it follows easily that M is conjugate to A, B or B^{2}.

The normalizers in $\operatorname{SL}(2 ; \mathbb{Z})$ of the subgroups generated by A, B or B^{2} are easily seen to be nite cyclic. Since $G \backslash S L(2 ; \mathbb{Z})$ is solvable it must be cyclic also. As it has index at most 2 in G the theorem follows easily.

Although the 12 groups listed in the theorem represent distinct conjugacy classes in $\mathrm{GL}(2 ; \mathbb{Z})$, some of these conjugacy classes coalesce in $\mathrm{GL}(2 ; \mathbb{R})$. (For instance, R and RA are conjugate in $\mathrm{GL}\left(2 ; \mathbb{Z}\left[\frac{1}{2}\right]\right)$.)

Corollary 1.3.1 Let G be a locally nite subgroup of $G L(2 ; \mathbb{R})$. Then G is nite, and is conjugate to one of the above subgroups of $\mathrm{GL}(2 ; \mathbb{Z})$.

Proof Let L be a lattice in \mathbb{R}^{2}. If G is nite then $\left[{ }_{g 2 G} g \mathrm{gL}\right.$ is a G -invariant lattice, and so G is conjugate to a subgroup of $\mathrm{GL}(2 ; \mathbb{Z})$. In general, as the nite subgroups of G have bounded order G must be nite.

The main results of this section follow also from the fact that $\operatorname{PSL}(2 ; \mathbb{Z})=$ $S L(2 ; \mathbb{Z})=h 1 i$ is a free product $(Z=Z Z) \quad(Z=3 Z)$, generated by the images of A and B. (In fact $B A ; B$ j $A^{2}=B^{3}, A^{4}=1 i$ is a presentation for $\operatorname{SL}(2 ; \mathbb{Z})$. .) Moreover $\operatorname{SL}(2 ; \mathbb{Z})^{0}=\operatorname{PSL}(2 ; \mathbb{Z})^{0}$ is freely generated by the images of $B^{-1} A B^{-2} A=\left(\begin{array}{l}1 \\ 1\end{array} \frac{1}{1}\right)$ and $B^{-2} A B^{-1} A=\left(\begin{array}{l}1 \\ 1\end{array} \frac{1}{2}\right)$, whilethe abelianizations are generated by the images of $B^{4} A=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$. (See $\times 6.2$ of $[R o]$.)
Let $=\mathbb{Z}\left[t ; t^{-1}\right]$ bethering of integral Laurent polynomials. Thenext theorem is a special case of a classical result of Latimer and MacDu œe

Theorem 1.4 There is a 1-1 correspondance between conjugacy classes of matrices in $\mathrm{GL}(\mathrm{n} ; \mathbb{Z})$ with irreducible characteristic polynomial (t) and isomorphism classes of ideals in $\neq(\mathrm{t})$). The set of such ideal dasses is nite.

Proof Let A $2 \mathrm{GL}(\mathrm{n} ; \mathbb{Z})$ have characteristic polynomial (t) and let $\mathrm{R}=$
$\Rightarrow(t))$. As $(A)=0$, by the Cayley-Hamilton Theorem, we may de ne an R-module M_{A} with underlying abelian group Z^{n} by $t: z=A(z)$ for all $z 2 Z^{n}$. As R is a domain and has rank n as an abelian group M_{A} is torsion fre and of rank 1 as an R-module, and so is isomorphic to an ideal of R. Conversely every R-ideal arises in this way. The isomorphism of abelian groups underlying an R-isomorphism between two such modules M_{A} and M_{B} determines a matrix $C 2 \mathrm{GL}(\mathrm{n} ; \mathbb{Z})$ such that $\mathrm{CA}=\mathrm{BC}$. The nal assertion follows from the J ordan-Zassenhaus Theorem.

1.3 The Hirsch-P lotkin radical

The Hirsch-Plotkin radical ${ }^{\mathrm{P}} \overline{\mathrm{G}}$ of a group G is its maximal locally-nilpotent normal subgroup; in a virtually poly-Z group every subgroup is nitely generated, and so \bar{G} is then the maximal nilpotent normal subgroup. If H is
normal in G then ${ }^{\mathrm{P}} \overline{\mathrm{H}}$ is normal in G also, since it is a characteristic subgroup of H , and in particular it is a subgroup of $\overline{\mathrm{G}}$.

For each natural number q 1 let Γ_{q} be the group with presentation

$$
h x ; y ; z j x z=z x ; y z=z y ; x y=z^{q} y x i:
$$

Every such group Γ_{q} is torsion free and nilpotent of Hirsch length 3.
Theorem 1.5 Let G be a nitely generated torsion free nilpotent group of Hirsch length $h(G)$ 4. Then either
(1) G is free abelian; or
(2) $h(G)=3$ and $G=\Gamma_{q}$ for some $q \quad 1$; or
(3) $h(G)=4, \quad G=Z^{2}$ and $G=\Gamma_{q} \quad Z$ for some $q \quad 1$; or
(4) $\mathrm{h}(\mathrm{G})=4, \mathrm{G}=\mathrm{Z}$ and $\mathrm{G}=\mathrm{G}=\Gamma_{\mathrm{q}}$ for some $\mathrm{q} \quad 1$.

In the latter case G has characteristic subgroups which are free abelian of rank 1,2 and 3 . In all cases G is an extension of Z by a free abelian normal subgroup.

Proof The centre G is nontrivial and the quotient $G=G$ is again torsion free, by Proposition 5.2.19 of [Ro]. We may assume that G is not abelian, and hence that $G=G$ is not cyclic. Hence $h(G=G) \quad 2$, so $h(G) \quad 3$ and $1 h(G) h(G)-2$. In all cases G is free abelian.

If $h(G)=3$ then $G=Z$ and $G=G=Z^{2}$. On choosing elements x and y representing a basis of $G=G$ and z generating G we quickly nd that G is isomorphic to one of the groups Γ_{q}, and thus is an extension of Z by Z^{2}.

If $h(G)=4$ and $G=Z^{2}$ then $G=G=Z^{2}$, so $G^{0} \quad G$. Since G may be generated by elements x; y; t and u where x and y represent a basis of $G=G$ and t and u are central it follows easily that G^{0} is in nite cyclic. Therefore
G is not contained in G^{0} and G has an in nite cydic direct factor. Hence $\mathrm{G}=\mathrm{Z} \quad \Gamma_{\mathrm{q}}$, for some $\mathrm{q} \quad 1$, and thus is an extension of Z by Z^{3}.

The remaining possibility is that $h(G)=4$ and $G=Z$. In this case $G=G$ is torsion free nilpotent of Hirsch length 3. If $\mathrm{G}=\mathrm{G}$ were abelian G^{0} would also be in nite cyclic, and the pairing from $\mathrm{G}=\mathrm{G} \quad \mathrm{G}=\mathrm{G}$ into G^{0} de ned by the commutator would be nondegenerate and skewsymmetric. But there are no such pairings on free abelian groups of odd rank. Therefore $\mathrm{G}=\mathrm{G}=\Gamma_{\mathrm{q}}$, for some q 1 .

Let ${ }_{2} G$ bethepremagein G of ($G=G$). Then ${ }_{2} G=Z^{2}$ and is a characteristic subgroup of G , so $\mathrm{C}_{\mathrm{G}}\left({ }_{2} \mathrm{G}\right)$ is also characteristic in G . The quotient $\mathrm{G}={ }_{2} \mathrm{G}$ acts by conjugation on ${ }_{2} G$. Since $\operatorname{Aut}\left(Z^{2}\right)=G L(2 ; \mathbb{Z})$ is virtually free and $\mathrm{G}={ }_{2} \mathrm{G}=\Gamma_{\mathrm{q}}=\Gamma_{\mathrm{q}}=Z^{2}$ and since ${ }_{2} \mathrm{G} G \mathrm{G}$ it follows that $\mathrm{h}\left(\mathrm{C}_{\mathrm{G}}\left({ }_{2} \mathrm{G}\right)\right)=3$. Since $\mathrm{C}_{\mathrm{G}}\left({ }_{2} \mathrm{G}\right)$ is nilpotent and has centre of rank 2 it is abelian, and so $\mathrm{C}_{\mathrm{G}}\left({ }_{2} \mathrm{G}\right)=Z^{3}$. The preimage in G of the torsion subgroup of $\mathrm{G}=\mathrm{C}_{\mathrm{G}}\left({ }_{2} \mathrm{G}\right)$ is torsion free, nilpotent of Hirsch length 3 and virtually abelian and hence is abelian. Therefore $\mathrm{G}=\mathrm{C}_{\mathrm{G}}\left({ }_{2} \mathrm{G}\right)=\mathrm{Z}$.

Theorem 1.6 Let be a torsion free virtually poly-Z group of Hirsch length 4. Then $h\left({ }^{p}{ }^{-}\right) 3$.

Proof Let S be a solvable normal subgroup of nite index in. Then the lowest nontrivial term of the derived series of S is an abelian subgroup which
 $\beta_{-}=Z$ or Z^{2}. Suppose has an in nite cyclic normal subgroup A. On replacing by a normal subgroup of nite index we may assume that A is central and that A is poly-Z. Let B be the preimage in of a nontrivial abelian normal subgroup of $\Rightarrow A$. Then B is nilpotent (since A is central and $B \neq A$ is abelian) and $h(B)>1$ (since $B \neq A$ and A is torsion free). Hence $h\left({ }^{-}\right) \quad h\left({ }^{\left(P^{-}\right)}\right)>1$.

If has a normal subgroup $N=Z^{2}$ then $\operatorname{Aut}(N)=G L(2 ; \mathbb{Z})$ is virtually fre, and so the kernd of the natural map from to $\operatorname{Aut}(N)$ is nontrivial. Hence $h(C(N)) \quad 3$. Since $h(\neq N)=2$ the quotient $\neq \mathrm{V}$ is virtually abelian, and so $C(N)$ is virtually nilpotent.
In all cases we must have $h\left({ }^{\mathrm{P}_{-}}\right.$) 3 .

1.4 A menable groups

The class of amenable groups arose rst in connection with the Banach-Tarski paradox. A group is amenable if it admits an invariant mean for bounded \mathbb{C} valued functions [Pi]. There is a more geometric characterization of nitely presentable amenable groups that is more convenient for our purposes. Let X be a nite cell-complex with universal cover \mathbb{X}. Then \mathbb{X} is an increasing union of nite subcomplexes $X_{j} \quad X_{j+1} \quad X=\left[{ }_{n}{ }_{1} X_{n}\right.$ such that X_{j} is the union of $N_{j}<1$ translates of some fundamental domain D for $G={ }_{1}(X)$. Let N_{j}^{0} be the number of translates of D which meet the frontier of X_{j} in $\not \subset$. The sequence $f X_{j} g$ is a F Iner exhaustion for X if $\lim \left(N_{j}{ }^{0} \neq N_{j}\right)=0$, and ${ }_{1}(X)$ is
amenable if and only if \mathbb{X} has a F Iner exhaustion. This class contains all nite groups and Z, and is closed under the operations of extension, increasing union, and under the formation of sub- and quotient groups. (However nonabelian free groups are not amenable.)

The subclass EA generated from nite groups and Z by the operations of extension and increasing union is the class of elementary amenable groups. We may construct this dass as follows. Let $U_{0}=1$ and U_{1} be the class of nitely generated virtually abelian groups. If U has ben de ned for some ordinal let $U{ }_{+1}=\left({ }^{\prime} U\right) U_{1}$ and if U has been de ned for all ordinals less than some limit ordinal let $U=[<U$. Let bethe rst uncountable ordinal. Then $E A=‘ U$.

This class is well adapted to arguments by trans nite induction on the ordinal
$(\mathrm{G})=\operatorname{minf} \mathrm{jG} 2 \mathrm{U} \mathrm{g}$. It is closed under extension (in fact $\mathrm{U} U \quad \mathrm{U}+$) and increasing union, and under the formation of sub- and quotient groups. As U contains every countable elementary amenable group, $\mathrm{U}={ }^{\prime} \mathrm{U}=\mathrm{EA}$ if
$>$. Torsion groups in EA are locally nite and elementary amenable fre groups are cydic. Every locally- nite by virtually solvable group is elementary amenable; however this inclusion is proper.

For example, let Z^{1} bethefre abelian group with basis $f x_{i} j$ i 2 Zg and let G bethe subgroup of $\operatorname{Aut}\left(Z^{1}\right)$ generated by fe ji 2 Zg , where $\mathrm{e}\left(\mathrm{x}_{\mathrm{i}}\right)=\mathrm{x}_{\mathrm{i}}+\mathrm{x}_{\mathrm{i}+1}$ and $e\left(x_{j}\right)=x_{j}$ if $j \in i$. Then G is the increasing union of subgroups isomorphic to groups of upper triangular matrices, and so is locally nilpotent. However it has no nontrivial abelian normal subgroups. If we let be the automorphism of G de ned by $\left(e_{1}\right)=e_{+1}$ for all i then $G \quad Z$ is a nitely generated torsion free elementary amenable group which is not virtually solvable.

It can be shown (using the F Iner condition) that nitely generated groups of subexponential growth are amenable The class SA generated from such groups by extensions and increasing unions contains EA (since nitegroups and nitely generated abelian groups have polynomial growth), and is the largest class of groups over which topological surgery techniques are known to work in dimension 4 [FT95]. Is every amenable group in SA? There is a nitely presentable group in SA which is not elementary amenable [Gr98].

A group is restrained if it has no noncyclic free subgroup. Amenable groups are restrained, but there are nitely presentable restrained groups which are not amenable [OSO1]. There are also in nite nitely generated torsion groups. (Seex14.2 of [Ro].) These are restrained, but are not elementary amenable No known example is also nitely presentable.

1.5 Hirsch length

In this section we shall use trans nite induction to extend the notion of Hirsch length (as a measure of the size of a solvable group) to elementary amenable groups, and to establish the basic properties of this invariant.

Lemma 1.7 Let G bea nitely generated in nite elementary amenable group. Then G has normal subgroups $K<H$ such that $G=H$ is nite, $H=K$ is fre abelian of positive rank and the action of $\mathrm{G}=\mathrm{H}$ on $\mathrm{H}=\mathrm{K}$ by conjugation is e ective

Proof We may show that G has a normal subgroup K such that $G=K$ is an in nite virtually abelian group, by trans nite induction on (G). We may assumethat $\mathrm{G}=\mathrm{K}$ has no nontrivial nite normal subgroup. If H is a subgroup of G which contains K and is such that $H=K$ is a maximal abelian normal subgroup of $G=K$ then H and K satisfy the above conditions.

In particular, nitely generated in nite dementary amenable groups are virtually indicable.

If G is in U_{1} let $h(G)$ be the rank of an abelian subgroup of nite index in G. If $h(G)$ has been de ned for all G in U and H is in ' U let

$$
h(H)=\text { l:u:b:f h(F)jF } \quad H ; F 2 U g:
$$

Finally, if G is in $U{ }_{+1}$, so has a normal subgroup H in ' U with $G \neq H$ in U_{1}, let $h(G)=h(H)+h(G \neq H)$.

Theorem 1.8 Let G be an elementary amenable group. Then
(1) $h(G)$ is well de ned;
(2) If H is a subgroup of G then $h(H) \quad h(G)$;
(3) $h(G)=I: u: b: f h(F) j F$ is a f initely gener ated subgroup of $G g$;
(4) if H is a normal subgroup of G then $h(G)=h(H)+h(G \neq H)$.

Proof We shall prove all four assertions simultaneously by induction on (G). They are clearly true when $(G)=1$. Suppose that they hold for all groups in U and that $(G)=+1$. If G is in LU so is any subgroup, and (1) and (2) are immediate, while (3) follows since it holds for groups in U and since each nitely generated subgroup of G is a U -subgroup. To prove (4) we may assume that $h(H)$ is nite, for otherwise both $h(G)$ and $h(H)+h(G \neq H)$ are

1 , by (2). Therefore by (3) there is a nitely generated subgroup J H with $h(J)=h(H)$. Given a nitely generated subgroup Q of $\mathrm{G}=\mathrm{H}$ we may choose a nitely generated subgroup F of G containing J and whose image in $G \neq H$ is Q. Since F is nitely generated it is in U and so $h(F)=h(H)+h(Q)$. Taking least upper bounds over all such Q we have $h(G) \quad h(H)+h(G \neq H)$. On the other hand if F is any U-subgroup of G then $h(F)=h(F \backslash H)+h(F H=H)$, since (4) holds for F, and so $h(G) \quad h(H)+h(G=H)$, Thus (4) holds for G also.
Now suppose that G is not in LU , but has a normal subgroup K in LU such that $G=K$ is in U_{1}. If K_{1} is another such subgroup then (4) holds for K and K_{1} by the hypothesis of induction and so $h(K)=h\left(K \backslash K_{1}\right)+h\left(K K_{1}=K\right)$. Since we also have $h(G * K)=h\left(G * K K_{1}\right)+h\left(K_{1} K_{1} K\right)$ and $h\left(G=K_{1}\right)=h\left(G=K K_{1}\right)+$ $h\left(K_{K}=K_{1}\right)$ it follows that $h\left(K_{1}\right)+h\left(G=K_{1}\right)=h(K)+h(G=K)$ and so $h(G)$ is well de ned. Property (2) follows easily, as any subgroup of G is an extension of a subgroup of $G=K$ by a subgroup of K. Property (3) holds for K by the hypothesis of induction. Therefore if $h(K)$ is nite K has a nitely generated subgroup J with $h(J)=h(K)$. Since $G=K$ is nitely generated there is a nitely generated subgroup F of G containing J and such that $F K=K=G=K$. Clearly $h(F)=h(G)$. If $h(K)$ is in nitethen for every $n \quad 0$ there is a nitely generated subgroup J_{n} of K with $h\left(J_{n}\right) \quad n$. In either case, (3) also holds for G. If H is a normal subgroup of G then H and $\mathrm{G} \neq \mathrm{H}$ are also in $\mathrm{U}{ }_{+1}$, while $\mathrm{H} \backslash \mathrm{K}$ and $\mathrm{KH}=\mathrm{H}=\mathrm{K} \neq \mathrm{H} \backslash \mathrm{K}$ are in LU and $\mathrm{HK}=\mathrm{K}=\mathrm{H} \neq \mathrm{H} \backslash \mathrm{K}$ and $\mathrm{G} \neq \mathrm{HK}$ are in U_{1}. Therefore

$$
\begin{aligned}
h(H)+h(G \neq H) & =h(H \backslash K)+h(H K \neq K)+h(H K \neq H)+h(G \neq H K) \\
& =h(H \backslash K)+h(H K \neq H)+h(H K=K)+h(G \neq H K):
\end{aligned}
$$

Since K is in LU and $G=K$ is in U_{1} this sum gives $h(G)=h(K)+h(G=K)$ and so (4) holds for G. This completes the inductive step.

Let (G) be the maximal locally- nite normal subgroup of G.
Theorem 1.9 There are functions d and M from \mathbb{Z} o to \mathbb{Z} o such that if G is an elementary amenable group of Hirsch length at most h and (G) is its maximal locally nite normal subgroup then $G=(G)$ has a maximal solvable normal subgroup of derived length at most $d(h)$ and index at most $M(h)$.

Proof We argue by induction on h. Since an elementary amenable group has Hirsch length 0 if and only if it is locally nite we may set $d(0)=0$ and $\mathrm{M}(0)=1$. assume that the result is true for all such groups with Hirsch length at most h and that G is an elementary amenable group with $\mathrm{h}(\mathrm{G})=\mathrm{h}+1$.

Suppose rst that G is nitely generated. Then by Lemma 1.7 there are normal subgroups $\mathrm{K}<\mathrm{H}$ in G such that $\mathrm{G}=\mathrm{H}$ is nite, $\mathrm{H}=\mathrm{K}$ is free abelian of rank $r 1$ and the action of $\mathrm{G} \neq \mathrm{H}$ on $\mathrm{H}=\mathrm{K}$ by conjugation is e ective (Note that $r=h(G * K) \quad h(G)=h+1$.) Since the kernel of the natural map from $\mathrm{GL}(r ; \mathbb{Z})$ to $\mathrm{GL}\left(r ; \mathbb{F}_{3}\right)$ is torsion free, by Lemma 1.2, we see that $\mathrm{G} \neq \mathrm{H}$ embeds in $G L\left(r ; \mathbb{F}_{3}\right)$ and so has order at most $3^{r^{2}}$. Since $h(K)=h(G)-r \quad h$ the inductive hypothesis applies for K, so it has a normal subgroup L containing
(K) and of index at most $M(h)$ such that $L=(K)$ has derived length at most $d(h)$ and is the maximal solvable normal subgroup of $K=(K)$. As (K) and L are characteristic in K they are normal in G. (In particular, $(K)=$ $K \backslash(G)$.$) The centralizer of K \neq _$in $H=_$is a normal solvable subgroup of $\mathrm{G} \neq \perp$ with index at most $[\mathrm{K}: \mathrm{L}][[\mathrm{G}: \mathrm{H}]$ and derived length at most 2. Set $M(h+1)=M(h)!3^{(h+1)^{2}}$ and $d(h+1)=M(h+1)+2+d(h)$. Then G: (G) has a maximal solvable normal subgroup of index at most the centralizer of $K=_$in $H=_$).
In general, let $\mathrm{fG}_{\mathrm{i}} \mathrm{j} \mathrm{i} 2 \mathrm{Ig}$ be the set of nitely generated subgroups of G. By the above argument G_{i} has a normal subgroup H_{i} containing $\left(G_{i}\right)$ and such that $H_{i}=\left(G_{i}\right)$ is a maximal normal solvable subgroup of $G_{i}=\left(G_{i}\right)$ and has derived length at most $d(h+1)$ and index at most $M(h+1)$. Let $N=$ $\operatorname{maxf}\left[\mathrm{G}_{\mathrm{i}}: \mathrm{H}_{\mathrm{i}}\right]$ j i 2 Ig and choose 2 I such that $[\mathrm{G}: \mathrm{H}]=\mathrm{N}$. If $\mathrm{G}_{\mathrm{i}} \quad G$ then $H_{i} \backslash G \quad H$. Since $\left[G: H \quad\left[G: H_{i} \backslash G\right]=\left[H_{i} G: H_{i}\right] \quad\left[G_{i}: H_{i}\right]\right.$ we have $\left[G_{i}: H_{i}\right]=N$ and $H_{i} \quad H$. It follows easily that if $G \quad G_{i} \quad G_{j}$ then $\mathrm{H}_{\mathrm{i}} \quad \mathrm{H}_{\mathrm{j}}$.
Set J = fi $21 \mathrm{jH} \quad \mathrm{H}_{\mathrm{i}} \mathrm{g}$ and $\mathrm{H}=\left[\mathrm{i} 2 \mathrm{H} \mathrm{H}_{\mathrm{i}}\right.$. If x ; y 2 H and g 2 G then there are indices $i ; k$ and $k 2 J$ such that $\times 2 \mathrm{H}_{\mathrm{i}}$, y $2 \mathrm{H}_{\mathrm{j}}$ and $\mathrm{g} 2 \mathrm{G}_{\mathrm{k}}$. Choose I 2 J such that $G_{\text {I }}$ contains $G_{i}\left[G_{j}\left[G_{k}\right.\right.$. Then x^{-1} and gxg^{-1} are in $H_{l} H$, and so H is a normal subgroup of G. Moreover if $x_{1} ;::: ; x_{N}$ is a set of coset representatives for H in G then it remains a set of coset representatives for H in G, and so $[G ; H]=N$.
Le D_{i} be the $d(h+1)^{\text {th }}$ derived subgroup of H_{i}. Then D_{i} is a locally- nite normal subgroup of G_{i} and so, bu an argument similar to that of the above paragraph [${ }_{i 2}{ }^{2} D_{i}$ is a locally- nite normal subgroup of G. Since it is easily seen that the $d(h+1)^{\text {th }}$ derived subgroup of H is contained in [$\left.{ }_{i 2}\right] D_{i}$ (as each iterated commutator involves only nitely many elements of H) it follows that $H \quad(G)=(G)=H=H \backslash \quad(G)$ is solvable and of derived length at most $d(h+1)$.

The above result is from [HL92]. The argument can be simpli ed to some extent if G is countable and torsion-free. (In fact a virtually solvable group
of nite Hirsch length and with no nontrivial locally- nite normal subgroup must be countable, by Lemma 7.9 of [Bi]. Moreover its Hirsch-Plotkin radical is nilpotent and thequotient is virtually abelian, by Proposition 5.5 of [BH72].)

Lemma 1.10 Let G be an elementary amenable group. If $\mathrm{h}(\mathrm{G})=1$ then for every $\mathrm{k}>0$ there is a subgroup H of G with $\mathrm{k}<\mathrm{h}(\mathrm{H})<1$.

Proof We shall argue by induction on (G). The result is vacuously true if
$(G)=1$. Suppose that it is true for all groups in U and G is in ' U. Since
$h(G)=$ l.u.b.f $h(F) \mathrm{jF} \quad \mathrm{G} ; \mathrm{F} 2 \mathrm{U}$ g either there is a subgroup F of G in U with $h(F)=1$, in which case the result is true by the inductive hypothesis, or $h(G)$ is the least upper bound of a set of natural numbers and the result is true. If G is in $U+1$ then it has a normal subgroup N which is in ' U with quotient $G \neq N$ in U_{1}. But then $h(N)=h(G)=1$ and so N has such a subgroup.

Theorem 1.11 Let G be a countable elementary amenable group of nite cohomological dimension. Then $h(G)$ c:d:G and G is virtually solvable.

Proof Since c:d:G <1 the group G is torsion free. Let H be a subgroup of nite Hirsch length. Then H is virtually solvable and c:d:H c:d:G so $h(H)$ c:d:G. The theorem now follows from Theorem 1.9 and Lemma 1.10.

1.6 Modules and niteness conditions

Le G be a group and $w: G!Z=2 Z$ a homomorphism, and let R be a commutative ring. Then $g=(-1)^{w(g)} g^{-1}$ de nes an anti-involution on $R[G]$. If L is a left R [G]-module \bar{L} shall denote the conjugate right $R[G]$-module with the same underlying R-module and R[G]-action given by I:g = g:l , for all I 2 L and g 2 G . (We shall also use the overline to denote the conjugate of a right R[G]-module.) The conjugate of a free left (right) module is a free right (left) module of the same rank.

We shall also let Z^{W} denote the G-module with underlying abelian group Z and G -action given by $\mathrm{g}: \mathrm{n}=(-1)^{\mathrm{w}(\mathrm{g})} \mathrm{n}$ for all g in G and n in Z .

Lemma 1.12 [WI65] Let G and H be groups such that G is nitely pre sentable and there are homomorphisms $\mathrm{j}: \mathrm{H}!\mathrm{G}$ and : G! H with $\mathrm{j}=\mathrm{id} \mathrm{H}_{\mathrm{H}}$. Then H is also nitely presentable.

Proof Since G is nitely presentablethere is an epimorphism p:F! G from a fre group $F(X)$ with a nite basis X onto G, with kerne the normal closure of a nite set of relators R. We may choose elements w_{x} in $F(X)$ such that j $p(x)=p\left(w_{x}\right)$, for all x in X. Then factors through the group K with presentation hX j R; $\mathrm{X}^{-1} \mathrm{w}_{\mathrm{x}} ; 8 \mathrm{x} 2 \mathrm{Xi}$, say $=\mathrm{vu}$. Now uj is clearly onto, while vuj $=j=i d_{H}$, and so v and uj are mutually inverse isomomorphisms. Therefore $\mathrm{H}=\mathrm{K}$ is nitely presentable

A group G is $F P_{n}$ if the augmentation $\mathbb{Z}[G]$-module Z has a projective resolution which is nitely generated in degrees n, and it is FP if it has nite cohomological dimension and is $F P_{n}$ for $n=c: d: G$. It is $F F$ if moreover Z has a nite resolution consisting of nitely generated free $\mathbb{Z}[G]$-modules. \Finitely generated" is equivalent to FP_{1}, while \ nitely presentable" implies $F P_{2}$. Groups which are $F P_{2}$ are also said to be almost nitely presentable. (There are FP groups which are not nitely presentable [BB97].) An elementary amenable group G is $F P_{1}$ if and only if it is virtually $F P$, and is then virtually constructible and solvable of nite Hirsch length [K r93].
If the augmentation $\mathbb{Q}[]$-module Q has a nite resolution F by nitely generated projective modules then ()$=(-1)^{i} \operatorname{dim}_{\mathbb{Q}}\left(\mathbb{Q} \otimes F_{i}\right)$ is independent of the resolution. (If is the fundamental group of an aspherical nite complex K then ()$=(K)$.$) We may extend this de nition to groups which have a$ subgroup of niteindex with such a resolution by setting () = () = :]. (It is not hard to see that this is well de ned.)
Le P be a nitely generated projective $\mathbb{Z}[]$-module. Then P is a direct summand of $\mathbb{Z}[]^{r}$, for some $r \quad 0$, and so is the image of some idempotent $r r$-matrix M with entries in $\mathbb{Z}[]$. TheK aplansky rank (P) is the coe cient of 12 in the trace of M. It depends only on P and is strictly positive if $P \in 0$. Thegroup satis es the Weak Bass Conjecture if $(P)=\operatorname{dim}_{\mathbb{Q}} Q \otimes P$. This conjecturehas been con rmed for linear groups, solvable groups and groups of cohomological dimension 2 over \mathbb{Q}. (See [Dy87, Ec86, Ec96] for further details.)

The following result from [BS78] shall be useful.
Theorem 1.13 (Bieri-Strebel) Let G bean $F P_{2}$ group such that $G=G^{0}$ is innite Then G is an HNN extension with nitely generated base and associated subgroups.

Proof (Sketch \{ We shall assume that G is nitely presentable) Let h : $\mathrm{F}(\mathrm{m})$! G be an epimorphism, and let $\mathrm{g}_{\mathrm{i}}=\mathrm{h}\left(\mathrm{x}_{\mathrm{i}}\right)$ for 1 i m . We may
assume that g_{m} has in nite order modulo the normal closure of $f g j 1$ $\mathrm{i}<\mathrm{mg}$. Since G is nitely presentable the kernel of h is the normal closure of nitely many relators, of weight 0 in the letter x_{m}. Each such relator is a product of powers of conjugates of the generators $f x_{i} j 1 \quad i<m g$ by powers of x_{m}. Thus we may assume the relators are contained in the subgroup generated by $f x_{m}^{j} x_{i} x_{m}^{-j}$ j $1 \quad \mathrm{~m} ;-\mathrm{p} \quad \mathrm{j} \quad \mathrm{pg}$, for some su ciently large p . Let U be the subgroup of G generated by $f g_{m} g_{m}^{-j} j 1 \quad i \quad m ;-p \quad j<p g$, and let $V=g_{m} U g_{m}^{-1}$. Let B be the subgroup of G generated by U [V and let \mathcal{G} be the HNN extension with base B and associated subgroups U and V presented by $\mathbb{G}=\mathrm{hB}$; $\mathrm{s} \mathrm{j} \mathrm{sus}^{-1}=(\mathrm{u}) 8 \mathrm{u} 2 \mathrm{Ui}$, where : U ! V is the isomorphism determined by conjugation by g_{m} in G. There are obvious epimorphisms : $F(m+1)!\mathcal{G}$ and $: G$! G with composite h. It is easy to see that $\operatorname{Ker}(\mathrm{h}) \operatorname{Ker}()$ and so $\mathcal{G}=\mathrm{G}$.

In particular, if G is restrained then it is an ascending HNN extension.
A ring R is weakly nite if every onto endomorphism of R^{n} is an isomorphism, for all n 0. (In [H2] the term \SIBN ring" was used instead.) Finitely generated stably fre modules over weakly nite rings have well de ned ranks, and the rank is strictly positive if the module is nonzero. Skew edds are weakly
nite, as are subrings of weakly nite rings. If G is a group its complex group algebra $\mathbb{C}[G]$ is weakly nite, by a result of Kaplansky. (See[R o84] for a proof.)
A ring R is (regular) coherent if every nitely presentable left R-module has a (nite) resolution by nitely generated projective R-modules, and is (regular) noetherian if moreover every nitely generated R -module is nitely presentable. A group G is regular coherent or regular noetherian if the group ring R[G] is regular coherent or regular noetherian (respectively) for any regular noetherian ring R. It is coherent as a group if all its nitely generated subgroups are nitely presentable

Lemma 1.14 If G is a group such that $\mathbb{Z}[\mathrm{G}]$ is coherent then every nitely generated subgroup of G is $F P_{1}$.

Proof Let H be a subgroup of G . Since $\mathbb{Z}[\mathrm{H}] \mathbb{Z}[\mathrm{G}]$ is a faithfully flat ring extension a left $\mathbb{Z}[\mathrm{H}]$-module is nitely generated over $\mathbb{Z}[\mathrm{H}]$ if and only if the induced module $\mathbb{Z}[G] \otimes_{H} M$ is nitely generated over $\mathbb{Z}[G]$. It follows by induction on n that M is $F P_{n}$ over $\mathbb{Z}[H]$ if and only if $\mathbb{Z}[G] \otimes_{H} M$ is $F P_{n}$ over $\mathbb{Z}[\mathrm{G}]$.

If H is nitely generated then the augmentation $\mathbb{Z}[\mathrm{H}]$-module Z is nitely presentable over $\mathbb{Z}[H]$. Hence $\mathbb{Z}[G] \otimes_{H} Z$ is nitely presentable over $\mathbb{Z}[G]$, and
so is $F P_{1}$ over $\mathbb{Z}[G]$, since that ring is coherent. Hence Z is $F P_{1}$ over $\mathbb{Z}[H]$, i.e, H is $F P_{1}$.

Thus if either G is coherent (as a group) or $\mathbb{Z}[G]$ is coherent (as a ring) every nitely generated subgroup of G is $F P_{2}$. As the latter condition shall usually su cefor our purposes below, we shall say that such a group is almost coherent. The connection between these notions has not been much studied.

The class of groups whose integral group ring is regular coherent contains the trivial group and is closed under generalised free products and HNN extensions with amalgamation over subgroups whose group rings are regular noetherian, by Theorem 19.1 of [Wd78]. If [G:H] is nite and G is torsion free then $\mathbb{Z}[\mathrm{G}]$ is regular coherent if and only if $\mathbb{Z}[\mathrm{H}]$ is. In particular, free groups and surface groups are coherent and their integral group rings are regular coherent, while (torsion free) virtually poly-Z groups are coherent and their integral group rings are (regular) noetherian.

1.7 Ends and cohomology with free coe cients

A nitely generated group G has $0,1,2$ or in nitely many ends. It has 0 ends if and only if it is nite in which case $H^{0}(G ; \mathbb{Z}[G])=Z$ and $H^{q}(G ; \mathbb{Z}[G])=0$ for $\mathrm{q}>0$. Otherwise $\mathrm{H}^{0}(\mathrm{G} ; \mathbb{Z}[\mathrm{G}])=0$ and $\mathrm{H}^{1}(\mathrm{G} ; \mathbb{Z}[\mathrm{G}])$ is a free abelian group of rank e(G) - 1, where e(G) is the number of ends of G [Sp49]. The group G has more than one end if and only if it is either a nontrivial generalised free product with amalgamation $G=A \quad \mathrm{~B}$ or an HNN extension $\mathrm{A} c$ where C is a nite group. In particular, it has two ends if and only if it is virtually Z if and only if it has a (maximal) nite normal subgroup F such that the quotient $G=F$ is either in nite cyclic (Z) or in nite dihedral ($D=(Z=2 Z) \quad(Z=2 Z)$). (Se[DD].)

Lemma 1.15 Let N be a nitely generated restrained group. Then N is either nite or virtually Z or has one end.

Proof Groups with in nitely many ends have noncyclic free subgroups.

It follows that a countable restrained group is either elementary amenable of Hirsch length at most 1 or it is an increasing union of nitely generated, one ended subgroups.

If G is a group with a normal subgroup N, and A is a left $\mathbb{Z}[G]$-module there is a Lyndon-Hochschild-Serre spectral sequence (LHSSS) for G as an extension of $\mathrm{G} \neq \mathrm{N}$ by N and with coe cients A :

$$
\left.\mathrm{E}_{2}=\mathrm{H}^{\mathrm{p}}\left(\mathrm{G}=\mathrm{N} ; \mathrm{H}^{\mathrm{q}}(\mathrm{~N} ; \mathrm{A})\right)\right) \quad \mathrm{H}^{\mathrm{p}+\mathrm{q}}(\mathrm{G} ; \mathrm{A}) ;
$$

the $r^{\text {th }}$ di erential having bidegree ($r ; 1-r$). (See Section 10.1 of [Mc].)
Theorem 1.16 [Ro75] If G has a normal subgroup N which is the union of an increasing sequence of subgroups N_{n} such that $H^{s}\left(N_{n} ; \mathbb{Z}[G]\right)=0$ for $s \quad r$ then $H^{s}(G ; \mathbb{Z}[G])=0$ for $s \quad r$.

Proof Let s r. Let f be an s-cocycle for N with coe cients $\mathbb{Z}[G]$, and let f_{n} denote the restriction of f to a cocycle on N_{n}. Then there is an ($s-$ 1)-cochain g_{n} on N_{n} such that $g_{n}=f_{n}$. Since $\left(g_{n+1} j_{n}-g_{n}\right)=0$ and $H^{s-1}\left(N_{n} ; \mathbb{Z}[G]\right)=0$ thereis an ($s-2$)-cochain h_{n} on N_{n} with $h_{n}=g_{n+1} j_{N_{n}}$ g_{n}. Choose an extension h_{n}^{0} of h_{n} to N_{n+1} and let $\hat{g}_{n+1}=g_{n+1}-h_{n}^{0}$. Then $\hat{g}_{n+1} j_{n}=g_{n}$ and $\hat{g}_{n+1}=f_{n+1}$. In this way we may extend g_{0} to an ($s-1$)cochain g on N such that $f=g$ and so $H^{s}(N ; \mathbb{Z}[G])=0$. TheLHSSS for G as an extension of $G \neq N$ by N, with coe cients $\mathbb{Z}[G]$, now gives $H^{s}(G ; \mathbb{Z}[G])=0$ for $s r$.

C orollary 1.16.1 The hypotheses are satis ed if N is the union of an increasing sequence of $F P_{r}$ subgroups N_{n} such that $H^{s}\left(N_{n} ; \mathbb{Z}\left[N_{n}\right]\right)=0$ for $s \quad r$. In particular, if N is the union of an increasing sequence of nitely generated, one-ended subgroups then G has one end.

Proof We have $H^{s}\left(N_{n} ; \mathbb{Z}[G]\right)=H^{s}\left(N_{n} ; \mathbb{Z}\left[N_{n}\right]\right) \otimes \mathbb{Z}\left[G \neq N_{n}\right]=0$, for all $s \quad r$ and all n, since N_{n} is $F P_{r}$.

In particular, G has one end if N is a countable elementary amenable group and $h(N)>1$, by Lemma 1.15.
The following results are Theorems 8.8 of [Bi] and Theorem 0.1 of [BG85], respectively.

Theorem (Bieri) Let G be a nonabelian group with $\mathrm{c}: \mathrm{d}: \mathrm{G}=\mathrm{n}$. Then c:d: G $n-1$, and if G has rank $n-1$ then G^{0} is free.

Theorem (Brown-Geoghegan) Let G bean HNN extension B in which the base H and associated subgroups I and (I) are F P_{n}. If the homomorphism from $H^{9}(B ; Z[G])$ to $H^{q}(I ; Z[G])$ induced by restriction is injective for some $\mathrm{q} \quad \mathrm{n}$ then the corresponding homomorphism in the Mayer-Vietoris sequence is injective, so $H^{q}(G ; Z[G])$ is a quotient of $H^{q-1}(I ; Z[G])$.

The second cohomology of a group with free coe cients ($\mathrm{H}^{2}(\mathrm{G} ; \mathrm{R}[\mathrm{G}]), \mathrm{R}=\mathbb{Z}$ or a eld) shall play an important role in our investigations.

Theorem (Farrell) Let G be a nitely presentable group. If G has an ele ment of in nite order and $R=\mathbb{Z}$ or is a eld then $H^{2}(G ; R[G])$ is either 0 or R or is not nitely generated.

Farrell also showed in [Fa74] that if $\mathrm{H}^{2}\left(\mathrm{G} ; \mathbb{F}_{2}[\mathrm{G}]\right)=\mathrm{Z}=2 \mathrm{Z}$ then every nitely generated subgroup of G with one end has nite index in G. Hence if G is also torsion free then subgroups of in nite index in G are locally free Bowditch has since shown that such groups are virtually the fundamental groups of aspherical closed surfaces ([Bo99] - see x8 below).

We would also like to know when $\mathrm{H}^{2}(\mathrm{G} ; \mathbb{Z}[\mathrm{G}])$ is 0 (for G nitely presentable). In particular, we expect this to the case if G is an ascending HNN extension over a nitely generated, oneended base, or if G has an elementary amenable, normal subgroup E such that either $h(E)=1$ and $G \equiv$ has one end or $h(E)=$ 2 and $[G: E]=1$ or $h(E)$ 3. However our criteria here at present require niteness hypotheses, either in order to apply an LHSSS argument or in the form of coherence.

Theorem 1.17 Let G bea nitely presentablegroup with an almost coherent, locally virtually indicable, restrained normal subgroup E. Suppose that either E is abelian of rank 1 and $G=E$ has oneend or that E has a nitely generated, one-ended subgroup and G is not elementary amenable of Hirsch length 2. Then $\mathrm{H}^{\mathrm{s}}(\mathrm{G} ; \mathbb{Z}[\mathrm{G}])=0$ for s 2.

Proof If E is abelian of positive rank and $\mathrm{G}=\mathrm{E}$ has one end then G is 1connected at 1 and so $\mathrm{H}^{\mathrm{s}}(\mathrm{G} ; \mathbb{Z}[\mathrm{G}])=0$ for $\mathrm{s} \quad 2$, by Theorem 1 of [Mi87], and so $\mathrm{H}^{\mathrm{s}}(\mathrm{G} ; \mathbb{Z}[\mathrm{G}])=0$ for $\mathrm{s} \quad 2$, by [GM86].

We may assume henceforth that E is an increasing union of nitely generated one-ended subgroups $E_{n} \quad E_{n+1} \quad E=\left[E_{n}\right.$. Since E is locally virtually indicable there are subgroups $F_{n} \quad E_{n}$ such that $\left[E_{n}: F_{n}\right]<1$ and which map onto Z. Since E is almost coherent these subgroups are $F P_{2}$. Hence they are HNN extensions over $F P_{2}$ bases H_{n}, by Theorem 1.13, and the extensions are ascending, since E is restrained. Since E_{n} has one end H_{n} has one or two ends.

If H_{n} has two ends then E_{n} is elementary amenable and $h\left(E_{n}\right)=2$. Therefore if H_{n} has two ends for all n then $\left[E_{n+1}: E_{n}\right]<1, E$ is elementary amenable
and $h(E)=2$. If $[G: E]<1$ then G is elementary amenable and $h(G)=2$, and so we may assume that $[G: E]=1$. If E is nitely generated then it is $F P_{2}$ and so $H^{s}(G ; \mathbb{Z}[G])=0$ for $\mathrm{s} \quad 2$, by an LHSSS argument. This is also the case if E is not nitely generated, for then $H^{s}(E ; \mathbb{Z}[G])=0$ for $s \quad 2$, by the argument of Theorem 3.3 of [GS81], and we may again apply an LHSSS argument. (The hypothesis of [GS81] that \each G_{n} is FP and $\mathrm{c}: \mathrm{d}: \mathrm{G}_{\mathrm{n}}=\mathrm{h} "$ can be relaxed to \each G_{n} is $F P_{h}{ }^{\prime \prime}$.)

Otherwise we may assume that H_{n} has one end, for all n 1. In this case $H^{s}\left(F_{n} ; \mathbb{Z}\left[F_{n}\right]\right)=0$ for $s \quad 2$, by the Theorem of Brown and Geoghegan. There fore $\mathrm{H}^{\mathrm{s}}(\mathrm{G} ; \mathbb{Z}[\mathrm{G}])=0$ for $\mathrm{s} \quad 2$, by Theorem 1.16.

The theorem applies if E is almost coherent and elementary amenable, and either $h(E)=2$ and $[G: E]=1$ or $h(E)$ 3, since elementary amenable groups are restrained and locally virtually indicable It also applies if $E=\bar{G}$ is large enough, since nitely generated nilpotent groups are virtually poly-Z. A similar argument shows that if $h(\bar{G}) \quad r$ then $H^{s}(G ; \mathbb{Z}[G])=0$ for $s<r$. If moreover $[\mathrm{G}: \overline{\mathrm{G}}]=1$ then $\mathrm{H}^{\mathrm{r}}(\mathrm{G} ; \mathbb{Z}[\mathrm{G}])=0$ also.

Are the hypotheses that E be almost coherent and locally virtually indicable necessary? Is it su cient that E be restrained and be an increasing union of nitely generated, oneended subgroups?

Theorem 1.18 Let $G=B$ be an HNN extension with $F P_{2}$ base B and associated subgroups I and (I) = J, and which has a restrained normal subgroup $\mathrm{N} \quad \mathrm{HBii}$. Then $\mathrm{H}^{\mathrm{s}}(\mathrm{G} ; \mathbb{Z}[\mathrm{G}])=0$ for s 2 if either
(1) the HNN extension is ascending and $\mathrm{B}=\mathrm{I}=\mathrm{J}$ has one end;
(2) N is locally virtually Z and $\mathrm{G} \neq \mathrm{N}$ has one end; or
(3) N has a nitely generated subgroup with one end.

Proof The rst assertion follows immediately from the Brown-Geogeghan Theorem.

Le t be the stable letter, so that $\mathrm{tit}^{-1}=$ (i), for all i 2 I . Suppose that $N \backslash J G N \backslash B$, and let $b 2 N \backslash B-J$. Then $b^{f}=t^{-1} b t$ is in N, since N is normal in G. Let a be any element of $N \backslash B$. Since N has no noncydic free subgroup there is a word w 2 F (2) such that $w\left(a ; b^{f}\right)=1$ in G. It follows from Britton's Lemma that a must be in I and so $\mathrm{N} \backslash \mathrm{B}=\mathrm{N} \backslash \mathrm{I}$. In particular, N is the increasing union of copies of $\mathrm{N} \backslash \mathrm{B}$.

Hence $G \neq V$ is an $H N N$ extension with base $B \neq N \backslash B$ and associated subgroups $\mathrm{I} \neq \mathrm{N} \backslash \mathrm{I}$ and $\mathrm{J} \neq \mathrm{N} \backslash \mathrm{J}$. Therefore if $\mathrm{G} \neq \mathrm{N}$ has one end the latter groups are in nite, and so B, I and J each have one end. If N is virtually Z then $\mathrm{H}^{\mathrm{s}}(\mathrm{G} ; \mathbb{Z}[\mathrm{G}])=0$ for $\mathrm{s} \quad 2$, by an LHSSS argument. If N is locally virtually Z but is not nitely generated then it is the increasing union of a sequence of two-ended subgroups and $\mathrm{H}^{\mathrm{s}}(\mathrm{N} ; \mathbb{Z}[\mathrm{G}])=0$ for s 1, by Theorem 3.3 of [GS81]. Since $H^{2}(B ; \mathbb{Z}[G])=H^{0}\left(B ; H^{2}(N \backslash B ; \mathbb{Z}[G])\right)$ and $H^{2}(I ; \mathbb{Z}[G])=$ $\mathrm{H}^{0}\left(\mathrm{I} ; \mathrm{H}^{2}(\mathrm{~N} \backslash \mathrm{I} ; \mathbb{Z}[\mathrm{G}])\right)$, the restriction map from $\mathrm{H}^{2}(\mathrm{~B} ; \mathbb{Z}[\mathrm{G}])$ to $\mathrm{H}^{2}(\mathrm{I} ; \mathbb{Z}[\mathrm{G}])$ is injective. If N has a nitely generated, oneended subgroup N_{1}, we may assume that $\mathrm{N}_{1} \quad \mathrm{~N} \backslash \mathrm{~B}$, and so B, I and J also have one end. Moreover $H^{\mathrm{s}}(\mathrm{N} \backslash \mathrm{B} ; \mathbb{Z}[\mathrm{G}])=0$ for $\mathrm{s} \quad 1$, by Theorem 1.16. We again see that the restriction map from $\mathrm{H}^{2}(\mathrm{~B} ; \mathbb{Z}[G])$ to $\mathrm{H}^{2}(\mathrm{I} ; \mathbb{Z}[\mathrm{G}])$ is injective. The result now follows in these cases from the Theorem of Brown and Geoghegan.

1.8 Poincare duality groups

A group G is a $P D_{n}$-group if it is $F P, H^{p}(G ; \mathbb{Z}[G])=0$ for $p \in n$ and $H^{\mathrm{n}}(\mathrm{G} ; \mathbb{Z}[\mathrm{G}])=\mathrm{Z}$. The \dualizing module" $\mathrm{H}^{\mathrm{n}}(\mathrm{G} ; \mathbb{Z}[\mathrm{G}])=\mathrm{Ext} \mathbb{Z}_{[G]}^{\mathrm{n}}(\mathrm{Z} ; \mathbb{Z}[\mathrm{G}])$ is a right $\mathbb{Z}[\mathrm{G}]$-module; the group is orientable (or is a $P \mathrm{D}_{\mathrm{n}}^{+}$-group) if it acts trivially on the dualizing module, i.e, if $\mathrm{H}^{\mathrm{n}}(\mathrm{G} ; \mathbb{Z}[\mathrm{G}])$ is isomorphic to the augmentation module Z. (See [Bi].)

The only $P D_{1}$-group is Z. Eckmann, Linnell and Müller showed that every $P D_{2}$-group is the fundamental group of a closed aspherical surface. (Se Chapter VI of [DD].) Bowditch has since found a much stronger result, which must be close to the optimal characterization of such groups [Bo99].

Theorem (Bowditch) Let G be an almost nitely presentable group and F a edd. Then G is virtually a P_{2}-group if and only if $\mathrm{H}^{2}(\mathrm{G} ; \mathrm{F}[\mathrm{G}])$ has a 1-dimensional G-invariant subspace

In particular, this theorem applies if $\mathrm{H}^{2}(\mathrm{G} ; \mathbb{Z}[\mathrm{G}])=\mathrm{Z}$. for then the image of $H^{2}(G ; \mathbb{Z}[G])$ in $H^{2}\left(G ; \mathbb{F}_{2}[G]\right)$ under reduction $\bmod (2)$ is such a subspace.
Thefollowing result from [St77] corresponds to the fact that an in nite covering space of a PL n-manifold is homotopy equivalent to a complex of dimension $<\mathrm{n}$.

Theorem (Strebel) Let H be a subgroup of in nite index in a PD_{n}-group G. Then c:d:H <n.

If R is a subring of S, A is a left R-module and C is a left S-module then the abelian groups H om ${ }_{R}\left(\mathrm{Cj}_{R} ; A\right)$ and $H o m_{S}\left(C ; H m_{R}\left(\mathrm{Sj}_{R} ; A\right)\right)$ are naturally isomorphic, where $C j_{R}$ and $S j_{R}$ are the left R-modules underlying C and S respectively. (The maps I and J de ned by $I(f)(c)(s)=f(s c)$ and $\mathrm{J}\left(\mathrm{O}(\mathrm{c})=(\mathrm{c})(1)\right.$ for $\mathrm{f}: \mathrm{C}!\mathrm{A}$ and $: \mathrm{C}!\mathrm{Hom}_{\mathrm{R}}(\mathrm{S} ; \mathrm{A})$ are mutually inverse isomorphisms.) When K is a subgroup of and $R=\mathbb{Z}[K]$ and $S=\mathbb{Z}[$] these isomorphisms give riseto Shapiro's lemma. In our applications $=K$ shall usually be in nite cyclic and S is then a twisted Laurent extension of R.

Theorem 1.19 Let bea P D_{n}-group with an $F P_{r}$ normal subgroup K such that $G==K$ is a $P D_{n-r}$ group and $2 r \quad n-1$. Then K is a $P D_{r-\text { group. }}$

Proof It shall su ce to show that $H^{s}(K ; F)=0$ for any free $\mathbb{Z}[K]$-module F and all $s>r$, for then $c: d: K=r$ and the result follows from Theorem 9.11 of $[\mathrm{Bi}]$. Let $\mathrm{W}=\mathrm{Hom}_{\mathbb{Z}[\mathrm{K}]}(\mathbb{Z}[] ; F)$ be the $\mathbb{Z}[]$-module coinduced from F. Then $H^{s}(K ; F)=H^{s}(; W)=H_{n-s}(; \bar{W})$, by Shapiro's lemma and Poincare duality. As a $\mathbb{Z}[K]$-module $\bar{W}=F^{G}$ (the direct product of $j G j$ copies of F), and so $H_{(}(K ; \bar{W})=0$ for $0<q \quad r$ (since K is $F P_{r}$), while $H_{0}(K ; \bar{W})=A^{G}$, where $A=H_{0}(K ; F)$. Moreover $A^{G}=H_{\text {om }}^{Z}(\mathbb{Z}[G] ; A)$ as a $\mathbb{Z}[G]$-module, and so is coinduced from a module over the trivial group. Therefere if $n-s \quad r$ the LHSSS gives $H^{s}(K ; F)=H_{n-s}\left(G ; A^{G}\right)$. Poincare duality for G and another application of Shapiro's lemma now give $H^{5}(K ; F)=$ $H^{s-r}\left(G ; A^{G}\right)=H^{s-r}(1 ; A)=0$, if $s>r$.

If the quotient is poly-Z we can do somewhat better.
Theorem 1.20 Let bea $P D_{n}$-group which is an extension of Z by a normal subgroup K which is $F P_{[n=2]}$. Then K is a $P D_{n-1}$-group.

Proof It is su cient to show that $\lim \mathrm{H}^{\mathrm{q}}\left(\mathrm{K} ; \mathrm{M}_{\mathrm{i}}\right)=0$ for any direct system $f M_{i} g_{i 21}$ with limit 0 and for all $q \quad n-1$, for then K is $F P_{n-1}$ [Br75], and the result again follows from Theorem 9.11 of [Bi]. Since K is $F P_{[n=2]}$ we may assume $q>n=2$. We have $H^{q}\left(K ; M_{i}\right)=H^{q}\left(; W_{i}\right)=H_{n-q}\left(; \overline{W_{i}}\right)$, where $W_{i}=H$ om $\left.\mathbb{Z}_{\mathbb{K}}\right]\left(\mathbb{Z}[] ; M_{i}\right)$, by Shapiro's lemma and Poincare duality. The LHSSS for as an extension of Z by K reduces to short exact sequences

$$
0!H_{0}\left(=K ; H_{s}\left(K ; \overline{W_{i}}\right)\right)!H_{s}\left(; \overline{W_{i}}\right)!H_{1}\left(=K ; H_{s-1}\left(K ; \overline{W_{i}}\right)\right)!0:
$$

As a $\mathbb{Z}[K]$-module $W_{i}=\left(M_{i}\right)=K$ (the direct product of countably many copies of M_{i}). Since K is $\mathrm{FP}_{[n=2]}$ homology commutes with direct products in this
range, and so $H_{s}\left(K ; \overline{W_{i}}\right)=H_{s}\left(K ; \overline{M_{i}}\right)=K$ if $s \quad n=2$. As $=K$ acts on this moduleby shifting the entries we seethat $\mathrm{H}_{\mathrm{s}}\left(; \overline{\mathrm{W}_{\mathrm{i}}}\right)=\mathrm{H}_{\mathrm{s}-1}\left(\mathrm{~K} ; \overline{\mathrm{M}_{\mathrm{i}}}\right)$ if $\mathrm{s} \quad \mathrm{n}=2$, and the result now follows easily.

A similar argument shows that if is a $P D_{n}$-group and : ! Z is any epimorphism then c:d: $\operatorname{Ker}()<\mathrm{n}$. (This weak version of Strebel's Theorem su ces for some of the applications below.)

Corollary 1.20.1 If a $P D_{n}$-group is an extension of a virtually poly-Z group Q by an $F P_{[n=2]}$ normal subgroup K then K is a $P D_{n-h(Q)}$-group.

1.9 Hilbert modules

Let be a countable group and let ' ${ }^{2}$ () be the Hilbert space completion of $\mathbb{C}[]$ with respect to the inner product given by ($\left.a_{g} g ; b_{h} h\right)=a_{g} \bar{b}_{g}$. Left and right multiplication by elements of determine left and right actions of $\mathbb{C}[]$ as bounded operators on ${ }^{2}()$. The (left) von Neumann algebra $N()$ is the algebra of bounded operators on ${ }^{\text {' } 2(~) ~ w h i c h ~ a r e ~} \mathbb{C}[]$-linear with respect to the left action. By the Tomita-Takesaki theorem this is also the bicommutant in $B\left({ }^{2}()\right)$ of the right action of $\mathbb{C}[$, i.e., the set of operators which commute with every operator which is right $\mathbb{C}[$]-linear. (See pages 45-52 of [Su].) We may clearly use the canonical involution of $\mathbb{C}[]$ to interchange the roles of left and right in these de nitions.

If e 2 is the unit element we may de ne the von Neumann trace on N() by the inner product $\operatorname{tr}(\mathrm{f})=(\mathrm{f}(\mathrm{e}) ; \mathrm{e})$. This extends to square matrices over $\mathrm{N}(\mathrm{)}$ by taking the sum of the traces of the diagonal entries. A Hilbert N()module is a Hilbert space M with a unitary left -action which embeds isometrically and -equivariantly into the completed tensor product $\mathrm{H} \mathrm{a}^{\mathbf{2}}{ }^{2}()$ for some Hilbert space H. It is nitely generated if we may take $H=\mathbb{C}^{n}$ for some integer n . (In this case we do not need to complete the ordinary tensor product over \mathbb{C}.) A morphism of Hilbert $\mathrm{N}(\mathrm{)}$-modules is a -equivariant bounded linear operator $f: M!N$. It is a weak isomorphism if it is injective and has dense image. A bounded -linear operator on ${ }^{\prime 2}()^{n}=\mathbb{C}^{n} \otimes{ }^{2}()$ is represented by a matrix whose entries are in $\mathrm{N}(\mathrm{)}$. The von Neumann dimension of a nitely generated Hilbert $\mathrm{N}(\mathrm{)}$-module M is the real number $\operatorname{dim}_{N()}(M)=\operatorname{tr}(P) 2[0 ; 1)$, where P is any projection operator on $H \otimes{ }^{\prime 2}()$ with image -isometric to M. In particular, $\operatorname{dim}_{N()}(M)=0$ if and only if $\mathrm{M}=0$. The notions of nitely generated Hilbert $\mathrm{N}(\mathrm{)}$-module
and nitely generated projective $\mathrm{N}(\mathrm{)}$-module are essentially equivalent, and arbitrary $\mathrm{N}(\mathrm{)}$-modules have well-de ned dimensions in $[0 ; 1][L u ̈]$.
A sequence of bounded maps between Hilbert N()-modules

$$
M \xrightarrow{\mathrm{j}} N \stackrel{\mathrm{P}_{\mathrm{H}}}{+} P
$$

is weakly exact at N if $\operatorname{Ker}(\mathrm{p})$ is the closure of $\operatorname{Im}(\mathrm{j})$. If $0!\mathrm{M}!\mathrm{N}!\mathrm{P}$! 0 is weakly exact then j is injective $\operatorname{Ker}(p)$ is the closure of $\operatorname{Im}(j)$ and $\operatorname{Im}(p)$ is dense in P, and $\operatorname{dim}_{\left.N_{(}\right)}(N)=\operatorname{dim}_{N()}(M)+\operatorname{dim}_{N()}(P)$. A nitely generated Hilbert N()-complex C is a chain complex of nitely generated Hilbert $\mathrm{N}(\mathrm{)}$-modules with bounded $\mathbb{C}[]$-linear operators as di erentials. The re duced L^{2}-homology is de ned to be $H_{p}^{(2)}(C)=\operatorname{Ker}\left(d_{p}\right) \overline{\neq m\left(d_{p+1}\right)}$. The $p^{\text {th }}$ L^{2}-Betti number of C is then $\left.\operatorname{dim}_{N(}\right) \mathrm{H}_{\mathrm{p}}^{(2)}(\mathrm{C})$. (As the images of the differentials need not be closed the unreduced L^{2}-homology modules $H_{p}^{(2)}(\mathrm{C})=$ $\operatorname{Ker}\left(\mathrm{d}_{\mathrm{p}}\right) \neq \mathrm{m}\left(\mathrm{d}_{\mathrm{p}+1}\right)$ are not in general Hilbert modules.)
See [Lü] for more on modules over von Neumann algebras and L^{2} invariants of complexes and manifolds.
[In this book L^{2}-Betti number arguments shall replace the localization arguments used in [H2]. However we shall recall the de nition of safe extension used there An extension of rings $\mathbb{Z}[\mathrm{G}]<$ is a safe extension if it is faithfully flat,
is weakly nite and $\otimes_{\mathbb{Z}[G]} \mathbb{Z}=0$. It was shown there that if a group has a nontrivial elementary amenable normal subgroup whose nite subgroups have bounded order and which has no nontrivial nite normal subgroup then $\mathbb{Z}[\mathrm{G}]$ has a safe extension.]

Chapter 2

2-Complexes and PD_{3}-complexes

This chapter begins with a review of the notation we use for (co)homology with local coe cients and of the universal coe cient spectral sequence. We then de ne the L^{2}-Betti numbers and present some useful vanishing theorems of Lück and Gromov. These invariants are used in $\times 3$, where they are used to estimate the Euler characteristics of nite [; m]-complexes and to give a converse to the Cheeger-Gromov-Gottlieb Theorem on aspherical nite complexes. Some of the arguments and results here may be regarded as representing in microcosm the bulk of this book; the analogies and connections between 2complexes and 4-manifolds are well known. We then review Poincare duality and $P D_{n}$-complexes. In $\times 5-\times 9$ we shall summarize briefly what is known about the homotopy types of PD_{3}-complexes.

2.1 Notation

Let X be a connected cell complex and let X be its universal covering space. If H is a normal subgroup of $\mathrm{G}={ }_{1}(X)$ we may lift the cellular decomposition of X to an equivariant cellular decomposition of the corresponding covering space X_{H}. The cellular chain complex C of X_{H} with coe cients in a commutative ring R is then a complex of left $R[G=H$]-modules, with respect to the action of the covering group $\mathrm{G}=\mathrm{H}$. Moreover C is a complex of fre modules, with bases obtained by choosing a lift of each cell of X. If X is a nite complex G is nitely presentable and these modules are nitely generated. If X is nitely dominated, i.e., is a retract of a nite complex Y, then G is a retract of ${ }_{1}(Y)$ and so is nitely presentable, by Lemma 1.12. Moreover the chain complex C of the universal cover is chain homotopy equivalent over R[G] to a complex of nitely generated projective modules [WI65].

The $i^{\text {th }}$ equivariant homology module of X with coe cients $R[G=H]$ is the left module $H_{i}(X ; R[G=H])=H_{i}(C)$, which is clearly isomorphic to $H_{i}\left(X_{H} ; R\right)$ as an R-module, with the action of the covering group determining its $R[G=H]-$ module structure. The $i^{\text {th }}$ equivariant cohomology module of X with coe cients $R[G \neq H]$ is the right module $H^{i}(X ; R[G \neq H])=H^{i}(C)$, where $C=$
$H o_{R[G=1]}(C ; R[G \neq H])$ is the associated cochain complex of right $R[G \neq H]-$ modules. More generally, if A and B are right and left $\mathbb{Z}[G \neq H]$-modules (re spectively) we may de ne $H_{j}(X ; A)=H_{j}\left(A \otimes_{\mathbb{Z}[G=H]} C\right)$ and $H^{n-j}(X ; B)=$ $H^{\mathrm{n-j}}\left(\mathrm{Hom}_{\mathbb{Z}[\mathrm{G}=\mathrm{H}]}(\mathrm{C} ; \mathrm{B})\right)$. There is a Universal Coe cient Spectral Sequence (UCSS) relating equivariant homology and cohomology:

$$
\left.E_{2}^{\mathrm{pq}}=\mathrm{Ext}_{\mathrm{R}[\mathrm{G}=+1]}^{\mathrm{q}}\left(\mathrm{H}_{\mathrm{p}}(\mathrm{X} ; \mathrm{R}[\mathrm{G}=\mathrm{H}]) ; \mathrm{R}[\mathrm{G}=\mathrm{H}]\right)\right) \quad \mathrm{H}^{\mathrm{p}+\mathrm{q}}(\mathrm{X} ; \mathrm{R}[\mathrm{G}=\mathrm{H}]) ;
$$

with $r^{\text {th }}$ di erential d_{r} of bidegree ($1-r ; r$).
If J is a normal subgroup of G which contains H there is also a Cartan-Leray spectral sequence relating the homology of X_{H} and X_{J} :

$$
\left.E_{p q}^{2}=\operatorname{Tor}_{p}^{R[G=H]}\left(H_{q}(X ; R[G=H]) ; R[G \neq]\right)\right) \quad H_{p+q}(X ; R[G \neq]) ;
$$

with $r^{\text {th }}$ di erential d^{r} of bidegree ($-r ; r-1$). (See [Mc] for more details on these spectral sequences.)

If M is a cell complex let $C_{M}: M$! $K\left({ }_{1}(M) ; 1\right)$ denotetheclassifying map for thefundamental group and let $f_{M}: M!P_{2}(M)$ denotethe second stage of the Postnikov tower for M. (Thus $\mathrm{C}_{\mathrm{M}}=\mathrm{C}_{\mathrm{P}_{2}(\mathrm{M})} \mathrm{f}_{\mathrm{M}}$.) A map $\mathrm{f}: \mathrm{X}$! $\mathrm{K}\left({ }_{1}(\mathrm{M}) ; 1\right)$ lifts to a map from X to $P_{2}(M)$ if and only if $f k_{1}(M)=0$, where $k_{1}(M)$ is the rst k-invariant of M in $H^{3}\left({ }_{1}(M)\right.$; $2(M)$. In particular, if $k_{1}(M)=$ 0 then $C_{P_{2}(M)}$ has a cross-section. The algebraic 2-type of M is the triple [; 2(M); $\mathrm{k}_{1}(\mathrm{M})$]. Two such triples [; ;] and [${ }^{0}, 0,9$ (corresponding to M and M^{0}, respectively) are equivalent if there are isomorphisms : ! 0 and : ! 0^{0} such that $(\mathrm{gm})=(\mathrm{g})(\mathrm{m})$ for all g 2 and m 2 and $=0$ in $\mathrm{H}^{3}(; 9$. Such an equivalence may be realized by a homotopy equivalence of $P_{2}(M)$ and $P_{2}(M 9$. (The reference [Ba] gives a detailed treatment of Postnikov factorizations of nonsimple maps and spaces.)

Throughout this book closed manifold shall mean compact, connected TOP manifold without boundary. Every closed manifold has the homotopy type of a nite Poincare duality complex [KS].

2.2 $\quad L^{2}$-Betti numbers

Let X be a nite complex with fundamental group. The L^{2}-Betti numbers of X are de ned by ${ }_{i}^{(2)}(X)=\operatorname{dim}_{N(1)}\left(H_{2}^{(2)}(\mathbb{X})\right)$ where the L^{2}-homology $H_{i}^{(2)}(\mathbb{X})=H_{i}\left(C^{(2)}\right)$ is the reduced homology of the Hilbert $N()$-complex $C^{(2)}={ }^{\prime 2} \otimes C(\mathbb{X})$ of square summable chains on $\mathbb{X}[A t 76]$. They are multiplicative in nite covers, and for $\mathrm{i}=0$ or 1 depend only on . (In particular,
${ }_{0}^{(2)}()=0$ if is in nite.) Thealternating sum of the L^{2}-Betti numbers is the Euler characteristic (X) [At76]. The usual Betti numbers of a space or group with coe cients in a eld F shall be denoted by ${ }_{i}(X ; F)=\operatorname{dim}_{F} H_{i}(X ; F)$ (or just $i(X)$, if $F=\mathbb{Q}$).
It may be shown that ${ }_{i}^{(2)}(X)=\operatorname{dim}_{N()} H_{i}\left(N() \otimes_{\mathbb{Z}[} C(\mathbb{X})\right)$, and this formulation of the de nition applies to arbitrary complexes (sœ [CG86], [Lü]). (However we may have ${ }_{i}^{(2)}(X)=1$.) These numbers are nite if X is nitely dominated, and the Euler characteristic formula holds if also satis es the Strong Bass Conjecture [Ec96]. In particular, ${ }_{i}^{(2)}()=\operatorname{dim} \mathrm{N}_{\mathrm{N}}\left(\mathrm{H}_{\mathrm{i}}(; \mathrm{N}(\mathrm{)})\right.$ is de ned for any group, and $\quad{ }_{2}^{(2)}\left({ }_{1}(X)\right) \quad{ }_{2}^{(2)}(X)$. (See Theorems 1.35 and 6.54 of [Lü].)

Lemma 2.1 Let $=\mathrm{H}$ be a nitely presentable group which is an ascending HNN extension with nitely generated base H . Then ${ }_{1}^{(2)}()=0$.

Proof Let t be the stable letter and let H_{n} be the subgroup generated by H and t^{n}, and suppose that H is generated by g elements. Then $\left[: H_{n}\right]=n$, so ${ }_{1}^{(2)}\left(H_{n}\right)=n{ }_{1}^{(2)}()$. But each H_{n} is also nitely presentable and generated by $g+1$ elements. Hence ${ }_{1}^{(2)}\left(H_{n}\right) \quad g+1$, and so ${ }_{1}^{(2)}()=0$.

In particular, this lemma holds if is an extension of Z by a nitely generated normal subgroup. We shall only sketch the next theorem (from Chapter 7 of [Lü]) as we do not use it in an essential way. (See however Theorems 5.8 and 9.9.)

Theorem 2.2 (Lück) Let be a group with a nitely generated in nite normal subgroup such that $=$ has an element of in nite order. Then ${ }_{1}^{(2)}()=0$.

Proof (Sketch) Let be a subgroup containing such that $==$ Z. The terms in the line $p+q=1$ of the homology LHSSS for as an extension of Z by with coe cients N() have dimension 0 , by Lemma 2.1. Since $\operatorname{dim}_{N()} M=\operatorname{dim} m_{()}\left(N() \otimes_{N()} M\right)$ for any $N()$-module M the corresponding terms for the LHSSS for as an extension of $=$ by with coe cients $\mathrm{N}(\mathrm{)}$ also have dimension 0 and the theorem follows.

Gaboriau has shown that the hypothesis $\backslash=$ has an element of in nite order" can be relaxed to $\backslash=$ is in nite" [Ga00]. A similar argument gives the following result.

Theorem 2.3 Let be a group with an in nite subnormal subgroup N such that $i_{i}^{(2)}(\mathrm{N})=0$ for all i . Then ${ }_{i}^{(2)}(\mathrm{l})=0$ for all i s .

Proof Suppose rst that N is normal in. If $[: N]<1$ the result follows by multiplicativity of the L^{2}-Betti numbers, while if $[: N]=1$ it follows from the LHSSS with coe cients $\mathrm{N}(\mathrm{)}$. We may then induct up a subnormal chain to obtain the theorem.

In particular, we obtain the following result from page 226 of [Gr]. (Note also that if A is an amenable ascendant subgroup of then its normal closure in is amenable)

Corollary 2.3.1 (Gromov) Let be a group with an in nite amenable normal subgroup A. Then ${ }_{i}^{(2)}()=0$ for all i.

Proof If A is an in nite amenable group ${ }_{i}^{(2)}(A)=0$ for all i [CG86].

2.3 2-Complexes and nitely presentable groups

If a group has a nite presentation P with g generators and r relators then the de ciency of P is $\operatorname{def}(P)=g-r$, and $\operatorname{def}()$ is the maximal de ciency of all nite presentations of . Such a presentation determines a nite 2-complex $C(P)$ with one 0-cell, g 1-cells and r 2-cells and with ${ }_{1}(C(P))=$. Clearly $\operatorname{def}(P)=1-(P)={ }_{1}(C(P))-{ }_{2}(C(P))$ and so $\operatorname{def}() \quad 1()-2()$. Conversely every nite 2-complex with one 0-cell arises in this way. In general, any connected nite 2-complex X is homotopy equivalent to one with a single 0 -cell, obtained by collapsing a maximal tree T in the 1 -skeleton $X^{[1]}$.

We shall say that has geometric dimension at most 2 , written g:d: 2 , if it is the fundamental group of a nite aspherical 2-complex.

Theorem 2.4 Let X bea connected nite 2-complex with fundamental group Then (X) $\quad{ }_{2}^{(2)}()-{ }_{1}^{(2)}()$. If $(X)=-{ }_{1}^{(2)}()$ then X is aspherical and $G 1$.

Proof The lower bound follows from the Euler characteristic formula $\quad(X)=$ ${ }_{0}^{(2)}(X)-{ }_{1}^{(2)}(X)+{ }_{2}^{(2)}(X)$, since ${ }_{i}^{(2)}()=i_{i}^{(2)}(X)$ for $i=0$ and 1 and ${ }_{2}^{(2)}() \quad 2_{2}^{(2)}(X)$. Since X is 2-dimensional $\quad 2(X)=H_{2}(\mathbb{X} ; \mathbb{Z})$ is a subgroup of $H_{2}^{(2)}(\mathbb{X})$. If $(X)=-{ }_{1}^{(2)}()$ then ${ }_{0}^{(2)}(X)=0$, so is in nite, and ${ }_{2}^{(2)}(X)=0$, so $H_{2}^{(2)}(\mathbb{X})=0$. Therefore $2(X)=0$ and so X is aspherical.

Corollary 2.4.1 Let be a nitely presentable group. Then def() 1+ ${ }_{1}^{(2)}()-{ }_{2}^{(2)}()$. If $\operatorname{def}()=1+{ }_{1}^{(2)}()$ then g:d: 2 .

Let $G=F(2) \quad F(2)$. Then g:d:G $=2$ and $\operatorname{def}(G) \quad{ }_{1}(G)-{ }_{2}(G)=0$. Hence $h u ; v ; x ; y j u x=x u ; u y=y u ; v x=x v ; v y=y v i$ is an optimal presentation, and $\operatorname{def}(\mathrm{G})=0$. The subgroup N generated by $\mathrm{u}, \mathrm{vx}^{-1}$ and y is normal in G and $\mathrm{G} \neq \mathrm{N}=\mathrm{Z}$, so ${ }_{1}^{(2)}(\mathrm{G})=0$, by Lemma 2.1. Thus asphericity need not imply equality in Theorem 2.4, in general.
Theorem 2.5 Let be a nitely presentable group such that ${ }_{1}^{(2)}()=0$. Then $\operatorname{def}() \quad 1$, with equality if and only if g:d: $\quad 2$ and 2()$=1()-1$.

Proof The upper bound and the necessity of the conditions follow from The orem 2.4. Conversely, if they hold and X is a nite aspherical 2-complex with ${ }_{1}(X)=$ then $(X)=1-1()+2()=0$. After collapsing a maximal tre in X we may assume it has a single 0 -cell, and then the presentation read o the 1 - and 2-cells has de ciency 1.

This theorem applies if is a nitely presentable group which is an ascending HNN extension with nitely generated base H , or has an in nite amenable normal subgroup. In the latter case, the condition 2()$=1()-1$ is redundant. For suppose that X is a nite aspherical 2-complex with ${ }_{1}(X)=$. If has an in nite amenable normal subgroup then ${ }_{i}^{(2)}()=0$ for all i, by Theorem 2.3 , and so $(X)=0$.
[Similarly, if $\mathbb{Z}[]$ has a safe extension Ψ and C is the equivariant cellular chain complex of the universal cover then $\Psi \otimes_{\mathbb{Z}[]} \mathrm{C}$ is a complex of fre left ψ-modules with bases corresponding to the cells of X. Since Ψ is a safe extension $H_{i}(X ; \Psi)=\Psi \otimes_{\mathbb{Z}[} H_{i}(X ; \mathbb{Z}[])=0$ for all i, and so again $(X)=0$.]

Corollary 2.5.1 Let be a nitely presentable group which is an extension of Z by an FP_{2} normal subgroup N and such that $\operatorname{def}()=1$. Then N is free.

Proof This follows from Corollary 8.6 of [Bi].
The subgroup N of $F(2) \quad F(2)$ de ned after the Corollary to Theorem 2.4 is nitely generated, but is not free, as u and y generate a rank two abelian subgroup. (Thus N is not $F P_{2}$ and $F(2) \quad F(2)$ is not almost coherent.)
The next result is a version of the \backslash Tits alternative" for coherent groups of cohomological dimension 2 . For each m 2 Z let Z m bethegroup with presentation ha; tj tat $^{-1}=\mathrm{a}^{\mathrm{m}_{\mathrm{i}}}$. (Thus $\mathrm{Z}_{0}=\mathrm{Z}^{\text {and }} \mathrm{Z}_{-1}=\mathrm{Z}_{-1} \mathrm{Z}$.)

Theorem 2.6 Let bea nitely generated group such that $\mathrm{c}: \mathrm{d}$: $=2$. Then
$=Z \mathrm{~m}$ for some $\mathrm{m} \in 0$ if and only if it is almost coherent and restrained and $={ }^{0}$ is in nite

Proof The conditions are easily seen to be necessary. Conversely, if is almost coherent and $=0$ is in nite is an HNN extension with almost nitely presentable base H , by Theorem 1.13. The HNN extension must be ascending as has no noncyclic free subgroup. Hence $\mathrm{H}^{2}(; \mathbb{Z}[])$ is a quotient of $H^{1}(H ; \mathbb{Z}[])=H^{1}(H ; \mathbb{Z}[H]) \otimes \mathbb{Z}[\neq]$, by the Brown-Geoghegan Theorem. Now $H^{2}(; \mathbb{Z}[]) \in 0$, since $c: d:=2$, and so $H^{1}(H ; \mathbb{Z}[H]) \in 0$. Since H is restrained it must have two ends, so $\mathrm{H}=\mathrm{Z}$ and $=\mathrm{Z} \mathrm{m}$ for some $\mathrm{m} G 0$.

Does this remain true without any such coherence hypothesis?
Corollary 2.6.1 Let be an FP_{2} group. Then the following are equivalent:
(1) $=Z \mathrm{~m}$ for some m 2 Z ;
(2) is torsion free, elementary amenable and $\mathrm{h}(\mathrm{)}$ 2;
(3) is elementary amenable and c:d: 2 ;
(4) is elementary amenable and def() = 1; and
(5) is almost coherent and restrained and $\operatorname{def}()=1$.

Proof Condition (1) clearly implies the others. Suppose (2) holds. We may assume that $h()=p_{p}^{2}$ and $h\left({ }^{\left({ }^{-}\right.}\right)=1$ (for otherwise $=Z, Z^{2}=Z_{1}$ or $Z-1$). Hence $h\left(\stackrel{p}{-}_{-}\right)=1$, and so $\stackrel{p}{=}$ is an extension of Z or D by a nite normal subgroup. If $\xlongequal{=}$ - maps onto D then $=A$ c B, where $[A: C]=[B: C]=2$ and $h(A)=h(B)=h(C)=1$, and so $=Z \quad{ }_{-1} Z$. But then $h\left({ }^{-}\right)=2$. Hence we may assume that maps onto Z, and so is an ascending HNN extension with nitely generated base H , by Theorem 1.13. Since H is torsion free, elementary amenable and $h(H)=1$ it must be in nite cyclic and so (2) implies (1). If def() = 1 then is an ascending HNN extension with nitely generated base, so ${ }_{1}^{(2)}()=0$, by Lemma 2.1. Hence (4) and (5) each imply (3) by Theorem 2.5, together with Theorem 2.6. Finally (3) implies (2), by Theorem 1.11.

In fact all nitely generated solvable groups of cohomological dimension 2 are as in this corollary [Gi79]. Are these conditions also equivalent to \is almost coherent and restrained and c:d: 2"? Note also that if def() > 1 then has noncyclic free subgroups [Ro77].

Let X be the class of groups of nite graphs of groups, all of whose edge and vertex groups arein nitecyclic. Kropholler has shown that a nitely generated, noncyclic group G is in X if and only if $\mathrm{c}: \mathrm{d}: \mathrm{G}=2$ and G has an in nite cyclic subgroup H which meets all its conjugates nontrivially. Moreover G is then coherent, one ended and g:d:G $=2\left[K r 90^{\prime}\right]$.

Theorem 2.7 Let be a nitely generated group such that $\mathrm{c}: \mathrm{d}:=2$. If has a nontrivial normal subgroup E which either is almost coherent, locally virtually indicable and restrained or is elementary amenable then is in X and either $\mathrm{E}=\mathrm{Z}$ or $={ }^{0}$ is in nite and ${ }^{0}$ is abelian.

Proof Let F bea nitely generated subgroup of E . Then F is metabelian, by Theorem 2.6 and its Corollary, and so all words in E of the form [$\left.[\mathrm{g} ; \mathrm{h}] ;\left[\mathrm{g}^{0}, \mathrm{~h}^{0}\right]\right]$ are trivial. Hence E is metabelian also. Therefore $A=\bar{E}$ is nontrivial, and as A is characteristic in E it is normal in. Since A is the union of its nitely generated subgroups, which are torsion free nilpotent groups of Hirsch length

2 , it is abelian. If $A=Z$ then $[: C(A)] \quad 2$. Moreover $C(A)^{0}$ is free, by Bieri's Theorem. If $C(A)^{0}$ is cyclic then $=Z^{2}$ or $Z{ }_{-1} Z$; if $C(A)^{0}$ is nonabelian then $E=A=Z$. Otherwise $c: d: A=c: d: C(A)=2$ and so C $(A)=A$, by Bieri's Theorem. If A has rank 1 then Aut(A) is abelian, so $0 \quad C(A)$ and is metabelian. If $A=Z^{2}$ then A is isomorphic to a subgroup of $G L(2 ; \mathbb{Z})$, and so is virtually free As A together with an element t 2 of in nite order modulo A would generate a subgroup of cohomological dimension 3 , which is impossible, the quotient $\Rightarrow A$ must be nite. Hence $=Z^{2}$ or $Z{ }_{-1} Z$. In all cases is in X, by Theorem C of $\left[K r 90^{\prime}\right]$.

If $c: d:=2, \quad \in 1$ and is nonabelian then $=Z$ and ${ }^{0}$ is free, by Bieri's Theorem. On the evidence of his work on 1-relator groups Murasugi conjectured that if G is a nitely presentable group other than Z^{2} and $\operatorname{def}(G) \quad 1$ then $\mathrm{G}=\mathrm{Z}$ or 1 , and is trivial if $\operatorname{def}(\mathrm{G})>1$, and he veri ed this for classical link groups [Mu65]. Theorems 2.3, 2.5 and 2.7 together imply that if G is in nite then $\operatorname{def}(\mathrm{G})=1$ and $G=Z$.

It remains an open question whether every nitely presentable group of cohomological dimension 2 has geometric dimension 2 . The following partial answer to this question was rst obtained by W.Beckmann under the additional assumption that the group was F F (cf. [Dy87']).

Theorem 2.8 Let be a nitely presentable group. Then g:d: 2 if and only if $c: d: \quad 2$ and $\operatorname{def}()=1()-2()$.

Proof The necessity of the conditions is clear. Suppose that they hold and that $C(P)$ is the 2-complex corresponding to a presentation for of maximal de ciency. The cellular chain complex of $\widetilde{C(P)}$ gives an exact sequence

$$
0!K=2(C(P))!\mathbb{Z}[]^{r}!\mathbb{Z}[]^{9}!\quad!\mathbb{Z}[]!0:
$$

As c:d: $\quad 2$ the image of $\mathbb{Z}[]^{r}$ in $\mathbb{Z}[]^{9}$ is projective, by Schanuel's Lemma. Therefore the inclusion of K into $\mathbb{Z}[]^{r}$ splits, and K is projective. Moreover $\left.\operatorname{dim}_{\mathbb{Q}}\left(\mathbb{Q} \otimes_{\mathbb{Z}[}\right] K\right)=0$, and so $K=0$, since the Weak Bass Conjecture holds for
[Ec86]. Hence $\widetilde{C(P)}$ is contractible, and so $C(P)$ is aspherical.
Thearguments of this section may easily be extended to other highly connected nite complexes. A [; m $]_{f}$-complex is a nite m-dimensional complex X with
${ }_{1}(X)=$ and with $(m-1)$-connected universal cover \mathbb{X}. Such a $[; m]_{f}-$ complex X is aspherical if and only if $m(X)=0$. In that case we shall say that has geometric dimension at most m , written $\mathrm{g}: \mathrm{d}$: m .

Theorem 2.4^{0} Let X bea [; $\left.m\right]_{f}$-complex and supposethat $\quad{ }_{i}^{(2)}()=0$ for $\mathrm{i}<\mathrm{m}$. Then $(-1)^{\mathrm{m}}(\mathrm{X}) \quad 0$. If $\quad(\mathrm{X})=0$ then X is aspherical.

In general the implication in the statement of this theorem cannot be reversed. For $S^{1}{ }_{-} S^{1}$ is an aspherical $[F(2) ; 1]_{f}$-complex and ${ }_{0}^{(2)}(F(2))=0$, but $\quad\left(S^{1}\right.$ $\left.S^{1}\right)=-1 \in 0$.
One of the applications of L^{2}-cohomology in [CG86] was to show that if X is a nite aspherical complex such that ${ }_{1}(X)$ has an in nite amenable normal subgroup A then $(X)=0$. (This generalised a theorem of Gottlieb, who assumed that A was a central subgroup [Go65].) We may similarly extend Theorem 2.5 to give a converse to the Cheeger-Gromov extension of Gottlieb's Theorem.

Theorem 2.5 ${ }^{0}$ Let X bea [; m] f -complex and supposethat has an in nite amenable normal subgroup. Then X is aspherical if and only if $(X)=0$.

2.4 Poincare duality

The main reason for studying PD-complexes is that they represent the homotopy theory of manifolds. However they also arise in situations where the geometry does not immediately provide a corresponding manifold. For instance, under suitable niteness assumptions an in nitecyclic covering space of a closed

4-manifold with Euler characteristic 0 will bea PD_{3}-complex, but need not be homotopy equivalent to a closed 3 -manifold (see Chapter 11).

A PD D_{n}-complex is a nitely dominated cell complex which satis es Poincare duality of formal dimension n with local coe cients. It is nite if it is homotopy equivalent to a nite cell complex. (It is most convenient for our purposes below to require that PD_{n}-complexes be nitedy dominated. If a CW-complex X satis es local duality then ${ }_{1}(X)$ is $F P_{2}$, and X is nitely dominated if and only if ${ }_{1}(\mathrm{X})$ is nitely presentable [$\left.\mathrm{Br} 72, \mathrm{Br} 75\right]$. Ranicki uses the broader de nition in his book [Rn].) All the P D_{n}-complexes that we consider shall be assumed to be connected.

Let P bea $P D_{n}$-complex and C bethe cellular chain complex of \mathbb{P}. Then the Poincare duality isomorphism may also be described in terms of a chain homotopy equivalence from $\overline{\mathrm{C}}$ to $\mathrm{C}_{\mathrm{n}-}$, which induces isomorphisms from $\mathrm{H}^{\mathrm{j}}(\overline{\mathrm{C}})$ to $H_{n-j}(C)$, given by cap product with a generator [P] of $H_{n}\left(P ; Z^{W_{1}(P)}\right)=$ $H_{n}\left(Z \otimes_{\mathbb{Z}\left[{ }_{1}(P)\right]} C\right.$). (Here the rst Stiefel-Whitney class $w_{1}(P)$ is considered as a homomorphism from ${ }_{1}(P)$ to $Z=2 Z$.) From this point of view it is easy to see that Poincare duality gives rise to (Z-linear) isomorphisms from $\mathrm{H}^{j}(\mathrm{P} ; \mathrm{B})$ to $H_{n-j}(P ; B)$, where B is any left $\mathbb{Z}\left[{ }_{1}(P)\right]$-module of coe cients. (See [WI67] or Chapter II of [WI] for further details.) If P is a Poincare duality complex then the L²-Betti numbers also satisfy Poincare duality. (This does not require that P be nite or orientable!)

A nitely presentable group is a PD_{n}-group (as de ned in Chapter 2) if and only if $K(G ; 1)$ is a $P D_{n}$-complex. For every $n 4$ there are $P D_{n}$-groups which are not nitely presentable [Da98].

Dwyer, Stolz and Taylor have extended Strebel's Theorem to show that if H is a subgroup of in nite index in ${ }_{1}(P)$ then the corresponding covering space P_{H} has homological dimension $<\mathrm{n}$; hence if moreover $\mathrm{n} \in 3$ then P_{H} is homotopy equivalent to a complex of dimension $<\mathrm{n}$ [DST 96].

$2.5 \mathrm{PD}_{3}$-complexes

In this section we shall summarize briefly what is known about PD_{n}-complexes of dimension at most 3. It is easy to see that a connected PD_{1}-complex must be homotopy equivalent to S^{1}. The 2-dimensional case is already quite di cult, but has been settled by Edkmann, Linnell and Müller, who showed that every PD_{2}-complex is homotopy equivalent to a closed surface (Se Chapter VI of [DD]. This result has been further improved by Bowditch's Theorem.)

There are $P D_{3}$-complexes with nite fundamental group which are not homotopy equivalent to any closed 3 -manifold [Th77]. On the other hand, Turaev's Theorem below implies that every PD_{3}-complex with torsion freefundamental group is homotopy equivalent to a closed 3-manifold if every PD_{3}-group is a 3 -manifold group. The latter is so if the Hirsch-Plotkin radical of the group is nontrivial (see x7 below), but remains open in general.

The fundamental triple of a PD_{3}-complex P is ($1(P) ; \mathrm{w}_{1}(P) ; \mathrm{CP}_{\mathrm{P}}[\mathrm{P}]$). This is a complete homotopy invariant for such complexes.

Theorem (Hendriks) Two PD_{3}-complexes are homotopy equivalent if and only if their fundamental triples are isomorphic.

Turaev has characterized the possible triples corresponding to a given nitely presentable group and orientation character, and has used this result to deduce a basic splitting theorem [Tu90].

Theorem (Turaev) A P D 3 -complex is irreducible with respect to connected sum if and only if its fundamental group is indecomposable with respect to fre product.

Wall has asked whether every PD_{3}-complex whose fundamental group has innitely many ends is a proper connected sum [WI67]. Since the fundamental group of a PD_{3}-complex is nitely presentable it is the fundamental group of a nite graph of (nitely generated) groups in which each vertex group has at most one end and each edge group is nite, by Theorem VI.6.3 of [DD]. Starting from this observation, Crisp has given a substantial partial answer to Wall's question [CrOO].

Theorem (Crisp) Le X be an indecomposable PD_{3}^{+}-complex. If ${ }_{1}(\mathrm{X})$ is not virtually free then it has one end, and so X is aspherical.

With Turaev's theorem this implies that the fundamental group of any $\mathrm{P}_{3}-$ complex is virtually torsion free, and that if X is irreducible and has more than one end then it is virtually free There remains the possibility that, for instance, the freeproduct of two copies of the symmetric group on 3 letters with amal gamation over a subgroup of order 2 may be the fundamental group of an orientable PD_{3}-complex. (It appears di cult in practice to apply Turaev's work to the question of whether a given group can be the fundamental group of a PD_{3}-complex.)

2.6 The spherical cases

Thepossible PD_{3}-complexes with nitefundamental group arewell understood (although it is not yet completely known which are homotopy equivalent to 3manifolds).

Theorem 2.9 [WI67] Let X be a PD_{3}-complex with nite fundamental group F. Then
(1) $X^{\prime} S^{3}, F$ has cohomological period dividing 4 and X is orientable;
(2) the rst nontrivial k-invariant $k(X)$ generates $H^{4}(F ; \mathbb{Z})=Z ; F j Z$.
(3) the homotopy type of X is determined by F and the orbit of $k(M)$ under Out(F) f lg.

Proof Sincetheuniversal cover \mathbb{R} is also a nite PD_{3}-complex it is homotopy equivalent to S^{3}. A standard Gysin sequence argument shows that F has cohomological period dividing 4. Supposethat X is nonorientable, and let C be a cyclic subgroup of F generated by an orientation reversing element. Let \mathbb{Z} be thenontrivial in nitecydic $\mathbb{Z}[\mathbb{C}]$-module. Then $H^{2}\left(X_{c} ; \mathbb{Z}\right)=H_{1}\left(X_{c} ; \mathbb{Z}\right)=C$, by Poincare duality. But $\mathrm{H}^{2}\left(\mathrm{X}_{\mathrm{C}} ; \bar{Z}\right)=\mathrm{H}^{2}(\mathrm{C} ; \bar{Z})=0$, since the classifying map from $X_{C}=X=C$ to $K(C ; 1)$ is 3-connected. Therefore X must be orientable and F must act trivially on ${ }_{3}(X)=H_{3}(X ; \mathbb{Z})$.

The image of the orientation dass of X generates $H_{3}(F ; \mathbb{Z})=Z ; F F j Z$, and corresponds to the rst nonzero k -invariant under the isomorphism $\mathrm{H}_{3}(\mathrm{~F} ; \mathbb{Z})=$ $H^{4}(F ; \mathbb{Z})$ [WI67]. Inner automorphisms of F act trivially on $H^{4}(F ; \mathbb{Z})$, while changing the orientation of X corresponds to multiplication by -1 . Thus the orbit of $k(M)$ under $\operatorname{Out}(F) \quad f \quad 1 g$ is the signi cant invariant.

We may construct the third stage of the Postnikov tower for X by adjoining cells of dimension greater than 4 to X. The natural inclusion $j: X!P_{3}(X)$ is then 4 -connected. If X_{1} is another such $P D_{3}$-complex and : ${ }_{1}\left(X_{1}\right)!F$ is an isomorphism which identi es the k-invariants then there is a 4 -connected map $j_{1}: X_{1}!P_{3}(X)$ inducing , which is homotopic to a map with image in the 4-skeleton of $P_{3}(X)$, and so there is a map $h: X_{1}!X$ such that j_{1} is homotopic to j . The map h induces isomorphisms on i for i 3 , since j and j_{1} are 4 -connected, and so the lift π : $X_{1}, S^{3}!X^{\prime} S^{3}$ is a homotopy equivalence, by the theorems of Hurewic and Whitehead. Thus h is itself a homotopy equivalence

The list of nite groups with cohomological period dividing 4 is well known. Each such group F and generator $k 2 H^{4}(F ; \mathbb{Z})$ is realized by some P_{3}^{+}complex [Sw60, WI67]. (See also Chapter 11 below.) In particular, there is an unique homotopy type of PD_{3}-complexes with fundamental group the symmetric group S_{3}, but there is no 3 -manifold with this fundamental group.
The fundamental group of a PD_{3}-complex P has two ends if and only if \mathbb{P} ' S^{2}, and then P is homotopy equivalent to one of the four $\mathbb{S}^{2} \quad \mathbb{E}^{1}$-manifolds $S^{2} S^{1}, S^{2} \sim S^{1}, R P^{2} \quad S^{1}$ or $\left.R P^{3}\right] R P^{3}$. The following simple lemma leads to an alternative characterization.

Lemma 2.10 Let P bea nite dimensional complex with fundamental group and such that $\mathrm{H}_{\mathrm{q}}(\mathbb{P} ; \mathbb{Z})=0$ for all $\mathrm{q}>2$. If C is a cydic subgroup of then $H_{s+3}(C ; \mathbb{Z})=H_{s}(C ; 2(P))$ for all $s \quad \operatorname{dim}(P)$.

Proof Since $\mathrm{H}_{2}(\mathbb{P} ; \mathbb{Z})={ }_{2}(P)$ and $\operatorname{dim}(\mathbb{P}=C) \quad \operatorname{dim}(P)$ this follows either from the Cartan-Leray spectral sequence for the universal cover of $\mathbb{P}=C$ or by devissage applied to the homology of $C(\mathbb{R})$, considered as a chain complex over $\mathbb{Z}[\mathrm{C}]$.

Theorem 2.11 Let P be a PD_{3}-complex whose fundamental group has a nontrivial nite normal subgroup N. Then either P is homotopy equivalent to $R P^{2} S^{1}$ or is nite

Proof Wemay clearly assumethat is in nite. Then $\mathrm{H}_{\mathrm{q}}(\mathbb{P} ; \mathbb{Z})=0$ for $\mathrm{q}>2$, by Poincare duality. Let $=2(P)$. The augmentation sequence

$$
0!A()!\mathbb{Z}[]!Z!0
$$

gives rise to a short exact sequence

$$
0!\operatorname{Hom}_{\mathbb{Z}[J]}(\mathbb{Z}[] ; \mathbb{Z}[])!\operatorname{Hom}_{\mathbb{Z}[]}(\mathrm{A}() ; \mathbb{Z}[])!\mathrm{H}^{1}(; \mathbb{Z}[])!0:
$$

Let $\mathrm{f}: \mathrm{A}(\mathrm{)}!\mathbb{Z}[\mathrm{]}$ be a homomorphism and be a central dement of . Then $\mathrm{f}:(\mathrm{i})=\mathrm{f}(\mathrm{i})=\mathrm{f}(\mathrm{i})=\mathrm{f}(\mathrm{i})=\mathrm{f}(\mathrm{i})$ and so $(\mathrm{f}:-\mathrm{f})(\mathrm{i})=\mathrm{f}(\mathrm{i}(-1))=$ if (-1) for all i $2 A()$. Hence $f:-f$ is the restriction of a homomorphism from $\mathbb{Z}[]$ to $\mathbb{Z}[]$. Thus central elements of act trivially on $H^{1}(; \mathbb{Z}[])$.
If n 2 N the centraliser $\gamma=\mathrm{C}$ (mi) has nite index in , and so the covering space P_{Y} is again a $P D_{3}$-complex with universal covering space \mathbb{P}. Therefore
$=\overline{\mathrm{H}^{1}(\gamma ; \mathbb{Z}[\gamma])}$ as a (left) $\mathbb{Z}[\gamma]$-module In particular, is a fre abelian group. Since n is central in γ it acts trivially on $H^{1}(\gamma ; \mathbb{Z}[\gamma])$ and hence via
$w(n)$ on . Suppose rst that $w(n)=1$. Then Lemma 2.10 gives an exact sequence

$$
0!~ Z \text { finjZ! ! ! 0; }
$$

where the right hand homomorphism is multiplication by jnj, since n has nite order and acts trivially on . As is torsion fre we must have $\mathrm{n}=1$.
Therefore if n 2 N is nontrivial it has order 2 and $\mathrm{w}(\mathrm{n})=-1$. In this case Lemma 2.10 gives an exact sequence

$$
0!\quad!\quad!\quad Z=2 Z!~ 0 ;
$$

where the left hand homomorphism is multiplication by 2 . Since is a free abelian group it must be in nite cyclic, and so ${ }^{e}$ ' S^{2}. The theorem now follows from Theorem 4.4 of [WI67].

If ${ }_{1}(P)$ has a nitely generated in nite normal subgroup of in nite index then it has one end, and so P is aspherical. We shall discuss this case next.

$2.7 \mathrm{PD}_{3}$-groups

If Wall's question has an a rmative answer, the study of PD_{3}-complexes re duces largely to the study of PD_{3}-groups. It is not yet known whether all such groups are 3-manifold groups. The fundamental groups of 3-manifolds which are nitely covered by surface bundles or which admit one of the geometries of aspherical Seifert type may be characterized among all PD_{3}-groups in simple group-theoretic terms.

Theorem 2.12 Let G bea PD_{3}-group with a nontrivial almost nitely pre sentable normal subgroup N of in nite index. Then either
(1) $\mathrm{N}=\mathrm{Z}$ and $\mathrm{G}=\mathrm{N}$ is virtually a PD_{2}-group; or
(2) N is a PD_{2}-group and $\mathrm{G} \neq \mathrm{N}$ has two ends.

Proof Let e be the number of ends of N. If N is free then $H^{3}(G ; \mathbb{Z}[G])=$ $H^{2}\left(G \neq N ; H^{1}(N ; \mathbb{Z}[G])\right.$. Since N is nitely generated and $G \neq N$ is $F P_{2}$ this is in turn isomorphic to $\mathrm{H}^{2}(\mathrm{G} \neq \mathbb{N} ; \mathbb{Z}[G \neq N])^{(\mathrm{e}-1)}$. Since G is a $P D_{3}$-group we must have $e-1=1$ and so $N=Z$. We then have $H^{2}(G \neq N ; \mathbb{Z}[G \neq N])=$ $H^{3}(G ; \mathbb{Z}[G])=Z$, so $G \neq N$ is virtually a $P D_{2}$-group, by Bowditch's Theorem.
Otherwise c:d:N =2 and so e=1 or 1 . The LHSSS gives an isomorphism $H^{2}(G ; \mathbb{Z}[G])=H^{1}(G \neq N ; \mathbb{Z}[G \neq N]) \otimes H^{1}(N ; \mathbb{Z}[N])=H^{1}(G \neq N ; \mathbb{Z}[G \neq N])^{e-1}$.

Hence either $\mathrm{e}=1$ or $\mathrm{H}^{1}(\mathrm{G}=\mathrm{N} ; \mathbb{Z}[\mathrm{G}=\mathrm{N}])=0$. But in the latter case we have $H^{3}(G ; \mathbb{Z}[G])=H^{2}(G \neq N ; \mathbb{Z}[G \neq N]) \otimes H^{1}(N ; \mathbb{Z}[N])$ and so $H^{3}(G ; \mathbb{Z}[G])$ is either 0 or in nite dimensional. Therefore $\mathrm{e}=1$, and so $\mathrm{H}^{3}(\mathrm{G} ; \mathbb{Z}[\mathrm{G}])=$ $H^{1}(G \neq N ; \mathbb{Z}[G \neq N]) \otimes H^{2}(N ; \mathbb{Z}[N])$. Hence $G \neq N$ has two ends and $H^{2}(N ; \mathbb{Z}[N])$ $=\mathrm{Z}$, so N is a PD_{2}-group.

We shall strengthen this result in Theorem 2.16 below.
Corollary 2.12.1 $A^{2} P_{3}$-complex P is homotopy equivalent to the mapping torus of a self homeomorphism of a closed surface if and only if there is an epimorphism : ${ }_{1}(P)$! Z with nitely generated kernel.

Proof This follows from Theorems 1.20, 2.11 and 2.12.
If ${ }_{1}(P)$ is in nite and is a nontrivial direct product then P is homotopy equivalent to the product of S^{1} with a closed surface

Theorem 2.13 Let G be a P_{3}-group. Then every almost coherent, locally virtually indicable subgroup of G is either virtually solvable or contains a noncyclic free subgroup.

Proof Let S be a restrained, locally virtually indicable subgroup of G. Suppose rst that S has nite index in G, and so is again a $P D_{3}$-group. Since S is virtually indicable we may assume without loss of generality that ${ }_{1}(\mathrm{~S})>0$. Then S is an ascending HNN extension H with nitely generated base. Since G is almost coherent H is nitely presentable, and since $H^{3}(S ; \mathbb{Z}[S])=Z$ it follows from Lemma 3.4 of [BG85] that H is normal in S and $\mathrm{S}=\mathrm{H}=\mathrm{Z}$. Hence H is a $P D_{2}$-group, by Theorem 1.20. Since H has no noncyclic free subgroup it is virtually Z^{2} and so S and G are virtually poly- Z.
If [G:S]=1 then c:d:S 2, by Strebel's Theorem. As the nitely generated subgroups of S are virtually indicable they are metabelian, by Theorem 2.6 and its Corollary. Hence S is metabelian also.

As the fundamental groups of virtually Haken 3-manifolds are coherent and locally virtually indicable, this implies the \Tits alternative" for such groups [EJ 73]. In fact solvable subgroups of in nite index in 3-manifold groups are virtually abelian. This remains true if $K(G ; 1)$ is a nite $P D_{3}$-complex, by Corollary 1.4 of [K K 99]. Does this hold for all PD_{3}-groups?
A slight modi cation of the argument gives the following corollary.

Corollary 2.13.1 $A^{2} P_{3}$-group G is virtually poly-Z if and only if it is coherent, restrained and has a subgroup of nite index with in nite abelianization.

If ${ }_{1}(G) \quad 2$ the hypothesis of coherence is redundant, for there is then an epimorphism p: G! Z with nitely generated kerne, by [BNS87], and Theorem 1.20 requires only that H be nitely generated.

The argument of Theorem 2.13 and its corollary extend to show by induction on m that a $P D_{m}$-group is virtually poly-Z if and only if it is restrained and every nitdy generated subgroup is $F P_{m-1}$ and virtually indicable.

Theorem 2.14 Let G bea PD_{3}-group. Then G is the fundamental group of an aspherical Seifert bred 3-manifold or a Sol 3-manifold if and only if $\overline{\mathrm{G}} \boldsymbol{6} 1$. Moreover
(1) $h\left({ }^{\mathrm{P}} \overline{\mathrm{G}}\right)=1$ if and only if G is the group of an $\mathbb{H}^{2} \quad \mathbb{E}^{1}$ - or ${ }^{5} \mathbb{L}$-manifold;
(2) $h\left({ }^{\mathrm{p}} \overline{\mathrm{G}}\right)=2$ if and only if G is the group of a Sol 3-manifold;
(3) $h\left({ }^{\mathrm{P}} \overline{\mathrm{G}}\right)=3$ if and only if G is the group of an \mathbb{E}^{3} - or $\mathbb{N i l}^{3}$-manifold.

Proof The necessity of the congitions is clfar. (See [Sc83'], or $x 2$ apd $x 3$ of Chapter 7 below.) pCertainly $h(\bar{G}) \quad$ c:d: $\bar{G} \quad$ 3. Moreover c:d: $\bar{G}=3$ if and only if [G: \bar{G}] is nite, by Stresel's Theorem. p Hence G is virtually nilpotent if and only if $h\left({ }^{G}\right) \overline{\bar{p}} 3$. If $h(\bar{G})=2$ then \bar{G} is locally abelian, and hence abelian ${ }_{p}$ Moreover ${ }^{\bar{G}} \overline{\mathrm{G}}$ must be nitely generated, for otherwise c:d $\overline{\mathrm{G}}=3$. Thus $\overline{\mathrm{G}}=\mathrm{Z}^{2}$ and case (2) follows from Theorem 2.12.
Suppose now that $h\left({ }^{\mathrm{P}} \overline{\mathrm{G}}\right) \overline{\bar{p}} 1$ and let $\mathrm{C}=\mathrm{C}_{\mathrm{G}}\left({ }^{\mathrm{p}} \overline{\mathrm{G}}\right)$. Then ${ }^{\mathrm{p}} \overline{\mathrm{G}}$ is torsion fre abelian of rank 1 , so $\operatorname{Aut}\left({ }^{(} \overline{\mathrm{G}}\right)$ is isomorphic to a subgroup of \mathbb{Q}. Therefore $\mathrm{G}=\mathrm{C}$ is abelian. If $\mathrm{G}=\mathrm{C}$ is in nitethen c:d: $\mathrm{C} \quad 2$ by Strebel's Theorem and $\overline{\mathrm{G}}$ is not nitely generat $\bar{f} d$, so C is abelian, by Bieri's Theorem, and hence G is solvable. But then $h(\overline{\mathrm{G}})>1$, which is contrary to our hypothesis. Therefore $\mathrm{G}=\mathrm{C}$ is isomorphic to a nite subgroup of $\mathbb{Q}=Z^{1} \quad(Z=2 Z)$ and so has order at most 2. In particular, if A is an in nite cydic subgroup of \bar{G} then A is normal in G , and so $\mathrm{G} \neq \mathrm{A}$ is virtually a PD_{2}-group, by Theorem 2.12. If $\mathrm{G} \neq \mathrm{A}$ is a $P D_{2}$-group then G is the fundamental group of an S^{1}-bundle over a closed surface. In general, a nite torsion free extension of the fundamental group of a closed Seifert bred 3-manifold is again the fundamental group of a closed Seifert bred 3-manifold, by [Sc83] and Section 63 of [Zi].

Theheart of this result is the deep theorem of Bowditch. The weaker characterization of fundamental groups of Sol 3-manifolds and aspherical Seifert bred 3-manifolds as $P^{2} D_{3}$-groups G such that $\bar{G} \in 1$ and G has a subgroup of nite index with in nite abelianization is much easier to prove [H2]. There is as yet no comparable characterization of the groups of \mathbb{H}^{3}-manifolds, although it may be conjectured that these are exactly the PD_{3}-groups with no noncyclic abelian subgroups. (Note also that it remains an open question whether every closed \mathbb{H}^{3}-manifold is nitely covered by a mapping torus.)
 This can also be seen algebraically, as every such group has a characteristic subgroup H which is a nonsplit central extension of a PD_{2}^{+}-group by Z . An automorphism of such a group H must be orientation preserving.
Theorem 2.14 implies that if a PD_{3}-group G is not virtually poly-Z then its maximal elementary amenable normal subgroup is Z or 1 . For this subgroup is virtually solvable, by Theorem 1.11, and if it is nontrivial then so is $\overline{\mathrm{G}}$.

Lemma 2.15 Let G be a PD_{3}-group with subgroups H and J such that H is almost nitely presentable, has one end and is normal in J. Then either [J : H] or [G:J] is nite.

Proof Suppose that [J:H] and [G:H] are both in nite Since H has one end it is not free and so c:d:H = c:d:J = 2, by Strebel's Theorem. Hence there is a free $\mathbb{Z}[J]$-module W such that $\mathrm{H}^{2}(\mathrm{~J} ; \mathrm{W}) \in 0$, by Proposition 5.1 of $[\mathrm{Bi}]$. Since H is $F P_{2}$ and has one end $H^{q}(H ; W)=0$ for $q=0$ or 1 and $H^{2}(H ; W)$ is an induced $\mathbb{Z}[J \neq H]$-module. Since $[J: H]$ is in nite $H^{0}\left(J \neq H ; H^{2}(H ; W)\right)=0$, by Lemma 8.1 of [$\mathrm{Bi} \mathrm{]}$. The LHSSS for J as an extension of $\mathrm{J} \neq \mathrm{H}$ by H now gives $\mathrm{H}^{\mathrm{r}}(\mathrm{J} ; \mathrm{W})=0$ for $\mathrm{r} \quad 2$, which is a contradiction.

Theorem 2.16 Let G bea P D 3 -group with a nontrivial almost nitely pre sentable subgroup H which is subnormal and of in nite index in G. Then either H is in nite cyclic and is normal in G or G is virtually poly-Z or H is a $P D_{2}$-group, $\left[G: N_{G}(H)\right]<1$ and $N_{G}(H) \neq H$ has two ends.

Proof Since H is subnormal in G there is a nite increasing sequence $f J_{i} j$ 0 i $n g$ of subgroups of G with $J_{0}=H, J_{i}$ normal in J_{i+1} for each $\mathrm{i}<n$ and $J_{n}=G$. Since $[G: H]=1$ either c:d:H $=2$ or H is free, by Strebed's Theorem. Suppose rst that c:d:H $=2$. Let $k=\operatorname{minfi} j[j i: H]=1 \mathrm{~g}$. Then H has nite index in $\mathrm{J}_{\mathrm{k}-1}$, which therefore is also FP_{2}. Suppose that $\mathrm{c}: \mathrm{d}: \mathrm{J}_{\mathrm{k}}=2$. If K is a nitely generated subgroup of J_{k} which contains $\mathrm{J}_{\mathrm{k}-1}$
then $\left[\mathrm{K}: \mathrm{J}_{\mathrm{k}-1}\right]$ is nite, by Corollary 8.6 of $[\mathrm{Bi}]$, and $50 \mathrm{~J}_{\mathrm{K}}$ is the union of a strictly increasing sequence of nite extensions of J_{k-1}. But it follows from the Kurosh subgroup theorem that the number of indecomposable factors in such intermediate groups must bestrictly decreasing unless one is indecomposable (in which case all are). (See Lemma 1.4 of [Sc76].) Thus $\mathrm{J}_{\mathrm{k}-1}$ is indecomposable, and so has one end (since it is torsion fre but not in nite cydic). Therefore [G: J_{k}] <1, by Lemma 2.15, and so J_{k} is a PD_{3}-group. Since $\mathrm{J}_{\mathrm{k}-1}$ is nitely generated, normal in J_{k} and $\left[\mathrm{J}_{\mathrm{k}-1}: \mathrm{H}\right]<1$ it follows easily that $\left[J_{k}: N_{J_{k}}(H)\right]<1$. Therefore $\left[G: N_{G}(H)\right]<1$ and so H is a P_{2}-group and $\mathrm{N}_{\mathrm{G}}(\mathrm{H})=\mathrm{H}$ has two ends, by Theorem 2.12.
Next suppose that $H=Z$. Since ${ }^{p} \Gamma_{i}$ is characteristic in $J_{i}{ }_{\mathrm{p}}$ is normal in $\mathrm{J}_{\mathrm{i}+1}$, for each $\mathrm{i}<\mathrm{n}$. A nite induction now shows that $\mathrm{H} \overline{\mathrm{G}}$. Therefore either $\bar{G}=Z$, so $H=Z$ and is normal in G, or G is virtually poly- Z, by Theorem 2.14.

Suppose nally that G has a nitely generated noncyclic free subnormal subgroup. We may assume that $f_{j}{ }_{i} 0 \quad i \quad n g$ is a chain of minimal length n among subnormal chains with $\mathrm{H}=\mathrm{J}_{0}$ a nitely generated noncyclic fregroup. In particular, $\left[\mathrm{J}_{1}: \mathrm{H}\right]=1$, for otherwise J_{1} would also bea nitely generated noncyclic free group. We may also assume that H is maximal in the partially ordered set of nitely generated free normal subgroups of J_{1}. (Note that ascending chains of such subgroups are always nite, for if $F(r)$ is a nontrivial normal subgroup of a free group G then G is also nitely generated, of rank s say, and and $[G: F](1-s)=1-r$.)

SinceJ 1 has a nitely generated noncyclic frenormal subgroup of in niteindex it is not free, and nor is it a P_{3}-group. Therefore c:d: $]_{1}=2$. Thekerne of the homomorphism from $\mathrm{J}_{1}=\mathrm{H}$ to $\operatorname{Out}(\mathrm{H})$ determined by the conjugation action of J_{1} on H is $\mathrm{HC}_{\mathrm{J}_{1}}(\mathrm{H}) \neq \mathrm{H}$, which is isomorphic to $\mathrm{C}_{\mathrm{J}_{1}}(\mathrm{H})$ since $\mathrm{H}=1$. As Out (H) is virtually of nite cohomological dimension and $\mathrm{c}: \mathrm{d}^{\prime} \mathrm{C}_{\mathrm{J}_{1}}(\mathrm{H})$ is nite $\mathrm{v}: \mathrm{c}: \mathrm{d} \mathrm{J}_{1} \neq \mathrm{H}<1$. Therefore $\mathrm{c}: \mathrm{d}: \mathrm{J}_{1}=\mathrm{c}: \mathrm{d}: \mathrm{H}+\mathrm{v}: \mathrm{c}: \mathrm{d} \mathrm{J}_{1} \neq \mathrm{H}$, by Theorem 5.6 of [Bi], so v:c:d:] ${ }_{1} \neq 1=1$ and $J_{1} \neq H$ is virtually free

If g normalizes J_{1} then $\mathrm{HH}^{\mathrm{g}}=\mathrm{H}=\mathrm{H}^{\mathrm{g}}=\mathrm{H} \backslash \mathrm{H}^{9}$ is a nitely generated normal subgroup of $\mathrm{J}_{1} \neq \mathrm{H}$ and so either has nite index or is nite. (Here $\mathrm{H}^{g}=$ $\mathrm{gH} \mathrm{g}^{-1}$.) In the former case $\mathrm{J}_{1} \neq \mathrm{H}$ would be nitely presentable (since it is then an extension of a nitely generated virtually free group by a nitely generated fre normal subgroup) and as it is subnormal in G it must be a PD_{2}-group, by our earlier work. But PD_{2}-groups do not have nitely generated noncyclic free normal subgroups. Therefore $\mathrm{HH}^{\mathrm{g}}=\mathrm{H}$ is nite and so $\mathrm{HH}^{\mathrm{g}}=\mathrm{H}$, by the maximality of H . Since this holds for any $\mathrm{g} 2 \mathrm{~J}_{2}$ the subgroup H is
normal in J_{2} and so is the initial term of a subnormal chain of length $\mathrm{n}-1$ terminating with G , contradicting the minimality of n . Therefore G has no nitely generated noncyclic fre subnormal subgroups.

The theorem as stated can be proven without appeal to Bowditch's Theorem (used here for the cases when $\mathrm{H}=\mathrm{Z}$) [BH91].

If H is a PD_{2}-group $\mathrm{N}_{\mathrm{G}}(\mathrm{H})$ is thefundamental group of a 3-manifold which is double covered by the mapping torus of a surface homeomorphism. There are however $\mathbb{N i l}^{3}$-manifolds with no normal PD_{2}-subgroup (although they always have subnormal copies of Z^{2}).

Theorem 2.17 Let G be a PD_{3}-group with an almost nitely presentable subgroup H which has one end and is of in nite index in G. Let $\mathrm{H}_{0}=\mathrm{H}$ and $H_{i+1}=N_{G}\left(H_{i}\right)$ for $\mathrm{i} \quad 0$. Then $1 \Phi=\left[\mathrm{H}_{\mathrm{i}}\right.$ is almost nitely presentable and
 virtually the group of a surface bundle.

Proof If $\mathrm{c}: \mathrm{d}: \mathrm{H}_{\mathrm{i}}=2$ for all i 0 then $\left[\mathrm{H}_{\mathrm{i}+1}: \mathrm{H}_{\mathrm{i}}\right]<1$ for all i 0 , by Lemma 2.15. Hence $\mathrm{h}: \mathrm{d}: \mid \boldsymbol{\Psi}=2$, by Theorem 4.7 of $[\mathrm{Bi}]$. Therefore $[G: \mid \Psi]=1$, so $\mathrm{c}: \mathrm{d}: \mid \Phi=2$ also. Hence $\stackrel{\downarrow}{ }$ is nitely generated, and so $\downarrow=\mathrm{H}_{\mathrm{i}}$ for i large, by Theorem 3.3 of [GS81]. In particular, $\mathrm{N}_{\mathrm{G}}(\stackrel{(\downarrow)}{ })=\downarrow$.
Otherwise let $\mathrm{k}=$ maxfi j c:d: $\mathrm{H}_{\mathrm{i}}=2 \mathrm{~g}$. Then H_{k} is $\mathrm{F} \mathrm{P}_{2}$ and has one end and [$G: H_{k+1}$] <1, so G is virtually the group of a surface bundle, by Theorem 2.12 and the observation preceding this theorem.

C orollary 2.17.1 If G has a subgroup H which is a P_{2}-group with $(H)=$ 0 (respectively, <0) then either it has such a subgroup which is its own normalizer in G or it is virtually the group of a surface bundle.

Proof If $\mathrm{c}: \mathrm{d}: \mid \phi=2$ then $[\mid \varphi: H]<1$, so $\mid 申$ is a PD_{2}-group, and $(\mathrm{H})=$ [φ : H] ($\mid \varphi$).

2.8 Subgroups of $P D_{3}$-groups and 3-manifold groups

The central role played by incompressible surfaces in the geometric study of Haken 3-manifolds suggests strongly the importance of studying subgroups of in nite index in PD_{3}-groups. Such subgroups have cohomological dimension

2, by Strebel's Theorem.

There are substantial constraints on 3-manifold groups and their subgroups. Every nitely generated subgroup of a 3-manifold group is the fundamental group of a compact 3-manifold (possibly with boundary) [Sc73], and thus is nitely presentable and is either a 3-manifold group or has nite geometric dimension 2 or is a free group. All 3-manifold groups have Max-c (every strictly increasing sequence of centralizers is nite), and solvable subgroups of in nite index are virtually abelian [K r90a]. If the Thurston Geometrization Conjecture is true every aspherical closed 3-manifold is Haken, hyperbolic or Seifert bred. The groups of such 3-manifolds are residually nite [He87], and the centralizer of any element in the group is nitely generated [] S79]. Thus solvablesubgroups are virtually poly-Z.

In contrast, any group of nite geometric dimension 2 is the fundamental group of a compact aspherical 4-manifold with boundary, obtained by attaching 1and 2 -handles to D^{4}. On applying the orbifold hyperbolization technique of Gromov, Davis and J anuszkiewicz [D] 91] to the boundary we see that each such group embeds in a PD_{4}-group. Thus the question of which such groups are subgroups of PD_{3}-groups is critical. (In particular, which X -groups are subgroups of PD_{3}-groups?)

The Baumslag-Solitar groups $\mathrm{hx} ; \mathrm{tj} \mathrm{tx} \mathrm{P}^{-1}=\mathrm{x}^{\mathrm{q}}$ are not hop an, and hence not residually nite, and do not have Max-c. As they embed in PD_{4}-groups there are such groups which are not residually nite and do not have Max-c. The product of two nonabelian PD_{2}^{+}-groups contains a copy of $\mathrm{F}(2) \quad \mathrm{F}(2)$, and so is a PD_{4}^{+}-group which is not almost coherent.

Kropholler and Roller have shown that $F(2) \quad F(2)$ is not a subgroup of any PD_{3}-group [KR89]. They have also proved some strong splitting theorems for $P D_{n}$-groups. Let G be a P_{3}-group with a subgroup $H=Z^{2}$. If G is residually $p_{\bar{G}}^{\text {ite then it is virtually split over a subgroup commensurate with } \mathrm{H}}$ [KR88]. If $\bar{G}=1$ then G splits over an X-group [Kr93]; if moreover G has Max-c then it splits over a subgroup commensurate with H [K r90].

The geometric conclusions of Theorem 2.14 and the coherence of 3-manifold groups suggest that Theorems 2.12 and 2.16 should hold under the weaker hypothesis that N be nitely generated. (Compare Theorem 1.20.)

Is there a characterization of virtual PD_{3}-groups parallel to Bowditch's Theorem? (It may be relevant that homology n -manifolds are manifolds for n 2. High dimensional analogues are known to be false. For every $k \quad 6$ there are $F P_{k}$ groups G with $H^{k}(G ; \mathbb{Z}[G])=Z$ but which are not virtually torsion free [F S93].)

$2.9 \quad{ }_{2}(P)$ as a $\mathbb{Z}[]$-module

The cohomology group $\mathrm{H}^{2}(\mathrm{P} ; 2(\mathrm{P}))$ arises in studying homotopy classes of self homotopy equivalences of P. Hendriks and Laudenbach showed that if N is a P^{2}-irreducible 3-manifold and ${ }_{1}(N)$ is virtually free then $H^{2}(N ; 2(N))$ $=Z$, and otherwise $H^{2}(N ; 2(N))=0[H L 74]$. Swarup showed that if N is a 3-manifold which is the connected sum of a 3-manifold whose fundamental group is free of rank r with s 1 aspherical 3-manifolds then ${ }_{2}(N)$ is a nitely generated free $\mathbb{Z}[$]-module of rank $2 r+s-1$ [Sw73]. We shall give direct homological arguments using Schanuel's Lemma to extend these results to PD_{3}-complexes with torsion free fundamental group.

Theorem 2.18 Let N bea P_{3}-complex with torsion frefundamental group . Then
(1) c:d: 3;
(2) the $\mathbb{Z}[$]-module $2(\mathrm{~N})$ is nitely presentable and has projective dimension at most 1;
(3) if is a nontrivial free group then $H^{2}(N ; 2(N))=Z$;
(4) if is not a free group then $2(N)$ is projective and $H^{2}(N ; 2(N))=0$;
(5) if is not a free group then any two of the conditions \backslash is FF ",
$\backslash \mathrm{N}$ is homotopy equivalent to a nite complex" and $\backslash{ }_{2}(\mathrm{~N})$ is stably free" imply the third.

Proof We may clearly assume that $G 1$. The PD_{3}-complex N is homotopy equivalent to a connected sum of aspherical PD_{3}-complexes and a 3-manifold with free fundamental group, by Turaev's Theorem. Therefore is a corre sponding free product, and so it has cohomological dimension at most 3 and is FP. Since N is nitely dominated the equivariant chain complex of the universal covering space \mathbb{F} is chain homotopy equivalent to a complex

$$
0!C_{3}!C_{2}!C_{1}!C_{0}!0
$$

of nitely generated projective left $\mathbb{Z}[]$-modules. Then the sequences
and $\quad 0!C_{3}!Z_{2}!{ }_{2}(N)!0$
areexact, where Z_{2} is themodule of 2-cycles in C_{2}. Since is FP and c : d : 3 Schanuel's Lemma implies that Z_{2} is projective and nitely generated. Hence ${ }_{2}(\mathrm{~N})$ has projective dimension at most 1 , and is nitely presentable

It follows easily from the UCSS and Poincare duality that $\quad 2(N)$ is isomorphic to $\overline{\mathrm{H}^{1}(; \mathbb{Z}[])}$ and that there is an exact sequence

$$
\begin{equation*}
\mathrm{H}^{3}(; \mathbb{Z}[])!\mathrm{H}^{3}(\mathrm{~N} ; \mathbb{Z}[])!E x t_{\mathbb{Z}[]}^{1}(2(N) ; \mathbb{Z}[])!0 \tag{2.1}
\end{equation*}
$$

The $w_{1}(N)$-twisted augmentation homomorphism from $\mathbb{Z}[]$ to Z which sends $g 2$ to $w_{1}(N)(g)$ induces an isomorphism from $H^{3}(N ; \mathbb{Z}[])$ to $H^{3}(N ; Z)=$ Z. If is freethe rst term in this sequence is 0 , and so $\left.E x t_{\mathbb{Z}}^{1}\right](2(N) ; \mathbb{Z}[])=$ Z. (In particular, $2(\mathrm{~N})$ has projective dimension 1.) There is also a short exact sequence of left modules

$$
0!\mathbb{Z}[]^{r}!\mathbb{Z}[]!Z!\quad 0 ;
$$

where r is the rank of . On dualizing we obtain the sequence of right modules

$$
0!\mathbb{Z}[]!\mathbb{Z}[]^{r}!H^{1}(; \mathbb{Z}[])!0:
$$

The long exact sequence of homology with these coe cients includes an exact sequence

$$
0!H_{1}\left(N ; H^{1}(; \mathbb{Z}[])\right)!H_{0}(N ; \mathbb{Z}[])!H_{0}\left(N ; \mathbb{Z}[]^{r}\right)
$$

in which the right hand map is 0 , and so $\mathrm{H}_{1}\left(\mathrm{~N} ; \mathrm{H}^{1}(; \mathbb{Z}[])\right)=\mathrm{H}_{0}(\mathrm{~N} ; \mathbb{Z}[])=$ Z. Hence $H^{2}\left(N ; 2(N)=H_{1}(N ; 2(N))=H_{1}\left(N ; H^{1}(; \mathbb{Z}[])\right)=Z\right.$, by Poincare duality.
If is not free then the map $H^{3}(; \mathbb{Z}[])!H^{3}(N ; \mathbb{Z}[])$ in sequence 2.1 above is onto, as can be seen by comparison with the corresponding sequence with coe cients Z. Therefore $\left.E x t_{\mathbb{Z}}^{1}\right](2(N) ; \mathbb{Z}[])=0$. Since ${ }_{2}(N)$ has a short resolution by nitely generated projective modules, it follows that it is in fact projective As $\mathrm{H}^{2}(\mathrm{~N} ; \mathbb{Z}[])=\mathrm{H}_{1}(\mathrm{~N} ; \mathbb{Z}[])=0$ it follows that $\mathrm{H}^{2}(\mathrm{~N} ; \mathrm{P})=0$ for any projective $\mathbb{Z}[]$-module P. Hence $H^{2}(N ; 2(N))=0$.
The nal assertion follows easily from the fact that if $\quad 2(N)$ is projective then $Z_{2}=2(N) \quad C_{3}$.

If is not torsion free then the projective dimension of $2(N)$ is in nite Does the result of [HL74] extend to all P D ${ }_{3}$-complexes?

Chapter 3

Homotopy invariants of PD_{4}-complexes

Thehomotopy type of a 4-manifold M is largely determined (through Poincare duality) by its algebraic 2-type and orientation character. In many cases the formally weaker invariants ${ }_{1}(M), w_{1}(M)$ and (M) already su ce. In xl we give criteria in such terms for a degree 1 map between PD_{4}-complexes to be a homotopy equivalence, and for a P_{4}-complex to be aspherical. We then show in $\times 2$ that if the universal covering space of a $\mathrm{P} \mathrm{D}_{4}$-complex is homotopy equivalent to a nite complex then it is either compact, contractible, or homotopy equivalent to S^{2} or S^{3}. In $\times 3$ we obtain estimates for the minimal Euler characteristic of PD_{4}-complexes with fundamental group of cohomological dimension at most 2 and determine the second homotopy groups of P_{4}-complexes realizing the minimal value. The dass of such groups includes all surface groups and classical link groups, and thegroups of many other (bounded) 3-manifolds. The minima are realized by s-paralledizable PL 4-manifolds. In the nal section we shall show that if $\quad(M)=0$ then ${ }_{1}(M)$ satis es some stringent constraints.

3.1 Homotopy equivalence and asphericity

Many of the results of this section depend on the following lemma, in conjunction with use of the Euler characteristic to compute the rank of the surgery kerne. (This lemma and the following theorem derive from Lemmas 2.2 and 2.3 of [Wa].)

Lemma 3.1 Let R be a ring and C be a nite chain complex of projective R-modules. If $H_{i}(C)=0$ for $i<q$ and $H^{q+1}\left(H \operatorname{mom}_{R}(C ; B)\right)=0$ for any left R-module B then $H_{q}(C)$ is projective. If moreover $H_{i}(C)=0$ for $i>q$ then $\mathrm{H}_{\mathrm{q}}(\mathrm{C}) \quad$ i $\mathrm{q+1(2)} \mathrm{C}_{\mathrm{i}}=$ iq(2) C_{i}.

Proof We may assume without loss of generality that $q=0$ and $C_{i}=0$ for $\mathrm{i}<0$. We may factor @: C_{1} ! C_{0} through $\mathrm{B}=\mathrm{Im@}$ as @ $=\mathrm{j}$, where is an epimorphism and j is the natural inclusion of the submodule
B. Since $\mathrm{j} @=@ @=0$ and j is injective $@=0$. Hence is a $1-$ cocycle of the complex H^{\prime} om $_{R}(C ; B)$. Since $H^{1}(H$ om $(C ; B))=0$ there is a homomorphism : $C_{0}!B$ such that $=@=j$. Since is an epimorphism $\mathrm{j}=\mathrm{id}_{\mathrm{B}}$ and so B is a direct summand of C_{0}. This proves the rst assertion.
The second assertion follows by an induction on the length of the complex.
Theorem 3.2 Let N and M be nite $P D_{4}$-complexes. A map f : M ! N is a homotopy equivalence if and only if ${ }_{1}(f)$ is an isomorphism, $f W_{1}(N)=$ $\mathrm{w}_{1}(\mathrm{M}), \mathrm{f}[\mathrm{M}]=[\mathrm{N}]$ and $(\mathrm{M})=(\mathrm{N})$.

Proof The conditions are clearly necessary. Suppose that they hold. Up to homotopy type we may assume that f is a cellular inclusion of nite cell complexes, and so M is a subcomplex of N. We may also identify ${ }_{1}(M)$ with $={ }_{1}(N)$. Let $C(M), C(N)$ and D bethe cellular chain complexes of \mathbb{M}, If and ($\mathbb{N} ; \mathbb{f}$) , respectively. Then the sequence

$$
0!C(M)!C(N)!D!0
$$

is a short exact sequence of nitely generated free $\mathbb{Z}[$]-dhain complexes.
By the projection formula $f(f a \backslash[M])=a \backslash f[M]=a \backslash[N]$ for any cohomology dass a 2 H ($\mathrm{N} ; \mathbb{Z}[]$). Since M and N satisfy Poincare duality it follows that f induces split surjections on homology and split injections on cohomology. Hence $H_{q}(D)$ is the \surgery kernel" in degree $q-1$, and the duality isomorphisms induce isomorphisms from $\left.\mathrm{H}^{r}\left(\mathrm{Hom}_{\mathbb{Z}}\right](\mathrm{D} ; \mathrm{B})\right)$ to $H_{6-r}(\bar{D} \otimes B)$, where B is any left $\mathbb{Z}[]$-module Since f induces isomorphisms on homology and cohomology in degrees 1, with any coe cients, the hypotheses of Lemma 3.1 are satis ed for the $\mathbb{Z}[$]-chain complex D, with $q=3$, and so $\mathrm{H}_{3}(\mathrm{D})=\operatorname{Ker}\left(\mathrm{z}_{2}(\mathrm{f})\right)$ is projective. Moreover $H_{3}(D) \quad i$ odd $D_{i}=i$ even D_{i}. Thus $H_{3}(D)$ is a stably free $\mathbb{Z}[]$-module of rank $(E ; M)=(M)-(E)=0$ and so it is trivial, as $\mathbb{Z}[]$ is weakly nite, by a theorem of Kaplansky (see [Ro84]). Therefore f is a homotopy equivalence.

If M and N are merely nitely dominated, rather than nite, then $H_{3}(D)$ is a nitely generated projective $\mathbb{Z}[]$-module such that $H_{3}(D) \otimes_{\mathbb{Z}[]} Z=0$. If the Wall niteness obstructions satisfy $f(M)=(N)$ in $K_{0}(\mathbb{Z}[])$ then $\mathrm{H}_{3}(\mathrm{D})$ is stably free, and the theorem remains true. This additional condition is redundant if satis es the Weak Bass Conjecture (Similar comments apply elsewhere in this section.)

Corollary 3.2.1 Let N be orientable Then a map f:N! N which induces automorphisms of ${ }_{1}(N)$ and $H_{4}(N ; \mathbb{Z})$ is a homotopy equivalence.

In the aspherical cases we shall see that we can relax the hypothesis that the classifying map have degre 1 .

Lemma 3.3 Let M be a PD_{4}-complex with fundamental group . Then there is an exact sequence

$$
0!H^{2}(; \mathbb{Z}[])!\overline{2(M)}!\operatorname{Hom}_{\mathbb{Z}[]}(2(M) ; \mathbb{Z}[])!H^{3}(; \mathbb{Z}[])!0:
$$

Proof Since $H_{2}(M ; \mathbb{Z}[])={ }_{2}(M)$ and $H^{3}(M ; \mathbb{Z}[])=H_{1}(\mathbb{M} ; \mathbb{Z})=0$, this follows from the UCSS and Poincare duality.

Exactness of much of this sequence can be derived without the UCSS. The middle arrow is the composite of a Poincare dual ity isomorphism and the evaluation homomorphism. Note also that $\left.\mathrm{Hom}_{\mathbb{Z}[}\right]\left({ }_{2}(\mathrm{M}) ; \mathbb{Z}[]\right)$ may be identi ed with $\mathrm{H}^{0}\left(; \mathrm{H}^{2}(\mathbb{M} ; \mathbb{Z}) \otimes \mathbb{Z}[]\right)$, the -invariant subgroup of the cohomology of the universal covering space When is nitethe sequence reduces to an isomorphism $\left.2(M)=\overline{\left.\operatorname{Hom}_{\mathbb{Z}}\right]}{ }_{2}(\mathrm{M}) ; \mathbb{Z}[]\right)$.
Le $\mathrm{ev}^{(2)}: \mathrm{H}_{(2)}^{2}(\mathbb{(N)})!\mathrm{Hom}_{\mathbb{Z}[\mathrm{J}}\left({ }_{2}(\mathrm{M}) ;{ }^{2}(\mathrm{r})\right)$ be the evaluation homomorphism de ned on the unreduced L^{2}-cohomology by $\mathrm{ev}^{(2)}(\mathrm{f})(\mathrm{z})=\mathrm{f}\left(\mathrm{g}^{-1} \mathrm{z}\right) \mathrm{g}$ for all 2-cycles z and square summable 2-cocycles f. Much of the next theorem is implicit in [Ec94].

Theorem 3.4 Let M be a nite PD_{4}-complex with fundamental group Then
(1) if ${ }_{1}^{(2)}()=0$ then (M) 0 ;
(2) $\operatorname{Ker}\left(\mathrm{eV}^{(2)}\right)$ is closed;
(3) if $(M)={ }_{1}^{(2)}()=0$ then $\mathrm{C}_{M}: H^{2}(; \mathbb{Z}[])!H^{2}(M ; \mathbb{Z}[])=\overline{2(M)}$ is an isomorphism.

Proof Since M is a $P D_{4}$-complex $(M)=2{ }_{0}^{(2)}()-2{ }_{1}^{(2)}()+{ }_{2}^{(2)}(M)$. Hence (M) $\quad{ }_{2}^{(2)}(M) \quad 0$ if ${ }_{1}^{(2)}()=0$.
Let $z 2 \mathrm{C}_{2}(\mathbb{M})$ bea 2-cycle and f $2 \mathrm{C}_{2}^{(2)}(\mathbb{f})$ a squaresummable 2-cocycle. As $\mathrm{jjev}^{(2)}(\mathrm{f})(\mathrm{z}) \mathrm{jj}_{2} \quad \mathrm{jjf} \mathrm{jj}_{2} \mathrm{jjzj}_{2}$, the map $\mathrm{f} 7 \mathrm{ev}^{(2)}(\mathrm{f})(\mathrm{z})$ is continuous, for xed z. Hence if $f=\operatorname{limf}_{\mathrm{n}}$ and $\mathrm{ev}^{(2)}\left(\mathrm{f}_{\mathrm{n}}\right)=0$ for all n then $\mathrm{ev}^{(2)}(\mathrm{f})=0$.

The inclusion $\mathbb{Z}[]<{ }^{2}()$ induces a homomorphism from the exact sequence of Lemma 3.3 to the corresponding sequence with coe cients ' ${ }^{2}$ (). The module $\mathrm{H}^{2}\left(\mathrm{M} ;{ }^{\prime 2}()\right)$ may be identi ed with the unreduced L^{2}-cohomology, and $\mathrm{ev}^{(2)}$ may be viewed as mapping $\mathrm{H}_{2}^{(2)}(\mathbb{f})$ to $\mathrm{H}^{2}(\mathbb{f} ; \mathbb{Z}) \otimes{ }^{\prime 2}()$ [Ec94]. As \mathfrak{G} is 1-connected the induced homomorphism from $\mathrm{H}^{2}(\mathbb{G} ; \mathbb{Z}) \otimes \mathbb{Z}[$] to $\mathrm{H}^{2}(\mathbb{f} ; \mathbb{Z}) \otimes{ }^{\prime 2}()$ is injective. $A s \mathrm{ev}^{(2)}(\mathrm{g})(\mathrm{z})=\mathrm{ev}^{(2)}(\mathrm{g})(@ \mathrm{Q})=0$ for any square summable 1-chain g and $\operatorname{Ker}\left(\mathrm{ev}^{(2)}\right)$ is closed $\mathrm{ev}^{(2)}$ factors through the reduced L^{2}-cohomology $H_{(2)}^{2}\left(\mathrm{f}_{\mathrm{M}}\right)$. In particular, it is 0 if ${ }_{1}^{(2)}(\mathrm{r})=(\mathrm{M})=0$. Hence the middle arrow of the sequence in Lemma 3.3 is also 0 and c_{M} is an isomorphism.

A related argument gives a complete and natural criterion for asphericity for closed 4-manifolds.

Theorem 3.5 Let M be a nite PD_{4}-complex with fundamental group. Then M is aspherical if and only if $H^{s}(; \mathbb{Z}[])=0$ for $s \quad 2$ and $\quad{ }_{2}^{(2)}(M)=$ ${ }_{2}^{(2)}()$.

Proof The conditions are clearly necessary. Suppose that they hold. Then as ${ }_{i}^{(2)}(M)=i_{i}^{(2)}()$ for $i \quad 2$ the classifying map $C_{M}: M!K(; 1)$ induces weak isomorphisms on reduced L^{2}-cohomology $\mathrm{H}_{(2)}^{\mathrm{i}}()$! $\mathrm{H}_{(2)}^{\mathrm{i}}(\mathbb{f}$) for i 2 .
The natural homomorphism $\mathrm{h}: \mathrm{H}^{2}\left(\mathrm{M} ;{ }^{\prime 2}()\right)!\mathrm{H}^{2}(\mathbb{f} ; \mathbb{Z}) \otimes{ }^{\prime 2}()$ factors through $H_{(2)}^{2}(\mathbb{F})$). The induced homomorphism is a homomorphism of Hilbert modules and so has closed kerne. But the image of $\mathrm{H}_{(2)}^{2}()$ is dense in $\mathrm{H}_{2}^{(2)}(\mathbb{f})$ and is in this kernel. Hence $h=0$. Since $H^{2}(; \mathbb{Z}[])=0$ the homomorphism from $\mathrm{H}^{2}(\mathrm{M} ; \mathbb{Z}[])$ to $\mathrm{H}^{2}(\mathbb{G} ; \mathbb{Z}) \otimes \mathbb{Z}[]$ obtained by forgetting $\mathbb{Z}[]-$ linearity is injective Hence the composite homomorphism from $\mathrm{H}^{2}(\mathrm{M} ; \mathbb{Z}[])$ to $\left.\mathrm{H}^{2}(\mathbb{N} ; \mathbb{Z}) \otimes^{{ }^{2}(}\right)$ is also injective. But this composite may also be factored as the natural map from $H^{2}(M ; \mathbb{Z}[])$ to $H^{2}\left(M ;{ }^{2}()\right)$ followed by h. Hence $H^{2}(M ; \mathbb{Z}[])=0$ and so M is aspherical, by Poincare duality.

Corollary 3.5.1 M is aspherical if and only if is an FF PD 4 -group and $(M)=()$.

This also follows immediately from Theorem 3.2, if also 2()$\in 0$. For we may assume that M and are orientable, after passing to the subgroup $\operatorname{Ker}\left(w_{1}(M)\right) \backslash \operatorname{Ker}\left(w_{1}()\right)$, if necessary. As $H_{2}\left(C_{M} ; \mathbb{Z}\right)$ is an epimorphism it is an isomorphism, and so C_{M} must have degree 1 , by Poincare duality.

Corollary 3.5.2 If $(M)={ }_{1}^{(2)}()=0$ and $H^{s}(; \mathbb{Z}[])=0$ for $s \quad 2$ then M is aspherical and is a PD_{4}-group.

Corollary 3.5.3 If $=Z^{r}$ then (M) 0 , with equality only if $r=1,2$ or 4.

Proof If $r>2$ then $H^{s}(; \mathbb{Z}[])=0$ for $s 2$.
Is it possible to replace the hypothesis $\backslash{ }_{2}^{(2)}(M)={ }_{2}^{(2)}()$ " in Theorem 3.5 by \} 2 (M ^ { + }) = { } _ { 2 } (K ^ { \operatorname { l e r w } } w _ { 1 } (M)) ", where p _ { + } : M ^ { + } ! M is the orientation cover? It is easy to nd examples to show that the homological conditions on cannot be relaxed further.

Theorem 3.5 implies that if is a $P^{2} D_{4}$-group and $(M)=()$ then $\mathrm{C}_{\mathrm{M}}[\mathrm{M}]$ is nonzero. If we drop the condition $(M)=()$ this ned not be true Given any nitely presentablegroup G there is a closed orientable 4-manifold M with
${ }_{1}(M)=G$ and such that $C_{M}[M]=0$ in $H_{4}(G ; \mathbb{Z})$. We may take M to bethe boundary of a regular neighbourhood N of some embedding in \mathbb{R}^{5} of a nite 2-complex K with ${ }_{1}(\mathrm{~K})=\mathrm{G}$. As the inclusion of M into N is 2-connected and K is a deformation retract of N the classifying map C_{M} factors through c_{K} and so induces the trivial homomorphism on homology in degrees >2. However if M and are orientable and $2(M)<22()$ then c_{M} must have nonzero degree, for the image of $\mathrm{H}^{2}(; \mathbb{Q})$ in $\mathrm{H}^{2}(\mathrm{M} ; \mathbb{Q})$ then cannot be self-orthogonal under cup-product.

Theorem 3.6 Let bea PD_{4}-group with a nite $\mathrm{K}(; 1)$-complex and such that ()$=0$. Then $\operatorname{def}() \quad 0$.

Proof Suppose that has a presentation of de ciency >0, and let X bethe corresponding 2-complex. Then ${ }_{2}^{(2)}()-{ }_{1}^{(2)}() \quad{ }_{2}^{(2)}(X)-{ }_{1}^{(2)}()=(X)$ 0 . We also have ${ }_{2}^{(2)}()-2_{1}^{(2)}()=()=0$. Hence ${ }_{1}^{(2)}()={ }_{2}^{(2)}()=$ $(X)=0$. Therefore X is aspherical, by Theorem 2.4, and so c:d: 2. But this contradicts the hypothesis that is a PD_{4}-group.

Is def() 0 for any PD_{4}-group ? This bound is best possible for groups with $=0$, since there is a poly- Z group $Z^{3} \quad A Z$, where A $2 \operatorname{SL}(3 ; \mathbb{Z})$, with presentation $\mathrm{hb} ; \mathrm{x} ; \mathrm{j} \mathrm{sxs}^{-1} \mathrm{x}=\mathrm{xsxs}^{-1}, \mathrm{~s}^{3} \mathrm{x}=\mathrm{xs}^{3} \mathrm{i}$.

The hypothesis on orientation characters in Theorem 3.2 is often redundant.

Theorem 3.7 Let f:M! N be a 2-connected map between nite $P \mathrm{D}_{4}-$ complexes with $(M)=(N)$. If $H^{2}\left(N ; \mathbb{F}_{2}\right) \in 0$ then $f w_{1}(N)=w_{1}(M)$, and if moreover N is orientable and $\mathrm{H}^{2}(\mathrm{~N} ; \mathbb{Q}) \in 0$ then f is a homotopy equivalence.

Proof Since f is 2-connected $H^{2}\left(f ; \mathbb{F}_{2}\right)$ is injective, and since $(M)=(N)$ it is an isomorphism. Since $\mathrm{H}^{2}\left(\mathrm{~N} ; \mathbb{F}_{2}\right) \in 0$, the nondegeneracy of Poincare duality implies that $H^{4}\left(f ; \mathbb{F}_{2}\right) \in 0$, and so f is a \mathbb{F}_{2}-(co) homology equivalence. Since $w_{1}(M)$ is characterized by the Wu formula $x\left[w_{1}(M)=S q^{1} x\right.$ for all x in $H^{3}\left(M ; \mathbb{F}_{2}\right)$, it follows that $f w_{1}(N)=w_{1}(M)$.

If $H^{2}(N ; \mathbb{Q}) \in 0$ then $H^{2}(N ; \mathbb{Z})$ has positive rank and $H^{2}\left(N ; \mathbb{F}_{2}\right) \in 0$, so N orientable implies M orientable. We may then repeat the above argument with integral coe cients, to conclude that f has degree 1 . The result then follows from Theorem 3.2.

The argument breaks down if, for instance, $M=S^{1} \sim S^{3}$ is the nonorientable S^{3}-bundle over $S^{1}, N=S^{1} \quad S^{3}$ and f is the composite of the projection of M onto S^{1} followed by the inclusion of a factor.

We would like to replace the hypotheses above that there bea map f:M!N realizing certain isomorphisms by weaker, more algebraic conditions. If M and N are closed 4-manifolds with isomorphic algebraic 2-types then there is a 3connected map f:M! $P_{2}(N)$. The restriction of such a map to $M_{0}=M n D^{4}$ is homotopic to a map $f_{0}: M_{0}!N$ which induces isomorphisms on ${ }_{i}$ for i 2. In particular, $(M)=(N)$. Thus if f_{o} extends to a map from M to N we may be able to apply Theorem 3.2. However we usually need more information on how the top cell is attached. The characteristic classes and the equivariant intersection pairing on $2(M)$ are the obvious candidates.
The following criterion arises in studying the homotopy types of circle bundles over 3-manifolds. (See Chapter 4.)

Theorem 3.8 Let E bea nite PD_{4}-complex with fundamental group and suppose that $H^{4}\left(f_{E} ; Z^{W_{1}(E)}\right)$ is a monomorphism. A nite $P D_{4}$-complex M is homotopy equivalent to E if and only if there is an isomorphism from ${ }_{1}(M)$ to such that $w_{1}(M)=w_{1}(E)$, there is a lift $\mathcal{C}: M!P_{2}(E)$ of C_{M} such that $\mathcal{C}[M]=f_{E}[E]$ and $(M)=(E)$.

Proof The conditions are clearly necessary. Conversely, suppose that they hold. We shall adapt to our situation the arguments of Hendriks in analyzing
the obstructions to the existence of a degree 1 map between PD_{3}-complexes realizing a given homomorphism of fundamental groups. For simplicity of notation we shall write \mathbb{Z} for $Z^{W_{1}(E)}$ and also for $Z^{W_{1}(M)}(=\mathbb{Z})$, and use to identify ${ }_{1}(\mathrm{M})$ with and $K\left({ }_{1}(\mathrm{M}) ; 1\right)$ with $K(; 1)$. We may suppose the sign of the fundamental class $[M]$ is so chosen that $\mathcal{C}[M]=f_{E}[E]$.
Le $E_{0}=E n D^{4}$. Then $P_{2}\left(E_{0}\right)=P_{2}(E)$ and may be constructed as the union of E_{o} with cells of dimension 4. Let

$$
h: \mathbb{Z} \otimes_{\mathbb{Z}[]} \quad 4\left(\mathrm{P}_{2}\left(\mathrm{E}_{0}\right) ; \mathrm{E}_{0}\right)!\mathrm{H}_{4}\left(\mathrm{P}_{2}\left(\mathrm{E}_{0}\right) ; \mathrm{E}_{0} ; \mathbb{Z}\right)
$$

be the $\mathrm{w}_{1}(\mathrm{E})$-twisted relative Hurewic homomorphism, and let @bethe connecting homomorphism from ${ }_{4}\left(\mathrm{P}_{2}\left(\mathrm{E}_{0}\right)\right.$; $\left.\mathrm{E}_{0}\right)$ to ${ }_{3}\left(\mathrm{E}_{0}\right)$ in the exact sequence of homotopy for the pair ($\mathrm{P}_{2}\left(\mathrm{E}_{0}\right) ; \mathrm{E}_{\mathrm{o}}$). Then h and @are isomorphisms since $\mathrm{f}_{\mathrm{E}_{\mathrm{o}}}$ is 3-connected, and so the homomorphism $\left.E: H_{4}\left(P_{2}(E) ; Z\right)!\mathbb{Z} \otimes_{\mathbb{Z}[}\right] \quad 3\left(E_{0}\right)$ given by the composite of the inclusion

$$
\mathrm{H}_{4}\left(\mathrm{P}_{2}(\mathrm{E}) ; Z \bar{Z}\right)=\mathrm{H}_{4}\left(\mathrm{P}_{2}\left(\mathrm{E}_{0}\right) ; Z\right)!\quad \mathrm{H}_{4}\left(\mathrm{P}_{2}\left(\mathrm{E}_{0}\right) ; \mathrm{E}_{0} ; Z \bar{Z}\right)
$$

with h^{-1} and $1 \otimes_{\mathbb{Z}[}$ @ is a monomorphism. Similarly $M_{0}=\mathrm{MnD}^{4}$ may be viewed as a subspace of $\mathrm{P}_{2}\left(\mathrm{M}_{0}\right)$ and there is a monomorphism m from $H_{4}\left(P_{2}(M) ; \mathbb{Z}\right)$ to $\left.\mathbb{Z} \otimes_{\mathbb{Z}[}\right] \quad 3\left(M_{0}\right)$. These monomorphisms are natural with respect to maps de ned on the 3 -skeleta (i.e., E_{o} and M_{0}).
The classes $E\left(f_{E}[E]\right)$ and $M_{M}\left(f_{M}[M)\right.$ are the images of the primary obstructions to retracting E onto E_{0} and M onto M_{0}, under the Poincare duality isomorphisms from $H^{4}\left(E ; E_{0} ; \quad 3\left(E_{0}\right)\right)$ to $\left.H_{0}\left(E_{n E} ; \mathbb{Z} \otimes_{\mathbb{Z}[}\right] \quad 3\left(E_{0}\right)\right)=$ $\left.Z \otimes_{\mathbb{Z}[}\right] \quad 3\left(E_{0}\right)$ and $H^{4}\left(M ; M_{0} ; 3\left(M_{0}\right)\right)$ to $\left.\mathbb{Z} \otimes_{\mathbb{Z}[}\right] \quad 3\left(M_{0}\right)$, respectively. Since M_{0} is homotopy equivalent to a cell complex of dimension 3 the restriction of c to M_{0} is homotopic to a map from M_{0} to E_{0}. Let © be the homomorphism from $3\left(M_{0}\right)$ to $3\left(E_{0}\right)$ induced by $\mathcal{G} M_{0}$. Then ($\left.\left.1 \otimes_{\mathbb{Z}[}\right] \hat{G}\right)$ м $\left(f_{M}[M]\right)=$ ${ }_{E}\left(f_{E}[E]\right)$. It follows as in [Hn77] that the obstruction to extending GM_{O} : M_{0} ! E_{o} to a map d from M to E is trivial.

Since $f_{E} d[M]=C[M]=f_{E}[E]$ and f_{E} is a monomorphism in degree 4 the map d has degree 1, and so is a homotopy equivalence, by Theorem 3.2.

If there is such a lift C then $C_{M} \quad k_{1}(E)=0$ and $\quad C_{M}[M]=C_{E}[E]$.

3.2 Finitely dominated covering spaces

In this section we shall show that if a PD_{4}-complex has an in nite regular covering space which is nitely dominated then either the complex is aspherical
or its universal covering space is homotopy equivalent to S^{2} or S^{3}. In Chapters 4 and 5 we shall see that such manifolds are close to being total spaces of bre bundles.

Theorem 3.9 Let M bea P_{4}-complex with fundamental group. Suppose that $p: \mathbb{M}!M$ is a regular covering map, with covering group $G=A u t(p)$, and such that \mathbb{M} is nitely dominated. Then
(1) G has nitely many ends;
(2) if \mathbb{M} is acyclic then it is contractible and M is aspherical;
(3) if G has one end and ${ }_{1}(M)$ is in nite and $F P_{3}$ then M is aspherical and \mathbb{M} is homotopy equivalent to an aspherical closed surface or to S^{1};
(4) if G has one end and ${ }_{1}(\mathbb{M})$ is nite but \mathbb{M} is not acyclic then M, S^{2} or RP2;
(5) G has two ends if and only if \mathbb{A} is a $P D_{3}$-complex.

Proof We may clearly assume that G is in nite and that M is orientable. As $\mathbb{Z}[G]$ has no nonzero left ideal (i.e, submodule) which is nitely generated as an abelian group $\mathrm{Hom}_{\mathbb{Z}[\mathrm{G}]}\left(\mathrm{H}_{\mathrm{p}}(\mathbb{M} ; \mathbb{Z}) ; \mathbb{Z}[G]\right)=0$ for all $\mathrm{p} \quad 0$, and so the bottom row of the UCSS for the covering p is 0 . From Poincare duality and the UCSS we nd that $H^{1}(G ; \mathbb{Z}[G])=\overline{\mathrm{H}_{3}(\mathbb{M} ; \mathbb{Z})}$. As this group is nitely generated, and as G is in nite, G has one or two ends.
If M is acyclic then G is a $P D_{4}$-group and so M is a $P D_{0}$-complex, hence contractible, by [Go79]. Hence M is aspherical.

Suppose that G has one end. Then $H_{3}(\mathbb{M} ; \mathbb{Z})=H_{4}(\mathbb{M} ; \mathbb{Z})=0$. Since \mathbb{A} is nitely dominated the chain complex $C(\mathbb{M})$ is chain homotopy equivalent over $\mathbb{Z}\left[{ }_{1}(\mathbb{M})\right]$ to a complex D of nitely generated projective $\mathbb{Z}\left[{ }_{1}(\mathbb{M})\right]$-modules. If ${ }_{1}(\mathbb{M})$ is $F P_{3}$ then theaumentation $\mathbb{Z}\left[{ }_{1}(\mathbb{M})\right]$-module Z has a freeresolution P which is nitely generated in degrees 3. On applying Schanue's Lemma to the exact sequences

$$
\begin{array}{lllllll}
& 0! & Z_{2}! & D_{2}! & D_{1}! & D_{0}! & Z! \\
\text { and } & 0! & Ð_{3}! & P_{2}! & P_{1}! & P_{0}! & Z!
\end{array}
$$

derived from these two chain complexes we nd that Z_{2} is nitely generated as a $\mathbb{Z}\left[{ }_{1}(\mathbb{M})\right]$-module. Hence $={ }_{2}(M)={ }_{2}(\mathbb{M})$ is also nitely generated as a $\mathbb{Z}\left[{ }_{1}(\mathbb{M})\right]$-module and so $\operatorname{Hom}(; \mathbb{Z}[])=0$. If moreover ${ }_{1}(\mathbb{M})$ is in nite then $H^{s}(; \mathbb{Z}[])=0$ for $\mathrm{s} \quad 2$, so $=0$, by Lemma 3.3, and M
is aspherical. A spectral sequence corner argument then shows that either $H^{2}(G ; \mathbb{Z}[G])=Z$ and M is homotopy equivalent to an aspherical closed surface or $H^{2}(G ; \mathbb{Z}[G])=0, H^{3}(G ; \mathbb{Z}[G])=Z$ and $\mathbb{M}{ }^{\prime} S^{1}$. (Se the following theorem.)
If ${ }_{1}(\mathbb{M})$ is nite but \mathbb{M} is not acyclic then the universal covering space \mathbb{M} is also nitely dominated but not contractible, and $=\mathrm{H}_{2}(\mathbb{f} ; \mathbb{Z})$ is a nontrivial nitely generated abelian group, while $\mathrm{H}_{3}(\mathbb{F} ; \mathbb{Z})=\mathrm{H}_{4}(\mathbb{F} ; \mathbb{Z})=0$. If C is a nite cydic subgroup of there are isomorphisms $\mathrm{H}_{\mathrm{n}+3}(\mathrm{C} ; \mathbb{Z})=\mathrm{H}_{\mathrm{n}}(\mathrm{C}$;), for all n 4, by Lemma 2.10. Suppose that C acts trivially on . Then if n is odd this isomorphism reduces to $0=\dot{j} \mathrm{Cj}$. Since is nitely generated, this implies that multiplication by jCj is an isomorphism. On the other hand, if n is even we have $\mathrm{Z} \dot{\mathrm{j}} \mathrm{CjZ}=\mathrm{fa} 2 \quad \mathrm{j} j \mathrm{Cja}=0 \mathrm{~g}$. Hence we must have $\mathrm{C}=1$. Now since is nitely generated any torsion subgroup of Aut() is nite (Let T bethetorsion subgroup of and supposethat $=T=Z^{r}$. Then the natural homomorphism from Aut () to Aut($=$) has nite kerne, and its image is isomorphic to a subgroup of $\mathrm{GL}(\mathrm{r} ; \mathbb{Z})$, which is virtually torsion free.) Hence as is in nite it must have elements of in nite order. Since $\mathrm{H}^{2}(; \mathbb{Z}[])=$, by Lemma 3.3, it is a nitely generated abelian group. Therefore it must be in nitecyclic, by Corollary 5.2 of [Fa74]. Hence M^{\prime}, S^{2} and ${ }_{1}(\mathbb{M})$ has order at most 2 , so $\mathbb{M}^{\prime} S^{2}$ or $R P^{2}$.
Suppose now that M is a $P D_{3}$-complex. After passing to a nite covering of M, if necessary, we may assume that \mathbb{M} is orientable. Then $H^{1}(G ; \mathbb{Z}[G])=$
$\mathrm{H}_{3}(\mathbb{M} ; \mathbb{Z})$, and so G has two ends. Conversely, if G has two ends we may assume that $G=Z$, after passing to a nite covering of M, if necessary. Hence M is a P_{3}-complex, by [Go79] again. (See Theorem 4.5 for an alternative argument, with weaker, algebraic hypotheses.)

Is the hypothesis in (3) that ${ }_{1}(\mathbb{M})$ be $F P_{3}$ redundant?
Corollary 3.9.1 The covering space \mathbb{M} is homotopy equivalent to a closed surface if and only if it is nitely dominated, $H^{2}(G ; \mathbb{Z}[G])=Z$ and ${ }_{1}(M)$ is FP3.

In this case M has a nite covering space which is homotopy equivalent to the total space of a surface bundle over an aspherical closed surface. (Se Chapter 5.)

Corollary 3.9.2 The covering space M is homotopy equivalent to S^{1} if and only if it is nitely dominated, G has one end, $H^{2}(G ; \mathbb{Z}[G])=0$ and ${ }_{1}(\mathbb{M})$ is a nontrivial nitely generated fre group.

Proof If M, S^{1} then it is nitely dominated and M is aspherical, and the conditions on G follow from the LHSSS. The converse follows from part (3) of the theorem, since a nontrivial nitely generated free group is in nite and FP.

In fact any nitely generated free normal subgroup F of a $P D_{n}$-group must be in nite cyclic. For $=C(F)$ embeds in $\operatorname{Out}(F)$, so v:c:d: $=C(F)$ v:c:d:Out $(F(r))<1$. If F is nonabelian then $C(F) \backslash F=1$ and so c:d: $F<$ 1 . Since F is nitely generated F is $F P_{1}$. Hence we may apply Theorem 9.11 of [Bi], and an LHSSS corner argument gives a contradiction.

In the simply connected case \nitely dominated", \homotopy equivalent to a nite complex" and \having nitely generated homology" are all equivalent.

Corollary 3.9.3 If $\mathrm{H}(\mathbb{G} ; \mathbb{Z})$ is nitely generated then either M is aspherical or f is homotopy equivalent to S^{2} or S^{3} or ${ }_{1}(M)$ is nite.

We shall examine the spherical cases more closely in Chapters 10 and 11. (The arguments in these chapters may apply also to $P D_{n}$-complexes with universal covering space homotopy equivalent to $\mathrm{S}^{\mathrm{n}-1}$ or $\mathrm{S}^{\mathrm{n}-2}$. The anal ogues in higher codimensions appear to be less accessible)

The \nitely dominated" condition is used only to ensure that the chain complex of the covering is chain homotopy equivalent over $\mathbb{Z}\left[{ }_{1}(\mathbb{M})\right]$ to a nite projective complex. Thus when M is aspherical this condition can be relaxed slightly. Thefollowing variation on the aspherical case shall beused in Theorem 4.8, but belongs most naturally here.

Theorem 3.10 Let N be a nontrivial FP_{3} normal subgroup of in nite index in a $P D_{4}$-group , and let $G=\neq N$. Then either
(1) N is a $P D_{3}$-group and G has two ends;
(2) N is a $P D_{2}$-group and G is virtually a PD_{2}-group; or
(3) $\mathrm{N}=\mathrm{Z}, \mathrm{H}^{\mathrm{s}}(\mathrm{G} ; \mathbb{Z}[\mathrm{G}])=0$ for $\mathrm{s} \quad 2$ and $\mathrm{H}^{3}(\mathrm{G} ; \mathbb{Z}[\mathrm{G}])=\mathrm{Z}$.

Proof Since c:d:N < 4, by Strebel's Theorem, N and hence G are FP. The E_{2} terms of the LHS spectral sequence with coe cients $\mathbb{Q}[]$ can then be expressed as $E_{2}^{\mathrm{pq}}=\mathrm{H}^{\mathrm{p}}(\mathrm{G} ; \mathbb{Q}[\mathrm{G}]) \otimes \mathrm{H}^{\mathrm{q}}(\mathrm{N} ; \mathbb{Q}[\mathrm{N}])$. If $\mathrm{H}^{\mathrm{j}}(\neq \mathrm{N} ; \mathbb{Q}[\neq \mathrm{N}])$ and $H^{k}(N ; \mathbb{Q}[N])$ are the rst nonzero such cohomology groups then $E_{2}^{j k}$ persists to E_{1} and hence $j+k=4$. Therefore $H^{j}(G ; \mathbb{Q}[G]) \otimes H^{4-j}(N ; \mathbb{Q}[N])=Q$.

Hence $H^{j}(G ; \mathbb{Q}[G])=H^{4-j}(N ; \mathbb{Q}[N])=Q$. In particular, G has one or two ends and N is a P_{4-j}-group over \mathbb{Q} [Fa75]. If G has two ends then it is virtually Z , and then N is a $P D_{3}$-group (over \mathbb{Z}) by Theorem 9.11 of [Bi]. If $H^{2}(N ; \mathbb{Q}[N])=H^{2}(G ; \mathbb{Q}[G])=Q$ then N and G are virtually $P D_{2}$-groups, by Bowditch's Theorem. Since N is torsion free it is then in fact a PD_{2}-group. The only remaining possibility is (3).

In case(1) has a subgroup of index 2 which is a semidirect product H Z with $\mathrm{N} \quad \mathrm{H}$ and $[\mathrm{H}: \mathrm{N}]<1$. Is it su cient that N be $\mathrm{FP} \mathrm{P}_{2}$? Must the quotient $=\mathrm{N}$ be virtually a PD_{3}-group in case (3)?

C orollary 3.10.1 If K is $F P_{2}$ and is subnormal in N where N is an $F P_{3}$ normal subgroup of in nite index in the PD_{4}-group then K is a PD_{k}-group for some $\mathrm{k}<4$.

Proof This follows from Theorem 3.10 together with Theorem 2.16.
What happens if we drop the hypothesis that the covering be regular? It can be shown that a closed 3-manifold has a nitely dominated in nite covering space if and only if its fundamental group has one or two ends. We might conjecture that if a closed 4-manifold M has a nitely dominated in nite covering space M then either M is aspherical or the universal covering space fh is homotopy equivalent to S^{2} or S^{3} or M has a nite covering space which is homotopy equivalent to the mapping torus of a self homotopy equivalence of a $\mathrm{PD}_{3}-$ complex. (In particular, ${ }_{1}(\mathrm{M})$ has one or two ends.) In [Hi94'] we extend the arguments of Theorem 3.9 to show that if ${ }_{1}(M)$ is $F P_{3}$ and subnormal in the only other possibility is that ${ }_{1}(\mathbb{M})$ has two ends, $h\left({ }^{(}{ }^{-}\right)=1$ and $\mathrm{H}^{2}(; \mathbb{Z}[])$ is not nitely generated. This paper also considers in more detail FP subnormal subgroups of PD_{4}-groups, corresponding to the aspherical case.

3.3 Minimizing the E uler characteristic

It is well known that every nitely presentable group is the fundamental group of some closed orientable 4-manifold. Such manifolds are far from unique, for the Euler characteristic may be made arbitrarily large by taking connected sums with simply connected manifolds. Following Hausmann and Weinberger [HW85] we may de ne an invariant $q($) for any nitely presentable group by

$$
\mathrm{q}()=\operatorname{minf}(M) \mathrm{jM} \text { is a } P D_{4} \text { complex with }{ }_{1}(M)=\mathrm{g}:
$$

We may also de ne related invariants q^{X} where the minimum is taken over the class of PD_{4}-complexes whose normal bration has an X -reduction. There are the following basic estimates for $q^{S G}$, which is de ned in terms of PD_{4}^{+}complexes.

Lemma 3.11 Let be a nitely presentable group with a subgroup H of nite index and let F bea eld. Then
(1) $1-{ }_{1}(H ; F)+{ }_{2}(H ; F) \quad[: H](1-$ def $)$;
(2) $2-2{ }_{1}(\mathrm{H} ; \mathrm{F})+{ }_{2}(\mathrm{H} ; \mathrm{F}) \quad\left[: H \mathrm{Cl}^{\mathrm{SG}}(\mathrm{O}\right.$;
(3) $q^{S G}() \quad 2(1-\operatorname{def}())$;
(4) if $H^{4}(; F)=0$ then $q^{S G}() \quad 2(1-1(; F)+2(; F))$.

Proof Let C bethe 2-complex corresponding to a presentation for of maximal de ciency and let C_{H} be the covering space associated to the subgroup H . Then $(\mathrm{C})=1-$ def and $\left(\mathrm{C}_{\mathrm{H}}\right)=[: \mathrm{H}](\mathrm{)}$. Condition (1) follows since ${ }_{1}(H ; F)={ }_{1}\left(C_{H} ; F\right)$ and ${ }_{2}(H ; F) \quad{ }_{2}\left(C_{H} ; F\right)$.
Condition (2) follows similarly on considering the Euler characteristics of a PD_{4}^{+}-complex M with ${ }_{1}(\mathrm{M})=$ and of the associated covering space M_{H}.
The boundary of a regular neighbourhood of a PL embedding of C in R^{5} is a closed orientable 4-manifold realizing the upper bound in (3).
The image of $H^{2}(; F)$ in $H^{2}(M ; F)$ has dimension $2(; F)$, and is selfannihilating under cup-product if $\mathrm{H}^{4}(; F)=0$. In that case $2(M ; F)$ 2 (; F), which implies (4).

Condition (2) was used in [HW85] to give examples of nitely presentable superperfect groups which are not fundamental groups of homology 4 -spheres. (Se Chapter 14 below.)
If is a nitely presentable, orientable PD_{4}-group we se immediately that $\mathrm{q}^{\mathrm{SG}}(\mathrm{)} \quad(\mathrm{)}$. Multiplicativity then implies that q()$=()$ if $\mathrm{K}(; 1)$ is a nite PD_{4}-complex.
For groups of cohomological dimension at most two we can say more
Theorem 3.12 Let M be a nite P^{4}-complex with fundamental group. Suppose that c:d: $\mathbb{Q} \quad 2$ and $(M)=2()=2(1-1(; \mathbb{Q})+2(; \mathbb{Q}))$. Then $2(M)=\overline{H^{2}(; \mathbb{Z}[])}$. If moreover c:d: 2 the chain complex of the universal covering space \mathbb{M} is determined up to chain homotopy equivalence over $\mathbb{Z}[]$ by .

Proof Let $A_{Q}()$ be the augmentation ideal of $\mathbb{Q}[]$. Then there are exact sequences

$$
\begin{gather*}
0!A_{Q}()!\mathbb{Q}[]!Q!0 \tag{3.1}\\
0!P!\mathbb{Q}[]^{9}! \tag{3.2}
\end{gather*} A_{Q}()!0 \text { : }
$$

where P is a nitely generated projective module We may assume that that
\mathcal{G} 1, i.e., that is in nite, and that M is a nite 4-dimensional cell complex. Let C be the cellular chain complex of \mathfrak{M}, with coe cients \mathbb{Q}, and let $H_{i}=$ $H_{i}(C)=H_{i}(\mathbb{G} ; \mathbb{Q})$ and $\left.H^{t}=H^{t}\left(H_{0}\right](C ; \mathbb{Q}[])\right)$. Since \mathbb{G} is simply connected and is in nite, $\mathrm{H}_{0}=\mathrm{Q}$ and $\mathrm{H}_{1}=\mathrm{H}_{4}=0$. Poincare duality gives further isomorphisms $\mathrm{H}^{1}=\overline{\mathrm{H}_{3}}, \mathrm{H}^{2}=\overline{\mathrm{H}_{2}}, \mathrm{H}^{3}=0$ and $\mathrm{H}^{4}=\overline{\mathrm{Q}}$.

The chain complex C breaks up into exact sequences:

$$
\begin{gather*}
0!C_{4}!Z_{3}!H_{3}!0 ; \tag{3.3}\\
0!Z_{3}!C_{3}!Z_{2}!H_{2}!0 ; \tag{3.4}\\
0!Z_{2}!C_{2}!C_{1}!C_{0}!Q!0: \tag{3.5}
\end{gather*}
$$

We shall let $\mathrm{e}^{j} \mathrm{~N}=E x \mathrm{t}_{\mathbb{Q}[}^{\mathrm{i}}(\mathrm{N} ; \mathbb{Q}[])$, to simplify the notation in what follows. The UCSS gives isomorphisms $H^{1}=e^{1} Q$ and $e^{1} H_{2}=e^{2} H_{3}=0$ and another exact sequence:

$$
\begin{equation*}
0!e^{2} Q!H^{2}!e^{0} H_{2}!0: \tag{3.6}
\end{equation*}
$$

Applying Schanuel's Lemma to the sequences 3.1, 3.2 and 3.5 we obtain Z_{2} $\mathrm{C}_{1} \mathbb{Q}[] \quad \mathrm{P}=\mathrm{C}_{2} \mathrm{C}_{0} \mathbb{Q}[]^{\mathrm{g}}$, so Z_{2} is a nitely generated projective module. Similarly, Z_{3} is projective, since $\mathbb{Q}[$] has global dimension at most 2. Since
is nitely presentable it is accessible, and hence $e^{1} \mathrm{Q}$ is nitely generated as a $\mathbb{Q}\left[\right.$]-module, by Theorems IV.7.5 and VI.6.3 of [DD]. Therefore Z_{3} is also nitely generated, since it is an extension of $\mathrm{H}_{3}=\overline{\mathrm{e}^{\mathrm{D}} \mathrm{Q}}$ by C_{4}. Dualizing the sequence 3.4 and using the fact that $\mathrm{e}^{1} \mathrm{H}_{2}=0$ we obtain an exact sequence of right modules

$$
\begin{equation*}
0!e^{0} H_{2}!e^{0} Z_{2}!e^{0} C_{3}!e^{0} Z_{3}!e^{2} H_{2}!0: \tag{3.7}
\end{equation*}
$$

Since duals of nitely generated projective modules are projective it follows that $e^{0} H_{2}$ is projective. Hence the sequence 3.6 gives $H^{2}=e^{0} H_{2} \quad e^{2} Q$.

Dualizing the sequences 3.1 and 3.2 , we obtain exact sequences of right modules

$$
\begin{array}{cc}
& 0!\mathbb{Q}[]!e^{0} A_{Q}()! \\
0! & e^{1} Q!\quad 0 \tag{3.9}\\
0 & e^{0} A_{Q}()!\mathbb{Q}[]^{9}!e^{0} P!e^{2} Q!\quad 0
\end{array}
$$

Geometry \& Topology M onographs, Volume 5 (2002)

Applying Schanuel's Lemma twice more, to the pairs of sequences 3.3 and the conjugate of 3.8 (using $\mathrm{H}_{3}=\overline{\mathrm{e}^{1} \mathrm{Q}}$) and to 3.4 and the conjugate of 3.9 (using $\left.\mathrm{H}_{2}=\overline{\mathrm{e}^{0} \mathrm{H}_{2}} \quad \overline{\mathrm{e}^{2} \mathrm{Q}}\right)$ and putting all together, we obtain isomorphisms

$$
\mathrm{Z}_{3} \quad\left(\mathbb{Q}[]^{2 g} \quad \mathrm{C}_{0} \quad \mathrm{C}_{2} \quad \mathrm{C}_{4}\right)=\mathrm{Z}_{3} \quad\left(\mathbb { Q } \left[\begin{array}{llllll}
]^{2} & \mathrm{P} & \overline{\mathrm{e}^{0} \mathrm{P}} & \mathrm{C}_{1} & \mathrm{C}_{3} & \left.\overline{\mathrm{e}^{0} \mathrm{H}_{2}}\right):
\end{array}\right.\right.
$$

On tensoring with the augmentation module we nd that

$$
\operatorname{dim}_{\mathbb{Q}}\left(\mathbb{Q} \otimes \overline{\mathrm{e}^{0} \mathrm{H}_{2}}\right)+\operatorname{dim}_{\mathbb{Q}}(\mathbb{Q} \otimes P)+\operatorname{dim}_{\mathbb{Q}}\left(\mathbb{Q} \otimes \overline{\mathrm{e}^{0} \mathrm{P}}\right)=(M)+2 g-2:
$$

Now

$$
\operatorname{dim}_{\mathbb{Q}}(\mathbb{Q} \otimes P)=\operatorname{dim}_{\mathbb{Q}}\left(\mathbb{Q} \otimes \overline{\mathrm{e}^{0} \mathrm{P}}\right)=g+2(; \mathbb{Q})-1(; \mathbb{Q}) ;
$$

so $\operatorname{dim}_{\mathbb{Q}}\left(\mathbb{Q} \otimes \overline{\mathrm{e}^{0} \mathrm{H}_{2}}\right)=(\mathrm{M})-2()=0$. Hence $\mathrm{e}^{0} \mathrm{H}_{2}=0$, since satis esthe Weak Bass Conjecture [Ec86]. As $\left.\mathrm{Hom}_{\mathbb{Z}[}\right]\left(\mathrm{H}_{2}(\mathbb{N} ; \mathbb{Z}) ; \mathbb{Z}[]\right) \quad e^{0} \mathrm{H}_{2}$ it follows from Lemma 3.3 that $\quad 2(M)=H_{2}(\mathbb{G} ; \mathbb{Z})=\overline{H^{2}(; \mathbb{Z}[])}$.
If c:d: 2 then $e^{1} Z$ has a short nite projective resolution, and hence so does Z_{3} (via sequence 3.2). The argument can then be modi ed to work over $\mathbb{Z}[]$. As Z_{1} is then projective, the integral chain complex of \mathbb{f} is the direct sum of a projective resolution of Z with a projective resolution of $\quad 2(M)$ with degree shifted by 2.

There are many natural examples of such manifolds for which c:d: $\mathbb{Q} \quad 2$ and $(\mathrm{M})=2$ () but is not torsion free (Se Chapters 10 and 11.) However all the known examples satisfy v:c:d: 2.

Similar arguments may be used to prove the following variations.
Addendum Suppose that c:d:s 2 for some subring $S \mathbb{Q}$. Then $q()$ $2\left(1-{ }_{1}(; S)+2(; S)\right)$. If moreover the augmentation $S[]$-module S has $\frac{a}{H^{2}(\cdot S[~ n i t e l y}$ generated free resolution then $S \otimes 2(M)$ is stably isomorphic to $\mathrm{H}^{2}(; \mathrm{S}[\mathrm{J})$.

Corollary 3.12.1 If $\mathrm{H}_{2}(; \mathbb{Q}) \in 0$ the Hurewicz homomorphism from $\quad 2(M)$ to $\mathrm{H}_{2}(\mathrm{M} ; \mathbb{Q})$ is nonzero.

Proof By the addendum to the theorem, $\mathrm{H}_{2}(\mathrm{M} ; \mathbb{Q})$ has dimension at least 22() , and so cannot be isomorphic to $\mathrm{H}_{2}(; \mathbb{Q})$ unless both are 0 .

Corollary 3.12.2 If $={ }_{1}(P)$ where P is an aspherical nite 2-complex then $q()=2(P)$. The minimum is realized by an s-parallelizable PL 4-manifold.

Proof If we choose a PL embedding j: P! \mathbb{R}^{5}, the boundary of a regular neighbourhood N of $j(P)$ is an s-parallelizable PL 4-manifold with fundamental group and with Euler characteristic $2(\mathrm{P})$.

By Theorem 2.8 a nitely presentable group is the fundamental group of an aspherical nite 2-complex if and only if it has cohomological dimension 2 and is e cient, i.e has a presentation of de ciency $1(; \mathbb{Q})-2(; \mathbb{Q})$. It is not known whether every nitely presentable group of cohomological dimension 2 is e cient.

In Chapter 5 we shall see that if P is an aspherical closed surface and M is a closed 4-manifold with ${ }_{1}(M)=$ then $(M)=q()$ if and only if M is homotopy equivalent to the total space of an S^{2}-bundle over P. The homotopy types of such minimal 4-manifolds for may be distinguished by their StiefeWhitney classes. Note that if is orientable then $S^{2} \quad \mathrm{P}$ is a minimal 4 manifold for which is both s-parallelizable and also a projective algebraic complex surface. Note also that the conjugation of the module structure in the theorem involves the orientation character of M which may di er from that of the PD_{2}-group .

Corollary 3.12.3 If is the group of an unsplittable -component 1-link then $q()=0$.

If is the group of a -component n-link with $n \quad 2$ then $\mathrm{H}_{2}(; \mathbb{Q})=0$ and so $q($) 2(1-), with equality if and only if is the group of a 2 -link. (Se Chapter 14.)

Corollary 3.12.4 If is an extension of Z by a nitely generated free normal subgroup then q()$=0$.

In Chapter 4 we shall see that if M is a closed 4-manifold with ${ }_{1}(M)$ such an extension then (M) $=q()$ if and only if M is homotopy equivalent to a manifold which bres over S^{1} with bre a closed 3-manifold with free fundamental group, and then and $w_{1}(M)$ determine the homotopy type.
Finite generation of the normal subgroup is essential; $F(2)$ is an extension of Z by $F(1)$, and $q(F(2))=2(F(2))=-2$.
Let be the fundamental group of a closed orientable 3-manifold. Then = F where F is free of rank r and has no in nitecydic freefactors. Moreover $={ }_{1}(N)$ for some closed orientable 3-manifold N. If M_{0} is the closed 4manifold obtained by surgery on fng S^{1} in $N \quad S^{1}$ then $\left.M=M_{0}\right](]^{r}\left(S^{1} S^{3}\right)$
is a smooth s-parallelisable 4-manifold with $\quad 1(M)=$ and $(M)=2(1-r)$. Hence $q^{S G}()=2(1-r)$, by Lemma 3.11.
The arguments of Theorem 3.12 give stronger results in this case also.
Theorem 3.13 Let M bea nite PD_{4}-complex whose fundamental group is a $P D_{3}$-group such that $w_{1}()=w_{1}(M)$. Then $(M)>0$ and $2(M)$ is stably isomorphic to the augmentation ideal $A()$ of $\mathbb{Z}[]$.

Proof The cellular chain complex for the universal covering space of M gives exact sequences

$$
\begin{align*}
& \text { 0! } \mathrm{C}_{4} \text { ! } \mathrm{C}_{3} \text { ! } \mathrm{Z}_{2} \text { ! } \mathrm{H}_{2} \text { ! } 0 \tag{3.10}\\
& \text { and } \\
& 0!Z_{2} \text { ! } C_{2} \text { ! } C_{1} \text { ! } C_{0} \text { ! Z! } 0 \text { : } \tag{3.11}
\end{align*}
$$

Since is a PD_{3}-group the augmentation module Z has a nite projective resolution of length 3 . On comparing sequence 3.11 with such a resolution and applying Schanue's lemma we nd that Z_{2} is a nitely generated projective $\mathbb{Z}[$]-module. Since has one end, the UCSS reduces to an exact sequence

$$
\begin{equation*}
0!H^{2}!e^{0} H_{2}!e^{3} Z!H^{3}!e^{1} H_{2}!0 \tag{3.12}
\end{equation*}
$$

and isomorphisms $\mathrm{H}^{4}=e^{2} \mathrm{H}_{2}$ and $e^{3} \mathrm{H}_{2}=e^{4} \mathrm{H}_{2}=0$: Poincare duality implies that $\mathrm{H}^{3}=0$ and $\mathrm{H}^{4}=\overline{\mathrm{Z}}$. Hence sequence 3.12 reduces to

$$
\begin{equation*}
0!H^{2}!e^{0} H_{2}!e^{3} Z!0 \tag{3.13}
\end{equation*}
$$

and $\mathrm{e}^{1} \mathrm{H}_{2}=0$. Hence on dualizing the sequence 3.10 we get an exact sequence of right modules

$$
\begin{equation*}
0!e^{0} H_{2}!e^{0} Z_{2}!e^{0} C_{3}!e^{0} C_{4}!e^{2} H_{2}!0 \text { : } \tag{3.14}
\end{equation*}
$$

Schanue's lemma again implies that $e^{0} \mathrm{H}_{2}$ is a nitely generated projective module Therefore we may splice together 3.10 and the conjugate of 3.13 to get

$$
\begin{equation*}
0!C_{4}!C_{3}!Z_{2}!\overline{e^{0} H_{2}}!Z!0: \tag{3.15}
\end{equation*}
$$

(Note that we have used the hypothesis on $w_{1}(M)$ here) Applying Schanuel's lemma once more to the pair of sequences 3.11 and 3.15 we obtain

$$
\begin{array}{lllllll}
\mathrm{C}_{0} & \mathrm{C}_{2} & \mathrm{C}_{4} & \mathrm{Z}_{2}=\overline{\mathrm{e}^{0} \mathrm{H}_{2}} & \mathrm{C}_{1} & \mathrm{C}_{3} & \mathrm{Z}_{2}:
\end{array}
$$

Hence $\overline{e^{0} H_{2}}$ is stably fre, of rank (M). Since sequence 3.15 is exact $\overline{e^{0} H_{2}}$ maps onto Z, and so $(M)>0$. Since is a P^{2}-group, $e^{3} Z=\bar{Z}$ and so the nal assertion follows from sequence 3.13 and Schanuel's Lemma.

Corollary 3.13.1 1 q() 2 .

Proof If M is a nite P_{4}-complex with ${ }_{1}(M)=$ then the covering space associated to the kernel of $w_{1}(M)-w_{1}()$ satis es the condition on w_{1}. Since the condition $(M)>0$ is invariant under passage to nite covers, $q() 1$.

Let N be a PD_{3}-complex with fundamental group. We may suppose that $N=N_{o}\left[D^{3}\right.$, where $N_{o} \backslash D^{3}=S^{2}$. Let $M=N_{o} S^{1}\left[S^{2} D^{2}\right.$. Then M is a nite $P D_{4}$-complex, $(M)=2$ and ${ }_{1}(M)=$. Hence $q() 2$.

Can Theorem 3.13 be extended to all torsion free 3-manifold groups, or more generally to all fre products of PD_{3}-groups?

A simpleapplication of Schanue's Lemma to C (M) shows that if M is a nite PD_{4}-complex with fundamental group such that c:d: 4 and e() $=1$ then ${ }_{2}(\mathrm{M})$ has projective dimension at most 2. If moreover is an FF PD 4 -group and C_{M} has degree 1 then $2(M)$ is stably free of rank $(M)-()$, by the argument of Lemma 3.1 and Theorem 3.2.

There has been some related work estimating the di erence $(M)-j(M) j$ where M is a closed orientable 4-manifold M with ${ }_{1}(M)=$ and where
(M) is the signature of M. In particular, this di erence is always 0 if
${ }_{1}^{(2)}()=0$. (See [J K93] and $x 3$ of Chapter 7 of [Lü].) The minimum value of this di erence $(p()=\operatorname{minf}(M)-j(M) j g)$ is another numerical invariant of , which is studied in [K 094].

3.4 Euler Characteristic 0

In this section we shall consider the interaction of the fundamental group and Euler characteristic from another point of view. Weshall assumethat $(M)=0$ and show that if is an ascending HNN extension then it satis es some very stringent conditions. The groups Z m shall play an important role. We shall approach our main result via several lemmas.

We begin with a simple observation relating Euler characteristic and fundamental group which shall be invoked in several of the later chapters. Recall that if G is a group then $I(G)$ is the minimal normal subgroup such that $G \neq(G)$ is free abdian.

Lemma 3.14 Let M be a PD_{4}-complex with (M) 0 . If M is orientable then $H^{1}(M ; \mathbb{Z}) \in 0$ and so $={ }_{1}(M)$ maps onto Z. If $H^{1}(M ; \mathbb{Z})=0$ then maps onto D.

Proof The covering space M_{W} corresponding to $W=\operatorname{Ker}\left(W_{1}(M)\right)$ is orientable and $\left(M_{W}\right)=2-2{ }_{1}\left(M_{W}\right)+{ }_{2}\left(M_{W}\right)=[: W](M) \quad 0$. Therefore ${ }_{1}(W)={ }_{1}\left(M_{W}\right)>0$ and so $W \neq(W)=Z^{r}$ for some $r>0$. Since $I(W)$ is characteristic in W it is normal in . As [:W] 2 it follows easily that $=(\mathrm{W})$ maps onto Z or D.

Note that if $\left.M=R P^{4}\right] R P^{4}$, then $(M)=0$ and $\quad{ }_{1}(M)=D$, but $\quad{ }_{1}(M)$ does not map onto Z.

Lemma 3.15 Let M bea $P D_{4}^{+}$-complex such that $(M)=0$ and $={ }_{1}(M)$ is an extension of $Z \mathrm{~m}$ by a nite normal subgroup F, for some $m \in 0$. Then the abelian subgroups of F are cyclic. If $F \in 1$ then has a subgroup of nite index which is a central extension of Z_{n} by a nontrivial nite cyclic group, where n is a power of m .

Proof Let M be the in nite cyclic covering space corresponding to the subgroup $I()$. Since M is compact and $=\mathbb{Z}[Z]$ is noetherian the groups $H_{i}(M ; \mathbb{Z})=H_{i}(M ;)$ are nitely generated as -modules. Since M is orientable, $(M)=0$ and $H_{1}(M ; \mathbb{Z})$ has rank 1 they are -torsion modules, by the Wang sequence for the projection of \mathbb{M} onto M. Now $\mathrm{H}_{2}(\mathbb{M} ; \mathbb{Z})=$ $\overline{E x t}{ }^{1}(\mathrm{I}() \neq()$) $)$, by Poincare duality. There is an exact sequence

$$
0!\mathrm{T}!\mathrm{I}\left(\mathrm{)} \neq()^{0}!\mathrm{I}(\mathrm{Z} \mathrm{~m})=\neq \mathrm{t}-\mathrm{m}\right)!\quad 0 \text {; }
$$

where T is a nite -module. Therefore $\left.E x t^{1}\left(I() \neq()^{0} ;\right)=\neq t-m\right)$ and so $\mathrm{H}_{2}(\mathrm{I}() ; \mathbb{Z})$ is a quotient of $\left.\neq \mathrm{mt}-1\right)$, which is isomorphic to $\mathrm{Z}\left[\frac{1}{m}\right]$ as an abelian group. Now $I()=\operatorname{Ker}(f)=Z\left[\frac{1}{m}\right]$ also, and $H_{2}\left(Z\left[\frac{1}{m}\right] ; \mathbb{Z}\right)=$ $Z\left[\frac{1}{m}\right] \wedge Z\left[\frac{1}{m}\right]=0$ (see page 334 of $[R o]$). Hence $H_{2}(I() ; \mathbb{Z})$ is nite, by an LHSSS argument, and so is cyclic, of order relatively prime to m .
Let t in generate $\neq()=Z$. Let A be a maximal abelian subgroup of F and let $C=C(A)$. Then $q=[: C]$ is nite, since F is nite and normal in . In particular, t^{t} is in C and C maps onto Z , with kerne J , say. Since J is an extension of $Z\left[\frac{1}{m}\right]$ by a nite normal subgroup its centre J has nite index in J. Therefore the subgroup G generated by J and t^{q} has nite index in , and there is an epimorphism from G onto $Z \mathrm{~m}^{q}$, with kernel A. Moreover $I(G)=f^{-1}\left(I\left(\mathrm{Z}_{\mathrm{m}}\right)\right)$ is abelian, and is an extension of $Z\left[\frac{1}{m}\right]$ by the nite abelian group A. Hence it is isomorphic to $A \quad Z\left[\frac{1}{\mathrm{~m}}\right]$ (see page 106 of $[R o])$. Now $\mathrm{H}_{2}(I(G) ; \mathbb{Z})$ is cyclic of order prime to m. On the other hand $\mathrm{H}_{2}(\mathrm{I}(\mathrm{G}) ; \mathbb{Z})=\left(\mathrm{A}^{\wedge} \mathrm{A}\right) \quad\left(\mathrm{A} \otimes \mathrm{Z}\left[\frac{1}{m}\right]\right)$ and so A must be cydic.
If $F \in 1$ then A is cyclic, nontrivial, central in G and $G \neq A=Z$ m.

Lemma 3.16 Let M be a nite PD_{4}-complex with fundamental group. Suppose that has a nontrivial nite cydic central subgroup F with quotient $\mathrm{G}=\mp$ such that $\mathrm{g}: \mathrm{d}: \mathrm{G}=2, \mathrm{e}(\mathrm{G})=1$ and $\operatorname{def}(\mathrm{G})=1$. Then (M) 0 . If $(M)=0$ and $\mathbb{F}_{\mathrm{p}}[G]$ is a weakly nite ring for some prime p dividing jFj then is virtually Z^{2}.

Proof Let M be the covering space of M with group F, and let $=\mathbb{F}_{p}[G]$. Le $C=C(M ;)=\mathbb{F}_{p} \otimes C(M)$ be the equivariant cellular chain complex of M with coe cients \mathbb{F}_{p}, and let c_{q} be the number of q-cells of M, for q 0 . Let $H_{p}=H_{p}(M ;)=H_{p}\left(\mathbb{M} ; \mathbb{F}_{p}\right)$. For any left -module H let $e^{\mathrm{q}} \mathrm{H}=E \mathrm{Et}^{\mathrm{q}}(\mathrm{H}$;).

Suppose rst that M is orientable. Since M is a connected open 4-manifold $H_{0}=\mathbb{F}_{p}$ and $H_{4}=0$, while $H_{1}=\mathbb{F}_{p}$ also. Since G has one end Poincare duality and the UCSS give $\mathrm{H}_{3}=0$ and $\mathrm{e}^{2} \mathrm{H}_{2}=\mathbb{F}_{\mathrm{p}}$, and an exact sequence

$$
0!e^{2} \mathbb{F}_{p}!\overline{H_{2}}!e^{0} H_{2}!e^{2} H_{1}!\overline{H_{1}}!e^{1} H_{2}!0:
$$

In particular, $\mathrm{e}^{1} \mathrm{H}_{2}=\mathbb{F}_{\mathrm{p}}$ or is 0 . Since g:d:G $=2$ and $\operatorname{def}(\mathrm{G})=1$ the augmentation module has a resolution

$$
0!\quad r!r+1!\quad!\mathbb{F}_{p}!0
$$

The chain complex C gives four exact sequences

$$
\begin{aligned}
& 0!Z_{1}!C_{1}!C_{0}!\mathbb{F}_{p}!0 ; \\
& 0!Z_{2}!C_{2}!Z_{1}!\mathbb{F}_{p}!0_{;} \\
& 0!B_{2}!Z_{2}!H_{2}!0 \\
& \text { and } \quad 0!C_{4}!C_{3}!B_{2}!0 \text { : }
\end{aligned}
$$

Using Schanue's Lemma several times we nd that the cycle submodules Z_{1} and Z_{2} are stably fre, of stable ranks $c_{1}-c_{0}$ and $c_{2}-c_{1}+c_{0}$, respectively. Dualizing the last two sequences gives two new sequences

$$
\begin{gathered}
0!e^{0} B_{2}!e^{0} C_{3}!e^{0} C_{4}!e^{1} B_{2}!0 \\
0! \\
0!e^{0} H_{2}!e^{0} Z_{2}!e^{0} B_{2}!e^{1} H_{2}!0^{2}
\end{gathered}
$$

and an isomorphism $e^{1} B_{2}=e^{2} H_{2}=\mathbb{F}_{p}$. Further applications of Schanuel's Lemma show that $e^{0} B_{2}$ is stably fre of rank $C_{3}-c_{4}$, and hence that $e^{0} H_{2}$ is stably free of rank $c_{2}-c_{1}+c_{0}-\left(c_{3}-c_{4}\right)=(M)$. (Note that we do not need to know whether $e^{1} H_{2}=\mathbb{F}_{p}$ or is 0 , at this point.) Since maps onto the edd \mathbb{F}_{p} the rank must be non-negative, and so (M) 0 .

If $(M)=0$ and $=\mathbb{F}_{p}[G]$ is a weakly nite ring then $e^{0} H_{2}=0$ and so $e^{2} \mathbb{F}_{p}=e^{2} H_{1}$ is a submodule of $\mathbb{F}_{p}=\overline{\mathrm{H}_{1}}$. M oreover it cannot be 0 , for otherwise the UCSS would give $\mathrm{H}_{2}=0$ and then $\mathrm{H}_{1}=0$, which is impossible. Therefore $\mathrm{e}^{2} \mathbb{F}_{p}=\mathbb{F}_{\mathrm{p}}$.
If M is nonorientable and $p>2$ the above argument applies to the orientation cover, since p divides $\mathrm{jKer}\left(\mathrm{w}_{1}(\mathrm{M}) \mathrm{j}_{\mathrm{F}}\right) \mathrm{j}$, and Euler characteristic is multiplicative in nite covers. If $p=2$ a similar argument applies directly without assuming that M is orientable.

Since G is torsion free and indicable it must be a $P D_{2}$-group, by Theorem V.12.2 of [DD]. Since $\operatorname{def}(G)=1$ it follows that G is virtually Z^{2}, and hence that is also virtually Z^{2}.

We may now give the main result of this section.
Theorem 3.17 Let M be a nite P_{4}-complex whose fundamental group is an ascending HNN extension with nitely generated base B. Then (M) 0 , and hence $q() \quad 0$. If $(M)=0$ and B is $F P_{2}$ and nitely ended then either has two ends or has a subgroup of nite index which is isomorphic to Z^{2} or $=Z \mathrm{~m}$ or $\mathrm{Z} \mathrm{m} \sim(Z=2 Z)$ for some $\mathrm{m} G 0$ or 1 or M is aspherical.

Proof The L^{2} Euler characteristic formula gives $(M)={ }_{2}^{(2)}(M) \quad 0$, since ${ }_{i}^{(2)}(\mathrm{M})={ }_{\mathrm{i}}{ }^{(2)}(\quad)=0$ for $\mathrm{i}=0$ or 1 , by Lemma 2.1.

Let : B ! B be the monomorphism determining $=\mathrm{B}$. If B is nite then is an automorphism and so has two ends. If B is $F P_{2}$ and has one end then $\mathrm{H}^{\mathrm{s}}(; \mathbb{Z}[])=0$ for $\mathrm{s} \quad 2$, by the Brown-Geoghegan Theorem. If moreover $(\mathrm{M})=0$ then M is aspherical, by Corollary 3.5.1.

If B has two ends then it is an extension of Z or D by a nite normal subgroup F. As must map F isomorphically to itself, F is normal in , and is the maximal nite normal subgroup of . Moreover $F=Z \mathrm{~m}$, for some $\mathrm{m} \in 0$, if $B \mp=Z$, and is a semidirect product $Z \quad m \sim(Z=2 Z)$, with a presentation ha; $\mathrm{t} ; \mathrm{u}$ j tat ${ }^{-1}=a^{\mathrm{m}}$; tut ${ }^{-1}=u a^{r} ; u^{2}=1$; uau $=a^{-1} \mathrm{i}$, for some $m \in 0$ and some $r 2 Z$, if $B=F=D$. (On replacing t by $a^{[r=2]} t$, if necessary, we may assume that $r=0$ or 1.)

Suppose rst that M is orientable, and that $F \in 1$. Then has a subgroup of nite index which is a central extension of $Z \mathrm{ma}$ by a nite cydic group, for some q 1, by Lemma 3.15. Let p be a prime dividing q. Since $Z \mathrm{~m}^{\mathrm{a}}$ is a torsion free solvable group the ring $=\mathbb{F}_{\mathrm{p}}\left[Z \mathrm{~m}^{q}\right]$ has a skew eld of fractions

L , which as a right -module is the direct limit of the system f 0 j 0 g , where each $=$, the index set is ordered by right divisibility () and the map from to sends to [KLM88]. In particular, is a weakly nite ring and so is torsion free, by Lemma 3.16. Therefore $F=1$.
If M is nonorientable then $W_{1}(M) j_{F}$ must be injective, and so another application of Lemma 3.16 (with $p=2$) shows again that $F=1$.

Is M still aspherical if B is assumed only nitely generated and one ended?
Corollary 3.17.1 Let M be a nite $P D_{4}$-complex such that $(M)=0$ and $={ }_{1}(M)$ is almost coherent and restrained. Then either has two ends or is virtually Z^{2} or $=Z \mathrm{~m}$ or $\mathrm{Z} \underset{\mathrm{m}}{\sim}(Z=2 Z)$ for some $m \in 0$ or 1 or M is aspherical.

Proof Let ${ }^{+}=\operatorname{Ker}\left(\mathrm{w}_{1}(\mathrm{M})\right)$. Then ${ }^{+}$maps onto Z , by Lemma 3.14, and so is an ascending HNN extension ${ }^{+}=\mathrm{B}$ with nitely generated base B . Since is almost coherent B is $F P_{2}$, and since has no nonabelian free subgroup B has at most two ends. Hence Lemma 3.16 and Theorem 3.17 apply, so either has two ends or M is aspherifal or ${ }^{+}=Z \mathrm{~m}$ or $Z \mathrm{~m} \sim(Z=2 Z)$ for some $\mathrm{m} \in 0$ or 1 . In the latter case - is isomorphic to a subgroup of the additive rationals Q, and ${ }^{P}=C\left({ }^{-}\right)$. Hence the image of in Aut $\left({ }^{(}{ }^{-}\right) Q$ is in nite. Therefore maps onto Z and so is an ascending HNN extension B and we may again use Theorem 3.17.

Does this corollary remain true without the hypothesis that be almost coherent?

There are nine groups which are virtually Z^{2} and are fundamental groups of PD_{4}-complexes with Euler characteristic 0 . (See Chapter 11.) Are any of the semidirect products $Z \mathrm{~m} \sim(Z=2 Z)$ realized by P^{2}-complexes with $=0$? If is restrained and M is aspherical must be virtually poly-Z? (Aspherical 4-manifolds with virtually poly-Z fundamental groups are characterized in Chapter 8.)
Let G is a group with a presentation of de ciency d and $w: G!f 1 g$ be a homomorphism, and let $h x_{i} ; 1$ i $m j r_{j} ; 1 \quad j \quad$ ni be a presentation for G with $\mathrm{m}-\mathrm{n}=\mathrm{d}$. We may assume that $\mathrm{w}\left(\mathrm{x}_{\mathrm{i}}\right)=+1$ for $\mathrm{i} \mathrm{m}-1$. Let $X=\backslash^{m}\left(S^{1} \quad D^{3}\right)$ if $w=1$ and $X=\left(\backslash^{m-1}\left(S^{1} \quad D^{3}\right)\right) \backslash\left(S^{1} \sim D^{3}\right)$ otherwise. The relators r_{j} may be represented by disjoint orientation preserving embeddings of S^{1} in @X, and so we may attach 2-handles along product neighbourhoods,
to get a bounded 4-manifold Y with ${ }_{1}(Y)=G, w_{1}(Y)=w$ and $(Y)=$ $1-d$. Doubling Y gives a closed 4-manifold M with $(M)=2(1-d)$ and (${ }_{1}(M) ; w_{1}(M)$) isomorphic to ($G ; w$).

Since the groups Z_{m} have de ciency 1 it follows that any homomorphism $\mathrm{w}: \mathrm{Zm}$! f 1 g may be realized as the orientation character of a closed 4 manifold with fundamental group Z m and Euler characteristic 0 . What other invariants are needed to determine the homotopy type of such a manifold?

Chapter 4

Mapping tori and circle bundles

Stallings showed that if M is a 3-manifold and $f: M$! S^{1} a map which induces an epimorphism $f:{ }_{1}(M)$! Z with in nite kerne K then f is homotopic to a bundle projection if and only if M is irreducible and K is nitely generated. Farrell gave an analogous characterization in dimensions
6 , with the hypotheses that the homotopy bre of f is nitely dominated and a torsion invariant (f) $2 \mathrm{~Wh}\left({ }_{1}(\mathrm{M})\right.$) is 0 . The corresponding results in dimensions 4 and 5 are constrained by the present limitations of geometric topology in these dimensions. (In fact there are counter-examples to the most natural 4-dimensional anal ogue of Farrell's theorem [We87].)

Quinn showed that the total space of a bration with nitely dominated base and bre is a Poincare duality complex if and only if both the base and bre are Poincare duality complexes. (See [Go79] for a very elegant proof of this result.) The main result of this chapter is a 4-dimensional homotopy bration theorem with hypotheses similar to those of Stallings and a conclusion similar to that of Quinn and Gottlieb.

The mapping torus of a self homotopy equivalence f : $X!X$ is the space $M(f)=X \quad[0 ; 1]=$, where $(x ; 0) \quad(f(x) ; 1)$ for all $x 2 X$. If X is nitely dominated then ${ }_{1}(M(f))$ is an extension of Z by a nitely presentable normal subgroup and $(M(f))=(X)\left(S^{1}\right)=0$. We shall show that a nite $P D_{4-}$ complex M is homotopy equivalent to such a mapping torus, with X a $P \mathrm{D}_{3}-$ complex, if and only if ${ }_{1}(M)$ is such an extension and $(M)=0$.

In the nal section we consider instead bundles with bre S^{1}. We give conditions for a 4-manifold to be homotopy equivalent to the total space of an S^{1}-bundle over a PD_{3}-complex, and show that these conditions are su cient if the fundamental group of the PD_{3}-complex is torsion free but not free

4.1 Some necessary conditions

Let E be a connected cell complex and let f:E! S^{1} be a map which induces an epimorphism f : ${ }_{1}(E)$! Z, with kernel . The associated covering space with group is $E=E \quad s^{1} R=f(x ; y) 2 E \quad R j f(x)=e^{2}{ }^{\text {iy }} g$, and
$E^{\prime} M()$, where : $E \quad E$ is the generator of the covering group given by $(x ; y)=(x ; y+1)$ for all $(x ; y)$ in E. If E is a $P D_{4}$-complex and E is nitely dominated then E is a PD_{3}-complex, by Quinn's result. In particular, is $F P_{2}$ and $(E)=0$. The latter conditions characterize aspherical mapping tori, by the following theorem.

Theorem 4.1 Let M be a nite PD_{4}-complex whose fundamental group is an extension of Z by a nitely generated normal subgroup , and let M be the in nite cyclic covering space corresponding to the subgroup . Then
(1) (M) 0 , with equality if and only if $\mathrm{H}_{2}(\mathrm{M} ; \mathbb{Q})$ is nitely generated;
(2) if $(M)=0$ then M is aspherical if and only if is in nite and $\mathrm{H}^{2}(; \mathbb{Z}[])=0$;
(3) M is an aspherical $P D_{3}$-complex if and only if $(M)=0$ and is almost nitely presentable and has one end.

Proof Since M is a nite complex and $\mathbb{Q}=\mathbb{Q}\left[t ; \mathrm{t}^{-1}\right]$ is noetherian the homology groups $\mathrm{H}_{\mathrm{q}}(\mathrm{M} ; \mathbb{Q})$ are nitely generated as \mathbb{Q}-modules. Since is nitely generated they are nite dimensional as \mathbb{Q}-vector spaces if $q<2$, and hence also if $q>2$, by Poincare duality. Now $\mathrm{H}_{2}(\mathrm{M} ; \mathbb{Q})=\mathbb{Q}^{r} \quad(\mathbb{Q})^{\mathrm{s}}$ for some r;s 0, by the Structure Theorem for modules over a PID. It follows easily from the Wang sequence for the covering projection from M to M, that $(M)=s \quad 0$.

Since is nitely generated ${ }_{1}^{(2)}()=0$, by Lemma 2.1. If M is aspherical then clearly is in nite and $\mathrm{H}^{2}(; \mathbb{Z}[])=0$. Conversely, if these conditions hold then $\mathrm{H}^{\mathrm{s}}(; \mathbb{Z}[])=0$ for $\mathrm{s} \quad 2$. Hence if moreover $(\mathrm{M})=0$ then M is aspherical, by Corollary 3.5.2.
If is FP_{2} and has one end then $\mathrm{H}^{2}(; \mathbb{Z}[])=\mathrm{H}^{1}(; \mathbb{Z}[])=0$, by the LHSSS. As M is aspherical is a PD_{3}-group, by Theorem 1.20, and therefore is nitely presentable, by Theorem 1.1 of [KK 99]. Hence M, $K(; 1)$ is nitely dominated and so is a PD_{3}-complex [Br 72].

In particular, if $(M)=0$ then $q()=0$. This observation and the bound (M) 0 were given in Theorem 3.17. (They also follow on counting bases for the cellular chain complex of M and extending coe cients to $\mathbb{Q}(\mathrm{t})$.)

Let F be the orientable surface of genus 2. Then $\mathrm{M}=\mathrm{F} \quad \mathrm{F}$ is an aspherical closed 4-manifold, and $=G \quad G$ where $G={ }_{1}(F)$ has a presentation $\mathfrak{h a}_{1} ; a_{2} ; b_{1} ; b_{2} j\left[a_{1} ; b_{1}\right]=\left[a_{2} ; b_{2}\right]$. The subgroup generated by the images
of ($a_{1} ; a_{1}$) and the six elements $(x ; 1)$ and $(1 ; x)$, for $x=a_{2}, b_{1}$ or b_{2}, is normal in and $==Z$. However cannot be $F P_{2}$ since ()$=4 \xi 0$. Is there an aspherical 4-manifold M such that ${ }_{1}(M)$ is an extension of Z by a nitely generated subgroup which is not $F P_{2}$ and with $(M)=0$? (Note that $\mathrm{H}_{2}(; \mathbb{Q})$ must be nitely generated, so showing that is not nitely related may require some nesse)
If $H^{2}(; \mathbb{Z}[])=0$ then $H^{1}(; \mathbb{Z}[])=0$, by an LHSSS argument, and so must have oneend, if it is in nite Can the hypotheses of (2) above be replaced by $\backslash(M)=0$ and has one end"? It can be shown that the nitely generated subgroup N of $F(2) \quad F(2)$ de ned after Theorem 2.4 has one end. However $H^{2}(F(2) \quad F(2) ; \mathbb{Z}[F(2) \quad F(2)]) \in 0$. (Note that $q(F(2) \quad F(2))=2$, by Corollary 3.12.2.)

4.2 Change of rings and cup products

In the next two sections we shall adapt and extend work of Barge in setting up duality maps in the equivariant (co)homology of covering spaces.
Let be an extension of Z by a normal subgroup and x an element t of whose image generates $=$. Let : ! be the automorphism determined by $(\mathrm{h})=$ tht $^{-1}$ for all h in . This automorphism extends to a ring automorphism (also denoted by) of the group ring $\mathbb{Z}[]$, and the ring $\mathbb{Z}[]$ may then be viewed as a twisted Laurent extension, $\mathbb{Z}[]=\mathbb{Z}[]\left[t ; t^{-1}\right]$. Thequotient of $\mathbb{Z}[$] by the two-sided ideal generated by $\mathrm{fh}-1 \mathrm{jh} 2 \mathrm{~g}$ is isomorphic to , while as a left module over itself $\mathbb{Z}[]$ is isomorphic to $\mathbb{Z}[]=\mathbb{Z}[](t-1)$ and so may be viewed as a left $\mathbb{Z}[$]-module. (Note that is not a module automorphism unless t is central.)
If M is a left $\mathbb{Z}[$]-module let $M j$ denote the underlying $\mathbb{Z}[$]-module, and let $\hat{M}=\mathrm{Hom}_{\mathbb{Z}[}(\mathrm{Mj} ; \mathbb{Z}[])$. Then \hat{M} is a right $\mathbb{Z}[]$-module via
$(f)(m)=f(m)$ for all $2 \mathbb{Z}[] ; f 2 \hat{M}$ and $m 2 M$:
If $M=\mathbb{Z}[]$ then $]$ is also a left $\mathbb{Z}[]$-module via

$$
\left.\left(t^{r} f\right)\left(t^{s}\right)=-s() f\left(t^{s-r}\right) \text { for all } f 2 \text { e }\right] ; 2 \text { and } r \text {; s } 2 \mathrm{Z}:
$$

As the left and right actions commute $\mathbb{Z}[]$ is a ($\mathbb{Z}[] ; \mathbb{Z}[]$)-bimodule. We may describe this bimodule more explicitly. Let $\mathbb{Z}[]\left[\left[t ; t^{-1}\right]\right]$ be the set of doubly in nite power series $n 2 Z^{t^{n}} n$ with n in $\mathbb{Z}[]$ for all n in Z, with the obvious right $\mathbb{Z}[]$-module structure, and with the left $\mathbb{Z}[$]-module structure given by

$$
t^{r}\left(t^{n}{ }_{n}\right)=t^{n+r}-n-r()_{n} \text { for all } ; n 2 \mathbb{Z}[] \text { and } r 2 Z:
$$

(Note that even if $=1$ this module is not a ring in any natural way.) Then the homomorphism j : $\mathbb{Z}[]!\mathbb{Z}[]\left[\left[t ; t^{-1}\right]\right]$ given by $j(f)=t^{n} f\left(t^{n}\right)$ for all f in $\mathbb{Z}[]$ is a ($\mathbb{Z}[] ; \mathbb{Z}[])$-bimodule isomorphism. (Indeed, it is clearly an isomorphism of right $\mathbb{Z}[]$-modules, and we have de ned the left $\mathbb{Z}[]$-module structure on ${ }^{2}\left[\right.$ by pulling back the one on $\mathbb{Z}[]\left[\left[t ; t^{-1}\right]\right]$.)
For each f in \widehat{M} we may de ne a function $T_{M} f: M$! [] by the rule

$$
\left(T_{M} f\right)(m)\left(t^{n}\right)=f\left(t^{-n} m\right) \text { for all m } 2 M \text { and } n 2 Z:
$$

It is easily seen that $T_{M} f$ is $\mathbb{Z}[]$-linear, and that $T_{M}: \hat{M}!H$ om $\left.\mathbb{Z}_{[}\right](M$; ed $\left.]\right)$ is an isomorphism of abelian groups. (It is clearly a monomorphism, and if $g: M$! $\quad]$ is $\mathbb{Z}[]$-linear then $g=T_{M} f$ where $f(m)=g(m)(1)$ for all m in M. In fact if we give H om $\mathbb{Z}_{[]}(\mathrm{M}$; $\mathbb{Z}[])$ thenatural right $\mathbb{Z}[]$-modulestructure by $(\quad)(m)=(m)$ for all $2 \mathbb{Z}[], \mathbb{Z}[]$-homomorphisms : M ! $\mathbb{Z}[]$ and $m 2 \mathrm{M}$ then T_{M} is an isomorphism of right $\mathbb{Z}[$]-modules.) Thus we have a natural equivalence $\left.T: H \mathrm{H}_{\mathbb{Z}[}(-\mathrm{j} ; \mathbb{Z}[])\right) \mathrm{Hom}_{\mathbb{Z}[\mathrm{J}}(-$; $\mathbb{Z}[])$ of functors from $\mathbf{M o d}_{\mathbb{Z}[]}$ to $\mathbf{M o d}_{\mathbb{Z}[]}$. If C is a chain complex of left $\mathbb{Z}[]$-modules T induces natural isomorphisms from $\mathrm{H}(\mathrm{C} \mathrm{j} ; \mathbb{Z}[])=\mathrm{H}\left(\mathrm{Hom}_{\mathbb{Z}[}\right](\mathrm{C} \mathrm{j} ; \mathbb{Z}[])$ to $\left.\mathrm{H}(\mathrm{C} ; \mathrm{v})=\mathrm{H}\left(\mathrm{Hom}_{\mathbb{Z}[} \mathrm{J}(\mathrm{C} ; \mathrm{ed}]\right)\right)$. In particular, since the forgetful functor -j is exact and takes projectives to projectives there are isomorphisms from $E x t_{\mathbb{Z}[}(M j ; \mathbb{Z}[])$ to $\left.E x t_{\mathbb{Z}[}\right](M ; \mathbb{Z}[])$ which are functorial in M.
If M and N are left $\mathbb{Z}[$]-modules let $\mathrm{M} \otimes \mathrm{N}$ denote the tensor product over \mathbb{Z} with the diagonal left -action, de ned by $g(m \otimes n)=g m \otimes g n$ for all $\mathrm{m} 2 \mathrm{M}, \mathrm{n} 2 \mathrm{~N}$ and g2. The function $\mathrm{p}_{\mathrm{M}}: \otimes \mathrm{M}!\mathrm{M}$ de ned by $p_{M}(\otimes m)=(1) m$ is then a $\mathbb{Z}[]$-linear epimorphism.

We shall de ne products in cohomology by means of the $\mathbb{Z}[$]-linear homomorphism e: $\otimes \mathbb{Z}[]!\mathbb{Z}[]$ given by

$$
\left.e\left(t^{n} \otimes f\right)=t^{n} f\left(t^{n}\right) \text { for all } f 2 \text { d }\right] \text { and } n 2 Z:
$$

Let A bea -chain complex and B a $\mathbb{Z}[$]-chain complex and give the tensor product the total grading $\mathrm{A} \otimes \mathrm{B}$ and di erential and the diagonal -action. Let ej be the change of coe cients homomorphism induced by e, and let u 2 $H^{p}(A ;)$ and $\left.v 2 H^{q}(B ; \quad]\right)$. Then $u \otimes v \nabla e_{j}(u \quad v)$ de nes a pairing from $H^{p}(A ;) \otimes H^{q}(B ;$ d $]$) to $H^{p+q}(A \otimes B ; \mathbb{Z}[])$.
Now let A be the -chain complex concentrated in degrees 0 and 1 with A_{0} and A_{1} free of rank 1 , with bases $f a_{0} g$ and $f a_{1} g$, respectively, and with @ : A_{1} ! A_{0} given by @ $\left(a_{1}\right)=(t-1) a_{0}$. Let $A: A_{1}$! betheisomorphism
determined by $A\left(a_{1}\right)=1$ ，and let $A: A_{0}!\mathbb{Z}$ be the augmentation deter－ mined by $A\left(a_{0}\right)=1$ ．Then［ A］generates $H^{1}(A ;)$ ．Let B be a projective $\mathbb{Z}\left[\right.$ ］－chain complex and let $p_{B}: A \otimes B!B$ bethe chain homotopy equiv－ alence de ned by $p_{B j}\left(\left(a_{0}\right) \otimes g\right)=(1) b$ and $p_{B j}\left(\left(a_{1}\right) \otimes g_{-1}\right)=0$ ，for all
$2, b_{-1} 2 B_{j-1}$ and $b 2 B_{j}$ ．Let $j_{B}: B!A \otimes B$ bea chain homotopy inverse to p_{B} ．De ne a family of homomorphisms $h_{\mathbb{Z}[}$ from $\mathrm{H}^{q}(B$ ；del ］）to $H^{+1+}(B ; \mathbb{Z}[])$ by

$$
\mathrm{h}_{\mathbb{Z}[\mathrm{J}}\left([\mathrm{]})=\mathrm{j}_{\mathrm{B}} \mathrm{e}_{\mathrm{J}}([\mathrm{~A}] \quad[\mathrm{l})\right.
$$

for ：B_{q} ！ed ］such that $@_{+1}=0$ ．Let $f: B$ ！B^{0} be a chain homomor－ phism of projective $\mathbb{Z}[]$－chain complexes．Then $\left.\left.h_{\mathbb{Z}[}\right]\left(\left[f_{q}\right]\right)=f h_{\mathbb{Z}[}\right]([])$ ， and so these homomorphisms are functorial in B．In particular，if B is a projective resolution of the $\mathbb{Z}[]$－module M we obtain homomorphisms $h_{\mathbb{Z}[]}$ ： $E x t_{\mathbb{Z}[]}^{q}(M ; \mathbb{Z}[])!E x t_{\mathbb{Z}[]}^{q+1}(M ; \mathbb{Z}[])$ which are functorial in M ．

Lemma 4．2 Let M bea $\mathbb{Z}[$ ］－module such that Mj is nitely generated as $a \mathbb{Z}[]$－module Then $h_{\mathbb{Z}[]}: \operatorname{Hom}_{\mathbb{Z}[]}\left(M\right.$ ；斯 ］）！$E x t_{\mathbb{Z}[]}^{1}(M ; \mathbb{Z}[])$ is injective．

Proof Let B be a projective resolution of the $\mathbb{Z}[]$－module M and let q ： $B_{0}!M$ be the de ning epimorphism（so that $q @=0$ ）．We may use compo－ sition with q to identify $\mathrm{Hom}_{\mathbb{Z}[}(\mathrm{M}$ ；斯 ］）with the submodule of 0－cocycles in

Suppose that $h_{\mathbb{Z}[}()=0$ and let $g=q: B_{0}$ ！斯 $]$ ．Then there is a $\mathbb{Z}[]-$ linear homomorphism $f: A_{0} \otimes B_{0}!\mathbb{Z}[]$ such that $e_{j}\left(\left[\begin{array}{c}\end{array}\right] \quad[g]\right)=f$ ．We may write $g(b)=t^{n} g_{n}(b)=t^{n} g_{0}\left(t^{-n} b\right)$ ，where $g_{0}: B_{0}!\mathbb{Z}[]$ is $\mathbb{Z}[]$－linear （and $g_{0} @=0$ ）．We then have $g_{0}(b)=f\left((t-1) a_{0} \otimes b\right)$ for all b2 B_{0} ，while $f(1 \otimes @)=0$ ．Let $k(b)=f\left(a_{0} \otimes b\right)$ for $b 2 B_{0}$ ．Then $k: B_{0}!\mathbb{Z}[]$ is $\mathbb{Z}\left[\right.$ ］－linear，and $k @=0$ ，so k factors through M ．In particylar，$k\left(B_{0}\right)$ is nitely generated as a $\mathbb{Z}[]$－submodule of $\mathbb{Z}[]$ ．But as $\mathbb{Z}[]=t^{n} \mathbb{Z}[]$ and $g_{0}(b)=t k\left(t^{-1} b\right)-k(b)$ for all $b 2 B_{0}$ ，this is only possible if $k=g_{0}=0$ ． Therefore $=0$ and so $h_{\mathbb{Z}[]}$ is injective．

Le B be a projective $\mathbb{Z}\left[\right.$ ］－dhain complex such that $B_{j}=0$ for $j<0$ and $H_{0}(B)=\mathbb{Z}$ ．Then there is a $\mathbb{Z}[]$－chain homomorphism в ：B ！A which induces an isomorphism $H_{0}(B)=H_{0}(A)$ ，and $B=A B_{0}: B_{0}!\mathbb{Z}$ is a generator of $H^{0}(B ; \mathbb{Z})$ ．Let $B=A B_{1}: B_{1}$ ！．If moreover $H_{1}(B)=0$ then $H^{1}(B ;)=Z$ and is generated by $[B]={ }_{B}([A])$

4.3 The case $=1$

When $=1$ (so $\mathbb{Z}[]=$) we shall show that h is an equivalence, and relate it to other more explicit homomorphisms. Let S be the multiplicative system in consisting of monic polynomials with constant term 1. Let Lexp($f ; a$) be the Laurent expansion of the rational function f about a. Then ' (f) $=L \exp (f ; 1)-L \exp (f ; 0)$ de nes a homomorphism from the localization s to $\mathrm{b}=\mathbb{Z}\left[\left[t ; \mathrm{t}^{-1}\right]\right]$, with kernel . (Barge used a similar homomorphism to embed $\mathbb{Q}(\mathrm{t})=$ in $\mathbb{Q}\left[\left[\mathrm{t} ; \mathrm{t}^{-1}\right]\right][\mathrm{Ba} 80]$.) Let : b ! \mathbb{Z} be the additive homomorphism de ned by $\left(\mathrm{t}^{\mathrm{n}} \mathrm{f}_{\mathrm{n}}\right)=\mathrm{f}_{0}$. (This is a version of the \backslash trace" function used by Trotter to relate Seifert forms and Blanch eld pairings on a knot module M [Tr78].)

Let M be a -module which is nitely generated as an abelian group, and let N be its maximal nite submodule Then $M \neq N$ is \mathbb{Z}-torsion free and Ann $(M=N)=(M)$, where M is the minimal polynomial of t, considered as an automorphism of $(M \neq N) j_{\mathbb{Z}}$. (Se Chapter 3 of $[H 3]$.) Since $M j_{\mathbb{Z}}$ is nitely generated M 2 S . The inclusion of $\mathrm{s}=$ in $\mathbb{Q}(\mathrm{t})=$ induces an isomorphism $D(M)=H$ om $(M ; s=)=\operatorname{Hom}(M ; \mathbb{Q}(t)=)$. We shall show that $D(M)$ is naturally isomorphic to each of $\widehat{D}(M)=H$ om $(M ;), E(M)=E x t^{1}(M$;) and $F(M)=\operatorname{Hom}_{\mathbb{Z}}\left(M j_{\mathbb{Z}} ; \mathbb{Z}\right)$.
Le ' $M: D(M)!\widehat{D}(M)$ and $M: \widehat{D}(M)!F(M)$ be the homomorphisms de ned by composition with ' and , respectively. It is easily veri ed that M and T_{M} are mutually inverse

Let B be a projective resolution of M. If $2 D(M)$ let $0: B_{0}!\mathbb{Q}(t)$ be a lift of . Then $0 @$ has image in , and so de nes a homomorphism ${ }_{1}: B_{1}!$ such that ${ }_{1} @=0$. Consideration of the short exact sequence of complexes

$$
0!\operatorname{Hom}(B ;)!H o m(B ; \mathbb{Q}(t))!H o m(B ; \mathbb{Q}(t)=)!0
$$

shows that $M()=\left[1_{1}\right]$, where $M: D(M)!E(M)$ is the Bockstein homomorphism associated to the coe cient sequence. (The extension corresponding to M is the pullback over of the sequence $0!\quad!\mathbb{Q}(\mathrm{t})!\mathbb{Q}(\mathrm{t})=!\quad 0$.)

Lemma 4.3 The natural transformation h is an equivalence, and h ' $\mathrm{m}=$ M.

Proof The homomorphism j_{M} sending the image of g in $\neq m$) to the class of $\mathrm{g}(\mathrm{m})^{-1}$ in $\mathrm{s}=$ induces an isomorphism $\mathrm{Hom}(\mathrm{M} ; \neq \mathrm{m})$) $=\mathrm{D}(\mathrm{M})$.

Hence we may assume that $M=\neq$) and it shall su ce to check that $h{ }_{\mathrm{M}}\left(\mathrm{j}_{\mathrm{M}}\right)=\left(\mathrm{j}_{\mathrm{M}}\right)$. Moreover we may extend coe cients to \mathbb{C}, and so we may reduce to the case $=(t-)^{n}$.
We may assume that B_{1} and B_{0} arefreely generated by b_{1} and b_{0}, respectively, and that $\left(a_{1}\right)=b_{0}$. The chain homotopy equivalence j_{B} may be de ned by $j_{0}\left(b_{0}\right)=a_{0} \otimes b_{0}$ and $j_{1}\left(b_{1}\right)=a_{0} \otimes b_{1}+p q^{p}\left(t^{p} a_{1}\right) \otimes\left(t^{q} b_{0}\right)$, where $\quad{ }_{p q} x^{p} y^{q}=$ $((x y)-(y))=(x-1)=y \quad 0 \quad r<n(x y-)^{r}(y-)^{n-r-1}$. (This formula arises naturally if we identify $\otimes_{\mathbb{Z}}$ with $\mathbb{Z}\left[x ; y ; x^{-1} ; y^{-1}\right]$, with $t 2$ acting via xy.) Note that $\left(j_{M}\right)\left(b_{1}\right)=o_{n}=1$ and $\mathrm{pq}^{2}=0$ unless $0 \quad \mathrm{~m}<\mathrm{q} \quad \mathrm{n}$.
 coe cient of t^{-r} in Lexp ${ }^{-1} ; 1$). Clearly $r=0$ if $-n<r<0$ and $-n=1$, since ${ }^{-1}=t^{-n}\left(1-t^{-1}\right)^{-n}$. Hence $h '{ }_{M}\left(j_{M}\right)\left(b_{1}\right)=o_{n}=\left(j_{M}\right)\left(b_{1}\right)$, and so h ' ${ }_{\mathrm{M}}=\mathrm{M}$, by linearity and functoriality.
Since is a natural equivalence and h is injective, by Lemma 4.2, h is also a natural equivalence.

It can be shown that the ring s de ned above is a PID.

4.4 Duality in in nite cyclic covers

Le E, f and be as in xl , and suppose also that E is a PD_{4}-complex with $(E)=0$ and that is nitely generated and in nite Let $C=C$ (E e). Then $H_{0}(C)=Z, H_{2}(C)=2(E)$ and $H_{q}(C)=0$ if $q G 0$ or 2 , since E is simply connected and has one end. Since $\left.H_{1}\left(\otimes_{\mathbb{Z}[}\right] C\right)=H_{1}(E ; \mathbb{Z})==0$ is nitely generated as an abelian group, $\left.\mathrm{Hom}_{\mathbb{Z}[}\right]\left(\mathrm{H}_{1}\left(\otimes_{\mathbb{Z}[]} \mathrm{C}\right) ;\right.$) $=0$. An elementary computation then shows that $\mathrm{H}^{1}(\mathrm{C} ;)$ is in nite cyclic, and generated by the class $=c$ de ned in $\times 2$. Let [E] be a xed generator of $\left.H_{4}\left(Z \otimes_{\mathbb{Z}[}\right] C\right)=Z$, and let $[E]=\backslash[E]$ in $H_{3}(E ; \mathbb{Z})=H_{3}\left(\otimes_{\mathbb{Z}[]} C\right)=Z$.

Since E is also the universal covering space of E, the cellular chain complex for \mathbb{E} is $\mathrm{C} j$. In order to verify that E is a PD_{3}-complex (with orientation class $[E]$) it shall su ce to show that (for each $p \quad 0$) the homomorphism p from $\overline{\mathrm{H}^{p}(\mathrm{C} ; \mathbb{Z}[\mathrm{J})}=\overline{\mathrm{H}^{\mathrm{p}}(\mathrm{C} ; \mathrm{E}[\mathrm{]})}$ to $\overline{\mathrm{H}^{p+1}(\mathrm{C} ; \mathbb{Z}[\mathrm{l})}$ given by cup product with is an isomorphism, by standard properties of cap and cup products. We may identify these cup products with the degree raising homomorphisms $\mathrm{h}_{\mathbb{Z}[]}$, by the following lemma.

Lemma 4.4 Let X be a connected space with ${ }_{1}(X)=$ and let $B=$ $C(X)$. Then $\left.h_{\mathbb{Z}}\right][[])=[$ в $]\left[\begin{array}{l}\text { [}\end{array}\right.$.

Proof TheAlexander Whitney diagonal approximation d from B to $B \otimes B$ is -equivariant, if the tensor product is given the diagonal left -action, and we may take $j_{B}=\left(B_{B} \otimes 1\right) d$ as a chain homotopy inverse to p_{B}. Therefore $\mathrm{h}_{\mathbb{Z}[\mathrm{J}}([])=\mathrm{def}_{\mathrm{J}}([$ в $] \quad[\mathrm{l})=[$ в $][$ [].

The cohomology modules $\mathrm{H}^{\mathrm{P}}(\mathrm{C} ; \mathbb{Z}[])$ and $\mathrm{H}^{\mathrm{P}}(\mathrm{C} ; \mathbb{Z}[])$ may be \backslash computed" via the UCSS. Since cross product with a 1-cycle induces a degree 1 cochain homomorphism, the functorial homomorphisms $\mathrm{h}_{\mathbb{Z}[]}$ determine homomorphisms between these spectral sequences which are compatible with cup product with
on the limit terms. In each case the E_{2}^{p} columns are nonzero only for $p=0$ or 2. The E_{2}^{0} terms of these spectral sequences involve only the cohomology of the groups and the homomorphisms between them may be identi ed with the maps arising in the LHSSS for as an extension of Z by , under appropriate niteness hypotheses on.

4.5 H omotopy mapping tori

In this section we shall apply the above ideas to the non-aspherical case We use coinduced modules to transfer arguments about subgroups and covering spaces to contexts where Poincare duality applies, and L^{2}-cohomology to identify ${ }_{2}(\mathrm{M})$, together with the above strategy of describing Poincare duality for an in nite cydic covering space in terms of cup product with a generator of $H^{1}(\mathrm{M}$;).

Note that most of the homology and cohomology groups de ned below do not have natural module structures, and so the Poincare duality isomorphisms are isomorphisms of abelian groups only.

Theorem 4.5 A nite PD_{4}-complex M with fundamental group is homotopy equivalent to the mapping torus of a self homotopy equivalence of a $P D_{3}$-complex if and only if $(M)=0$ and is an extension of Z by a nitely presentable normal subgroup .

Proof The conditions are clearly necessary, as observed in xl above Suppose conversely that they hold. Let M be the in nite cyclic covering space of M with fundamental group , and let : M ! M be a covering transformation corresponding to a generator of $==Z$. Then M is homotopy equivalent to the mapping torus M() . Moreover $\mathrm{H}^{1}(\mathrm{M} ;)=\mathrm{H}^{1}(;)$ is in nite cydic, since is nitely generated. Let $\mathrm{E}_{\mathrm{p} ; \mathrm{q}}^{\mathrm{r}}(\mathrm{M})$ and $\mathrm{E}_{\mathrm{p} ; \mathrm{q}}^{\mathrm{r}}(\mathrm{M})$ be the UCSS for the cohomology of M with coe cients $\mathbb{Z}[]$ and for that of M with coe cients
$\mathbb{Z}\left[\right.$], respectively. A choice of generator for $\mathrm{H}^{1}(\mathrm{M}$;) determines homomorphisms $h_{\mathbb{Z}[]}: E_{p ; q}^{r}(M)!E_{p ; q+1}^{r}(M)$, giving a homomorphism of bidegree $(0 ; 1)$ between these spectral sequences corresponding to cup product with on the abutments, by Lemma 4.4.
Suppose rst that is nite. The UCSS and Poincare duality then imply that $H_{i}(\mathbb{M} ; \mathbb{Z})=Z$ for $i=0$ or 3 and is 0 otherwise. Hence $\mathbb{f}{ }^{\prime} S^{3}$ and so $M=\mathfrak{f}=$ is a Swan complex for . (See Chapter 11 for more details.) Thus we may assume henceforth that is in nite We must show that the cup product maps $p: H^{p}(M ; \mathbb{Z}[])!H^{p+1}(M ; \mathbb{Z}[])$ are isomorphisms, for 0 p 4. If $p=0$ or 4 then all the groups are 0 , and so 0 and 4 are isomorphisms.
Applying the isomorphisms de ned in x8 of Chapter 1 to the cellular chain complex C of \mathfrak{G}, we see that $H^{q}(M ; A)=H^{q}\left(M ; \operatorname{Hom}_{\mathbb{Z}}\right](\mathbb{Z}[] ; A)$) is isomorphic to $\overline{\left.\mathrm{H}_{4-\mathrm{q}}\left(\mathrm{M} ; \mathrm{Hom}_{\mathbb{Z}[}\right](\mathbb{Z}[] ; A)\right)}$ for any local coe cient system (left $\mathbb{Z}[$]-module) A on M . Let t 2 represent a generator of $=$. Since multiplication by $t-1$ is surjective on $\mathrm{Hom}_{\mathbb{Z}[J}(\mathbb{Z}[] ; A)$, the homology Wang sequence for the covering projection of M onto M gives $H_{0}\left(M ; H\right.$ om $\left.\left.\mathbb{Z}_{\mathbb{Z}}\right](\mathbb{Z}[] ; A)\right)=0$. Hence $\mathrm{H}^{4}(\mathrm{M} ; \mathrm{A})=0$ for any local coe cient system A , and so M is homotopy equivalent to a 3-dimensional complex (see [WI65]). (See also [DST 96].)
Since is an extension of Z by a nitely generated normal subgroup ${ }_{1}^{(2)}()=$ 0 , and so $\overline{2(M)}=H^{2}(M ; \mathbb{Z}[])=H^{2}(; \mathbb{Z}[])$, by Theorem 3.4. Hence ${ }_{1}$ may
 LHSSS for theextension. Moreover $\overline{2(M) j}=\mathrm{H}^{1}(; \mathbb{Z}[])$ is nitely generated over $\mathbb{Z}[]$, and so $\left.\operatorname{Hom}_{\mathbb{Z}[}\right](2(M) ; \mathbb{Z}[])=0$. Therefore $H^{3}(; \mathbb{Z}[])=0$, by Lemma 3.3, and so the Wang sequence map $\mathrm{t}-1: \mathrm{H}^{2}(; \mathbb{Z}[])!\mathrm{H}^{2}(; \mathbb{Z}[])$ is onto. Since is $F P_{2}$ this cohomology group is isomorphic to $\mathrm{H}^{2}(; \mathbb{Z}[]) \otimes_{\text {Z }}$ $\mathbb{Z}[=]$, where $\mathbb{Z}[=]=$ acts diagonally. It is easily seen that if $\mathrm{H}^{2}(; \mathbb{Z}[])$ has a nonzero element h then $h \otimes 1$ is not divisibleby $t-1$. Hence $H^{2}(; \mathbb{Z}[])=$ 0 . The di erential $d_{2 ; 1}^{3}(M)$ is a monomorphism, since $H^{3}(M ; \mathbb{Z}[])=0$, and $h_{\mathbb{Z}[]}: E_{2 ; 0}^{2}(M)!E_{2 ; 1}^{2}(M)$ is a monomorphism by Lemma 4.2. Therefore $d_{2 ; 0}^{3}(M)$ is also a monomorphism and so $H^{2}(M ; \mathbb{Z}[])=0$. Hence 2 is an isomorphism.
It remains only to check that $\mathrm{H}^{3}(\mathrm{M} ; \mathbb{Z}[])=\mathrm{Z}$ and that 3 is onto. Now $\mathrm{H}^{3}(\mathrm{M} ; \mathbb{Z}[])=\overline{\left.\mathrm{H}_{1}\left(\mathrm{M} ; \mathrm{Hom}_{\mathbb{Z}[}\right](\mathbb{Z}[] ; \mathbb{Z}[])\right)}=\overline{\mathrm{H}_{1}(; \mathbb{Z}[]=)}$. (The exponent denotes direct product indexed by $=$ rather than xed points!) The natural homomorphism from $\mathrm{H}_{1}(; \mathbb{Z}[]=)$ to $\mathrm{H}_{1}\left(=; \mathrm{H}_{0}(; \mathbb{Z}[]=)\right)$ is onto, with kerne $H_{0}\left(=; H_{1}(; \mathbb{Z}[]=)\right)$, by the LHSSS for . Since is nitely generated homology commutes with direct products in this range, and it follows that
$H_{1}(; \mathbb{Z}[]=)=H_{1}(=; \mathbb{Z}=)$. Since $==Z$ and acts by translation on the index set this homology group is Z. Thehomomorphisms from $\mathrm{H}^{3}(\mathrm{M} ; \mathbb{Z}[])$ to $\mathrm{H}^{3}(\mathrm{M} ; \mathbb{Z})$ and from $\mathrm{H}^{4}(\mathrm{M} ; \mathbb{Z}[])$ to $\mathrm{H}^{4}(\mathrm{M} ;)$ induced by the augmentation homomomorphism and the epimorphism from $\mathbb{Z}[]$ to $\mathbb{Z}[=]=$ are epimorphisms, since M and M are homotopy equivalent to 3 - and 4 -dimensional complexes, respectively. hence they are isomorphisms, since these cohomology modules are in ite cyclic as abelian groups. These isomorphisms form the vertical sides of a commutative square

The lower horizontal edge is an isomorphism, by Lemma 4.3. Therefore 3 is also an isomorphism.
Thus M satis es Poincare duality of formal dimension 3 with local coe cients. Since ${ }_{1}(M)=$ is nitely presentable M is nitely dominated, and so is a $\mathrm{P} \mathrm{D}_{3}$-complex [Br72].

Note that M need not be homotopy equivalent to a nite complex. If M is a simple PD_{4}-complex and a generator of $\operatorname{Aut}(\mathrm{M} \neq \mathrm{M})==$ has nite order in the group of self homotopy equivalences of M then M is nitely covered by a simple PD_{4}-complex homotopy equivalent to $\mathrm{M} \quad \mathrm{S}^{1}$. In this case M must be homotopy nite by [Rn86]. The hypothesis that M be nite is used in the proof of Theorem 3.4, but is probably not necessary here.
The hypothesis that be almost nitely presentable (FP_{2}) su ces to show that M satis es Poincare duality with local coe cients. Finite presentability is used only to show that M is nitedy dominated. (Does the coarse Alexander duality argument of [KK 99] used in part (3) of Theorem 4.1 extend to the nonaspherical case?) In view of the fact that 3 -manifold groups are coherent, we might hope that the condition on could be weakened still further to require only that it be nitely generated.
Some argument is needed above to show that 2 is injective. If M is homotopy equivalent to a 3-manifold with more than one aspherical summand then $\mathrm{H}^{1}(; \mathbb{Z}[])$ is a nonzero free $\mathbb{Z}[]$-module and so $\mathrm{Hom}_{\mathbb{Z}[}(\mathrm{j} ; \mathbb{Z}[]) \in 0$.
A rather di erent proof of this theorem could begiven using Ranicki's criterion for an in nite cyclic cover to be nitely dominated [Rn95] and the QuinnGottlieb theorem, if nitely generated stably free modules of rank 0 over the

Novikov rings $A=\mathbb{Z}[]\left(\left(t^{1}\right)\right)$ are trivial. (For $H_{q}(A \otimes C)=A \otimes$ $H(C)=0$ if $q \in 2$, since $t-1$ is invertible in A. Hence $H_{2}(A \otimes C)$ is a stably free module of rank 0 , by Lemma 3.1.)
An alternative strategy would be to show that $\operatorname{Lim} \mathrm{H}^{\mathrm{q}}\left(\mathrm{M} ; \mathrm{A}_{\mathrm{i}}\right)=0$ for any direct system with limit 0 . We could then conclude that the cellular chain complex of $\mathfrak{f}=\mathfrak{h}$ is chain homotopy equivalent to a nite complex of nitely generated projective Z[]-modules, and hence that M is nitely dominated. Since is $F P_{2}$ this strategy applies easily when $q=0,1,3$ or 4 , but something else is needed when $q=2$.

Corollary 4.5.1 Let M bea $P D_{4}$-complex with $(M)=0$ and whose fundamental group is an extension of Z by a normal subgroup $=F(r)$. Then M is homotopy equivalent to a closed PL 4-manifold which bres over the circle, with bre $]^{r} S^{1} S^{2}$ if $w_{1}(M) j$ is trivial, and $]^{r} S^{1} \sim S^{2}$ otherwise. The bundle is determined by the homotopy type of M.

Proof By the theorem M is a PD_{3}-complex with free fundamental group, and so is homotopy equivalent to $N=J^{r} S^{1} \quad S^{2}$ if $w_{1}(M) j$ is trivial and to $]^{r} S^{1} \sim S^{2}$ otherwise. Every self homotopy equivalence of a connected sum of S^{2}-bundles over S^{1} is homotopic to a self-homeomorphism, and homotopy implies isotopy for such manifolds [La]. Thus M is homotopy equivalent to such a bred 4-manifold, and the bundle is determined by the homotopy type of M.

It is easy to see that the natural map from H omeo(N) to $\operatorname{Out}(\mathrm{F}(r)$ is onto. If a self homeomorphism f of $N=]^{r} S^{1} S^{2}$ induces thetrivial outer automorphism of $F(r)$ then f is homotopic to a product of twists about nonseparating 2 spheres [He]. How is this manifest in the topology of the mapping torus?
Since c:d: $=1$ and c:d: $=2$ the rst k-invariants of M and N both lie in trivial groups, and so this Corollary also follows from Theorem 4.6 below.

Corollary 4.5.2 Let M be a $P D_{4}$-complex with $(M)=0$ and whose fundamental group is an extension of Z by a normal subgroup. If has an in nite cyclic normal subgroup C which is not contained in then the covering space M with fundamental group is a P_{3}-complex.

Proof We may assume without loss of generality that M is orientable and that C is central in . Since $C \backslash=1$ the subgroup $C=C$ has nite index in . Thus by passing to a nite cover we may assume that $=\mathrm{C}$. Hence is nitely presentable and so the Theorem applies.

See [Hi89] for di erent proofs of Corollaries 4.5.1 and 4.5.2.
Since has one or two ends if it has an in nite cyclic normal subgroup, Corollary 4.5.2 remains true if C and is nitely presentable. In this case is the fundamental group of a Seifert bred 3-manifold, by Theorem 2.14.

Corollary 4.5.3 Let M be a $P D_{4}$-complex with $(M)=0$ and whose fundamental group is an extension of Z by an $F P_{2}$ normal subgroup. If is nite then it has cohomological period dividing 4. If has one end then M is aspherical and so is a $P D_{4}$-group. If has two ends then $=Z$, $Z \quad(Z=2 Z)$ or $D=(Z=2 Z) \quad(Z=2 Z)$. If moreover is nitely presentable the covering space M with fundamental group is a PD_{3}-complex.

Proof The nal hypothesis is only needed if is one-ended, as nite groups and groups with two ends are nitely presentable. If is nite then $\mathrm{M}^{\prime} \mathrm{S}^{3}$ and so the rst assertion holds. (See Chapter 11 for more details.) If has one end then we may apply Theorem 4.1. If has two ends and its maximal nite normal subgroup is nontrivial then $=Z \quad(Z=Z Z)$, by Theorem 2.11 (applied to the PD_{3}-complex M). Otherwise $=Z$ or D .

In Chapter 6 we shall strengthen this Corollary to obtain a bration theorem for 4 -manifolds with torsion free elementary amenable fundamental group.
Our next result gives criteria (involving also the orientation character and rst k -invariant) for an in nitecyclic cover of a closed 4-manifold M to be homotopy equivalent to a particular PD_{3}-complex N .

Theorem 4.6 Let M be a PD_{4}-complex whose fundamental group is an extension of Z by a torsion free normal subgroup which is isomorphic to the fundamental group of a PD_{3}-complex N . Then $2(M)=2(N)$ as $\mathbb{Z}[]-$ modules if and only if $\operatorname{Hom}_{\mathbb{Z}[}(2(M) ; \mathbb{Z}[])=0$. The in nite cydic covering space M with fundamental group is homotopy equivalent to N if and only if $w_{1}(M) j=w_{1}(N), H$ om $\mathbb{Z}[](2(M) ; \mathbb{Z}[])=0$ and the images of $k_{1}(M)$ and $\mathrm{k}_{1}(\mathrm{~N})$ in $\mathrm{H}^{3}(; 2(M))=H^{3}(; 2(N))$ generate the same subgroup under the action of $\mathrm{Aut}_{\mathbb{Z}[]}\left({ }_{2}(\mathrm{~N})\right)$.

Proof If $={ }_{2}(M)$ is isomorphic to ${ }_{2}(N)$ then it is nitely generated as a $\mathbb{Z}[$]-module, by Theorem 2.18. As 0 istheonly $\mathbb{Z}[$]-submoduleof $\mathbb{Z}[]$ which is nitely generated as a $\mathbb{Z}[]$-module it follows that $\left.\quad=\operatorname{Hom}_{\mathbb{Z}[}\right](2(M) ; \mathbb{Z}[])$ is trivial. It is then clear that the conditions must hold if M is homotopy equivalent to N .

Suppose conversely that these conditions hold. If $=1$ then M is simply connected and $=Z$ has two ends. It follows immediately from Poincare duality and theUCSS that $\mathrm{H}_{2}(\mathrm{M} ; \mathbb{Z})==-=0$ and that $\mathrm{H}_{3}(\mathrm{M} ; \mathbb{Z})=\mathrm{Z}$. Therefore M is homotopy equivalent to S^{3}. If $G 1$ then has one end, since it has a nitely generated in nite normal subgroup. The hypothesis that
$=0$ implies that $=\overline{\mathrm{H}^{2}(; \mathbb{Z}[])}$, by Lemma 3.3. Hence $=\overline{\mathrm{H}^{1}(; \mathbb{Z}[])}$ as a $\mathbb{Z}[]$-module, by the LHSSS. (The overbar notation is unambiguous since $\left.w_{1}(M) j=w_{1}(N).\right)$ But this is isomorphic to $2(N)$, by Poincare duality for N . Since N is homotopy equivalent to a 3 -dimensional complex the condition on the k-invariants implies that there is a map f:N! M which induces isomorphisms on fundamental group and second homotopy group. Since the homology of the universal covering spaces of these spaces vanishes above degree 2 the map f is a homotopy equivalence

We do not know whether the hypothesis on the k -invariants is implied by the other hypotheses.

Corollary 4.6.1 Let M be a PD_{4}-complex whose fundamental group is an extension of Z by a torsion free normal subgroup which is isomorphic to the fundamental group of a 3-manifold N whose irreducible factors are Haken, hyperbolic or Seifert bred. Then M is homotopy equivalent to a closed PL 4-manifold which bres over the circle with bre N.

Proof There is a homotopy equivalence f : N! M, where N is a 3-manifold whose irreduciblefactors are as above, by Turaev's Theorem. (Seex5 of Chapter 2.) Let $t: M$! M be the generator of the covering transformations. Then there is a self homotopy equivalence $u: N!N$ such that $f u$ tf. As each irreducible factor of N has the property that self homotopy equivalences are homotopic to PL homeomorphisms (by [Hm], Mostow rigidity or [Sc83]), u is homotopic to a homeomorphism [HL74], and so M is homotopy equivalent to the mapping torus of this homeomorphism.

All known PD_{3}-complexes with torsion fre fundamental group are homotopy equivalent to connected sums of such 3-manifolds.
If the irreducible connected summands of the closed 3-manifold $N=]_{i} N_{i}$ are P^{2}-irreducible and su ciently large or have fundamental group Z then every self homotopy equivalence of N is realized by an unique isotopy class of homeomorphisms [HL74]. However if N is not aspherical then it admits nontrivial self-homeomorphisms (\rotations about 2-spheres") which induce the identity on , and so such bundles are not determined by the group alone

Corollary 4.6.2 Let M be a PD_{4}-complex whose fundamental group is an extension of Z by a virtually torsion free normal subgroup . Then the in nite cyclic covering space M with fundamental group is homotopy equivalent to a PD_{3}-complex if and only if is the fundamental group of a $\mathrm{PD}_{3}-$ complex N, H om $\mathbb{Z}_{[3}\left({ }_{2}(M) ; \mathbb{Z}[]\right)=0$ and the images of $k_{1}(M)$ and $k_{1}(N)$ in $H^{3}(0 ; 2(M))=H^{3}(o ; 2(N))$ generate the same subgroup under the action of Aut $_{\mathbb{Z}\left[{ }_{0}\right]}\left({ }_{2}(\mathrm{~N})\right)$, where o is a torsion free subgroup of nite index in .

Proof The conditions are clearly necessary. Suppose that they hold. Let $1 \mathrm{ol}+\+$ be a torsion free subgroup of nite index in , where $+=$ $\operatorname{Kerw}_{1}(\mathrm{M})$ and $+=\operatorname{Kerw}_{1}(\mathrm{~N})$, and let t 2 generate modulo . Then each of the conjugates $t^{k}{ }_{1} t^{-k}$ in has the same index in. Since is nitely generated theintersection $=\backslash \mathrm{t}^{\mathrm{k}}{ }_{1} \mathrm{t}^{-\mathrm{k}}$ of all such conjugates has niteindex in , and is clearly torsion free and normal in the subgroup generated by and t. If $f r_{i} g$ is a transversal for in and $f: 2(M)!\mathbb{Z}[]$ is a nontrivial $\mathbb{Z}[]-$ linear homomorphism then $g(m)=r_{i} f\left(r_{i}^{-1} m\right)$ de nes a nontrivial element of $\operatorname{Hom}(2(M) ; \mathbb{Z}[])$. Hence $\operatorname{Hom}(2(M) ; \mathbb{Z}[])=0$ and so the covering spaces M and N are homotopy equivalent, by the theorem. It follows easily that M is also a P_{3}-complex.

All PD_{3}-complexes have virtually torsion free fundamental group [CrOO].

4.6 Products

If $M=N \quad S^{1}$, where N is a closed 3-manifold, then $(M)=0, Z$ is a direct factor of ${ }_{1}(M), w_{1}(M)$ is trivial on this factor and the Pin^{-}-condition $w_{2}=w_{1}^{2}$ holds. These conditions almost characterize such products up to homotopy equivalence. We need also a constraint on the other direct factor of the fundamental group.

Theorem 4.7 Let M bea PD_{4}-complex whose fundamental group has no 2-torsion. Then M is homotopy equivalent to a product $N \quad S^{1}$, where N is a closed 3-manifold, if and only if $(M)=0, w_{2}(M)=w_{1}(M)^{2}$ and there is an isomorphism : ! Z such that $w_{1}(M)^{-1}{ }_{j}=0$, where is a (2-torsion free) 3-manifold group.

Proof The conditions are clearly necessary, since the $\mathrm{P} \mathrm{in}^{-}$-condition holds for 3-manifolds.

If these conditions hold then the covering space M with fundamental group is a PD_{3}-complex, by Theorem 4.5 above Since is a 3-manifold group and has no 2-torsion it is a free product of cyclic groups and groups of aspherical closed 3-manifolds. Hence there is a homotopy equivalence h : M ! N, where N is a connected sum of lens spaces and aspherical closed 3-manifolds, by Turaev's Theorem. (See x5 of Chapter 2.) Let generate the covering group $\operatorname{Aut}(\mathrm{M} \neq \mathrm{M})=\mathrm{Z}$. Then there is a self homotopy equivalence : $\mathrm{N}!\mathrm{N}$ such that $h \quad h$, and M is homotopy equivalent to the mapping torus $M()$. We may assume that xes a basepoint and induces the identity on ${ }_{1}(N)$, since ${ }_{1}(M)=\quad Z$. Moreover preserves the local orientation, since $\mathrm{w}_{1}(\mathrm{M})^{-1} \mathrm{j}_{z}=0$. Since has no dement of order 2 N has no two-sided projective planes and so is homotopic to a rotation about a 2 -sphere [Hn]. Since $w_{2}(M)=w_{1}(M)^{2}$ the rotation is homotopic to the identity and so M is homotopy equivalent to $\mathrm{N} \quad \mathrm{S}^{1}$.

Let is an essential map from S^{1} to $\mathrm{SO}(3)$, and let $\mathrm{M}=\mathrm{M}(\mathrm{)}$, where
: $S^{1} \quad S^{2}!S^{1} \quad S^{2}$ is the twist map, given by $(x ; y)=(x ;(x)(y))$ for all $(x ; y)$ in $S^{1} S^{2}$. Then ${ }_{1}(M)=Z \quad Z, \quad(M)=0$, and $w_{1}(M)=0$, but $w_{2}(M) \in w_{1}(M)^{2}=0$, so M is not homotopy equivalent to a product. (Clearly however $M\left({ }^{2}\right)=S^{1} \quad S^{2} \quad S^{1}$.)

To what extent are the constraints on necessary? There are orientable 4manifolds which are homotopy equivalent to products $N \quad S^{1}$ where $={ }_{1}(N)$ is nite and is not a 3-manifold group. (Se Chapter 11.) Theorem 4.1 implies that M is homotopy equivalent to a product of an aspherical P_{3}-complex with S^{1} if and only if $(M)=0$ and ${ }_{1}(M)=Z$ where has one end.
There are 4-manifolds which are simple homotopy equivalent to $S^{1} R P^{3}$ (and thus satisfy the hypotheses of our theorem) but which are not homeomorphic to mapping tori [We87].

4.7 Subnormal subgroups

In this brief section we shall give another characterization of aspherical 4 manifolds with nitecovering spaces which are homotopy equivalent to mapping tori.

Theorem 4.8 Let M be a PD_{4}-complex. Then M is aspherical and has a nite cover which is homotopy equivalent to a mapping torus if and only if $(\mathrm{M})=0$ and $={ }_{1}(\mathrm{M})$ has an $F P_{3}$ subnormal subgroup G of in nite index and such that $\mathrm{H}^{\mathrm{s}}(\mathrm{G} ; \mathbb{Z}[\mathrm{G}])=0$ for $\mathrm{s} \quad 2$. In that case G is a PD_{3}-group, $[: N(G)]<1$ and $e(N(G)=G)=2$.

Proof The conditions are clearly necessary. Suppose that they hold. Let $\mathrm{G}=\mathrm{G}_{0}<\mathrm{G}_{1}<::: \mathrm{G}_{\mathrm{n}}=$ be a subnormal chain of minimal length, and let $\mathrm{j}=\operatorname{minfi} \mathrm{j}\left[\mathrm{G}_{\mathrm{i}+1}: \mathrm{G}\right]=1 \mathrm{~g}$. Then $\left[\mathrm{G}_{\mathrm{j}}: \mathrm{G}\right]<1$ and ${ }_{1}^{(2)}\left(\mathrm{G}_{\mathrm{j}+1}\right)=0$ [Ga00]. A nite induction up the subnormal chain, using LHSSS arguments (with coe cients $\mathbb{Z}[]$ and $N\left(G_{j}\right)$, respectively) shows that $\mathrm{H}^{\mathrm{s}}(; \mathbb{Z}[])=0$ for $s \quad 2$ and that ${ }_{1}^{(2)}()=0$. (See $\times 2$ of Chapter 2.) Hence M is aspherical, by Theorem 3.4.

On the other hand $\mathrm{H}^{\mathrm{s}}\left(\mathrm{G}_{\mathrm{j}+1} ; \mathrm{W}\right)=0$ for $\mathrm{s} \quad 3$ and any fre $\mathbb{Z}\left[\mathrm{G}_{\mathrm{j}+1}\right]$-module W , so c:d: $\mathrm{G}_{\mathrm{j}+1}=4$. Hence $\left[: \mathrm{G}_{\mathrm{j}+1}\right]<1$, by Strebel's Theorem. Therefore G_{j+1} is a $P D_{4}$-group. Hence G_{j} is a $P D_{3}$-group and $G_{j+1}=G_{j}$ has two ends, by Theorem 3.10. The theorem now follows easily, since $\left[G_{j}: G\right]<1$ and G_{j} has only nitely many subgroups of index $\left[\mathrm{G}_{\mathrm{j}}: \mathrm{G}\right]$.

The hypotheses on G could be replaced by $\backslash \mathrm{G}$ is a PD_{3}-group", for then [: G] = 1, by Theorem 3.12.

We shall establish an analogous result for closed 4-manifolds M such that $(M)=0$ and ${ }_{1}(M)$ has a subnormal subgroup of in nite index which is a PD_{2}-group in Chapter 5.

4.8 Circle bundles

In this section we shall consider the \dual" situation, of 4-manifolds which are homotopy equivalent to thetotal space of a S^{1}-bundleover a 3-dimensional base N . Lemma 4.9 presents a number of conditions satis ed by such manifolds. (These conditions are not all independent.) Bundles c_{N} induced from S^{1} bundles over $K\left({ }_{1}(N) ; 1\right)$ aregiven equivalent characterizations in Lemma 4.10. In Theorem 4.11 we shall show that the conditions of Lemmas 4.9 and 4.10 characterize the homotopy types of such bundlespaces $E\left(c_{N}\right)$, provided ${ }_{1}(N)$ is torsion free but not free
Since $B S^{1}{ }^{1} K(Z ; 2)$ any S^{1}-bundle over a connected base B is induced from some bundle over $P_{2}(B)$. For each epimorphism γ : ! with cyclic kernel and such that the action of by conjugation on $\operatorname{Ker}(\gamma)$ factors through multiplication by 1 there is an S^{1}-bundle $p(\gamma): X(\gamma)!Y(\gamma)$ whose fundamental group sequence realizes γ and which is universal for such bundles; the total space $E(p(\gamma))$ is a $K(; 1)$ space (cf. Proposition 11.4 of [WI]).

Lemma 4.9 Let p: E ! B be the projection of an S^{1}-bundle over a connected nite complex B. Then
(1) $(E)=0$;
(2) the natural map $p:={ }_{1}(E)!={ }_{1}(B)$ is an epimorphism with cyclic kernel, and the action of on $\operatorname{Ker}(\mathrm{p})$ induced by conjugation in is given by $w=w_{1}():{ }_{1}(B)!\quad Z=2 Z=f \quad \lg \quad \operatorname{Aut}(\operatorname{Ker}(p))$;
(3) if B is a PD-complex $w_{1}(E)=p\left(w_{1}(B)+w\right)$;
(4) if B is a $P D_{3}$-complex there are maps C : $E!P_{2}(B)$ and $y: P_{2}(B)!Y(p)$ such that $C_{P_{2}(B)}=C_{Y(p)} y, y\left(C^{*}=p(p) c_{E}\right.$ and $\left(C, C_{E}\right)[E]=G\left(f_{B}[B]\right)$ where G is the $G y \sin$ homomorphism from $\mathrm{H}_{3}\left(\mathrm{P}_{2}(\mathrm{~B}) ; \mathrm{Z}^{\mathrm{w}_{1}(\mathrm{~B})}\right)$ to $\mathrm{H}_{4}\left(\mathrm{P}_{2}(\mathrm{E}) ; \mathrm{Z}^{\mathrm{w}_{1}(\mathrm{E})}\right)$;
(5) If B is a $P D_{3}$-complex $C_{E}[E]=G\left(C_{B}[B]\right)$, where G is the Gysin homomorphism from $\mathrm{H}_{3}\left(; Z^{W_{B}}\right)$ to $H_{4}\left(; Z^{W_{E}}\right)$;
(6) $\operatorname{Ker}(\mathrm{p})$ acts trivially on $2(E)$.

Proof Condition(1) follows from the multiplicativity of the Euler characteristic in a bration. If is any loop in B the total space of the induced bundle
is the torus if $w()=0$ and the Klein bottle if $w()=1$ in $Z=2 Z$; hence $\mathrm{gzg}^{-1}=\mathrm{z}(\mathrm{g})$ where $(\mathrm{g})=(-1)^{\mathrm{w}(\mathrm{p}(\mathrm{g}))}$ for g in $\mathrm{I}(\mathrm{E})$ and z in $\operatorname{Ker}(\mathrm{p})$. Conditions (2) and (6) then follow from the exact homotopy sequence If the base B is a PD-complex then so is E, and we may use naturality and the Whitney sum formula (applied to the Spivak normal bundles) to show that $w_{1}(E)=p\left(w_{1}(B)+w_{1}()\right)$. (As $p: H^{1}\left(B ; \mathbb{F}_{2}\right)!H^{1}\left(E ; \mathbb{F}_{2}\right)$ is a monomorphism this equation determines $w_{1}()$.)

Condition (4) implies (5), and follows from the observations in the paragraph preceding the lemma. (Note that the Gysin homomorphisms G in (4) and (5) are well de ned, since $H_{1}\left(\operatorname{Ker}(\gamma) ; Z^{W_{E}}\right)$ is isomorphic to $Z^{W_{B}}$, by (3).)

Bundles with $\operatorname{Ker}(p)=Z$ have the following equivalent characterizations.
Lemma 4.10 Let p: E ! B be the projection of an S^{1}-bundle over a connected nite complex B . Then the following conditions are equivalent:
(1) is induced from an S^{1}-bundle over $K(1(B) ; 1)$ via C_{B};
(2) for each map $: S^{2}!B$ the induced bundle is trivial;
(3) the induced epimorphism $p:{ }_{1}(E)!\quad{ }_{1}(B)$ has in nite cyclic kerne.

If these conditions hold then $C()=C_{B}$, where $C()$ is the characteristic class of in $H^{2}\left(B ; Z^{W}\right)$ and is the class of the extension of fundamental groups in $H^{2}\left({ }_{1}(B) ; Z^{w}\right)=H^{2}\left(K\left({ }_{1}(B) ; 1\right) ; Z^{w}\right)$, where $w=w_{1}()$.

Proof Condition (1) implies condition (2) as for any such map the composite C_{B} is nullhomotopic. Conversely, as we may construct $K\left({ }_{1}(B) ; 1\right)$ by adjoining cells of dimension 3 to B condition (2) implies that we may extend
over the 3 -cells, and as S^{1}-bundles over S^{n} are trivial for all $n>2$ we may then extend over the whole of K (1 (B); 1), so that (2) implies (1). The equivalence of (2) and (3) follows on observing that (3) holds if and only if @ = 0 for all such , where @is the connecting map from ${ }_{2}(B)$ to ${ }_{1}\left(S^{1}\right)$ in the exact sequence of homotopy for , and on comparing this with the corresponding sequence for

As the natural map from theset of S^{1}-bundles over $\mathrm{K}(; 1)$ with $\mathrm{w}_{1}=\mathrm{w}$ (which are classi ed by $\mathrm{H}^{2}\left(\mathrm{~K}(; 1) ; \mathrm{Z}^{\mathrm{w}}\right)$) to the set of extensions of by Z with acting via w (which are classi ed by $\mathrm{H}^{2}\left(; \mathrm{Z}^{\mathrm{w}}\right)$) which sends a bundle to the extension of fundamental groups is an isomorphism we have $C()=C_{B}()$.

If N is a closed 3-manifold which has no summands of type $S^{1} \quad S^{2}$ or $S^{1} \sim S^{2}$ (i.e, if ${ }_{1}(\mathrm{~N})$ has no in nite cyclic free factor) then every S^{1}-bundle over N with $w=0$ restricts to a trivial bundle over any map from S^{2} to N . For if is such a bundle, with characteristic class $d()$ in $H^{2}(N ; \mathbb{Z})$, and $: S^{2}!N$ is any map then $\left.\quad\left(c(\quad) \backslash\left[S^{2}\right]\right)=(\quad d) \backslash\left[S^{2}\right]\right)=c() \backslash \quad\left[S^{2}\right]=0$, as the Hurewicz homomorphism is trivial for such N . Since is an isomorphism in degree 0 it follows that c) $=0$ and so is trivial. (A similar argument applies for bundles with w $\in 0$, provided the induced 2 -fold covering space N^{w} has no summands of type $S^{1} \quad S^{2}$ or $S^{1} \sim S^{2}$.)
On the other hand, if is theHopf bration the bundle with total space $S^{1} S^{3}$, base $\mathrm{S}^{1} \quad \mathrm{~S}^{2}$ and projection $\mathrm{id}_{\mathrm{S}^{1}}$ has nontrivial pullback over any essential map from S^{2} to $S^{1} S^{2}$, and is not induced from any bundle over $K(Z ; 1)$. Moreover, $S^{1} \quad S^{2}$ is a 2 -fold covering space of $R P^{3}{ }^{3} R P^{3}$, and so the above hypothesis on summands of N is not stable under passage to 2 -fold coverings (corresponding to a homomorphism w from $1(N)$ to $Z=Z Z$).

Theorem 4.11 Let M bea nite P_{4}-complex and N a nite $P D_{3}$-complex whose fundamental group is torsion free but not free. Then M is homotopy equivalent to the total space of an S^{1}-bundle over N which satis es the conditions of Lemma 4:10 if and only if
(1) $\quad(M)=0$;
(2) there is an epimorphism $\gamma:={ }_{1}(M)!={ }_{1}(N)$ with $\operatorname{Ker}(\gamma)=Z$;
(3) $w_{1}(M)=\left(w_{1}(N)+w\right) \gamma$, where $w: \quad Z=2 Z=\operatorname{Aut}(\operatorname{Ker}(\gamma))$ is determined by the action of on $\operatorname{Ker}(\mathrm{\gamma})$ induced by conjugation in ;
(4) $k_{1}(M)=\gamma k_{1}(N)$ (and so $P_{2}(M){ }^{\prime} P_{2}(N) \quad k(; 1) K(; 1)$);
(5) $f_{M}[M]=G\left(f_{N}[N]\right)$ in $H_{4}\left(P_{2}(M) ; Z^{w_{1}(M)}\right)$, where G is the Gysin homomorphism in degree 3.

If these conditions hold then M has minimal Euler characteristic for its fundamental group, i.e $q()=0$.

Remark The rst three conditions and Poincare duality imply that $2(M)=$ Y $2(N)$, the $\mathbb{Z}[$]-module with the same underlying group as $2(N)$ and with $\mathbb{Z}[]$-action determined by the homomorphism γ.

Proof Since these conditions are homotopy invariant and hold if M is the total space of such a bundle, they are necessary. Suppose conversely that they hold. As is torsion free N is the connected sum of a 3-manifold with fre fundamental group and some aspherical P_{3}-complexes [Tu90]. As is not fre there is at least one aspherical summand. Hence c:d: $=3$ and $H_{3}\left(\mathrm{c}_{\mathrm{N}} ; \mathrm{Z}^{\mathrm{w}_{1}(\mathrm{~N})}\right)$ is a monomorphism.
Let $p(\gamma): K(; 1)!K(; 1)$ be the S^{1}-bundle corresponding to γ and let $\mathrm{E}=\mathrm{N} \quad \mathrm{K}(; 1) \mathrm{K}(; 1)$ be the total space of the S^{1}-bundle over N induced by the classifying map $c_{N}: N!K(; 1)$. The bundle map covering c_{N} is the classifying map c_{E}. Then $1(E)=={ }_{1}(M), w_{1}(E)=\left(w_{1}(N)+w\right) \gamma=$ $w_{1}(M)$, as maps from to $Z=Z Z$, and $(E)=0=(M)$, by conditions (1) and (3). The maps C_{N} and c_{E} induce a homomorphism between the Gysin sequences of the S^{1}-bundles. Since N and have cohomological dimension 3 the Gysin homomorphisms in degree 3 are isomorphisms. Hence $\mathrm{H}_{4}\left(\mathrm{C}_{\mathrm{E}} ; Z^{\mathrm{w}_{1}(\mathrm{E})}\right)$ is a monomorphism, and so a fortiori $\mathrm{H}_{4}\left(\mathrm{f}_{\mathrm{E}} ; \mathrm{Z}^{\mathrm{w}_{1}(\mathrm{E})}\right.$) is also a monomorphism.

Since $(M)=0$ and ${ }_{1}^{(2)}()=0$, by Theorem 2.3, part (3) of Theorem 3.4 implies that $\quad 2(M)=\overline{H^{2}(; \mathbb{Z}[])}$. It follows from conditions (2) and (3) and the LHSSS that $\quad 2(M)=2(E)=\gamma \quad 2(N)$ as $\mathbb{Z}[]$-modules. Conditions (4) and (5) then give us a map ($C, \mathrm{C}_{\mathrm{M}}$) from M to $\mathrm{P}_{2}(\mathrm{E})=\mathrm{P}_{2}(\mathrm{~N}) \quad \mathrm{K}(; 1) \mathrm{K}(; 1)$ such that $\left(\mathcal{C}, C_{M}\right)[M]=f_{E}[E]$. Hence M is homotopy equivalent to E, by Theorem 3.8.

The nal assertion now follows from part (1) of Theorem 3.4.
As $2(N)$ is a projective $\mathbb{Z}[]$-module, by Theorem 2.18, it is homologically trivial and so $H_{q}\left(; \gamma{ }_{2}(N) \otimes Z^{w_{1}(M)}\right)=0$ if q 2. Hence it follows from the spectral sequence for $\mathrm{C}_{2}(M)$ that $\mathrm{H}_{4}\left(\mathrm{P}_{2}(\mathrm{M}) ; \mathrm{Z}^{\mathrm{w}_{1}(M)}\right.$) maps onto $H_{4}\left(; Z^{W_{1}(M)}\right)$, with kernel isomorphic to $\left.H_{0}\left(; \Gamma\left({ }_{2}(M)\right)\right) \otimes Z^{W_{1}(M)}\right)$, where
$\Gamma(2(M))=H_{4}(K(2(M) ; 2) ; \mathbb{Z})$ is Whitehead's universal quadratic construction on $2(\mathrm{M})$ (seeChapter I of [Ba']). This suggests that theremay be another formulation of the theorem in terms of conditions (1-3), together with some information on $k_{1}(M)$ and the intersection pairing on $\quad 2(M)$. If N is aspherical conditions (4) and (5) are vacuous or redundant.

Condition (4) is vacuous if is a free group, for then c:d: 2. In this case the Hurewicz homomorphism from ${ }_{3}(N)$ to $H_{3}\left(N ; Z^{w_{1}(N)}\right)$ is 0 , and so $\mathrm{H}_{3}\left(\mathrm{f}_{\mathrm{N}} ; \mathrm{Z}^{\mathrm{w}_{1}(N)}\right)$ is a monomorphism. The argument of the theorem would then extend if the Gysin map in degree 3 for the bundle $P_{2}(E)!P_{2}(N)$ were a monomorphism. If $=1$ then M is orientable, $=\mathrm{Z}$ and $(\mathrm{M})=0$, so $M^{\prime} S^{3} \quad S^{1}$. In general, if the restriction on is removed it is not clear that there should be a degre 1 map from M to such a bundle space E.

It would be of interest to have a theorem with hypotheses involving only M , without reference to a moded N . There is such a result in the aspherical case.

Theorem 4.12 A nite PD_{4}-complex M is homotopy equivalent to the total space of an S^{1}-bundle over an aspherical $P D_{3}$-complex if and only if $(M)=0$ and $={ }_{1}(M)$ has an in nite cyclic normal subgroup A such that A has one end and nite cohomological dimension.

Proof The conditions are clearly necessary. Conversely, suppose that they hold. Since $\neq \mathrm{A}$ has one end $\mathrm{H}^{\mathrm{s}}(\neq \mathrm{A} ; \mathbb{Z}[\neq \mathrm{A}])=0$ for s 1 and so an LHSSS calculation gives $\mathrm{H}^{\mathrm{t}}(; \mathbb{Z}[])=0$ for $\mathrm{t} \quad 2$. Moreover ${ }_{1}^{(2)}()=0$, by Theorem 2.3. Hence M is aspherical and is a $P D_{4}$-group, by Corollary 3.5.2. Since A is $F P_{1}$ and $c: d$: $A<1$ the quotient A is a $P D_{3}$-group, by Theorem 9.11 of [Bi]. Therefore M is homotopy equivalent to the total space of an S^{1}-bundle over the PD_{3}-complex $\mathrm{K}(\neq \mathrm{A} ; 1)$.

Note that a nitely generated torsion fre group has one end if and only if it is indecomposable as a free product and is neither in nite cyclic nor trivial.
In general, if M is homotopy equivalent to the total space of an S^{1}-bundle over some 3-manifold then $(M)=0$ and ${ }_{1}(M)$ has an in nite cydic normal subgroup A such that ${ }_{1}(M)=A$ is virtually of nite cohomological dimension. Do these conditions characterize such homotopy types?

Chapter 5

Surface bundles

In this chapter we shall show that a closed 4-manifold M is homotopy equivalent to the total space of a bre bundle with base and bre closed surfaces if and only if the obviously necessary conditions on the Euler characteristic and fundamental group hold. When the base is S^{2} we need also conditions on the characteristic classes of M, and when the base is $R P^{2}$ our results are incomplete. We shall defer consideration of bundles over RP ${ }^{2}$ with bre T or Kb and @ 0 to Chapter 11, and those with bre S^{2} or RP^{2} to Chapter 12.

5.1 Some general results

If B, E and F are connected nite complexes and $\mathrm{P}: \mathrm{E}$! B is a Hurewicz bration with brehomotopy equivalent to F then $(E)=(B)(F)$ and the long exact sequence of homotopy gives an exact sequence

$$
\text { (B)! }{ }_{1}(F)!\quad{ }_{1}(E)!\quad{ }_{1}(B)!\quad 1
$$

in which the image of ${ }_{2}(\mathrm{~B})$ under the connecting homomorphism @is in the centre of ${ }_{1}(F)$. (Seepage51 of [Go68].) Theseconditions are clearly homotopy invariant.

Hurewicz brations with base B and bre X areclassi ed by homotopy classes of maps from B to the Milgram classifying space $B E(X)$, where $E(X)$ is the monoid of all self homotopy equivalences of X, with the compact-open topology [Mi67]. If X has been given a base point the evaluation map from $E(X)$ to X is a Hurewicz bration with bre the subspace (and submonoid) $E_{0}(X)$ of base point preserving self homotopy equivalences [Go68].
Let T and K b denote the torus and Klein bottle, respectively.
Lemma 5.1 Let F be an aspherical closed surface and B a closed smooth manifold. There are natural bijections from the set of isomorphism classes of smooth F-bundles over B to the set of bre homotopy equivalence classes of Hurewicz brations with bre F over B and to the set ${ }_{[]} H^{2}\left(B ;{ }_{1}(F)\right)$, where the union is over conjugacy classes of homomorphisms : ${ }_{1}(B)$! Out (${ }_{1}(F)$) and ${ }_{1}(F)$ is the $\mathbb{Z}\left[{ }_{1}(F)\right]$-module determined by .

Proof If ${ }_{1}(F)=1$ the identity components of $\operatorname{Dif} f(F)$ and $E(F)$ are contractible [EE69]. Now every automorphism of ${ }_{1}(F)$ is realizable by a diffeomorphism and homotopy implies isotopy for self di eomorphisms of surfaces. (See Chapter V of [ZVC].) Therefore $0(\operatorname{Dif} f(F))=0(E(F))=\operatorname{Out}\left({ }_{1}(F)\right)$, and the inclusion of $\operatorname{Diff}(F)$ into $E(F)$ is a homotopy equivalence Hence $B \operatorname{Dif} f(F)^{\prime} B E(F)^{\prime} K\left(\operatorname{Out}\left({ }_{1}(F) ; 1\right)\right.$, so smooth F-bundles over B and Hurewicz brations with bre F over B are classi ed by the (unbased) homotopy set

$$
\left[B ; K\left(\operatorname{Out}\left({ }_{1}(F) ; 1\right)\right)\right]=\operatorname{Hom}(1(B) ; \operatorname{Out}(1(F)))=\backsim ;
$$

where $\sim{ }^{0}$ if there is an $\left.2 \operatorname{Out}_{1}(F)\right)$ such that $9(b)=(b)^{-1}$ for all b2 ${ }_{1}(B)$.

If ${ }_{1}(F) \in 1$ then $F=T$ or K b. Left multiplication by T on itself induces homotopy equivalences from T to the identity components of $\operatorname{Dif} f(T)$ and $E(T)$. (Similarly, the standard action of S^{1} on $K b$ induces homotopy equivalences from S^{1} to the identity components of $\operatorname{Diff}(K b)$ and $E(K b)$. Se Theorem III. 2 of [Go65].) Let : $G L(2 ; \mathbb{Z})!\operatorname{Aut}(T) \quad \operatorname{Diff}(T)$ be the standard linear action. Then the natural maps from the semidirect product T $G L(2 ; \mathbb{Z})$ to $\operatorname{Dif} f(T)$ and to $E(T)$ are homotopy equivalences. There fore $\operatorname{BDif} f(T)$ is a $K\left(Z^{2} ; 2\right)$ - bration over $K(G L(2 ; \mathbb{Z}) ; 1)$. It follows that T-bundles over B are classi ed by two invariants: a conjugacy class of homomorphisms : ${ }_{1}(B)!G L(2 ; \mathbb{Z})$ together with a cohomology class in $H^{2}\left(B ;\left(Z^{2}\right)\right)$. A similar argument applies if $F=K b$.

Theorem 5.2 Le M be a PD_{4}-complex and B and F aspherical closed surfaces. Then M is homotopy equivalent to the total space of an F-bundle over B if and only if $(M)=(B)(F)$ and ${ }_{1}(M)$ is an extension of ${ }_{1}(B)$ by ${ }_{1}(F)$. Moreover every extension of ${ }_{1}(B)$ by ${ }_{1}(F)$ is realized by some surface bundle, which is determined up to isomorphism by the extension.

Proof The conditions are clearly necessary. Suppose that they hold. If ${ }_{1}(F)=1$ each homomorphism : ${ }_{1}(B)!$ Out($\left.{ }_{1}(F)\right)$ corresponds to an unique equivalence class of extensions of ${ }_{1}(B)$ by ${ }_{1}(F)$, by Proposition 11.4.21 of $[R o]$. Hence there is an F-bundle $p: E$! B with ${ }_{1}(E)={ }_{1}(M)$ realizing the extension, and p is unique up to bundle isomorphism. If $F=T$ then every homomorphism : ${ }_{1}(B)!G L(2 ; \mathbb{Z})$ is realizable by an extension (for instance, the semidirect product $Z^{2} \quad{ }_{1}(B)$) and the extensions reelizing are classi ed up to equivalence by $\mathrm{H}^{2}\left({ }_{1}(B) ;\left(Z^{2}\right)\right)$. As B is aspherical the natural map from bundles to group extensions is a bijection. Similar arguments
apply if $F=K$ b. In all cases the bundle space E is aspherical, and so ${ }_{1}(M)$ is an $F F P_{4}$-group. Hence M ' E, by Corollary 3.5.1.

Such extensions (with (F) <0) were shown to be realizable by bundles in [J 079].

5.2 B undles with base and bre aspherical surfaces

In many cases the group ${ }_{1}(M)$ determines the bundle up to di eomorphism of its base. Lemma 5.3 and Theorems 5.4 and 5.5 are based on [J 094].

Lemma 5.3 Let G_{1} and G_{2} be groups with no nontrivial abelian normal subgroup. If H is a normal subgroup of $G=G_{1} \quad G_{2}$ which contains no nontrivial direct product then either $\mathrm{H} \quad \mathrm{G}_{1} \quad$ flg or $\mathrm{H} \quad \mathrm{flg} \quad \mathrm{G}_{2}$.

Proof Let P_{i} be the projection of H onto G_{i}, for $\mathrm{i}=1 ; 2$. If ($\mathrm{h} ; \mathrm{h} 9$) 2 H , $g_{1} 2 G_{1}$ and $g_{2} 2 G_{2}$ then ($\left.\left[h ; g_{1}\right] ; 1\right)=\left[\left(h ; h 9 ;\left(g_{1} ; 1\right)\right]\right.$ and $\left(1 ;\left[h^{0} ; g_{2}\right]\right)$ are in H. Hence $\left[P_{1} ; P_{1}\right] \quad\left[P_{2} ; P_{2}\right] \quad H$. Therefore either P_{1} or P_{2} is abelian, and so is trivial, since P_{i} is normal in G_{i}, for $i=1 ; 2$.

Theorem 5.4 Let be a group with a normal subgroup K such that K and $=K$ are $P D_{2}$-groups with trivial centres.
(1) If $C(K)=1$ and K_{1} is a nitely generated normal subgroup of then $C\left(K_{1}\right)=1$ also.
(2) The index [: KC (K)] is nite if and only if is virtually a direct product of PD_{2}-groups.

Proof (1) Let z $2 \mathrm{C}\left(\mathrm{K}_{1}\right)$. If $\mathrm{K}_{1} \mathrm{~K}$ then $\left[\mathrm{K}: \mathrm{K}_{1}\right]<1$ and $\mathrm{K}_{1}=1$. Le $M=\left[K: K_{1}\right]$!. Then $f(k)=k^{-1} z^{M} k z^{-M}$ is in K_{1} for all k in K. Now $f\left(k k_{1}\right)=k_{1}^{-1} f(k) k_{1}$ and also $f\left(k k_{1}\right)=f\left(k k_{1} k^{-1} k\right)=f(k)$ (since K_{1} is a normal subgroup centralized by z), for all k in K and k_{1} in K_{1}. Hence $f(k)$ is central in K_{1}, and so $f(k)=1$ for all k in K. Thus z^{M} centralizes K. Since
is torsion free we must have $z=1$. Otherwise the image of K_{1} under the projection $\mathrm{p}: \quad \mathrm{K}$ is a nontrivial nitely generated normal subgroup of $=K$, and so has trivial centralizer. Hence $p(z)=1$. Now $\left[K ; K_{1}\right] \quad K \backslash K_{1}$ and so $K \backslash K_{1} G 1$, for otherwise $K_{1} \quad C(K)$. Since z centralizes the nontrivial normal subgroup $K \backslash K_{1}$ in K we must again have $z=1$.
(2) Since K has trivial centre $K C(K)=K \quad C(K)$ and so the condition is necessary. Suppose that $f: G_{1} \quad G_{2}$! is an isomorphism onto a subgroup of nite index, where G_{1} and G_{2} are $P D_{2}$-groups. Let $L=K \backslash f\left(G_{1} G_{2}\right)$. Then $[K: L]<1$ and so L is also a $P D_{2}$-group, and is normal in $f\left(G_{1} G_{2}\right)$. We may assume that $L \quad f\left(G_{1}\right)$, by Lemma 5.3. Then $f\left(G_{1}\right) \neq$ is nite and is isomorphic to a subgroup of $f\left(G_{1} \quad G_{2}\right)=K \quad=K$, so $L=f\left(G_{1}\right)$. Now $f\left(G_{2}\right)$ normalizes K and centralizes L, and $[K: L]<1$. Hence $f\left(G_{2}\right)$ has a subgroup of nite index which centralizes K, as in part (1). Hence [: KC (K)]<1.

It follows immediately that if and K are as in the theorem whether
(1) $\mathrm{C}(\mathrm{K}) \in 1$ and $[: K C(K)]=1$;
(2) $[: K C(K)]<1$; or
(3) $C(K)=1$
depends only on and not on the subgroup K. In [J 094] these cases are labeled as types I, II and III, respectively. (In terms of the action: if Im() is in nite and $\operatorname{Ker}() \in 1$ then is of type I, if $\operatorname{Im}()$ is nite then is of type II, and if is injective then is of type III.)

Theorem 5.5 Let be a group with normal subgroups K and K_{1} such that $K, K_{1},=K$ and $=K_{1}$ are $P D_{2}$-groups with trivial centres. If $C(K) \in 1$ but $[: K C(K)]=1$ then $K_{1}=K$ is unique. If $[: K C(K)]<1$ then either $K_{1}=K$ or $K_{1} \backslash K=1$; in the latter case K and K_{1} are the only such normal subgroups which are P_{2}-groups with torsion free quotients.

Proof Let $\mathrm{p}: \quad \mathrm{E}=\mathrm{K}$ be the quotient epimorphism. Then $\mathrm{p}(\mathrm{C}(\mathrm{K}))$ is a nontrivial normal subgroup of $=K$, since $K \backslash C(K)=K=1$. Suppose that $K_{1} \backslash K \in 1$. Let $=K_{1} \backslash(K C(K))$. Then contains $K_{1} \backslash K$, and $6 C(K)$, since $K_{1} \backslash K \backslash C(K)=K_{1} \backslash K=1$. Since is normal in $K C(K)=K \quad C(K)$ we must have $\quad K_{1}$, by Lemma 5.3. Hence $K_{1} \backslash K$. Hence $p\left(K_{1}\right) \backslash p(C(K))=1$, and so $p\left(K_{1}\right)$ centralizes the nontrivial normal subgroup $p(C(K))$ in $=K$. Therefore $K_{1} \quad K$ and so $\left[K: K_{1}\right]<1$. Since $=K_{1}$ is torsion free we must have $K_{1}=K$.
If $K_{1} \backslash K=1$ then $\left[K ; K_{1}\right]=1$ (since each subgroup is normal in) so $K_{1} \quad C(K)$ and $[: K C(K)] \quad\left[=K: p\left(K_{1}\right)\right]<1$. Suppose K_{2} is a normal subgroup of which is a $P D_{2}$-group with $K_{2}=1$ and such that K_{2} is torsion free and $K_{2} \backslash K=1$. Then $H=K_{2} \backslash\left(K_{1}\right)$ is normal in $\mathrm{K}_{1}=\mathrm{K} \quad \mathrm{K}_{1}$ and $\left[\mathrm{K}_{2}: \mathrm{H}\right]<1$, so H is a PD_{2}-group with $\mathrm{H}=1$
and $\mathrm{H} \backslash \mathrm{K}=1$. The projection of H to K_{1} is nontrivial since $\mathrm{H} \backslash \mathrm{K}=1$. Therefore $\mathrm{H} \quad \mathrm{K}_{1}$, by Lemma 5.3, and so $\mathrm{K}_{1} \quad \mathrm{~K}_{2}$. Hence $\mathrm{K}_{1}=\mathrm{K}_{2}$.

Corollary 5.5.1 [J 093] Let and be automorphisms of , and suppose that $(K) \backslash K=1$. Then $(K)=K$ or (K), and so $\operatorname{Aut}\left(\begin{array}{ll}K & K)= \\ \hline\end{array}\right.$ Aut $(K)^{2} \sim(Z=Z Z)$.

We shall obtain a somewhat weaker result for groups of type III as a corollary of the next theorem.

Theorem 5.6 Let bea group with normal subgroups K and K_{1} such that K, K_{1} and $=K$ are $P D_{2}$-groups, $\quad K_{1}$ is torsion free and $(~=K)<0$. Then either $K_{1}=K$ or $K_{1} \backslash K=1$ and $=K \quad K_{1}$ or $\left(K_{1}\right)<(=K)$.

Proof Let p : ! $=\mathrm{K}$ be the quotient epimorphism. If $\mathrm{K}_{1} \mathrm{~K}$ then $K_{1}=K$, as in Theorem 5.5. Otherwise $p\left(K_{1}\right)$ has nite index in $=K$ and so $p\left(K_{1}\right)$ is also a $P D_{2}$-group. As the minimum number of generators of a $P D_{2-}$ group G is ${ }_{1}\left(G ; \mathbb{F}_{2}\right)$, we have $\left(K_{1}\right) \quad\left(p\left(K_{1}\right)\right) \quad(=K)$. We may assume that $\left(K_{1}\right) \quad(=K)$. Hence $\left(K_{1}\right)=\left(K_{K}\right)$ and so $\mathrm{pj}_{K_{1}}$ is an epimorphism. Therefore K_{1} and K_{K} have the same orientation type, by the nondegeneracy of Poincare duality with coe cients \mathbb{F}_{2} and the Wu relation $w_{1}\left[x=x^{2}\right.$ for all $\times 2 \mathrm{H}^{1}\left(\mathrm{G} ; \mathbb{F}_{2}\right)$ and $P D_{2}$-groups G. Hence $K_{1}=\neq K$. Since $P D_{2}$-groups are hop an $\mathrm{pj}_{\mathrm{K}_{1}}$ is an isomorphism. Hence $\left[\mathrm{K} ; \mathrm{K}_{1}\right] \mathrm{K} \backslash \mathrm{K}_{1}=1$ and so $=K: K_{1}=K \quad=K$.

Corollary 5.6.1 [J 098] The group has only nitely many such subgroups K.

Proof We may assume given $(\mathrm{K})<0$ and that is of type III. If is an epimorphism from to $Z=() Z$ such that $(K)=0$ then $(\operatorname{Ker}()=K)$
(K). Since is not a product K is the only such subgroup of $\operatorname{Ker}()$. Since
(K) divides () and $\mathrm{Hom}(; \mathrm{Z}=(\mathrm{Z})$ is nite the corollary follows.
The next two corollaries follow by elementary arithmetic.
Corollary 5.6.2 If $(K)=0$ or $(K)=-1$ and K_{1} is a $P D_{2}$-group then either $K_{1}=K$ or $=K \quad K_{1}$.

Corollary 5.6.3 If K and $=K$ are P_{2}-groups, $(~=K)<0$, and $(K)^{2}$ () then either K is the unique such subgroup or $=K \quad K$.

C orollary 5.6.4 Let M and M^{0} be the total spaces of bundles and ${ }^{0}$ with the same base B and bre F, where B and F are aspherical closed surfaces such that $(B)<(F)$. Then M^{0} is di eomorphic to M via a brepreserving di eomorphism if and only if ${ }_{1}(M 9=1(M)$.

Compare the statement of Melvin's Theorem on total spaces of S^{2}-bundles (Theorem 5.13 below.)
We can often recognise total spaces of aspherical surface bundles under weaker hypotheses on the fundamental group.

Theorem 5.7 Let M be a P_{4}-complex with fundamental group. Then the following conditions are equivalent:
(1) M is homotopy equivalent to the total space of a bundle with base and bre aspherical closed surfaces:
(2) has an $F P_{2}$ normal subgroup K such that $=K$ is a $P D_{2}$-group and $2(M)=0$;
(3) has a normal subgroup N which is a PD_{2}-group, N is torsion fre and $2(M)=0$.

Proof Clearly (1) implies (2) and (3). Conversely they each imply that has one end and so M is aspherical. If K is an FP_{2} normal subgroup in and K is a $P D_{2}$-group then K is a $P D_{2}$-group, by Theorem 1.19. If N is a normal subgroup which is a PD_{2}-group then an LHSSS argument gives $H^{2}(\neq \mathbb{N} ; \mathbb{Z}[\neq \mathrm{N}])=\mathrm{Z}$. Hence $\neq \mathrm{N}$ is virtually a $P D_{2}$-group, by Bowditch's Theorem. Since it is torsion free it is a PD_{2}-group and so the theorem follows from Theorem 5.2.

If $K=1$ we may avoid the di cult theorem of Bowditch here, for then $=K$ is an extension of $C(K)$ by a subgroup of $\operatorname{Out}(K)$, so v:c:d: $=K<1$ and thus $=K$ is virtually a P_{2}-group, by Theorem 9.11 of [Bi].
Kapovich has given an example of an aspherical closed 4-manifold M such that
${ }_{1}(M)$ is an extension of a $P D_{2}$-group by a nitely generated normal subgroup which is not $F P_{2}[K a 98]$.

Theorem 5.8 Let M bea P_{4}-complex with fundamental group and such that $(M)=0$. If has a subnormal subgroup G of in nite index which is a $P D_{2}$-group then M is aspherical. If moreover $G=1$ there is a subnormal chain $\mathrm{G}<\mathrm{J}<\mathrm{K} \quad$ such that $[: \mathrm{K}]<1$ and $\mathrm{K}=\mathrm{J}=\mathrm{J}=\mathrm{G}=\mathrm{Z}$.

Proof Let $G=G_{0}<G_{1}<::: G_{n}=$ be a subnormal chain of minimal length. Let $\mathrm{j}=\operatorname{minfi} \mathrm{j}\left[\mathrm{G}_{\mathrm{i}+1}: \mathrm{G}\right]=1 \mathrm{~g}$. Then $\left[\mathrm{G}_{\mathrm{j}}: \mathrm{G}\right]<1$, so G_{j} is FP . It is easily seen that the theorem holds for G if it holds for G_{j}. Thus we may assume that $\left[\mathrm{G}_{1}: \mathrm{G}\right]=1$. A nite induction up the subnormal chain using the LHSSS gives $H^{s}(; \mathbb{Z}[])=0$ for $s \quad 2$. Now ${ }_{1}^{(2)}\left(G_{1}\right)=0$, since G is nitely generated and $\left[\mathrm{G}_{1}: \mathrm{G}\right]=1$ [Ga00]. (This also can be deduced from Theorem 2.2 and the fact that $\operatorname{Out}(\mathrm{G})$ is virtually torsion free) Inducting up the subnormal chain gives ${ }_{1}^{(2)}()=0$ and so M is aspherical, by Theorem 3.4.
If $G<G$ are two normal subgroups of G_{1} with cohomological dimension 2 then $\mathbb{G}=G$ is locally nite, by Theorem 8.2 of [Bi]. Hence $\mathbb{G}=G$ is nite, since $(\mathrm{G})=[\mathrm{H}: \mathrm{G}](\mathrm{H})$ for any nitely generated subgroup H such that G H G. Moreover if G is normal in J then [J: $\left.\mathrm{N}_{\mathrm{J}}(\mathrm{G})\right]<1$, since \mathbb{G} has only nitely many subgroups of index [G:G].

Therefore we may assume that G is maximal among such subgroups of G_{1}. Let n be an element of G_{2} such that $n G n^{-1} \sigma G$, and let $H=G: \mathrm{nGn}^{-1}$. Then G is normal in H and H is normal in G_{1}, so $[\mathrm{H}: \mathrm{G}]=1$ and $\mathrm{c}: \mathrm{d}: \mathrm{H}=3$. Moreover H is $F P$ and $H^{s}(H ; \mathbb{Z}[H])=0$ for $s \quad 2$, so either $G_{1} H$ is locally nite or c:d: $\mathrm{G}_{1}>\mathrm{c}: \mathrm{d}: \mathrm{H}$, by Theorem 8.2 of [Bi]. If $\mathrm{G}_{1} \mathcal{H}$ is locally nite but not nite then we again have c:d:G $\mathrm{G}_{1}>\mathrm{c}: \mathrm{d}: \mathrm{H}$, by Theorem 3.3 of [GS81].

If $\mathrm{c}: \mathrm{d}: \mathrm{G}_{1}=4$ then $[: N(G)] \quad\left[\quad: \mathrm{G}_{1}\right]<1$. An LHSSS argument gives $H^{2}(N \quad(G)=G ; \mathbb{Z}[N(G)=G])=Z$. Hence $N(G)=G$ is virtually a $P D_{2}$-group, by [Bo99]. Therefore has a normal subgroup $\mathrm{K} \quad \mathrm{N}(\mathrm{G})$ such that [: $K]<1$ and $K=G$ is a $P D_{2}$-group of orientable type Then (G) $(K=G)=$ [: K] ($)=0$ and so $(K=G)=0$, since $(G)<0$. Thus $K=G=Z^{2}$, and there are clearly many possibilities for J.

If $\mathrm{c}: \mathrm{d}: \mathrm{G}_{1}=3$ then $\mathrm{G}_{1} H \mathrm{H}$ is locally nite, and hence is nite, by Theorem 3.3 of [GS81]. Therefore G_{1} is FP and $\mathrm{H}^{\mathrm{s}}\left(\mathrm{G}_{1} ; \mathbb{Z}\left[\mathrm{G}_{1}\right]\right)=0$ for s 2. Let $\mathrm{k}=\operatorname{minfi} \mathrm{j}\left[\mathrm{G}_{\mathrm{i}+1}: \mathrm{G}_{1}\right]=1 \mathrm{~g}$. Then $\mathrm{H}^{\mathrm{s}}\left(\mathrm{G}_{\mathrm{k}} ; \mathrm{W}\right)=0$ for $\mathrm{s} \quad 3$ and any free $\mathbb{Z}\left[\mathrm{G}_{\mathrm{k}}\right]$-module W. Hence c:d: $\mathrm{G}_{\mathrm{k}}=4$ and so $\left[\quad: \mathrm{G}_{\mathrm{k}}\right]<1$, by Strebel's Theorem. An LHS spectral sequence corner argument then shows that $\mathrm{G}_{\mathrm{k}}=\mathrm{G}_{\mathrm{k}-1}$ has 2 ends and $\left.H^{3}\left(G_{k-1}\right) ; \mathbb{Z}\left[G_{k-1}\right]\right)=Z$. Thus G_{k-1} is a $P D_{3}$-group, and therefore so is G_{1}. By a similar argument, $\mathrm{G}_{1}=\mathrm{G}$ has two ends also. The theorem follows easily.

Corollary 5.8.1 If $G=1$ and G is normal in then M has a nitecovering space which is homotopy equivalent to the total space of a surface bundle over T.

Proof Since G is normal in and M is aspherical M has a nite covering which is homotopy equivalent to a $\mathrm{K}(\mathrm{G} ; 1)$-bundle over an aspherical orientable surface, as in Theorem 5.7. Since $(M)=0$ the base must be T.

If $=G$ is virtually Z^{2} then it has a subgroup of index at most 6 which maps onto Z^{2} or $Z \quad-1 Z$.

Let G be a P_{2}-group such that $G=1$. Let be an automorphism of G whose class in Out(G) has in nite order and let : G ! Z bean epimorphism. Le $=(\mathrm{G} \quad \mathrm{Z}) \quad \mathrm{Z}$ where $(\mathrm{g} ; \mathrm{n})=(\mathrm{g}) ;(\mathrm{g})+\mathrm{n})$ for all g 2 G and n 2 Z . Then G is subnormal in but this group is not virtually the group of a surface bundle over a surface.
$f_{\bar{G}}$ has a subnormal subgroup G which is a $P D_{p}$-group with $G G_{p} 1$ then $\overline{\mathrm{G}}=\mathrm{Z}^{2}$ is subnormal in and hence contained in ${ }^{-1}$. In this case $h\left({ }^{\mathrm{p}}{ }^{-}\right) \quad 2$ and so either Theorem 8.1 or Theorem 9.2 applies, to show that M has a nite covering space which is homotopy equivalent to the total space of a T-bundle over an aspherical closed surface.

5.3 B undles with aspherical base and bre S^{2} or $R P^{2}$

Le $E^{+}\left(S^{2}\right)$ denote the connected component of $i d_{S^{2}}$ in $E\left(S^{2}\right)$, i.e., the submonoid of degree 1 maps. The connected component of $i_{S^{2}}$ in $E_{0}\left(S^{2}\right)$ may be identi ed with the double loop space $\Omega^{2} S^{2}$.

Lemma 5.9 Let X be a nite 2-complex. Then there are natural bijections $[X ; B O(3)]=\left[X ; B E\left(S^{2}\right)\right]=H^{1}\left(X ; \mathbb{F}_{2}\right) \quad H^{2}\left(X ; \mathbb{F}_{2}\right)$.

Proof As a self homotopy equivalence of a sphere is homotopic to the identity if and only if it has degree +1 the inclusion of $\mathrm{O}(3)$ into $\mathrm{E}\left(\mathrm{S}^{2}\right)$ is bijective on components. Evaluation of a self map of S^{2} at the basepoint determines brations of $S O(3)$ and $E+\left(S^{2}\right)$ over S^{2}, with bre $S O(2)$ and $\Omega^{2} S^{2}$, respectively, and the map of bres induces an isomorphism on ${ }_{1}$. On comparing the exact sequences of homotopy for these brations we see that the inclusion of $\mathrm{SO}(3)$ in $\mathrm{E}^{+}\left(\mathrm{S}^{2}\right)$ al so induces an isomorphism on ${ }_{1}$. SincetheStiefe-Whitney classes are de ned for any spherical bration and w_{1} and w_{2} are nontrivial on suitable S^{2}-bundles over S^{1} and S^{2}, respectively, the inclusion of $B O(3)$ into $B E\left(S^{2}\right)$ and the map $\left(w_{1} ; w_{2}\right): B E\left(S^{2}\right)!K(Z=2 Z ; 1) \quad K(Z=2 Z ; 2)$ induces isomorphisms on ifor i 2. The lemma follows easily.

Thus there is a natural 1-1 correspondance between S^{2}-bundles and spherical brations over such complexes, and any such bundle is determined up to isomorphismover X by its total Stiefe-Whitney class $w()=1+w_{1}()+w_{2}()$. (From another point of view: if $w_{1}()=w_{1}(9$ there is an isomorphism of the restrictions of and ${ }^{0}$ over the 1 -skeleton $X^{[1]}$. The di erence $w_{2}()-w_{2}(9$ is the obstruction to extending any such isomorphism over the 2 -skeleton.)

Theorem 5.10 Let M bea $P D_{4}$-complex and B an aspherical closed surface. Then the following conditions are equivalent:
(1) $\quad{ }_{1}(M)={ }_{1}(B)$ and $(M)=2(B)$;
(2) $\quad 1(M)={ }_{1}(B)$ and ${ }^{(G)} S^{2}$;
(3) M is homotopy equivalent to the total space of an S^{2}-bundle over B.

Proof If (1) holds then $\mathrm{H}_{3}(\mathbb{f} ; \mathbb{Z})=\mathrm{H}_{4}(\mathbb{F} ; \mathbb{Z})=0$, as ${ }_{1}(M)$ has one end, and $2(M)=\overline{H^{2}(; \mathbb{Z}[])}=Z$, by Theorem 3.12. Hence \mathbb{M} is homotopy equivalent to S^{2}. If (2) holds we may assume that there is a Hurewicz bration $\mathrm{h}: \mathrm{M}$! B which induces an isomorphism of fundamental groups. As the homotopy bre of h is \hat{G}, Lemma 5.9 implies that h is bre homotopy equivalent to the projection of an S^{2}-bundle over B. Clearly (3) implies the other conditions.

We shall summarize some of the key properties of the Stiefe-Whitney classes of such bundles in the following lemma.

Lemma 5.11 Let bean S^{2}-bundle over a closed surface B, with total space M and projection $\mathrm{p}: \mathrm{M}$! B . Then
(1) is trivial if and only if $w(M)=p w(B)$;
(2) ${ }_{1}(M)={ }_{1}(B)$ acts on $\quad 2(M)$ by multiplication by $w_{1}()$;
(3) the intersection form on $H_{2}\left(M ; \mathbb{F}_{2}\right)$ is even if and only if $w_{2}()=0$;
(4) if $q: B^{0}!B$ is a 2 -fold covering map with connected domain B^{0} then $w_{2}(q)=0$.

Proof (1) Applying the Whitney sum formula and naturality to the tangent bundle of the B^{3}-bundle associated to gives $w(M)=p w(B)[p w()$. Since p is a 2-connected map the induced homomorphism p is injective in degrees

2 and so $w(M)=p w(B)$ if and only if $w()=1$. By Lemma 5.9 this is so if and only if is trivial, since B is 2-dimensional.
(2) It is su cient to consider the restriction of over loops in B, where the result is clear.
(3) By Poincare duality, the intersection form is even if and only if the Wu class $v_{2}(M)=w_{2}(M)+w_{1}(M)^{2}$ is 0 . Now

$$
\begin{aligned}
\mathrm{v}_{2}(M) & =p\left(w_{1}(B)+w_{1}()\right)^{2}+p\left(w_{2}(B)+w_{1}(B)\left[w_{1}()+w_{2}()\right)\right. \\
& =p\left(w_{2}(B)+w_{1}(B)\left[w_{1}()+w_{2}()+w_{1}(B)^{2}+w_{1}()^{2}\right)\right. \\
& =p\left(w_{2}()\right) ;
\end{aligned}
$$

since $w_{1}(B)\left[={ }^{2}\right.$ and $w_{1}(B)^{2}=w_{2}(B)$, by the Wu relations for B. Hence $v_{2}(M)=0$ if and only if $w_{2}()=0$, as p is injective in degree 2 .
(4) We have $q\left(w_{2}(q) \backslash[B 9)=q\left(\left(q w_{2}()\right) \backslash[B 9)=w_{2}() \backslash q[B 9\right.\right.$, by the projection formula. Since q has degree 2 this is 0 , and since q is an isomorphism in degree 0 we nd $w_{2}(q) \backslash\left[B 9=0\right.$. Therefore $w_{2}(q)=0$, by Poincare duality for B^{0}.

Medvin has determined criteria for thetotal spaces of S^{2}-bundles over a compact surface to be di eomorphic, in terms of their Stiefel-Whitney dasses. We shall give an alternative argument for the cases with aspherical base.

Lemma 5.12 Let B bea closed surface and w bethe Poincare dual of $w_{1}(B)$. If u_{1} and u_{2} are elements of $H_{1}\left(B ; \mathbb{F}_{2}\right)-f 0 ; w g$ such that $u_{1}: u_{1}=u_{2}: u_{2}$ then there is a homeomorphism $f: B!B$ which is a composite of Dehn twists about two-sided essential simple closed curves and such that $f\left(u_{1}\right)=u_{2}$.

Proof For simplicity of notation, we shall use the same symbol for a simple closed curve u on B and its homology dass in $H_{1}\left(B ; \mathbb{F}_{2}\right)$. The curve u is two-sided if and only if $u: u=0$. In that case we shall let c_{u} denote the automorphism of $\mathrm{H}_{1}\left(\mathrm{~B} ; \mathbb{F}_{2}\right)$ induced by a Dehn twist about u. Note also that $u: u=u: w$ and $c_{v}(u)=u+(u: v) v$ for all u and two-sided v in $H_{1}\left(B ; \mathbb{F}_{2}\right)$.
If B is orientable it is well known that the group of isometries of the intersection form acts transitively on $H_{1}\left(B ; \mathbb{F}_{2}\right)$, and is generated by the automorphisms c_{u}. Thus the claim is true in this case.
If $w_{1}(B)^{2} \in 0$ then $\left.B=R P^{2}\right] T_{g}$, where T_{g} is orientable If $u_{1}: u_{1}=u_{2}: u_{2}=0$ then u_{1} and u_{2} are represented by simple closed curves in T_{g}, and so are related by a homeomorphism which is the identity on the $R P^{2}$ summand. If $\mathrm{u}_{1}: \mathrm{u}_{1}=\mathrm{u}_{2}: \mathrm{u}_{2}=1$ let $\mathrm{v}_{\mathrm{i}}=\mathrm{u}_{\mathrm{i}}+\mathrm{w}$. Then $\mathrm{v}_{\mathrm{i}}: \mathrm{v}_{\mathrm{i}}=0$ and this case follows from the earlier one.

Suppose nally that $w_{1}(B) \in 0$ but $w_{1}(B)^{2}=0$; equivalently, that $\left.B=K b\right] T_{g}$, where T_{g} is orientable. Let $f w ; z g$ be a basis for the homology of the $K b$ summand. In this case w is represented by a 2 -sided curve. If $\mathrm{u}_{1}: \mathrm{u}_{1}=\mathrm{u}_{2}: \mathrm{u}_{2}=0$ and $u_{1}: z=u_{2}: z=0$ then u_{1} and u_{2} are represented by simple closed curves in T_{g}, and so are related by a homeomorphism which is the identity on the K b summand. The claim then follows if $u: z=1$ for $u=u_{1}$ or u_{2}, since we then have $c_{w}(u): c_{w}(u)=c_{w}(u): z=0$. If u:u $\sigma 0$ and $u: z=0$ then $(u+z):(u+z)=0$ and $c_{u+z}(u)=z$. If $u: u \in 0, u: z \in 0$ and $u \in z$ then $c_{u+z+w} c_{w}(u)=z$. Thus if $u_{1}: u_{1}=u_{2}: u_{2}=1$ both u_{1} and u_{2} are related to z. Thus in all cases the claim is true.

Theorem 5.13 (Melvin) Let and ${ }^{0}$ be two S^{2}-bundles over an aspherical closed surface B . Then the following conditions are equivalent:
(1) there is a di eomorphism $f: B!B$ such that $=f 0$;
(2) the total spaces $\mathrm{E}(\mathrm{)}$ and E (9 are di eomorphic; and
(3) $w_{1}()=w_{1}\left(9\right.$ if $w_{1}()=0$ or $w_{1}(B), w_{1}()\left[w_{1}(B)=w_{1}\left(9\left[w_{1}(B)\right.\right.\right.$ and $w_{2}()=w_{2}(9$.

Proof Clearly (1) implies (2). A di eomorphism h:E ! E ${ }^{0}$ induces an isomorphism on fundamental groups; hence there is a di eomorphism $\mathrm{f}: \mathrm{B}$! B such that $f p$ is homotopic to p h. Now $h w(E 9)=w(E)$ and $f w(B)=$ $w(B)$. Hence pf $w(9)=p w()$ and so $w(f \quad 9=f w(9=w()$. Thus $f^{0}=$, by Theorem 5.10, and so (2) implies (1).
If (1) holds then $f w(9)=w()$. Since $w_{1}(B)=v_{1}(B)$ is the characteristic element for the cup product pairing from $\mathrm{H}^{1}\left(\mathrm{~B} ; \mathbb{F}_{2}\right)$ to $\mathrm{H}^{2}\left(\mathrm{~B} ; \mathbb{F}_{2}\right)$ and $H^{2}\left(f ; \mathbb{F}_{2}\right)$ is the identity $f w_{1}(B)=w_{1}(B), w_{1}()\left[w_{1}(B)=w_{1}\left(9\left[w_{1}(B)\right.\right.\right.$ and $w_{2}()=w_{2}(9$. Hence(1) implies (3).
If $w_{1}()\left[w_{1}(B)=w_{1}\left(9\left[w_{1}(B)\right.\right.\right.$ and $w_{1}()$ and $w_{1}(9$ are nether 0 nor $w_{1}(B)$ then there is a di eomorphism $f: B!B$ such that $f w_{1}\left(9=w_{1}()\right.$, by Lemma 5.12 (applied to the Poincare dual homology classes). Hence (3) implies (1).

C orollary 5.13.1 There are 4 di eomorphism classes of S^{2}-bundle spaces if B is orientable and (B) 0,6 if $B=K b$ and 8 if B is nonorientable and (B) <0.

See [Me84] for a more geometric argument, which applies also to S^{2}-bundles over surfaces with nonempty boundary. The theorem holds also when $B=S^{2}$ or RP ${ }^{2}$; there are 2 such bundles over S^{2} and 4 over RP ${ }^{2}$. (See Chapter 12.)

Theorem 5.14 Let M be a P_{4}-complex with fundamental group . The following are equivalent:
(1) M has a covering space of degree 2 which is homotopy equivalent to the total space of an S^{2}-bundle over an aspherical closed surface;
(2) the universal covering space \mathfrak{f} is homotopy equivalent to S^{2};
(3) $\quad G 1$ and $2(M)=Z$.

If these conditions hold the kernel K of the natural action of on $2(M)$ is a $P D_{2}$-group.

Proof Clearly (1) implies (2) and (2) implies (3). Suppose that (3) holds. If is nite and $2(M)=Z$ then $\mathcal{M}^{2}, C P^{2}$, and so admits no nontrivial fre group actions, by the Lefshetz xed point theorem. Hence must be in nite. Then $\mathrm{H}_{0}(\mathbb{M} ; \mathbb{Z})=Z, \mathrm{H}_{1}(\mathbb{F} ; \mathbb{Z})=0$ and $\mathrm{H}_{2}(\mathbb{F} \mathfrak{G} ; \mathbb{Z})=2(M)$, while $\mathrm{H}_{3}(\mathbb{G} ; \mathbb{Z})=\overline{\mathrm{H}^{1}(; \mathbb{Z}[])}$ and $\mathrm{H}_{4}(\mathbb{f} ; \mathbb{Z})=0$. Now $\left.\mathrm{Hom}_{\mathbb{Z}[}\right](2(\mathrm{M}) ; \mathbb{Z}[])=0$, since is in nite and ${ }_{2}(M)=Z$. Therefore $H^{2}(; \mathbb{Z}[])$ is in nite cydic, by Lemma 3.3, and so is virtually a PD_{2}-group, by Bowditch's Theorem. Hence $H_{3}(\mathbb{F} ; \mathbb{Z})=0$ and so \mathbb{M}, S^{2}. If C is a nite cyclic subgroup of K then $H_{n+3}(C ; \mathbb{Z})=H_{n}\left(C ; H_{2}(\mathbb{F} ; \mathbb{Z})\right)$ for all $n \quad 2$, by Lemma 2.10. Therefore C must betrivial, so K is torsion free Hence K is a $P D_{2}$-group and (1) now follows from Theorem 5.10.

A straightfoward Mayer-Vietoris argument may be used to show directly that if $\mathrm{H}^{2}(; \mathbb{Z}[])=\mathrm{Z}$ then has one end.

Lemma 5.15 Let X bea nite 2-complex. Then there are natural bijections $[\mathrm{X} ; \mathrm{BSO}(3)]=\left[\mathrm{X} ; \mathrm{BE}\left(\mathrm{RP}^{2}\right)\right]=\mathrm{H}^{2}\left(\mathrm{X} ; \mathbb{F}_{2}\right)$.

Proof Let ($1 ; 0 ; 0$) and $[1: 0: 0]$ be the base points for S^{2} and $R P^{2}$ re spectively. A based self homotopy equivalence f of $R P^{2}$ lifts to a based self homotopy equivalence F^{+}of S^{2}. If f is based homotopic to the identity then $\operatorname{deg}\left(f^{+}\right)=1$. Conversely, any based self homotopy equivalence is based homotopic to a map which is the identity on $R P^{1}$; if moreover $\operatorname{deg}\left(f^{+}\right)=1$ then this map is the identity on the normal bundle and it quickly follows that f is based homotopic to the identity. Thus $\mathrm{E}_{0}\left(\mathrm{RP}^{2}\right)$ has two components. The homeomorphism g de ned by $\mathrm{g}([\mathrm{x}: \mathrm{y}: \mathrm{z}])=[\mathrm{x}: \mathrm{y}:-\mathrm{z}]$ is isotopic to the identity (rotate in the ($\mathrm{x} ; \mathrm{y}$)-coordinates). However $\operatorname{deg}\left(\mathrm{g}^{+}\right)=-1$. It follows that $E\left(R P^{2}\right)$ is connected. As every self homotopy equivalence of $R P^{2}$ is covered by a degree 1 self map of S^{2}, there is a natural map from $E\left(R P^{2}\right)$ to $E+\left(S^{2}\right)$.

We may use obstruction theory to show that ${ }_{1}\left(E_{0}\left(R P^{2}\right)\right)$ has order 2 . Hence ${ }_{1}\left(E\left(R P^{2}\right)\right)$ has order at most 4. Suppose that there were a homotopy f_{t} through self maps of $R P^{2}$ with $f_{0}=f_{1}=i d_{R P^{2}}$ and such that the loop $f_{t}()$ is essential, where is a basepoint. Let F be the map from $R P^{2} S^{1}$ to $R P^{2}$ determined by $F(p ; t)=f_{t}(p)$, and let and be the generators of $H^{1}\left(R P^{2} ; \mathbb{F}_{2}\right)$ and $H^{1}\left(S^{1} ; \mathbb{F}_{2}\right)$, respectively. Then $F=\otimes 1+1 \otimes$ and so $(F)^{3}={ }^{2} \otimes$ which is nonzero, contradicting ${ }^{3}=0$. Thus there can be no such homotopy, and so the homomorphism from ${ }_{1}\left(E\left(R P^{2}\right)\right)$ to ${ }_{1}\left(R P^{2}\right)$ induced by the evaluation map must be trivial. It then follows from the exact sequence of homotopy for this evaluation map that the order of ${ }_{1}\left(E\left(R P^{2}\right)\right)$ is at most 2. The group $\mathrm{SO}(3)=\mathrm{O}(3)=1$) acts isometrically on $R P^{2}$. As the composite of the maps on 1 induced by the inclusions $\mathrm{SO}(3) \quad E\left(\mathrm{RP}^{2}\right)$ $\mathrm{E}^{+}\left(\mathrm{S}^{2}\right)$ is an isomorphism of groups of order 2 the rst map also induces an isomorphism. It follows as in Lemma 5.9 that there are natural bijections $[X ; B S O(3)]=\left[X ; B E\left(R P^{2}\right)\right]=H^{2}\left(X ; \mathbb{F}_{2}\right)$.

Thus there is a natural 1-1 correspondancebetween RP ${ }^{2}$-bundles and orientable spherical brations over such complexes. The RP^{2}-bundle corresponding to an orientable S^{2}-bundle is the quotient by the brewise antipodal involution. In particular, there are two RP^{2}-bundles over each closed aspherical surface.

Theorem 5.16 Let M bea P^{4}-complex and B an aspherical closed surface. Then M is homotopy equivalent to the total space of an $R P^{2}$-bundle over B if and only if ${ }_{1}(M)={ }_{1}(B) \quad(Z=2 Z)$ and $\quad(M)=(B)$.

Proof If E is the total space of an $R P^{2}$-bundle over B, with projection p, then $(E)=(B)$ and the long exact sequence of homotopy gives a short exact sequence $1!\quad Z=2 Z!{ }_{1}(E)!\quad 1(B)!1$. Since the bre has a product neighbourhood, $j w_{1}(E)=w_{1}\left(R P^{2}\right)$, where $j: R P^{2}!E$ is the inclusion of the bre over the basepoint of B, and so $w_{1}(E)$ considered as a homomorphism from ${ }_{1}(E)$ to $Z=Z Z$ splits the injection j. Therefore ${ }_{1}(E)=$
${ }_{1}$ (B) ($Z=2 Z$) and so the conditions are necessary, as they areclearly invariant under homotopy.
Suppose that they hold, and let $w:{ }_{1}(M)!\quad Z=2 Z$ be the projection onto the $Z=2 Z$ factor. Then the covering space associated with the kernel of w satis es the hypotheses of Theorem 5.10 and so \mathfrak{f} ' S^{2}. Therefore the homotopy bre of the map h from M to B inducing the projection of ${ }_{1}(M)$ onto ${ }_{1}(B)$ is homotopy equivalent to $R P^{2}$. The map h is bre homotopy equivalent to the projection of an RP ${ }^{2}$-bundle over B , by Lemma 5.15.

We may use the above results to re ne some of the conclusions of Theorem 3.9 on PD_{4}-complexes with nitely dominated covering spaces.

Theorem 5.17 Let M bea P_{4}-complex and $p: M$! M a regular covering map, with covering group $G=\operatorname{Aut}(p)$. If the covering space M is nitely dominated and $\mathrm{H}^{2}(\mathrm{G} ; \mathbb{Z}[\mathrm{G}])=Z$ then M has a nite covering space which is homotopy equivalent to a closed 4-manifold which bres over an aspherical closed surface.

Proof By Bowditch's Theorem G is virtually a P D D-group. Therefore as \mathbb{M} is nitely dominated it is homotopy equivalent to a closed surface, by [Go79]. The result then follows as in Theorems 5.2, 5.10 and 5.16.

Note that by Theorem 3.11 and the remarks in the paragraph preceding it the total spaces of such bundles with base an aspherical surface have minimal Euler characteristic for their fundamental groups (i.e. $\quad(M)=q()$).

Can thehypothesis that \mathbb{M} be nitely dominated be replaced by the more alge braic hypothesis that the chain complex of the universal cover $C\left(M^{\top}\right)$ bechain homotopy equivalent over $\mathbb{Z}\left[{ }_{1}(\mathbb{M})\right]$ to a complex of free $\mathbb{Z}\left[{ }_{1}(\mathbb{M})\right]$-modules which is nitely generated in degrees 2? One might hope to adapt the strategy of Theorem 4.5, by using cup-product with a generator of $\mathrm{H}^{2}(\mathrm{G} ; \mathbb{Z}[\mathrm{G}])=\mathrm{Z}$ to relate the equivariant cohomology of M to that of M. (See also [Ba80'].)

Theorem 5.18 A P D 4 -complex M is homotopy equivalent to the total space of a surface bundle over T or $K b$ if and only if $={ }_{1}(M)$ is an extension of Z^{2} or $Z{ }_{-1} Z$ (respectively) by an $F P_{2}$ normal subgroup K and $(M)=0$.

Proof The conditions are clearly necessary. If they hold then the covering space associated to the subgroup K is homotopy equivalent to a closed surface, by Corollary 4.5.3 together with Corollary 2.12.1, and so the theorem follows from Theorems 5.2, 5.10 and 5.16.

In particular, if is the nontrivial extension of Z^{2} by $Z=Z Z$ then $q()>0$.

5.4 B undles over S^{2}

Since S^{2} is the union of two discs along a circle, an F-bundle over S^{2} is determined by the homotopy dass of the clutching function, which is an element of ${ }_{1}$ (Diff(F)).

Theorem 5.19 Let M be a PD_{4}-complex with fundamental group and F a closed surface. Then M is homotopy equivalent to the total space of an F-bundle over S^{2} if and only if $(M)=2(F)$ and
(1) (when $(F)<0$ and $\left.w_{1}(F)=0\right)={ }_{1}(F)$ and $w_{1}(M)=w_{2}(M)=0$; or
(2) (when $(F)<0$ and $\left.w_{1}(F) \in 0\right)={ }_{1}(F), w_{1}(M) \in 0$ and $w_{2}(M)=$ $w_{1}(M)^{2}=\left(c_{M} w_{1}(F)\right)^{2}$; or
(3) (when $F=T$) $=Z^{2}$ and $w_{1}(M)=w_{2}(M)=0$, or $=Z \quad(Z=n Z)$ for some $n>0$ and, if $n=1$ or $2, w_{1}(M)=0$; or
(4) (when $F=K$ b) $=Z \quad-1 Z, w_{1}(M) \& 0$ and $w_{2}(M)=w_{1}(M)^{2}=0$, or has a presentation hx;y $\mathrm{yxy}^{-1}=\mathrm{x}^{-1} ; \mathrm{y}^{2 \mathrm{n}}=1 \mathrm{i}$ for some $\mathrm{n}>0$, where $w_{1}(M)(x)=0$ and $w_{1}(M)(y)=1$, and there is a map $p: M$! S^{2} which induces an epimorphism on 3; or
(5) (when $F=S^{2}$) $=1$ and the index (M) $=0$; or
(6) (when $F=R P^{2}$) $=Z=2 Z, w_{1}(M) \in 0$ and there is a class u of in nite order in $H^{2}(M ; \mathbb{Z})$ and such that $u^{2}=0$.

Proof Let p_{E} : E ! S^{2} be such a bundle. Then (E) $=2(F)$ and ${ }_{1}(E)={ }_{1}(F)=@_{2}\left(S^{2}\right)$, where $\operatorname{Im}(@) \quad{ }_{1}(F)$ [Go68]. The characteristic classes of E restrict to the characteristic classes of the bre, as it has a product neighbourhood. As the base is 1 -connected E is orientable if and only if the bre is orientable Thus the conditions on , and w_{1} are all necessary. We shall treat the other assertions case by case.
(1) and (2) If (F) < 0 any F -bundle over S^{2} is trivial, by Lemma 5.1. Thus the conditions are necessary. Conversely, if they hold then C_{M} is brehomotopy equivalent to the projection of an S^{2}-bundle with base F , by Theorem 5.10. The conditions on the Stiefel-Whitney classes then imply that $w()=1$ and hence that the bundle is trivial, by Lemma 5.11. Therefore M is homotopy equivalent to $S^{2} \quad F$.
(3) If $@=0$ there is a map q:E! T which induces an isomorphism of fundamental groups, and the map ($p_{E} ; q$) : $E!S^{2} T$ is clearly a homotopy equivalence, so $w(E)=1$. Conversely, if $(M)=0,=Z^{2}$ and $w(M)=1$ then M is homotopy equivalent to $\mathrm{S}^{2} \quad \mathrm{~T}$, by Theorem 5.10 and Lemma 5.11.

If $(M)=0$ and $=Z \quad(Z=n Z)$ for some $n>0$ then the covering space $M_{Z=n z}$ corresponding to the torsion subgroup $Z=n Z$ is homotopy equivalent to a lens space L, by Corollary 4.5.3. As observed in Chapter 4 the manifold
M is homotopy equivalent to the mapping torus of a generator of the group of covering transformations $\operatorname{Aut}\left(\mathrm{M}_{\mathrm{Z}=\mathrm{nz}} \neq \mathrm{M}\right)=\mathrm{Z}$. Since the generator induces the identity on $\quad 1(\mathrm{~L})=\mathrm{Z} \neq \mathrm{n} Z$ it is homotopic to id_{L}, if $\mathrm{n}>2$. This is also true if $n=1$ or 2 and M is orientable (Se Section 29 of [Co].) Therefore M is homotopy equivalent to $L \quad S^{1}$, which bres over S^{2} via the composition of the projection to L with the Hopf bration of L over S^{2}. (Hence $w(M)=1$ in these cases also.)
(4) Asin part (3), if ${ }_{1}(E)=Z \quad-Z={ }_{1}(K$ b) then E is homotopy equivalent to $S^{2} K$ b and so $w_{1}(E) \in 0$ while $w_{2}(E)=0$. Conversely, if $(M)=0, \quad=$
${ }_{1}(K b), M$ is nonorientable and $w_{1}(M)^{2}=w_{2}(M)=0$ then M is homotopy equivalent to $S^{2} K b$. Suppose now that $@ \in 0$. The homomorphism $\quad 3\left(p_{E}\right)$ induced by the bundle projection is an epimorphism. Conversely, if M satis es these conditions and $q: \mathrm{M}^{+}!\mathrm{M}$ is the orientation double cover then M^{+} satis es the hypotheses of part (3), and so $\mathcal{M}^{\prime} S^{3}$. Thereforeas $3(p)$ is onto the composition of the projection of $\mathfrak{f h}$ onto M with p is essentially the Hopf map, and so induces isomorphisms on all higher homotopy groups. Hence the homotopy bre of p is aspherical. As $2(M)=0$ the fundamental group of the homotopy bre of p is a torsion free extension of by Z, and so the homotopy
bre must be Kb . As in Theorem 5.2 above the map p is bre homotopy equivalent to a bundle projection.
(5) There are just two S^{2}-bundles over S^{2}, with total spaces $S^{2} \quad S^{2}$ and $\left.S^{2} \sim S^{2}=C P^{2}\right]-C P^{2}$, respectively. Thus the conditions are necessary. If M satis es these conditions then $H^{2}(M ; \mathbb{Z})=Z^{2}$ and there is an element u in $H^{2}(M ; \mathbb{Z})$ which generates an in nite cydic direct summand and has square $u\left[u=0\right.$. Thus $u=f i_{2}$ for some map $f: M!S^{2}$, where i_{2} generates $\mathrm{H}^{2}\left(\mathrm{~S}^{2} ; \mathbb{Z}\right)$, by Theorem 8.4.11 of [Sp]. Since u generates a direct summand there is a homology class z in $H_{2}(M ; \mathbb{Z})$ such that $u \backslash z=1$, and therefore (by the Hurewic theorem) there is a map $z: S^{2}!M$ such that $f z$ is homotopic to $\mathrm{id}_{\mathrm{s}^{2}}$. The homotopy bre of f is 1 -connected and has $2=Z$, by the long exact sequence of homotopy. It then follows easily from the spectral sequence for f that the homotopy bre has the homology of S^{2}. Therefore f is bre homotopy equivalent to the projection of an S^{2}-bundle over S^{2}.
(6) Since ${ }_{1}\left(\operatorname{Diff}\left(R P^{2}\right)\right)=Z=Z Z$ (see page 21 of [EE69]) there aretwo $R P^{2}$ bundles over S^{2}. Again the conditions are clearly necessary. If they hold then $\mathrm{u}=\mathrm{gi}_{2}$ for some map $\mathrm{g}: \mathrm{M}$! S^{2}. Let $\mathrm{q}: \mathrm{M}^{+}$! M be the orientation double cover and $\mathrm{g}^{+}=\mathrm{gq}$. Since $\mathrm{H}_{2}(\mathrm{Z}=2 \mathrm{Z} ; \mathbb{Z})=0$ the second homology of M is spherical. As we may assume u generates an in nite cyclic direct summand of $H^{2}(M ; \mathbb{Z})$ there is a map $z=q z^{+}: S^{2}!M$ such that $g z=g^{+} z^{+}$is homotopic to $i_{S^{2}}$. Hence the homotopy bre of g^{+}is S^{2}, by case (5). Since
the homotopy bre of g has fundamental group $Z=2 Z$ and is double covered by the homotopy bre of g^{+}it is homotopy equivalent to $R \mathrm{P}^{2}$. It follows as in Theorem 5.16 that g is bre homotopy equivalent to the projection of an $R P^{2}$-bundle over S^{2}.

Theorems $5.2,5.10$ and 5.16 may each be rephrased as giving criteria for maps from M to B to be brehomotopy equivalent to brebundleprojections. With the hypotheses of Theorem 5.19 (and assuming also that $@=0$ if $\quad(M)=0$) we may conclude that a map $f: M!S^{2}$ is bre homotopy equivalent to a bre bundle projection if and only if $f \mathrm{i}_{2}$ generates an in nite cyclic direct summand of $H^{2}(M ; \mathbb{Z})$.

Is therea criterion for part (4) which does not refer to 3 ? Theother hypotheses are not su cient alone (See Chapter 11.)

It follows from Theorem 5.10 that the conditions on the Stiefel-Whitney classes are independent of the other conditions when $={ }_{1}(F)$. Note also that the nonorientable S^{3} - and $R P^{3}$-bundles over S^{1} are not T-bundles over S^{2}, while if $\left.M=C P^{2}\right] C P^{2}$ then $=1$ and $(M)=4$ but $(M) \in 0$. See Chapter 12 for further information on parts (5) and (6).

5.5 Bundles over R P^{2}

Since $R P^{2}=M b\left[D^{2}\right.$ is the union of a Möbius band $M b$ and a disc D^{2}, a bundle $p: E!R P^{2}$ with bre F is determined by a bundle over $M b$ which restricts to a trivial bundle over ©M b, i.e. by a conjugacy class of elements of order dividing 2 in $\quad 0(H$ omeo(F)), together with the class of a gluing map over $@ M b=@^{2}$ modulo those which extend across D^{2} or M b, i.e an dement of a quotient of ${ }_{1}\left(H\right.$ omeo(F)). If F is aspherical $\quad 0\left(H\right.$ omeo(F)) $=\operatorname{Out}\left({ }_{1}(F)\right)$, while ${ }_{1}(H$ omeo $(F))=1(F)[G o 65]$.

We may summarizethekey properties of the algebraic invariants of such bundles with F an aspherical closed surface in the following lemma. Let Z be the nontrivial in nite cyclic $Z=2 Z$-module. The groups $H^{1}(Z=2 Z ; Z), H^{1}\left(Z=2 Z ; \mathbb{F}_{2}\right)$ and $H^{1}\left(R P^{2} ; Z{ }^{\prime}\right)$ are canonically isomorphic to $Z=Z Z$.

Lemma 5.20 Let P : E! R P^{2} bethe projection of an F-bundle, where F is an aspherical closed surface, and let x be the generator of $H^{1}\left(R P^{2} ; Z\right)$. Then

$$
\begin{equation*}
(E)=(F) ; \tag{1}
\end{equation*}
$$

(2) @ $\left.{ }_{2}\left(R P^{2}\right)\right){ }_{1}(F)$ and there is an exact sequence of groups

$$
0!\quad 2(E)!Z \xrightarrow{@_{4}}{ }_{1}(F)!{ }_{1}(E)!Z=2 Z!1 ;
$$

(3) if @=0 then ${ }_{1}(E)$ has one end and acts nontrivially on $\quad 2(E)=Z$, and the covering space E_{F} with fundamental group ${ }_{1}(F)$ is homeomorphic to $S^{2} \quad F$, so $w_{1}(E) j_{1}(F)=w_{1}\left(E_{F}\right)=w_{1}(F)$ (as homomorphisms from ${ }_{1}(F)$ to $\left.Z=Z Z\right)$ and $w_{2}\left(E_{F}\right)=w_{1}\left(E_{F}\right)^{2}$;
(4) if @ध 0 then $(F)=0,1(E)$ has two ends, $\quad 2(E)=0$ and $Z=2 Z$ acts by inversion on (Z);
(5) $\mathrm{px}^{3}=02 \mathrm{H}^{3}(\mathrm{E} ; \mathrm{p}$ Z $)$.

Proof Condition (1) holds since the Euler characteristic is multiplicative in brations, while (2) is part of the long exact sequence of homotopy for p. The image of @is central by [Go68], and is therefore trivial unless (F) $=0$. Conditions (3) and (4) then follow as the homomorphisms in this sequence are compatible with the actions of the fundamental groups, and E_{F} is the total space of an F -bundle over S^{2}, which is a trivial bundle if $@=0$, by Theorem 5.19. Condition (5) holds since $\mathrm{H}^{3}\left(\mathrm{RP}^{2} ; Z\right)=0$.

Let be a group which is an extension of $Z=2 Z$ by a normal subgroup G, and let $t 2$ be an element which maps nontrivially to $=G=Z=2 Z$. Then $u=t^{2}$ is in G and conjugation by t determines an automorphism of G such that
$(u)=u$ and ${ }^{2}$ is the inner automorphism given by conjugation by u.
Conversely, let be an automorphism of G whose square is inner, say ${ }^{2}(\mathrm{~g})=$ ugu^{-1} for all g 2 G . Let $\mathrm{v}=(\mathrm{u})$. Then $\left.{ }^{3}(\mathrm{~g})={ }^{2}(\mathrm{~g})\right)=\mathrm{u}(\mathrm{g}) \mathrm{c}^{-1}=$ $\left({ }^{2}(\mathrm{~g})\right)=\mathrm{v}(\mathrm{g}) \mathrm{v}^{-1}$ for all g 2 G . Therefore vu^{-1} is central. In particular, if the centre of G is trivial xes u, and we may de ne an extension

$$
: 1!G!\quad!\quad Z=2 Z!~ 1
$$

in which has the presentation $\mathrm{hG} ; \mathrm{t} \mathrm{j} \mathrm{t} \mathrm{gt}{ }^{-1}=(\mathrm{g})$; $\mathrm{t}^{2}=\mathrm{ui}$. If is another automorphism in the same outer automorphism class then and are equivalent extensions. (Note that if $=: c_{h}$, where c_{h} is conjugation by h , then $(\mathrm{h}) \mathrm{uh})=(\mathrm{h}) \mathrm{uh}$ and $\left.{ }^{2}(\mathrm{~g})=(\mathrm{h}) \mathrm{uh}: \mathrm{g}:(\mathrm{h}) \mathrm{uh}\right)^{-1}$ for all g2 G.)

Lemma 5.21 If $(F)<0$ or $(F)=0$ and $@=0$ then an F-bundle over $R P^{2}$ is determined up to isomorphism by the corresponding extension of fundamental groups.

Proof If (F) < 0 such bundles and extensions are each determined by an element of order 2 in $\operatorname{Out}\left({ }_{1}(F)\right)$. If $(F)=0$ bundles with $@=0$ are the restrictions of bundles over $R P^{1}=K(Z=2 Z ; 1)$ (compare Lemma 4.10). Such bundles are determined by an element of order 2 in $\operatorname{Out}\left({ }_{1}(F)\right)$ and a cohomology class in $\mathrm{H}^{2}\left(\mathrm{Z}=2 \mathrm{Z}\right.$; $\left.{ }_{1}(\mathrm{~F})\right)$, by Lemma 5.1, and so correspond bijectively to extensions also.

Lemma 5.22 Let M be a PD_{4}-complex with fundamental group. A map $f: M!R P^{2}$ is bre homotopy equivalent to the projection of a bundle over $R P^{2}$ with bre an aspherical closed surface if $l_{1}(f)$ is an epimorphism and either
(1) (M) 0 and $2(f)$ is an isomorphism; or
(2) $\quad(M)=0$, has two ends and $3(f)$ is an isomorphism.

Proof In each case is in nite, by Lemma 3.14. In case (1) $\mathrm{H}^{2}(; \mathbb{Z}[])=\mathrm{Z}$ (by Lemma 3.3) and so has oneend, by Bowditch's Theorem. Hence $\sqrt{1}$ ' S^{2}. Moreover the homotopy bre of f is aspherical, and its fundamental group is a surface group. (See Chapter X for details.) In case (2) \mathcal{f}, S^{3}, by Corollary 4.5.3. Hence the lift $f \sim:|f| S^{2}$ is homotopic to the Hopf map, and so induces isomorphisms on all higher homotopy groups. Therefore the homotopy bre of f is aspherical. As $2(M)=0$ the fundamental group of the homotopy bre is a (torsion free) in nite cyclic extension of and so must be either Z^{2} or Z ${ }_{-1} Z$. Thus the homotopy bre of f is homotopy equivalent to T or $K b$. In both cases the argument of Theorem 5.2 now shows that f is bre homotopy equivalent to a surface bundle projection.

5.6 B undles over $R P^{2}$ with $@=0$

If we assume that the connecting homomorphism @: $\quad 2(E)!\quad{ }_{1}(F)$ is trivial then conditions (2), (3) and (5) of Lemma 5.20 simplify to conditions on E and the action of ${ }_{1}(E)$ on $\quad 2(E)$. These conditions almost su ce to characterize the homotopy types of such bundle spaces; there is one more necesssary condition, and for nonorientable manifolds there is a further possible obstruction, of order at most 2.

Theorem 5.23 Let M be a P^{2}-complex and let $m: M_{u}$! M be the covering associated to $=\operatorname{Ker}(\mathrm{u})$, where $u:={ }_{1}(M)!\operatorname{Aut}\left({ }_{2}(M)\right)$ is the natural action. Let x be the generator of $\mathrm{H}^{1}(Z=2 Z ; Z)$. If M is homotopy equivalent to the total space of a bre bundle over RP ${ }^{2}$ with bre an
aspherical closed surface and with $@=0$ then $\quad 2(M)=Z, u$ is surjective, $w_{2}\left(M_{u}\right)=w_{1}\left(M_{u}\right)^{2}$ and $u x^{3}$ has image 0 in $H^{3}\left(M ; \mathbb{F}_{2}\right)$. Moreover the homomorphism from $H^{2}\left(M ; Z^{u}\right)$ to $H^{2}\left(S^{2} ; Z^{u}\right)$ induced by a generator of $\quad 2(M)$ is onto. Conversely, if M is orientable these conditions imply that M is homotopy equivalent to such a bundle space. If M is nonorientable there is a further obstruction of order at most 2 .

Proof The necessity of most of these conditions follows from Lemma 5.20. The additional condition holds since the covering projection from S^{2} to RP^{2} induces an isomorphism $H^{2}\left(R^{2} ; Z^{u}\right)=H^{2}\left(S^{2} ; Z^{4}\right)=H^{2}\left(S^{2} ; \mathbb{Z}\right)$.
Suppose that they hold. Let $g: S^{2}!P_{2}\left(R P^{2}\right)$ and $j: S^{2}!M$ represent generators for $2\left(P_{2}\left(R P^{2}\right)\right.$) and $2(M)$, respectively. After replacing M by a homotopy equivalent space if necessary, we may assume that j is the inclusion of a subcomplex. We may identify u with a map from M to $K(Z=2 Z ; 1)$, via the isomorphism $[\mathrm{M} ; \mathrm{K}(\mathrm{Z}=2 \mathrm{Z} ; 1)]=\mathrm{Hom}(; \mathrm{Z}=2 \mathrm{Z})$. The only obstruction to the construction of a map from M to $\mathrm{P}_{2}\left(\mathrm{RP}^{2}\right)$ which extends g and lifts u lies in $H^{3}\left(M ; S^{2} ; Z^{4}\right)$, since $\left.u \quad 2\left(R P^{2}\right)\right)=Z^{4}$. This group maps injectively to $\mathrm{H}^{3}\left(\mathrm{M} ; \mathrm{Z}^{\mathrm{u}}\right)$, since restriction maps $\mathrm{H}^{2}\left(\mathrm{M} ; \mathrm{Z}^{\mathrm{u}}\right)$ onto $\mathrm{H}^{2}\left(\mathrm{~S}^{2} ; \mathrm{Z}^{\mathrm{u}}\right)$, and so this obstruction is 0 , since its image in $H^{3}\left(M ; Z^{u}\right)$ is $u k_{1}\left(R P^{2}\right)=u x^{3}=0$. Therefore there is a map $h: M!P_{2}\left(R P^{2}\right)$ such that ${ }_{1}(h)=u$ and $\quad 2(h)$ is an isomorphism. The set of such maps is parametrized by $H^{2}\left(M ; S^{2} ; Z^{4}\right)$.
As $Z=2 Z$ acts trivially on ${ }_{3}\left(R P^{2}\right)=Z$ the second k-invariant of $R P^{2}$ lies in $H^{4}\left(P_{2}\left(R P^{2}\right) ; Z\right)$. This group is in nitecyclic, and is generated by $t=k_{2}\left(R P^{2}\right)$. (Seex3.12 of [Si67].) The obstruction to lifting h to a map from M to $P_{3}\left(R P^{2}\right)$ is $h t$. Let $n: P_{2}\left(R P^{2}\right)!P_{2}\left(R P^{2}\right)$ be the universal covering, and let z bea generator of $H^{2}\left(\mathbb{P}_{2}\left(R P^{2}\right) ; \mathbb{Z}\right)=Z$. Then h lifts to a map $h_{u}: M_{u}$! $\mathbb{P}_{2}\left(R P^{2}\right)$, so that $n h_{u}=h m$. (Note that h_{u} is determined by $h_{u} z$, since $\mathbb{P}_{2}\left(R P^{2}\right)$, $K(Z ; 2)$.

The covering space M_{u} is homotopy equivalent to the total space of an S^{2} bundle q:E! F, where F is an aspherical closed surface, by Theorem 5.14. Since acts trivially on ${ }_{2}\left(M_{u}\right)$ the bundle is orientable (i.e, $w_{1}(q)=0$) and so $q w_{2}(q)=w_{2}(E)+w_{1}(E)^{2}$, by the Whitney sum formula. Therefore $q w_{2}(q)=0$, since $w_{2}\left(M_{u}\right)=w_{1}\left(M_{u}\right)^{2}$, and so $w_{2}(q)=0$, since q is $2-$ connected. Hence the bundle is trivial, by Lemma 5.11, and so M_{u} is homotopy equivalent to $S^{2} F$. Let j_{F} and j_{S} bethe inclusions of the factors. Then $h_{u} j_{S}$ generates ${ }_{2}\left(P_{2}\right)$. We may choose h so that $h_{u} j_{F}$ is null homotopic. Then $h_{u} z$ is Poincare dual to $j_{F}[F]$, and so $h_{u} z^{2}=0$, since $j_{F}[F]$ has self intersection 0 . As nt is a multiple of z^{2}, it follows that $\mathrm{mht}=0$.

If M is orientable $m=H^{4}(m ; \mathbb{Z})$ is a monomorphism and so $h t=0$. Hence h lifts to a map $f: M$! $P_{3}\left(R P^{2}\right)$. As $P_{3}\left(R P^{2}\right)$ may be constructed from $R P^{2}$ by adjoining cells of dimension at least 5 we may assume that f maps M into $R P^{2}$, after a homotopy if necessary. Since ${ }_{1}(f)=u$ is an epimorphism and $z_{2}(f)$ is an isomorphism f is bre homotopy equivalent to the projection of an F -bundle over RP ${ }^{2}$, by Lemma 5.22.
In general, we may assume that h maps the 3-skeleton $M^{[3]}$ to $R P^{2}$. Let w be a generator of $H^{2}\left(P_{2}\left(R P^{2}\right) ; Z\right)=H^{2}\left(R P^{2} ; Z\right)=Z$ and de ne a function
$: H^{2}\left(M ; Z^{u}\right)!H^{4}(M ; \mathbb{Z})$ by $(g)=g\left[g+g\left[h w\right.\right.$ for all $g 2 H^{2}\left(M ; Z^{u}\right)$. If M is nonorientable $H^{4}(M ; \mathbb{Z})=Z=2 Z$ and is a homomorphism. The sole obstruction to extending $\mathrm{hj}_{\mathrm{M}}{ }^{33]}$ to a map $\mathrm{f}: \mathrm{M}!\mathrm{RP}^{2}$ is the image of $h \mathrm{t}$ in Coker(), which is independent of the choice of lift h. (Seex3.24 of [Si67].)

Are these hypotheses independent? A closed 4-manifold M with $={ }_{1}(M)$ a $P D_{2}$-group and ${ }_{2}(M)=Z$ is homotopy equivalent to the total space of an S^{2}-bundle P : E! B, where B is an aspherical closed surface Therefore if u is nontrivial $\mathrm{M}_{\mathrm{u}}{ }^{\prime} \mathrm{E}^{+}$, where $\mathrm{q}: \mathrm{E}^{+}!\mathrm{B}^{+}$is the bundle induced over a double cover of B. As $w_{1}(q)=0$ and $q w_{2}(q)=0$, by part (3) of Lemma 5.11, we have $w_{1}\left(E^{+}\right)=q w_{1}\left(B^{+}\right)$and $w_{2}\left(E^{+}\right)=q w_{2}\left(B^{+}\right)$, by the Whitney sum formula. Hence $w_{2}\left(M_{u}\right)=w_{1}\left(M_{u}\right)^{2}$. (In particular, $w_{2}\left(M_{u}\right)=0$ if M is orientable) Moreover since c:d: $=2$ the condition $u x^{3}=0$ is automatic. (It shall follow directly from the results of Chapter 10 that any such S^{2}-bundle space with u nontrivial bres over $R P^{2}$, even if it is not orientable.)
On the other hand, if $Z=Z Z$ is a (semi)direct factor of the cohomology of $Z=Z Z$ is a direct summand of that of and so the image of x^{3} in $H^{3}(; Z)$ is nonzero.

Is the obstruction al ways 0 in the nonorientable cases?

Chapter 6

Simple homotopy type and surgery

The problem of determining the high-dimensional manifolds within a given homotopy type has been successfully reduced to the determination of normal invariants and surgery obstructions. This strategy applies also in dimension 4, provided that the fundamental group is in the class SA generated from groups with subexponential growth by extensions and increasing unions [FT 95]. (Essentially all the groups in this class that we shall discuss in this book are in fact virtually solvable). We may often avoid this hypothesis by using 5 dimensional surgery to construct s-cobordisms.

We begin by showing that the Whitehead group of the fundamental group is trivial for surface bundles over surfaces, most circle bundles over geometric 3manifolds and for many mapping tori. In x2 we de ne the modi ed surgery structure set, parametrizing s-cobordism classes of simply homotopy equivalences of closed 4-manifolds. This notion allows partial extensions of surgery arguments to situations wherethefundamental group is not elementary amenable. Although many papers on surgery do not explicitly consider the 4-dimensional cases, their results may often be adapted to these cases. In x3 we comment briefly on approaches to the s-cobordism theorem and classi cation using stabilization by connected sum with copies of $S^{2} \quad S^{2}$ or by cartesian product with R .

In $\times 4$ we show that 4-manifolds M such that $={ }_{1}(M)$ is torsion free virtually poly-Z and $(\mathrm{M})=0$ are determined up to homeomorphism by their fundamental group (and Stiefe-Whitney classes, if $h()<4$). We also characterize 4-dimensional mapping tori with torsion free, elementary amenable fundamental group and show that the structure sets for total spaces of RP^{2}-bundles over T or K b are nite $\operatorname{In} \times 5$ we extend this niteness to $R P^{2}$-bundle spaces over closed hyperbolic surfaces and show that total spaces of bundles with bre S^{2} or an aspherical closed surface over aspherical bases are determined up to s-cobordism by their homotopy type. (We shall consider bundles with base or bre geometric 3-manifolds in Chapter 13).

6.1 The Whitehead group

In this section we shall rely heavily upon the work of Waldhausen in [Wd78]. The class of groups Cl is the smallest class of groups containing the trivial group and which is closed under generalised free products and HNN extensions with amalgamation over regular coherent subgroups and under Itering direct limit. This class is also closed under taking subgroups, by Proposition 19.3 of [Wd78]. If G is in Cl then $\mathrm{Wh}(\mathrm{G})=0$, by Theorem 19.4 of [Wd78]. The argument for this theorem actually shows that if $\mathrm{G}=\mathrm{A}$ с B and C is regular coherent then there are \backslash Mayer-Vietoris" sequences:
Wh(A) $\mathrm{Wh}(B)!\mathrm{Wh}(G)!K(\mathbb{Z}[C])!K(\mathbb{Z}[A]) K(\mathbb{Z}[B])!K(\mathbb{Z}[G])!0 ;$ and similarly if $\mathrm{G}=\mathrm{A}$ c. (Se Sections 17.1.3 and 17.2.3 of [Wd78]).
The class Cl contains all fre groups and poly- Z groups and the class X of Chapter 2. (In particular, all the groups $Z \mathrm{~m}$ are in CI). Since every $\mathrm{PD}_{2}{ }^{-}$ group is either poly-Z or is the generalised free product of two free groups with amal gamation over in nite cydic subgroups it is regular coherent, and is in Cl . Hence homotopy equivalences between S^{2}-bundles over aspherical surfaces are simple The following extension implies the corresponding result for quotients of such bundle spaces by free involutions.

Theorem 6.1 Let be a semidirect product $\sim(Z=2 Z)$ where is a surface group. Then Wh()$=0$.

Proof Assume rst that $=(Z=2 Z)$. Let $\Gamma=\mathbb{Z}[]$. There is a cartesian square expressing $\Gamma[Z=Z Z]=\mathbb{Z}[\quad(Z=2 Z)]$ as the pullback of the reduction of coe cients map from Γ to $\Gamma_{2}=\Gamma=2 \Gamma=\mathbb{Z}=\mathbb{Z}[$] over itself. (The two maps from $\Gamma[Z=2 Z]$ to Γ send the generator of $Z=2 Z$ to +1 and -1 , respectively). The Mayer-Vietoris sequence for algebraic K-theory traps $K_{1}(\Gamma[Z=Z Z])$ be tween $K_{2}\left(\Gamma_{2}\right)$ and $K_{1}(\Gamma)^{2}$ (see Theorem 6.4 of $[\mathrm{Mi}]$). Now since c:d: $=2$ the higher K -theory of $\mathrm{R}[$] can be computed in terms of the homology of with coe cients in the K -theory of R (cf. the Corollary to Theorem 5 of the introduction of [Wd78]). In particular, the map from $\mathrm{K}_{2}(\Gamma)$ to $\mathrm{K}_{2}\left(\Gamma_{2}\right)$ is onto, while $K_{1}(\Gamma)=K_{1}(\mathbb{Z}) \quad\left(=9\right.$ and $K_{1}\left(\Gamma_{2}\right)==0$. It now follows easily that $K_{1}(\Gamma[Z=Z Z])$ is generated by the images of $K_{1}(\mathbb{Z})=f 1 g$ and $\quad(Z=2 Z)$, and so $\mathrm{Wh}(\quad(\mathrm{Z}=2 \mathrm{Z}))=0$.
If $=\sim(Z=2 Z)$ is not such a direct product it is isomorphic to a discrete subgroup of $I \operatorname{som}(\mathbb{X})$ which acts properly discontinuously on X, where $\mathbb{X}=\mathbb{E}^{2}$ or \mathbb{H}^{2}. (Se [EM82], [Zi]). The singularities of the corresponding 2-orbifold
$X=$ are either cone points of order 2 or reflector curves; there are no corner points and no cone points of higher order. Let $\mathrm{j} X=\mathrm{j}$ be the surface obtained by forgetting the orbifold structure of $X=$, and let m be the number of cone points. Then $(j X=j)-(m=2)=$ orb $(X=) \quad 0$, by the Riemann-Hurwitz formula [Sc83'], so either $(j X=j) \quad 0$ or $(j X=j)=1$ and $m \quad 2$ or $j X=j=$ S^{2} and $m \quad 4$.

We may separate $X=$ along embedded circles (avoiding the singularities) into pieces which are either (i) discs with at least two cone points; (ii) annuli with one cone point; (iii) annuli with one boundary a reflector curve; or (iv) surfaces other than D^{2} with nonempty boundary. In each case the inclusions of the separating circles induce monomorphisms on orbifold fundamental groups, and so is a generalized free product with amalgamation over copies of Z of groups of the form (i) $\quad m(Z=2 Z)$ (with $m \quad 2$); (ii) $Z \quad$ ($Z=2 Z$); (iii) $Z \quad$ ($Z=2 Z$); or (iv) mZ , by theVan Kampen theorem for orbifolds [Sc83]. TheMayer-Vietoris sequences for algebraic K -theory now give Wh()$=0$.

The argument for the direct product case is based on one for showing that $\mathrm{Wh}(\mathrm{Z} \quad(\mathrm{Z}=2 \mathrm{Z}))=0$ from [K W 86$]$.

Not all such orbifold groups arise in this way. For instance, the orbifold fundamental group of a torus with one cone point of order 2 has the presentation $\mathrm{hx} ; \mathrm{yj}[\mathrm{x} ; \mathrm{y}]^{2}=1 \mathrm{i}$. Hence it has torsion free abelianization, and so cannot be a semidirect product as above.

The orbifold fundamental groups of flat 2-orbifolds are the 2-dimensional crystallographic groups. Their nite subgroups are cyclic or dihedral, of order properly dividing 24, and have trivial Whitehead group. In fact $\mathrm{Wh}(\quad)=0$ for any such 2-dimensional crystallographic group [Pe98]. (If is the fundamental group of an orientable hyperbolic 2-orbifold with k cone points of orders $f n_{1} ;::: n_{k} g$ then $W h()=i_{i=1}^{k} W h\left(Z=n_{i} Z\right)$ [LSOO]).

The argument for the next result is essentially due to F.T.Farrel.
Theorem 6.2 If is an extension of ${ }_{1}(B)$ by ${ }_{1}(F)$ where B and F are aspherical closed surfaces then Wh()$=0$.

Proof If $\quad(B)<0$ then B admits a complete riemannian metric of constant negative curvature -1. Moreover the only virtually poly-Z subgroups of ${ }_{1}(B)$ are 1 and Z. If G is the preimage in of such a subgroup then G is either
${ }_{1}(\mathrm{~F})$ or is the group of a Haken 3-manifold. It follows easily that for any n 0 the group $\mathrm{G} \quad \mathrm{Z}^{\mathrm{n}}$ is in Cl and so $\mathrm{Wh}\left(\mathrm{G} \quad \mathrm{Z}^{\mathrm{n}}\right)=0$. Therefore any such G
is K -flat and so the bundle is admissible, in the terminology of [FJ 86]. Hence Wh()$=0$ by the main result of that paper.
If $(B)=0$ then this argument does not work, although if moreover $(F)=0$ then is poly-Z so Wh()$=0$ by Theorem 2.13 of [FJ]. We shall sketch an argument of Farrell for the general case. Lemma 1.4.2 and Theorem 2.1 of [FJ 93] together yield a spectral sequence (with coe cients in a simplicial cosheaf) whose E^{2} term is $H_{i}\left(X={ }_{1}(B) ; W h_{j}^{0}\left(p^{-1}\left({ }_{1}(B)^{x}\right)\right)\right)$ and which converges to $W h_{i+j}^{0}()$. Here $p: \quad!{ }_{1}(B)$ is the epimorphism of the extension and X is a certain universal ${ }_{1}(B)$-complex which is contractible and such that all the nontrivial isotropy subgroups ${ }_{1}(B)^{x}$ are in nitecyclic and the xed point set of each in nite cyclic subgroup is a contractible (nonempty) subcomplex. The Whitehead groups with negative indices are the lower K-theory of $\mathbb{Z}[G]$ (i.e, $W h_{n}^{0}(G)=K_{n}(\mathbb{Z}[G])$ for all $\left.n-1\right)$, while $W h_{0}^{0}(G)=K_{0}(\mathbb{Z}[G])$ and $\mathrm{Wh}_{1}^{0}(\mathrm{G})=\mathrm{Wh}(\mathrm{G})$. Note that $\mathrm{Wh}_{-\mathrm{n}}^{0}(\mathrm{G})$ is a direct summand of $\mathrm{Wh}(\mathrm{G}$ Z^{n+1}). If $\mathrm{i}+\mathrm{j}>1$ then $\mathrm{W}_{\mathrm{i}+\mathrm{j}}^{0}()$ agrees rationally with the higher Whitehead group $W h_{i+j}(\quad)$. Since the isotropy subgroups $1_{1}(B)^{x}$ are in nite cyclic or trivial $\mathrm{Wh}\left(\mathrm{p}^{-1}\left({ }_{1}(B)^{\mathrm{x}}\right) \quad \mathrm{Z}^{\mathrm{n}}\right)=0$ for all $\mathrm{n} \quad 0$, by the argument of the above paragraph, and so $W h_{j}^{0}\left(p^{-1}\left({ }_{1}(B)^{x}\right)\right)=0$ if $j \quad 1$. Hence the spectral sequence gives Wh()$=0$.

A closed 3-manifold is a Haken manifold if it is irreducible and contains an incompressible 2-sided surface. Every Haken 3-manifold either has solvable fundamental group or may be decomposed along a nite family of disjoint incompressible tori and Klein bottles so that the complementary components are Seifert bred or hyperbolic. It is an open question whether every dosed irreducible orientable 3-manifold with in nite fundamental group is virtually Haken (i.e., nitely covered by a Haken manifold). (Non-orientable 3-manifolds are Haken). Every virtually Haken 3-manifold is either Haken, hyperbolic or Seifert- bred, by [CS83] and [GMT 96]. A closed irreducible 3-manifold is a graph manifold if either it has solvable fundamental group or it may be de composed along a nite family of disjoint incompressibletori and Klein bottles so that the complementary components are Seifert bred. (There are several competing de nitions of graph manifold in the literature).

Theorem 6.3 Let $=\quad Z$ where is torsion free and is the fundamental group of a closed 3-manifold N which is a connected sum of graph manifolds. Then is regular coherent and Wh()$=0$.

Proof The group is a generalized fre product with amalgamation along poly-Z subgroups ($1, Z^{2}$ or $Z_{-1} Z$) of polycyclic groups and fundamental
groups of Seifert bred 3-manifolds (possibly with boundary). The group rings of torsion free polycyclic groups are regular noetherian, and hence regular coherent. If G is the fundamental group of a Seifert bred 3-manifold then it has a subgroup G_{o} of nite index which is a central extension of the fundamental group of a surface B (possibly with boundary) by Z. We may assume that G is not solvable and hence that (B) <0. If @B is nonempty then $G_{0}=Z \mathrm{~F}$ and so is an iterated generalized free product of copies of Z^{2}, with amalgamation along in nite cydic subgroups. Otherwise we may split B along an essential curve and represent G_{o} as the general ised free product of two such groups, with amal gamation along a copy of Z^{2}. In both cases G_{o} is regular coherent, and therefore so is G, since $\left[G: G_{0}\right]<1$ and $c: d: G<1$.

Since is the generalised free product with amalgamation of regular coherent groups, with amalgamation along poly-Z subgroups, it is also regular coherent. Let N_{i} be an irreducible summand of N and let $i={ }_{1}\left(N_{i}\right)$. If N_{i} is Haken then i is in Cl. Otherwise N_{i} is a Seifert bred 3-manifold which is not su ciently large, and the argument of [PI80] extends easily to show that $\mathrm{Wh}\left(\mathrm{i}^{\mathrm{s}}\right)=0$, for any $\mathrm{s} \quad 0$. Since $K(\mathbb{Z}[i])$ is a direct summand of $\mathrm{Wh}\left(\mathrm{i}_{\mathrm{i}} \quad \mathrm{Z}\right)$, it follows that in all cases $K(\mathbb{Z}[i])=\mathrm{Wh}(\mathrm{i})=0$. The Mayer-Vietoris sequences for algebraic K-theory now give rstly that Wh()$=K(\mathbb{Z}[])=0$ and then that Wh()$=0$ also.

All 3-manifold groups are coherent as groups [Hm]. If we knew that their group rings were regular coherent then we could use [Wd78] instead of [FJ 86] to give a purely algebraic proof of Theorem 6.2, for as surface groups are fre products of free groups with amal gamation over an in nitecyclic subgroup, an extension of one surface group by another is a free product of groups with $\mathrm{Wh}=0$, amalgamated over the group of a surface bundle over S^{1}. Similarly, we could deduce from [Wd78] that $\mathrm{Wh}(\quad \mathrm{Z})=0$ for any torsion freegroup $={ }_{1}(\mathrm{~N})$ where N is a closed 3-manifold whose irreducible factors are Haken, hyperbolic or Seifert bred.

Theorem 6.4 Let be a group with an in nite cyclic normal subgroup A such that $=A$ is torsion free and is a free product $=1$ i n i where each factor is the fundamental group of an irreducible 3-manifold which is Haken, hyperbolic or Seifert bred. Then Wh()$=\mathrm{Wh}()=0$.

Proof (Notethat our hypotheses allow the possibility that some of the factors i are in nite cyclic). Let i be the preimage of i in , for 1 i n. Then is the generalized free product of the i's, amalgamated over in nite cyclic
subgroups. For all 1 in we have $\mathrm{Wh}(\mathrm{i})=0$, by Lemma 1.1 of [St84] if $K(i ; 1)$ is Haken, by the main result of [FJ 86] if it is hyperbolic, by an easy extension of the argument of [PI80] if it is Seifert bred but not Haken and by Theorem 19.5 of [Wd78] if $;$ is in nite cyclic. The Mayer-Vietoris sequences for algebraic K -theory now give Wh()$=\mathrm{Wh}()=0$ also.

Theorem 6.4 may be used to strengthen Theorem 4.11 to give criteria for a closed 4-manifold M to be simple homotopy equivalent to the total space of an S^{1}-bundle, if the irreducible summands of the base N are all virtually Haken and ${ }_{1}(M)$ is torsion free.

6.2 The s-cobordism structure set

Let M be a closed 4-manifold with fundamental group and orientation character w : ! f 1 g , and let $\mathrm{G}=\mathrm{TOP}$ have the H -space multiplication determined by its loop space structure Then the surgery obstruction maps
 phisms. If is in the class $S A$ then $L_{5}^{s}(; w)$ acts on $S_{\text {top }}(M)$, and the surgery sequence

$$
[S M ; G=O O P]-\square^{5} L_{5}^{5}(; w)-1 \quad S_{T O P}(M)-!\quad[M ; G=O P]-!^{4} L_{4}^{S}(; w)
$$

is an exact sequence of groups and pointed sets, i.e., the orbits of the action ! correspond to the normal invariants (f) of simple homotopy equivalences [FQ, FT95]. As it is not yet known whether 5-dimensional s-cobordisms over other fundamental groups are products, we shall rede ne the structure set by setting

$$
S_{\text {TSop }}^{s}(M)=f f: N!M \text { j } N \text { a TOP 4-manif old; f a simple h:e:g= ; }
$$

where $f_{1} \quad f_{2}$ if there is a map F : W! M with domain W an s-cobordism with @ $\mathbb{W}=\mathrm{N}_{1}\left[\mathrm{~N}_{2}\right.$ and $\mathrm{F}_{\mathrm{N}_{\mathrm{i}}}=\mathrm{f}_{\mathrm{i}}$ for $\mathrm{i}=1$; 2. If the s -cobordism theorem holds over this is the usual TOP structure set for M . We shall usually write $L_{n}(; w)$ for $L_{n}^{s}(; w)$ if Wh()$=0$ and $L_{n}()$ if moreover w is trivial. When the orientation character is nontrivial and otherwise clear from the context we shall write $L_{n}(;-)$.
The homotopy set [M ; G=TOP] may be identi ed with the set of normal maps (f; b), wheref : N! M is a degree l map and bis a stableframing of $T_{N} f$, for someTOP R^{n}-bundle over M . (If $f: N!M$ is a homotopy equivalence, with homotopy inverse h, we shall let $\hat{f}=(f ; b)$, where $=h \quad \mathrm{~N}$ and b is the framing determined by a homotopy from hf to id_{N}). The Postnikov 4 -stage
of $G=T O P$ is homotopy equivalent to $K(Z=2 Z ; 2) \quad K(Z ; 4)$. Let k_{2} generate $H^{2}\left(G=T O P ; \mathbb{F}_{2}\right)=Z=2 Z$ and I_{4} generate $H^{4}(G=T O P ; \mathbb{Z})=Z$. The function from $\left[M ; G=O P\right.$] to $H^{2}\left(M ; \mathbb{F}_{2}\right) \quad H^{4}(M ; \mathbb{Z})$ which sends f to $\left(\hat{f}\left(k_{2}\right) ; f^{\wedge}\left(I_{4}\right)\right)$ is an isomorphism.

The KervaireArf invariant of a normal map $\hat{\mathrm{g}}: \mathrm{N}^{2 \mathrm{q}}!\mathrm{G}=\mathrm{OPP}$ is the image of the surgery obstruction in $\mathrm{L}_{2 \mathrm{a}}(\mathrm{Z}=2 \mathrm{Z} ;-)=\mathrm{Z}=2 \mathrm{Z}$ under the homomorphism induced by the orientation character, $\mathrm{c}(\mathrm{g})=\mathrm{L}_{2 \mathrm{q}}\left(\mathrm{w}_{1}(\mathrm{~N})\right)(2 \mathrm{q}(\mathrm{g}))$. The argument of Theorem 13.B. 5 of [WI] may be adapted to show that there are universal classes $K_{4 i+2}$ in $H^{4 i+2}\left(G=O P ; \mathbb{F}_{2}\right)$ (for $i \quad 0$) such that

$$
c(g)=\left(w(M)\left[\hat{g}\left(\left(1+S q^{2}+S q^{2} S q^{2}\right) K_{4 i+2}\right)\right) \backslash[M]:\right.
$$

Moreover $K_{2}=k_{2}$, since c induces the isomorphism $\quad 2(G=T O P)=Z=2 Z$. In the 4-dimensional case this expression simpli es to

$$
c(g)=\left(w_{2}(M)\left[\hat{g}\left(k_{2}\right)+\hat{g}\left(S q^{2} k_{2}\right)\right)[M]=\left(w_{1}(M)^{2}\left[\hat{g}\left(k_{2}\right)\right)[M]:\right.\right.
$$

The codimension-2 Kervaire invariant of a 4-dimensional normal map \hat{g} is $\operatorname{kerv}(g)=\hat{g}\left(k_{2}\right)$. Its value on a 2 -dimensional homology class represented by an immersion y : Y ! M is the Kervaire-Arf invariant of the normal map induced over the surface Y.

Thestructurese may overestimate thenumber of homeomorphism types within the homotopy type of M, if M has self homotopy equivalences which are not homotopic to homeomorphisms. Such \exotic" self homotopy equivalences may often be constructed as follows. Given : S²! M, let : S ${ }^{4}$! M be the composition S , where is the Hopf map, and let $\mathrm{s}: \mathrm{M}$! $\mathrm{M}_{\text {_ }} \mathrm{S}^{4}$ be the pinch map obtained by shrinking the boundary of a 4-disc in M . Then the composite $f=\left(i d_{E} \quad\right.$)s is a self homotopy equivalence of M.

Lemma 6.5 [No64] Let M bea closed 4-manifold and let : S^{2} ! M bea map such that $\quad\left[S^{2}\right] \in 0$ in $H_{2}\left(M ; \mathbb{F}_{2}\right)$ and $\quad w_{2}(M)=0$. Then $\operatorname{kerv}(f) \in 0$ and so f is not normally cobordant to a homeomorphism.

Proof There is a class u $2 \mathrm{H}_{2}\left(\mathrm{M} ; \mathbb{F}_{2}\right)$ such that $\quad\left[\mathrm{S}^{2}\right]: \mathrm{u}=1$, since $\quad\left[\mathrm{S}^{2}\right] \in$ 0 . As low-dimensional homology classes may be realized by singular manifolds there is a closed surface Y and a map y : Y ! M transverse to f and such that $f[Y]=u$. Then $y \operatorname{kerv}(f)[Y]$ is the KervaireArf invariant of the normal map induced over Y and is nontrivial. (See Theorem 5.1 of [CH90] for details).

Thefamily of surgery obstruction maps may beidenti ed with a natural transformation from \mathbb{L}_{0}-homology to L-theory. (In the nonorientable case we must use w-twisted \mathbb{L}_{0}-homology). In dimension 4 the cobordism invariance of surgery obstructions (as in x13B of [WI]) leads to the following formula.

Theorem 6.6 [Da95] There are homomorphisms $I_{0}: H_{0}\left(; Z^{w}\right)!L_{4}(; w)$ and $2: H_{2}\left(; \mathbb{F}_{2}\right)!L_{4}(; w)$ such that for any $f: M$! $G=O P$ the surgery obstruction is $\quad 4(f \hat{f})=I_{0} C_{M}\left(f^{\wedge}\left(I_{4}\right) \backslash[M]\right)+{ }_{2} C_{M}(\operatorname{kerv}(f \hat{f}) \backslash[M])$

If $w=1$ the signature homomorphism from $L_{4}()$ to Z is a left inverse for $I_{0}: Z!L_{4}()$, but in general I_{0} is not injective. This formula can be made somewhat more explicit as follows. Let $\mathrm{K} S(\mathrm{M}) 2 \mathrm{H}^{4}\left(\mathrm{M} ; \mathbb{F}_{2}\right)$ be the KirbySiebenmann obstruction to lifting the TOP normal bration of M to a vector bundle. If M is orientable and ($f ; b$) : N ! M is a degree 1 normal map with classifying map $\mathrm{f}^{\text {then }}$

$$
\left(K S(M)-(f \quad)^{-1} K S(N)-\operatorname{kerv}\left(f \hat{f}^{2}\right)[M] \quad((M)-(N))=8 \bmod (2):\right.
$$

(Se Lemma 15.5 of [Si 71] - page 329 of [KS]).
Theorem [Da95, 60] If f f $=(f ; b)$ where $f: N!M$ is a degree 1 map then the surgery obstructions are given by

$$
\begin{aligned}
& 4_{4}\left(f \hat{)}=I_{0}(((N)-(M))=8)+{ }_{2} C_{M}(\operatorname{kerv}(f \hat{f}) \backslash[M]) \quad \text { if } w=1,\right. \text { and } \\
& { }_{4}(f \hat{f})=I_{0}\left(K S(N)-K S(M)+\operatorname{kerv}\left(f f^{2}\right)+{ }_{2} C_{M}(\operatorname{kerv}(f \hat{f}) \backslash[M]) \quad \text { if } w \in 1 .\right.
\end{aligned}
$$

(In the latter case we identify $\mathrm{H}^{4}(\mathrm{M} ; \mathbb{Z}), \mathrm{H}^{4}(\mathrm{~N} ; \mathbb{Z})$ and $\mathrm{H}^{4}\left(\mathrm{M} ; \mathbb{F}_{2}\right)$ with $\left.H_{0}\left(; Z^{W}\right)=Z=2 Z\right)$.

The homomorphism ${ }_{4}$ is trivial on the image of , but in general we do not know whether a 4-dimensional normal map with trivial surgery obstruction must be normally cobordant to a simple homotopy equivalence. In our applications we shall always have a simple homotopy equivalence in hand, and so if 4 is injective we can conclude that the homotopy equivalence is normally cobordant to the identity.
A more serious problem is that it is not clear how to de ne the action! in general. We shall be able to circumvent this problem by ad hoc arguments in some cases. (There is always an action on thehomological structure set, de ned in terms of $\mathbb{Z}[]$-homology equivalences [FQ]).

If we x an isomorphism $i_{Z}: Z!L_{5}(Z)$ we may de ne a function I : ! $\mathrm{L}_{5}^{5}()$ for any group by $\mathrm{I}(\mathrm{g})=\mathrm{g}\left(\mathrm{i}_{\mathrm{Z}}(1)\right)$, where $\mathrm{g}: \mathrm{Z}=\mathrm{L}_{5}(\mathrm{Z})!\mathrm{L}_{5}^{5}()$ is
induced by the homomorphism sending 1 in Z to g in . Then $I_{z}=i_{z}$ and I is natural in the sense that if $f:!H$ is a homomorphism then $L_{5}(f)$ I $=$ $I_{H} f$. As abdianization and projection to the summands of Z^{2} induce an isomorphism from $L_{5}\left(\begin{array}{ll}Z & Z\end{array}\right)$ to $L_{5}(Z)^{2}$ [Ca73], it follows easily from naturality that I is a homomorphism (and so factors through $=9$ [We83]. We shall extend this to the nonorientable case by de ning $\mathrm{I}^{+}: \operatorname{Ker}(\mathrm{w})!\mathrm{L}_{5}^{5}(\mathrm{~m}$;) as the composite of $I_{\mathrm{Ker}(\mathrm{w})}$ with the homomorphism induced by inclusion.

Theorem 6.7 Let M bea closed 4-manifold with fundamental group and let $w=w_{1}(M)$. Given any $\gamma 2 \operatorname{Ker}(w)$ there is a normal cobordism from id ${ }_{M}$ to itself with surgery obstruction $I^{+}(\gamma) 2 L_{5}^{s}(; w)$.

Proof We may assume that γ is represented by a simple closed curve with a product neighbourhood $\mathrm{U}=\mathrm{S}^{1} \quad \mathrm{D}^{3}$. Let P be the E_{8} manifold $[\mathrm{FQ}$] and delete the interior of a submanifold homeomorphic to $\mathrm{D}^{3} \quad[0 ; 1]$ to obtain P_{0}. There is a normal map $p: P_{0}!D^{3} \quad[0 ; 1]$ (rel boundary). The surgery obstruction for $p \mathrm{id}_{S^{1}}$ in $L_{5}(Z)=L_{4}(1)$ is given by a codimension- 1 signature (sex $\times 12 B$ of $[W I]$), and generates $L_{5}(Z)$. Let $Y=\left(M\right.$ nintU) $[0 ; 1]\left[P_{0} S^{1}\right.$, where we identify (@) $\quad[0 ; 1]=S^{1} \quad S^{2} \quad[0 ; 1]$ with $S^{2} \quad[0 ; 1] \quad S^{1}$ in $@_{0} S^{1}$. Matching together $\mathrm{idj}_{(\mathrm{M} \text { nintU })}[0 ; 1]$ and $\mathrm{p} \quad \mathrm{id}_{\mathrm{S}^{1}}$ gives a normal cobordism Q from id m_{M} to itself. The theorem now follows by the additivity of surgery obstructions and naturality of the homomorphisms I ${ }^{+}$.

Corollary 6.7.1 Let : $L_{5}^{s}()!L_{5}(Z)^{d}=Z^{d}$ be the homomorphism induced by a basis $f{ }_{1} ;::: ; \quad d g$ for $\mathrm{Hom}(; Z)$. If M is orientable, $f: M_{1}!M$ is a simple homotopy equivalence and $2 L_{5}(Z)^{d}$ there is a normal cobordism from f to itself whose surgery obstruction in $L_{5}()$ has image under

Proof If $\mathrm{f}_{1} ;::: ; \mathrm{Y}_{\mathrm{d}} \mathrm{g} 2$ representsa \backslash dual basis" for $\mathrm{H}_{1}(; \mathbb{Z})$ modulotorsion
 basis for $L_{5}(Z)^{d}$.

If is free or is a PD_{2}^{+}-group the homomorphism is an isomorphism [Ca73]. In most of the other cases of interest to us the following corollary applies.

Corollary 6.7.2 If M is orientable and $\operatorname{Ker}()$ is nite then $S_{\text {TOP }}^{S}(M)$ is nite. In particular, this is so if Coker(5) is nite.

Proof The signature di erence maps $[\mathrm{M} ; \mathrm{G}=\mathrm{TOP}]=\mathrm{H}^{4}(\mathrm{M} ; \mathbb{Z}) \quad \mathrm{H}^{2}\left(\mathrm{M} ; \mathbb{F}_{2}\right)$ onto $L_{4}(1)=Z$ and so there are only nitely many normal cobordism classes of simple homotopy equivalences $f: M_{1}!M$. Moreover, Ker() is nite if 5 has nite cokerne, since $[S M ; G=T O P]=Z^{d} \quad(Z=2 Z)^{d}$. Suppose that $F: N$! $M \quad I$ is a normal cobordism between two simple homotopy equivalences $\mathrm{F}_{-}=\mathrm{Fj@} \mathrm{~N}$ and $\mathrm{F}_{+}=\mathrm{Fj@N}$. By Theorem 6.7 there is another normal cobordism $\mathrm{F}^{0}: \mathrm{N}^{0}$! $\mathrm{M} \quad \mathrm{I}$ from F_{+}to itself with
$\left({ }_{5}(F 9)=\left(-{ }_{5}(F)\right)\right.$. The union of these two normal cobordisms along @ $N=$ @ N^{0} is a normal cobordism from F_{-}to F_{+}with surgery obstruction in Ker(). If this obstruction is 0 we may obtain an s-cobordism W by 5-dimensional surgery (re @).

The surgery obstruction groups for a semidirect product $=G \quad Z$, may be related to those of the (nitely presentable) normal subgroup G by means of Theorem 12.6 of [WI]. If $\mathrm{Wh}(\quad)=\mathrm{Wh}(\mathrm{G})=0$ this theorem asserts that there is an exact sequence

$$
::: \mathrm{L}_{\mathrm{m}}\left(\mathrm{G} ; \mathrm{wj}_{\mathrm{G}}\right)^{1-\mathrm{w}_{-}(\mathrm{t})} \mathrm{L}_{\mathrm{m}}\left(\mathrm{G} ; \mathrm{wj}_{\mathrm{G}}\right)!\mathrm{L}_{\mathrm{m}}(; \mathrm{w})!\mathrm{L}_{\mathrm{m}-1}\left(\mathrm{G} ; \mathrm{wj}_{\mathrm{G}}\right)::: ;
$$

where t generates modulo G and $=L_{m}\left(; j_{G}\right)$. The following lemma is adapted from Theorem 15.B. 1 of [WI].

Lemma 6.8 Let M be the mapping torus of a self homeomorphism of an aspherical closed $(n-1)$-manifold N. Suppose that $W h\left({ }_{1}(M)\right)=0$. If the homomorphisms ${ }_{i}^{N}$ are isomorphisms for all large i then so are the ${ }_{i}^{M}$.

Proof This is an application of the 5-lemma and periodicity, as in pages 229230 of [WI].

The hypotheses of this lemma are satis ed if $n=4$ and ${ }_{1}(N)$ is square root closed accessible [Ca73], or N is orientable and ${ }_{1}(\mathrm{~N})>0$ [Ro00], or is hyperbolic or virtually solvable [FJ], or admits an e ective S^{1}-action with orientable orbit space [St84, NS85]. It remains an open question whether aspherical closed manifolds with isomorphic fundamental groups must be homeomorphic. This has been veri ed in higher dimensions in many cases, in particular under geometric assumptions [FJ], and under assumptions on the combinatorial structure of the group [Ca73, St84, NS85]. We shall seethat many aspherical 4-manifolds are determined up to s-cobordism by their groups.

There are more general \Mayer-Vietoris" sequences which lead to calculations of the surgery obstruction groups for certain generalized free products and HNN extensions in terms of those of their building blocks [Ca73, St87].

Lemma 6.9 Let beeither the group of a nitegraph of groups, all of whose vertex groups are in nite cyclic, or a square root closed accessible group of cohomological dimension 2 . Then 1^{+}is an isomorphism. If M is a closed 4manifold with fundamental group the surgery obstruction maps $4(M)$ and ${ }_{5}(\mathrm{M})$ are epimorphisms.

Proof Since is in Cl we have Wh()$=0$ and a comparison of MayerVietoris sequences shows that the assembly map from H (; $\left.\mathbb{L}_{0}^{\mathrm{w}}\right)$ to $\mathrm{L}(;$ w) is an isomorphism [Ca73, St87]. Since c:d: 2 and $\mathrm{H}_{1}(\operatorname{Ker}(w) ; \mathbb{Z})$ maps onto $\mathrm{H}_{1}\left(; \mathrm{Z}^{\mathrm{w}}\right)$ the component of this map in degree 1 may be identi ed with I^{+}. In general, the surgery obstruction maps factor through the assembly map. Since c:d: 2 the homomorphism $c_{M}: H(M ; D)!H(; D)$ is onto for any local coe cient module D, and so the lemma follows.

The class of groups considered in this lemma includes free groups, PD_{2}-groups and the groups $Z \mathrm{~m}$. Note however that if is a $P D_{2}$-group w ned not be the canonical orientation character.

6.3 Stabilization and h-cobordism

It has long been known that many results of high dimensional di erential topology hold for smooth 4-manifolds after stabilizing by connected sum with copies of $S^{2} S^{2}$ [CS71, FQ80, La79, Qu83]. In particular, if M and N are $h-$ cobordant closed smooth 4 -manifolds then M$]\left(\mathrm{J}^{\mathrm{k}} \mathrm{S}^{2} \quad \mathrm{~S}^{2}\right)$ is di eomorphic to $\left.N](]^{k} S^{2} \quad S^{2}\right)$ for some $k \quad 0$. In the spin case $w_{2}(M)=0$ this is an elementary consequence of the existence of a well-indexed handle decomposition of the h-cobordism [Wa64]. In Chapter VII of [FQ] it is shown that 5-dimensional TOP cobordisms have handle decompositions relative to a component of their boundaries, and so a similar result holds for h-cobordant closed TOP 4-manifolds. Moreover, if M is a TOP 4-manifold then $\mathrm{K} \mathrm{S}(\mathrm{M})=0$ if and only if $\left.M](]^{\mathrm{k}} S^{2} \quad S^{2}\right)$ is smoothable for some $\mathrm{k} \quad 0$ [LS71].
These results suggest the following de nition. Two 4-manifolds M_{1} and M_{2} are stably homeomorphic if $\left.\left.M_{1}\right](]^{k} S^{2} \quad S^{2}\right)$ and $\left.\left.M_{2}\right](]^{l} S^{2} S^{2}\right)$ are homeomorphic, for some k , I 0 . (Thus h-cobordant closed 4 -manifolds are stably homeomorphic). Clearly ${ }_{1}(M), w_{1}(M)$, the orbit of $c_{M}[M]$ in $H_{4}\left({ }_{1}(M) ; Z^{w_{1}(M)}\right.$) under the action of Out($1(M)$), and the parity of (M) are invariant under stabilization. If M is orientable (M) is also invariant.

Kreck has shown that (in any dimension) classi cation up to stable homeomorphism (or di eomorphism) can be reduced to bordism theory. There are
thre cases: If $w_{2}(M) \in 0$ and $w_{2}(N) \in 0$ then M and N are stably homeomorphic if and only if for some choices of orientations and identi cation of the fundamental groups the invariants listed above agree (in an obvious manner). If $w_{2}(M)=w_{2}(N)=0$ then M and N are stably homeomorphic if and only if for some choices of orientations, Spin structures and identi cation of the fundamental group they represent the same element in $\Omega_{4}^{\text {SpinTOP }}(\mathrm{K}(; 1))$. The most complicated case is when M and N are not Spin, but the universal covers are Spin. (See [K r99], [Te] for expositions of Kreck's ideas).
We shall not pursue this notion of stabilization further (with one minor exception, in Chapter 14), for it is somewhat at odds with the tenor of this book. The manifolds studied here usually have minimal Euler characteristic, and often are aspherical. Each of these properties disappears after stabilization. We may however al so stabilize by cartesian product with R, and there is then the following simple but satisfying result.

Lemma 6.10 Closed 4-manifolds M and N are h-cobordant if and only if M R and N R are homeomorphic.

Proof If W is an h -cobordism from M to N (with fundamental group = ${ }_{1}(\mathrm{~W})$) then $\mathrm{W} \quad \mathrm{S}^{1}$ is an h -cobordism from $\mathrm{M} \quad \mathrm{S}^{1}$ to $\mathrm{N} \quad \mathrm{S}^{1}$. The torsion is 0 in $\mathrm{Wh}(\quad \mathrm{Z})$, by Theorem 23.2 of [Co], and so there is a homeomorphism from M S^{1} to $N \quad S^{1}$ which carries ${ }_{1}(M)$ to ${ }_{1}(N)$. Hence $M \quad R=N \quad R$. Conversely, if $M \quad R=N \quad R$ then $M \quad R$ contains a copy of N disjoint from $M \quad f O g$, and the region W between $M \quad f O g$ and N is an h-cobordism.

6.4 Manifolds with ${ }_{1}$ elementary amenable and $=0$

In this section we shall show that closed manifolds satisfying the hypotheses of Theorem 3.17 and with torsion free fundamental group are determined up to homeomorphism by their homotopy type As a consequence, closed 4-manifolds with torsion fre elementary amenablefundamental group and Euler characteristic 0 are homeomorphic to mapping tori. We also estimate the structure sets for RP^{2}-bundles over T or K b . In the remaining cases involving torsion computation of the surgery obstructions is much more di cult. We shall comment briefly on these cases in Chapters 10 and 11.

Theorem 6.11 Let M be a closed 4-manifold with $(M)=0$ and whose fundamental group is torsion free, coherent, locally virtually indicable and restrained. Then M is determined up to homeomorphism by its homotopy type. If moreover $\mathrm{h}(\mathrm{)}=4$ then every automorphism of is realized by a self homeomorphism of M.

Proof By Theorem 3.17 either $=Z$ or $Z \mathrm{~m}$ for some $\mathrm{m} \in 0$, or M is aspherical, is virtually poly-Z and $h()=4$. Hence Wh()$=0$, in all cases. If $=Z$ or $Z \mathrm{~m}$ then the surgery obstruction homomorphisms are epimorphisms, by Lemma 6.9. We may calculate $\mathrm{L}_{4}(;$ w) by means of Theorem 12.6 of [WI], or more generally $x 3$ of [St87], and we nd that if $=Z$ or $Z 2 n$ then $4(M)$ is in fact an isomorphism. If $=Z_{2 n+1}$ then there aretwo normal cobordism classes of homotopy equivalences $\mathrm{h}: \mathrm{X}$! M . Let generate the image of $H^{2}\left(; \mathbb{F}_{2}\right)=Z=2 Z$ in $H^{2}\left(M ; \mathbb{F}_{2}\right)=(Z=2 Z)^{2}$, and let $j: S^{2}!M$ represent the unique nontrivial spherical class in $\mathrm{H}_{2}\left(\mathrm{M} ; \mathbb{F}_{2}\right)$. Then ${ }^{2}=0$, since c:d: $=2$, and $\backslash \mathrm{j}\left[\mathrm{S}^{2}\right]=0$, since $\mathrm{c}_{\mathrm{M}} \mathrm{j}$ is nullhomotopic. It follows that $\mathrm{j}\left[\mathrm{S}^{2}\right]$ is Poincare dual to , and so $\mathrm{v}_{2}(\mathrm{M}) \backslash \mathrm{j}\left[\mathrm{S}^{2}\right]={ }^{2} \backslash[\mathrm{M}]=0$. Hence $j w_{2}(M)=j \quad v_{2}(M)+\left(j \quad w_{1}(M)\right)^{2}=0$ and so f_{j} has nontrivial normal invariant, by Lemma 6.5. Therefore each of these two normal cobordism classes contains a self homotopy equivalence of M.

If M is aspherical, is virtually poly-Z and $\mathrm{h}\left(\mathrm{)}=4\right.$ then $\mathrm{S}_{\text {top }}(\mathrm{M})$ has just one element, by Theorem 2.16 of [FJ]. The theorem now follows.

Corollary 6.11.1 Let M be a closed 4-manifold with $(M)=0$ and fundamental group $=Z, Z^{2}$ or $Z{ }_{-1} Z$. Then M is determined up to homeomorphism by and $w(M)$.

Proof If $=Z$ then M is homotopy equivalent to the total space of an S^{3} bundle over S^{1}, by Theorem 4.2, while if $=Z^{2}$ or $Z{ }_{-1} Z$ it is homotopy equivalent to the total space of an S^{2}-bundle over T or $\mathrm{K} b$, by Theorem 5.10.

Is the homotopy type of M also determined by and $\mathrm{w}(\mathrm{M})$ if $=\mathrm{Z} \mathrm{m}$ for some jmj > 1?

We may now give an analogue of the Farrell and Stallings bration theorems for 4-manifolds with torsion free elementary amenable fundamental group.

Theorem 6.12 Let M be a closed 4-manifold whosefundamental group is torsion free and elementary amenable. A map $\mathrm{f}: \mathrm{M}!\mathrm{S}^{1}$ is homotopic to a bre bundle projection if and only if $(\mathrm{M})=0$ and f induces an epimorphism from to Z with almost nitely presentable kernel.

Proof The conditions are clearly necessary. Suppose that they hold. Let = $\operatorname{Ker}\left({ }_{1}(f)\right)$, let M bethe in nite cydic covering space of M with fundamental group and let t : M ! M be a generator of the group of covering
transformations. By Corollary 4.5 .3 either $=1$ (so M ' S^{3}) or $=\mathrm{Z}$ (so $M^{\prime} S^{2} S^{1}$ or $S^{2} \sim S^{1}$) or M is aspherical. In the latter case is a torsion free virtually poly-Z group, by Theorem 1.11 and Theorem 9.23 of [Bi]. Thus in all cases there is a homotopy equivalence f from M to a closed 3-manifold N . Moreover the self homotopy equivalence $\mathrm{ftf}{ }^{-1}$ of N is homotopic to a homeomorphism, g say, and so f is brehomotopy equivalent to the canonical projection of the mapping torus $\mathrm{M}(\mathrm{g})$ onto S^{1}. It now follows from Theorem 6.11 that any homotopy equivalence from M to $\mathrm{M}(\mathrm{g})$ is homotopic to a homeomorphism.

The structure sets of the $R P^{2}$-bundles over T or $K b$ are also nite.
Theorem 6.13 Let M be the total space of an $R P^{2}$-bundle over T or $K b$. Then $\mathrm{S}_{\text {тор }}(\mathrm{M})$ has order at most 32.

Proof As M is nonorientable $H^{4}(M ; \mathbb{Z})=Z=2 Z$ and as ${ }_{1}\left(M ; \mathbb{F}_{2}\right)=3$ and $(M)=0$ we have $H^{2}\left(M ; \mathbb{F}_{2}\right)=(Z=2 Z)^{4}$. Hence $[M ; G=O P]$ has order 32 . Let $w=w_{1}(M)$. It follows from the Shaneson-Wall splitting theorem (Theorem 12.6 of $[W I])$ that $L_{4}(; w)=L_{4}(Z=2 Z ;-) \quad L_{2}(Z=2 Z ;-)=(Z=2 Z)^{2}$, detected by the KervaireArf invariant and the codimension-2 Kervaire invariant. Similarly $L_{5}(; w)=L_{4}(Z=2 Z ;-)^{2}$ and the projections to the factors are Kervaire Arf invariants of normal maps induced over codimension-1 submanifolds. (In applying the splitting theorem, note that $\mathrm{Wh}(\mathrm{Z} \quad(\mathrm{Z}=2 \mathrm{Z}))=\mathrm{Wh}()=0$, by Theorem 6.1 above). Hence $\mathrm{S}_{\text {тор }}(\mathrm{M})$ has order at most 128.

The Kervaire-Arf homomorphism c is onto, since $c(g)=\left(w^{2}\left[\hat{g}\left(k_{2}\right)\right) \backslash[M]\right.$, $w^{2} G 0$ and every element of $H^{2}\left(M ; \mathbb{F}_{2}\right)$ is equal to $\hat{g}\left(k_{2}\right)$ for some normal map $\hat{g}: M!G \neq O P$. Similarly there is a normal map $f_{2}: X_{2}!R P^{2}$ with ${ }_{2}\left(f_{2}\right) \in 0$ in $L_{2}(Z=Z Z ;-)$. If $M=R P^{2} B$, where $B=T$ or K is the base of the bundle, then $f_{2} \quad i d_{B}: X_{2} \quad B!R P^{2} \quad B$ is a normal map with surgery obstruction ($\left.0 ; 2\left(f_{2}\right)\right) 2 L_{4}(Z=2 Z ;-) \quad L_{2}(Z=2 Z ;-)$. We may assume that f_{2} is a homeomorphism over a disc $\quad \mathrm{RP}^{2}$. As the nontrivial bundles may be obtained from the product bundles by cutting M along RP ${ }^{2}$ @ and regluing via the twist map of RP ${ }^{2} S^{1}$, the normal maps for the product bundles may be compatibly modi ed to give normal maps with nonzero obstructions in the other cases. Hence ${ }_{4}$ is onto and so $\mathrm{S}_{\text {top }}(\mathrm{M})$ has order at most 32.

In each case $\mathrm{H}_{2}\left(\mathrm{M} ; \mathbb{F}_{2}\right)=\mathrm{H}_{2}\left(; \mathbb{F}_{2}\right)$, so the argument of Lemma 6.5 does not apply. However we can improve our estimate in the abelian case.

Theorem 6.14 Let M be the total space of an $R P^{2}$-bundle over T. Then $\mathrm{L}_{5}(; \mathrm{w})$ acts trivially on the class of id_{M} in $\mathrm{S}_{\mathrm{top}}(\mathrm{M})$.

Proof Let $1 ; 2$: ! Z be epimorphisms generating $\mathrm{Hom}(; Z)$ and let $\mathrm{t}_{1} ; \mathrm{t}_{2} 2$ represent a dual basis for =(torsion) (i.e., $\mathrm{i}\left(\mathrm{t}_{\mathrm{j}}\right)=\mathrm{ij}$ for $\mathrm{i}=1 ; 2$). Let u be the element of order 2 in and let $k_{i}: Z \quad(Z=2 Z)$! be the monomorphism de ned by $k_{i}(a ; b)=a t_{i}+b u$, for $i=1 ; 2$. De ne splitting homomorphisms $p_{1} ; p_{2}$ by $p_{i}(g)=k_{i}^{-1}\left(g-i_{i}(g) t_{i}\right)$ for all $g 2$. Then $p_{i} k_{i}=$ $i d_{z}(Z=2 Z)$ and $p_{i} k_{3-i}$ factors through $Z=2 Z$, for $i=1 ; 2$. The orientation character $w=w_{1}(M)$ maps the torsion subgroup of onto $Z=2 Z$, by Theorem 5.13, and t_{1} and t_{2} are in $\operatorname{Ker}(w)$. Therefore p_{i} and k_{i} are compatible with w , for $\mathrm{i}=1 ; 2$. As $\mathrm{L}_{5}(\mathrm{Z}=2 \mathrm{Z} ;-)=0$ it follows that $L_{5}\left(\mathrm{k}_{1}\right)$ and $\mathrm{L}_{5}\left(\mathrm{k}_{2}\right)$ are inclusions of complementary summands of $L_{5}(; w)=(Z=2 Z)^{2}$, split by the projections $L_{5}\left(p_{1}\right)$ and $L_{5}\left(p_{2}\right)$.

Let γ_{i} be a simple closed curve in T which represents $t_{i} 2$. Then γ_{i} has a product neighbourhood $N_{i}=S^{1} \quad[-1 ; 1]$ whose preimage $U_{i} \quad M$ is homeomorphic to $\mathrm{RP}^{2} \mathrm{~S}^{1} \quad[-1 ; 1]$. As in Theorem 6.13 there is a normal map $f_{4}: X_{4}!R^{2} \quad[-1 ; 1]^{2}$ (rel boundary) with ${ }_{4}\left(f_{4}\right) \in 0$ in $\mathrm{L}_{4}(\mathrm{Z}=2 \mathrm{Z} ;-)$. Let $\mathrm{Y}_{\mathrm{i}}=\left(\mathrm{M}\right.$ nint $\left.\mathrm{U}_{\mathrm{i}}\right) \quad[-1 ; 1]\left[\mathrm{X}_{4} \quad \mathrm{~S}^{1}\right.$, where we identify $\left(@_{\mathrm{i}}\right) \quad[-1 ; 1]=\mathrm{RP}^{2} \quad \mathrm{~S}^{1} \quad \mathrm{~S}^{0} \quad[-1 ; 1]$ with $\mathrm{RP}^{2} \quad[-1 ; 1] \quad \mathrm{S}^{0} \quad \mathrm{~S}^{1}$ in $@_{X_{4}} \quad S^{1}$. If we match together $\left.\operatorname{id}_{(M \text { nintU }}{ }_{i}\right)[-1 ; 1]$ and $f_{4} \quad \mathrm{id}_{\mathrm{S}^{1}}$ we obtain a normal cobordism Q_{i} from $i d_{M}$ to itself. The image of ${ }_{5}\left(Q_{i}\right)$ in $L_{4}(\operatorname{Ker}(i) ; w)=L_{4}(Z=2 Z ;-)$ under the splitting homomorphism is ${ }_{4}\left(f_{4}\right)$. On the other hand its image in $\mathrm{L}_{4}(\operatorname{Ker}(3-\mathrm{i}) ; \mathrm{w})$ is 0 , and so it generates the image of $L_{5}\left(k_{3-i}\right)$. Thus $L_{5}(; w)$ is generated by ${ }_{5}\left(Q_{1}\right)$ and ${ }_{5}\left(Q_{2}\right)$, and so acts trivially on $\mathrm{idm}_{\mathrm{m}}$.

Does $L_{5}(; w)$ act trivially on each class in $S_{\text {top }}(M)$ when M is an $R P^{2}$ bundle over T or K b? If so, then $\mathrm{S}_{\text {тор }}(\mathrm{M})$ has order 8 in each case. Are these manifolds determined up to homeomorphism by their homotopy type?

6.5 B undles over aspherical surfaces

The fundamental groups of total spaces of bundles over hyperbolic surfaces all contain nonabelian free subgroups. Nevertheless, such bundle spaces are determined up to s-cobordism by their homotopy type, except when the bre is $R P^{2}$, in which case we can only show that the structure sets are nite.

Theorem 6.15 Let M be a closed 4-manifold which is homotopy equivalent to the total space E of an F-bundle over B where B and F are aspherical

Proof Since ${ }_{1}(B)$ is ether an HNN extension of Z or a generalised free product $F \quad F^{0}$, where F and F^{0} are fre groups, $\quad Z$ is a square root closed generalised free product with amalgamation of groups in Cl . Comparison of the Mayer-Vietoris sequences for \mathbb{L}_{0}-homology and L-theory (as in Proposition 2.6 of [St84]) shows that $\mathrm{S}_{\text {Top }}\left(\mathrm{E} \quad \mathrm{S}^{1}\right)$ has just one element. (Note that even when (B) $=0$ the groups arising in intermediate stages of the argument all have trivial Whitehead groups). Hence $M \quad S^{1}=E \quad S^{1}$, and so M is $s-$ cobordant to E by Lemma 6.10 and Theorem 6.2. The nal assertion follows from Corllary 7.3B of [FQ] since M is aspherical and is 1-connected at 1 [Ho77].

Davis has constructed aspherical 4-manifolds whose universal covering space is not 1-connected at 1 [Da83].

Theorem 6.16 Let M be a closed 4-manifold which is homotopy equivalent to the total space E of an S^{2}-bundle over an aspherical closed surface B. Then M is s-cobordant to E, and \mathbb{M} is homeomorphic to $S^{2} R^{2}$.

Proof Let $={ }_{1}(E)={ }_{1}(B)$. Then Wh()$=0$, and $H\left(; \mathbb{L}_{0}^{w}\right)=L(; w)$, as in Lemma 6.9. Hence $L_{4}(; w)=Z \quad(Z=Z Z)$ if $w=0$ and $(Z=Z Z)^{2}$ otherwise. The surgery obstruction map $4(E)$ is onto, by Lemma 6.9. Hence there are two normal cobordism classes of maps $\mathrm{h}: \mathrm{X}$! E with $4(\mathrm{~h})=$ 0 . The kerne of the natural homomorphism from $H_{2}\left(E ; \mathbb{F}_{2}\right)=(Z=Z Z)^{2}$ to $\mathrm{H}_{2}\left(; \mathbb{F}_{2}\right)=\mathrm{Z}=2 \mathrm{Z}$ is generated by $\mathrm{j}\left[\mathrm{S}^{2}\right]$, where $\mathrm{j}: \mathrm{S}^{2}!\mathrm{E}$ is the inclusion of a bre. As j $\left[S^{2}\right] G-0$, while $w_{2}(E)\left(j\left[S^{2}\right]\right)=j w_{2}(E)=0$ the normal invariant of f_{j} is nontrivial, by Lemma 6.5. Hence each of these two normal cobordism classes contains a seff homotopy equivalence of E.
Lef f : ! E bea homotopy equivalence(necessarily simple). Then there is a normal cobordism F : V! E [0;1] from f to some self homotopy equivalence of E . As I^{+}is an isomorphism, by Lemma 6.9, there is an s-cobordism W from M to E, as in Corollary 6.7.2.
The universal covering space \mathfrak{W} is a proper s-cobordism from \mathfrak{G} to $\mathbb{E}=$ $S^{2} \quad R^{2}$. Since the end of \mathbb{E} is tame and has fundamental group Z we may apply Corollary 7.3B of [FQ] to concludethat \mathfrak{W} is homeomorphic to a product. Hence $f=$ is homeomorphic to $S^{2} R^{2}$.

Let be a $P D_{2}$-group. As $=(Z=2 Z)$ is squareroot closed accessible from $Z=2 Z$, the Mayer-Vietoris sequences of [Ca73] imply that $L_{4}(; w)=$ $L_{4}(Z=2 Z ;-) \quad L_{2}(Z=2 Z ;-)$ and that $L_{5}(; w)=L_{4}(Z=2 Z ;-)$, where $w=$ p_{2} : ! $Z=2 Z$ and $={ }_{1}\left(; \mathbb{F}_{2}\right)$. Since these L-groups are nite the structure sets of total spaces of RP^{2}-bundles over aspherical surfaces are also nite (Moreover the arguments of Theorems 6.13 and 6.14 can be extended to show that 4 is an epimorphism and that most of $L_{5}(; w)$ acts trivially on i_{E}, where E is such a bundle space).

[^0]: Geometry \& Topology is a fully refereed international journal dealing with all aspects of geometry and topology. It is intended to provide free electronic dissemination of high quality research. The Geometry \& Topology M onographs series is intended to provide a similar forum for conference proceedings and research monographs. Printed copy is available. Full details, including pricing, are on the journal web site (see below).
 Submission must be made electronically. For full instructions visit the journal web site at:
 ht t p: / / www nat hs. war wi ck. ac. uk/ gt/
 or choose your nearest mirror site from the EMIS network: ht t p: / / www. ennis. de/ or use anonymous ftp to: ftp. naths. war wi ck. ac. uk
 Academic Editorial Board:
 J oan Birman, Martin Bridson, Gunnar Carlsson, Ralph Cohen, Simon Donaldson, Bill Dwyer, Yasha Eliashberg, Steve Ferry, Ron Fintushe, Mike Freedman, David Gabai, Tom Goodwillie, Cameron Gordon, VaughanJ ones, R ob K irby, Frances K irwan, Dieter K otschick, Peter K ronheimer, Wolfgang Metzler, Haynes Miller, J ohn Morgan, Shigeyuki Morita, Tom Mrowka, Walter Neumann, J ean-PierrreOtal, R on Stern, Gang Tian
 Managing Editors:
 Colin Rourke, Brian Sanderson
 Geometry and Topology Publications
 Mathematics Institute
 University of Warwick
 Coventry, CV4 7AL, UK
 Email: gt @lat hs. warwi ck. ac. uk Fax: +44-1203-524182
 For printed copy se:
 ht t p: / / wuw nat hs. war wi ck. ac. uk/ gt / gt p- subscri pt i on. ht nh
 To order use the on-line order form:
 ht t p: / / unww nat hs. war wi ck. ac. uk/ gt / gt p- onl i ne- or der-f ormht nh
 Or write to Geometry and Topology Orders at the above address or:
 Email: gt orders@mat hs. war wi ck. ac. uk Fax: +44-1203-524182

[^1]: ${ }^{1}$ See the Adknowledment following this preface for a summary of the textual borrowings.

