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Part I : PL Topology

1 Introduction

This book gives an exposition of: the triangulation problem for a topological
manifold in dimensions strictly greater than four; the smoothing problem for
a piecewise-linear manifold; and, finally, of some of Sullivan’s ideas about the
topological resolution of singularities.

The book is addressed to readers who, having a command of the basic notions
of combinatorial and differential topology, wish to gain an insight into those
which we still call the golden years of the topology of manifolds.1

With this aim in mind, rather than embarking on a detailed analytical introduc-
tion to the contents of the book, I shall confine myself to a historically slanted
outline of the triangulation problem, hoping that this may be of help to the
reader.

A piecewise-linear manifold, abbreviated PL, is a topological manifold together
with a maximal atlas whose transition functions between open sets of Rn+ admit
a graph that is a locally finite union of simplexes.

There is no doubt that the unadorned topological manifold, stripped of all possi-
ble additional structures (differentiable, PL, analytic etc) constitutes an object
of remarkable charm and that the same is true of the equivalences, namely the
homeomorphisms, between topological manifolds. Due to a lack of means at
one’s disposal, the study of such objects, which define the so called topological
category, presents huge and frustrating difficulties compared to the admittedly
hard study of the analogous PL category, formed by the PL manifolds and the
PL homeomorphisms.

A significant fact, which highlights the kind of pathologies affecting the topo-
logical category, is the following. It is not difficult to prove that the group of
PL self-homeomorphisms of a connected boundariless PL manifold Mm acts
transitively not just on the points of M , but also on the PL m-discs contained
in M . On the contrary, the group of topological self-homeomorphisms indeed

1The book may also be used as an introduction to A Casson, D Sullivan, M Armstrong,
C Rourke, G Cooke, The Hauptvermutung Book, K–monographs in Mathematics 1996.
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2 I : PL Topology

acts transitively on the points of M , but not on the topological m–discs of M .
The reason dates back to an example of Antoine’s (1920), better known in the
version given by Alexander and usually called the Alexander horned sphere.
This is a the boundary of a topological embedding h : D3 → R3 (where D3

is the standard disc x2 + y2 + z2 ≤ 1), such that π1(R3 \ h(D3)) 6= 1. It is
clear that there cannot be any automorphism of R3 taking h(D3) to D3 , since
R3 \D3 is simply connected.

As an observation of a different nature, let us recall that people became fairly
easily convinced that simplicial homology, the first notion of homology to be
formalised, is invariant under PL automorphisms; however its invariance under
topological homeomorphisms immediately appeared as an almost intractable
problem.

It then makes sense to suppose that the thought occurred of transforming prob-
lems related to the topological category into analogous ones to be solved in the
framework offered by the PL category. From this attitude two questions natu-
rally emerged: is a given topological manifold homeomorphic to a PL manifold,
more generally, is it triangulable? In the affirmative case, is the resulting PL
structure unique up to PL homeomorphisms?

The second question is known as die Hauptvermutung (the main conjecture),
originally formulated by Steinitz and Tietze (1908) and later taken up by Kneser
and Alexander. The latter, during his speech at the International Congress of
Mathematicians held in Zurich in 1932, stated it as one of the major problems
of topology.

The philosophy behind the conjecture is that the relation M1 topologically
equivalent to M2 should be as close as possible to the relation M1 combinato-
rially equivalent to M2 .

We will first discuss the Hauptvermutung, which is, in some sense, more im-
portant than the problem of the existence of triangulations, since most known
topological manifolds are already triangulated.

Let us restate the conjecture in the form and variations that are currently used.
Let Θ1 , Θ2 be two PL structures on the topological manifold M . Then Θ1 , Θ2

are said to be equivalent if there exists a PL homeomorphism f : MΘ1 →MΘ2 ,
they are said to be isotopy equivalent if such an f can be chosen to be isotopic
to the identity and homotopy equivalent if f can be chosen to be homotopic to
the identity.

The Hauptvermutung for surfaces and three-dimensinal manifolds was proved
by Kerékiárto (1923) and Moise (1952) respectively. We owe to Papakyri-
akopoulos (1943) the solution to a generalised Haupvermutung, which is valid
for any 2-dimensional polyhedron.
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1 Introduction 3

We observe, however, that in those same years the topological invariance of
homology was being established by other methods.

For the class of C∞ triangulations of a differentiable manifold, Whitehead
proved an isotopy Haupvermutung in 1940, but in 1960 Milnor found a polyhe-
dron of dimension six for which the generalised Hauptvermutung is false. This
polyhedron is not a PL manifold and therefore the conjecture remained open
for manifolds.

Plenty of water passed under the bridge. Thom suggested that a structure on
a manifold should correspond to a section of an appropriate fibration. Milnor
introduced microbundles and proved that S7 supports twenty-eight differen-
tiable structures which are inequivalent from the C∞ viewpoint, thus refuting
the C∞ Hauptvermutung. The semisimplicial language gained ground, so that
the set of PL structures on M could be replaced effectively by a topological
space PL(M) whose path components correspond to the isotopy classes of PL
structures on M . Hirsch in the differentiable case and Haefliger and Poenaru
in the PL case studied the problem of immersions between manifolds. They
conceived an approach to immersion theory which validates Thom’s hypothesis
and establishes a homotopy equivalence between the space of immersions and
the space of monomorphisms of the tangent microbundles. This reduces the-
orems of this kind to a test of a few precise axioms followed by the classical
obstruction theory to the existence and uniqueness of sections of bundles.

Inspired by this approach, Lashof, Rothenberg, Casson, Sullivan and other au-
thors gave significant contributions to the triangulation problem of topological
manifolds, until in 1969 Kirby and Siebenmann shocked the mathematical world
by providing the following final answer to the problem.

Theorem (Kirby–Siebenmann) If Mm is an unbounded PL manifold and
m ≥ 5, then the whole space PL(M) is homotopically equivalent to the space
of maps K(Z/2, 3)M .

If m ≤ 3, then PL(M) is contractible (Moise).

K(Z/2, 3) denotes, as usual, the Eilenberg–MacLane space whose third homo-
topy group is Z/2. Consequently the isotopy classes of PL structures on M are
given by π0(PL(M)) = [M,K(Z/2, 3)] = H3(M,Z/2). The isotopy Hauptver-
mutung was in this way disproved. In fact, there are two isotopy classes of PL
structures on S3 × R2 and, moreover, Siebenmann proved that S3 × S1 × S1

admits two PL structures inequivalent up to isomorphism and, consequently,
up to isotopy or homotopy.

Geometry & Topology Monographs, Volume 6 (2003)



4 I : PL Topology

The Kirby–Siebenmann theorem reconfirms the validity of the Hauptvermutung
for Rm (m 6= 4) already established by Stallings in 1962.

The homotopy-Hauptvermutung was previously investigated by Casson and Sul-
livan (1966), who provided a solution which, for the sake of simplicity, we will
enunciate in a particular case.

Theorem (Casson–Sullivan) Let Mm be a compact simply-connected man-
ifold without boundary with m ≥ 5, such that H4(M,Z) has no 2-torsion.
Then two PL structures on M are homotopic.2

With respect to the existence of PL structures, Kirby and Siebenmann proved,
as a part of the above theorem, that: A boundariless Mm , with m ≥ 5, admits a
PL structure if and only if a single obstruction k(M) ∈ H4(M,Z/2) vanishes.

Just one last comment on the triangulation problem. It is still unknown whether
a topological manifold of dimension ≥ 5 can always be triangulated by a simpli-
cial complex that is not necessarily a combinatorial manifold. Certainly there
exist triangulations that are not combinatorial, since Edwards has shown that
the double suspension of a three-dimensional homological sphere is a genuine
sphere.

Finally, the reader will have noticed that the four-dimensional case has always
been excluded. This is a completely different and more recent story, which,
thanks to Freedman and Donaldson, constitutes a revolutionary event in the
development of the topology of manifolds. As evidence of the schismatic be-
haviour of the fourth dimension, here we have room only for two key pieces of
information with which to whet the appetite:

(a) R4 admits uncountably many PL structures.

(b) ‘Few’ four-dimensional manifolds are triangulable.

2This book will not deal with this most important and difficult result. The reader is
referred to [Casson, Sullivan, Armstrong, Rourke, Cooke 1996].
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2 Problems, conjectures, classical results 5

2 Problems, conjectures, classical results

This section is devoted to a sketch of the state of play in the field of combi-
natorial topology, as it presented itself during the sixties. Brief information is
included on developments which have occurred since the sixties.

Several of the topics listed here will be taken up again and developed at leisure
in the course of the book.

An embedding of a topological space X into a topological space Y is a con-
tinuous map µ : X → Y , which restricts to a homeomorphism between X and
µ(X).

Two embeddings, µ and ν , of X into Y are equivalent , if there exists a home-
omorphism h : Y → Y such that hµ = ν .

2.1 Knots of spheres in spheres

A topological knot of codimension c in the sphere Sn is an embedding
ν : Sn−c → Sn . The knot is said to be trivial if it is equivalent to the standard
knot, that is to say to the natural inclusion of Sn−c into Sn .

Codimension 1 – the Schoenflies conjecture

Topological Schoenflies conjecture Every knot of codimension one in Sn

is trivial.
• The conjecture is true for n = 2 (Schoenflies 1908) and plays an essential
role in the triangulation of surfaces. The conjecture is false in general, since
Antoine and Alexander (1920–24) have knotted S2 in S3 .

A knot ν : Sn−c → Sn is locally flat if there exists a covering of Sn−c by open
sets such that on each open U of the covering the restriction ν : U → Sn extends
to an embedding of U × Rc into Sn .

If c = 1, locally flat = locally bicollared:

ν(Sn−1)

Weak Schoenflies Conjecture Every locally flat knot is trivial.

• The conjecture is true (Brown and Mazur–Morse 1960).
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6 I : PL Topology

Canonicalness of the weak Schoenflies problem

The weak Schoenflies problem may be enunciated by saying that any embedding
µ : Sn−1 × [−1, 1] → Rn extends to an embedding µ : Dn → Rn , with µ(x) =
µ(x, 0) for x ∈ Sn−1 .

Consider µ and µ as elements of Emb(Sn−1 × [−1, 1],Rn) and Emb(Dn,Rn)
respectively, ie, of the spaces of embeddings with the compact open topology.

[Huebsch and Morse 1960/1963] proved that it is possible to choose the solution
µ to the Schoenflies problem µ in such a way that the correspondence µ→ µ
is continuous as a map between the embedding spaces. We describe this by
saying that µ depends canonically on µ and that the solution to the Schoenflies
problem is canonical . Briefly, if the problems µ and µ′ are close, their solutions
too may be assumed to be close. See also [Gauld 1971] for a far shorter proof.

The definitions and the problems above are immediately transposed into the
PL case, but the answers are different.

PL–Schoenflies Conjecture Every PL knot of codimension one in Sn is
trivial.
• The conjecture is true for n ≤ 3, Alexander (1924) proved the case n = 3.
For n > 3 the conjecture is still open; if the n = 4 case is proved, then the
higher dimensional cases will follow.

Weak PL–Schoenflies Conjecture Every PL knot, of codimension one and
locally flat in Sn , is trivial.

• The conjecture is true for n 6= 4 (Alexander n < 4, Smale n ≥ 5).

Weak Differentiable Schoenflies Conjecture Every differentiable knot of
codimension one in Sn is setwise trivial, ie, there is a diffeomorphism of Sn

carrying the image to the image of the standard embedding.

• The conjecture is true for n 6= 4 (Smale n > 4, Alexander n < 4).

The strong Differentiable Schoenflies Conjecture, that every differentiable knot
of codimension one in Sn is trivial is false for n > 5 because of the existence
of exotic diffeomorphisms of Sn for n ≥ 6 [Milnor 1958].

A less strong result than the PL Shoenflies problem is a classical success of the
Twenties.

Theorem (Alexander–Newman) If Bn is a PL disc in Sn then the closure
Sn −Bn is itself a PL disc.
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The result holds also in the differentiable case (Munkres).

Higher codimensions

Theorem [Stallings 1963] Every locally flat knot of codimension c 6= 2 is
trivial.

Theorem [Zeeman 1963] Every PL knot of codimension c ≥ 3 is trivial.

Zeeman’s theorem does not carry over to the differentiable case, since Haefliger
(1962) has differentiably knotted S4k−1 in S6k ; nor it can be transposed into
the topological case, where there exist knots (necessarily not locally flat if c 6= 2)
in all codimensions 0 < c < n.

2.2 The annulus conjecture

PL annulus theorem [Hudson–Zeeman 1964] If Bn1 , Bn2 are PL discs in
Sn , with B1 ⊂ IntB2 , then

B2 −B1 ≈PL Ḃ1 × [0, 1].

Topological annulus conjecture Let µ, ν : Sn−1 → Rn be two locally flat
topological embeddings with Sµ contained in the interior of the disc bounded
by Sν . Then there exists an embedding λ : Sn−1 × I → Rn such that

λ(x, 0) = µ(x) and λ(x, 1) = ν(x).

• The conjecture is true (Kirby 1968 for n > 4, Quinn 1982 for n=4).

The following beautiful result is connected to the annulus conjecture:

Theorem [Cernavskii 1968, Kirby 1969, Edwards–Kirby 1971] The space
H(Rn) of homeomorphisms of Rn with the compact open topology is locally
contractible.

2.3 The Poincaré conjecture

A homotopy sphere is, by definition, a closed manifold of the homotopy type of
a sphere.
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8 I : PL Topology

Topological Poincaré conjecture A homotopy sphere is a topological
sphere.

• The conjecture is true for n 6= 3 (Newman 1966 for n > 4, Freedman 1982
for n=4)

Weak PL–Poincaré conjecture A PL homotopy sphere is a topological
sphere.

• The conjecture is true for n 6= 3. This follows from the topological conjecture
above, but was first proved by Smale, Stallings and Zeeman (Smale and Stallings
1960 for n ≥ 7, Zeeman 1961/2 for n ≥ 5, Smale and Stallings 1962 for n ≥ 5).

(Strong) PL–Poincaré conjecture A PL homotopy sphere is a PL sphere.

• The conjecture is true for n 6= 3, 4, (Smale 1962, for n ≥ 5).

In the differentiable case the weak Poincaré conjecture is true for n 6= 3 (follows
from the Top or PL versions) the strong one is false in general (Milnor 1958).

Notes For n = 3, the weak and the strong versions are equivalent, due to
the theorems on triangulation and smoothing of 3–manifolds. Therefore the
Poincaré conjecture, still open, assumes a unique form: a homotopy 3–sphere
(Top, PL or Diff) is a 3–sphere. For n = 4 the strong PL and Diff conjectures
are similarly equivalent and are also still open. Thus, for n = 4, we are today
in a similar situation as that in which topologists were during 1960/62 before
Smale proved the strong PL high-dimensional Poincaré conjecture.

2.4 Structures on manifolds

Structures on Rn

Theorem [Stallings 1962] If n 6= 4, Rn admits a unique structure of PL
manifold and a unique structure of C∞ manifold.

Theorem (Edwards 1974) There exist non combinatorial triangulations of
Rn , n ≥ 5.

Therefore Rn does not admit, in general, a unique polyhedral structure.
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Theorem R4 admits uncountably many PL or C∞ structures.

This is one of the highlights following from the work of Casson, Edwards (1973-
75), Freedman (1982), Donaldson (1982), Gompf (1983/85), Taubes (1985).
The result stated in the theorem is due to Taubes. An excellent historical and
mathematical account can be found in [Kirby 1989].

PL–structures on spheres

Theorem If n 6= 4, Sn admits a unique structure of PL manifold.

This result is classical for n ≤ 2, it is due to Moise (1952) for n = 3, and to
Smale (1962) for n > 4.

Theorem (Edwards 1974) The double suspension of a PL homology sphere
is a topological sphere.

Therefore there exist non combinatorial triangulations of spheres. Consequently
spheres, like Euclidean spaces, do not admit, in general, a unique polyhedral
structure.

Smooth structures on spheres

Let C(Sn) be the set of orientation-preserving diffeomorphism classes of C∞

structures on Sn . For n 6= 4 this can be given a group structure by using
connected sum and is the same as the group of differentiable homotopy spheres
Γn for n > 4.

Theorem Assume n 6= 4. Then

(a) C(Sn) is finite,

(b) C(Sn) is the trivial group for n ≤ 6 and for some other values of n,
while, for instance, C(S4k−1) 6= {1} for all k ≥ 2.

The above results are due to Milnor (1958), Smale (1959), Munkres (1960),
Kervaire-Milnor (1963).
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10 I : PL Topology

The 4-dimensional case

It is unknown whether S4 admits exotic PL and C∞ structures. The two
problems are equivalent and they are also both equivalent to the strong four-
dimensional PL and C∞ Poincaré conjecture. If C(S4) is a group then the
four-dimensional PL and C∞ Poincaré conjectures reduce to the PL and C∞

Schoenflies conjectures (all unsolved).

A deep result of Cerf’s (1962) implies that there is no C∞ structure on S4

which is an effectively twisted sphere, ie, a manifold obtained by glueing two
copies of the standard disk through a diffeomorphism between their boundary
spheres. Note that the PL analogue of Cerf’s result is an easy exercise: effec-
tively twisted PL spheres cannot exist (in any dimension) since there are no
exotic PL automorphisms of Sn .

These results fall within the ambit of the problems listed below.

Structure problems for general manifolds

Problem 1 Is a topological manifold of dimension n homeomorphic to a PL
manifold?
• Yes for n ≤ 2 (Radò 1924/26).

• Yes for n = 3 (Moise, 1952).

• No for n = 4 (Donaldson 1982).

• No for n > 4 : in each dimension > 4 there are non-triangulable topological
manifolds (Kirby–Siebenmann 1969).

Problem 2 Is a topological manifold homeomorphic to a polyhedron?

• Yes if n ≤ 3 (Radò, Moise).

• No for n = 4 (Casson, Donaldson, Taubes, see [Kirby Problems 4.72]).

• Unknown for n > 5, see [Kirby op cit].

Problem 3 Is a polyhedron, which is a topological manifold, also a PL man-
ifold?
• Yes if n ≤ 3.

• Unknown for n = 4, see [Kirby op cit]. If the 3-dimensional Poincaré con-
jecture holds, then the problem can be answered in the affirmative, since the
link of a vertex in any triangulation of a 4-manifold is a simply connected 3-
manifold.
• No if n > 4 (Edwards 1974).
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Problem 4 (Hauptvermutung for polyhedra) If two polyhedra are homeo-
morphic, are they also PL homeomorphic?

• Negative in general (Milnor 1961).

Problem 5 (Hauptvermutung for manifolds) If two PL manifolds are home-
omorphic, are they also PL homeomorphic?

• Yes for n = 1 (trivial).

• Yes for n = 2 (classical).

• Yes for n = 3 (Moise).

• No for n = 4 (Donaldson 1982).

• No for n > 4 (Kirby–Siebenmann–Sullivan 1967–69).

Problem 6 (C∞ Hauptvermutung) Are two homeomorphic C∞ manifolds
also diffeomorphic?

• For n ≤ 6 the answers are the same as the last problem.

• No for n ≥ 7, for example there are 28 C∞ differential structures on S7

(Milnor 1958).

Problem 7 Does a C∞ manifold admit a PL manifold structure which is
compatible (according to Whitehead) with the given C∞ structure?
In the affirmative case is such a PL structure unique?

• The answer is affirmative to both questions, with no dimensional restrictions.
This is the venerable Whitehead Theorem (1940).

Note A PL structure being compatible with a C∞ structure means that the
transition functions relating the PL atlas and the C∞ atlas are piecewise–
differentiable maps, abbreviated PD.

By exchanging the roles of PL and C∞ one obtains the so called and much
more complicated “smoothing problem”.

Problem 8 Does a PL manifold Mn admit a C∞ structure which is White-
head compatible?

• Yes for n ≤ 7 but no in general. There exists an obstruction theory to
smoothing, with obstructions αi ∈ Hi+1(M ; Γi), where Γi is the (finite) group
of differentiable homotopy spheres (Cairns, Hirsch, Kervaire, Lashof, Mazur,
Munkres, Milnor, Rothenberg et al ∼ 1965).

• The C∞ structure is unique for n ≤ 6.
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12 I : PL Topology

Problem 9 Does there always exist a C∞ structure on a PL manifold, possibly
not Whitehead–compatibile?

• No in general (Kervaire’s counterexample, 1960).
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3 Polyhedra and categories of topological manifolds

In this section we will introduce the main categories of geometric topology.
These are defined through the concept of supplementary structure on a topo-
logical manifold. This structure is usually obtained by imposing the existence of
an atlas which is compatible with a pseudogroup of homeomorphisms between
open sets in Euclidean spaces.

We will assume the reader to be familiar with the notions of simplicial com-
plex, simplicial map and subdivision. The main references to the literature
are [Zeeman 1963], [Stallings 1967], [Hudson 1969], [Glaser 1970], [Rourke and
Sanderson 1972].

3.1 The combinatorial category

A locally finite simplicial complex K is a collection of simplexes in some Eu-
clidean space E , such that:

(a) A ∈ K and B is a face of A, written B < A, then B ∈ K .

(b) If A,B ∈ K then A ∩ B is a common face, possibly empty, of both A
and B .

(c) Each simplex of K has a neighbourhood in E which intersects only a
finite number of simplexes of K .

Often it will be convenient to confuse K with its underlying topological space

|K| =
⋃
A∈K

A

which is called a Euclidean polyhedron.

We say that a map f : K → L is piecewise linear, abbreviated PL, if there exists
a linear subdivision K ′ of K such that f sends each simplex of K ′ linearly
into a simplex of L.

It is proved, in a non trivial way, that the locally finite simplicial complexes
and the PL maps form a category with respect to composition of maps. This
is called the combinatorial category.

There are three important points to be highlighted here which are also non
trivial to establish:

(a) If f : K → L is PL and K,L are finite, then there exist subdivisions
K ′ / K and L′ / L such that f : K ′ → L′ is simplicial. Here / is the
symbol used to indicate subdivision.
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14 I : PL Topology

(b) A theorem of Runge ensures that an open set U of a simplicial complex K
or, more precisely, of |K|, can be triangulated, ie, underlies a locally finite
simplicial complex, in a way such that the inclusion map U ⊂ K is PL.
Furthermore such a triangulation is unique up to a PL homeomorphism.
For a proof see [Alexandroff and Hopf 1935, p. 143].

(c) A PL map, which is a homeomorphism, is a PL isomorphism, ie, the in-
verse map is automatically PL. This does not happen in the differentiable
case as shown by the function f(x) = x3 for x ∈ R.

As evidence of the little flexibility of PL isomorphisms consider the differentiable
map of R into itself

f(x) =

{
x+ e−1/x2

4
sin
(

1
x

)
x 6= 0

0 x = 0.

This is even a C∞ diffeomorphism but it can not in any way be well approxi-
mated by a PL map, since the origin is an accumulation point of isolated fixed
points (Siebenmann).

If S ⊂ K is a subset made of simplexes, we call the simplicial closure of S the
smallest subcomplex of K which contains S :

S := {B ∈ K : ∃A ∈ S with B < A} .

In other words we add to the simplexes of S all their faces. Since, clearly,
|S| = |S|, we will say that S generates S .

Let v be a vertex of K , then the star of v in K , written S(v,K), is the
subcomplex of K generated by all the simplexes which admit v as a vertex,
while the link of v in K , written L(v,K), is the subcomplex consisting of all
the simplexes of S(v,K) which do not admit v as a vertex. The most important
property of the link is the following: if K ′ / K then L(v,K) ≈PL L(v,K ′).

K is called a n–dimensional combinatorial manifold without boundary, if the
link of each vertex is a PL n–sphere. More generally, K is a combinatorial n–
manifold with boundary if the link of each vertex is a PL n–sphere or PL n–ball.
(PL spheres and balls will be defined precisely in subsection 3.6 below.) It can
be verified that the subcomplex K̇ = ∂K ⊂ K generated by all the (n − 1)–
simplexes which are faces of exactly one n–simplex is itself a combinatorial
(n− 1)–manifold without boundary.
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3.2 Polyhedra and manifolds

Until now we have dealt with objects such as simplicial complexes which are, by
definition, contained in a given Euclidean space. Yet, as happens in the case of
differentiable manifolds, it is advisable to introduce the notion of a polyhedron
in an intrinsic manner, that is to say independent of an ambient Euclidean
space.

Let P be a topological space such that each point in P admits an open neigh-
bourhood U and a homeomorphism

ϕ: U → |K|

where K is a locally finite simplicial complex. Both U and ϕ are called a
coordinate chart. Two charts are PL compatible if they are related by a PL
isomorphism on their intersection.

A polyhedron is a metrisable topological space endowed with a maximal atlas of
PL compatible charts. The atlas is called a polyhedral structure. For example,
a simplicial complex is a polyhedron in a natural way.

A PL map of polyhedra is defined in the obvious manner using charts. Now
one can construct the polyhedral category, whose objects are the polyhedra and
whose morphisms are the PL maps.

It turns out to be a non trivial fact that each polyhedron is PL homeomorphic
to a simplicial complex.

A triangulation of a polyhedron P is a PL homeomorphism t : |K| → P , where
|K| is a Euclidean polyhedron. When there is no danger of confusion we will
identify, through the map t, the polyhedron P with |K| or even with K .

Alternative definition Firstly we will extend the concept of triangulation.
A triangulation of a topological space X is a homeomorphism t : |K| → X ,
where K is a simplicial complex. A polyhedron is a pair (P,F), where P is a
topological space and F is a maximal collection of PL compatible triangulations.
This means that, if t1 , t2 are two such triangulations, then t−1

2 t1 is a PL
map. The reader who is interested in the equivalence of the two definitions
of polyhedron, ie, the one formulated using local triangulations and the latter
formulated using global triangulations, can find some help in [Hudson 1969, pp.
76–87].

[E C Zeeman 1963] generalised the notion of a polyhedron to that of a polyspace.
As an example, R∞ is not a polyhedron but it is a polyspace, and therefore it
makes sense to talk about PL maps defined on or with values in R∞ .
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16 I : PL Topology

P0 ⊂ P is a closed subpolyhedron if there exists a triangulation of P which
restricts to a triangulation of P0 .

A full subcategory of the polyhedral category of central importance is that
consisting of PL manifolds. Such a manifold, of dimension m, is a polyhedron
M whose charts take values in open sets of Rm .

When there is no possibility of misunderstanding, the category of PL manifolds
and PL maps is abbreviated to the PL category. It is a non trivial fact that
every triangulation of a PL manifold is a combinatorial manifold and actually,
as happens for the polyhedra, this provides an alternative definition: a PL
manifold consists of a polyhedron M such that each triangulation of M is a
combinatorial manifold. The reader who is interested in the equivalence of the
two definitions of PL manifold can refer to [Dedecker 1962].

3.3 Structures on manifolds

The main problem upon which most of the geometric topology is based is that
of classifying and comparing the various supplementary structures that can be
imposed on a topological manifold, with a particular interest in the piecewise
linear and differentiable structures.

The definition of PL manifold by means of an atlas given in the previous sub-
section is a good example of the more general notion of manifold with structure
which we now explain. For the time being we will limit ourselves to the case of
manifolds without boundary.

A pseudogroup Γ on a Euclidean space E is a category whose objects are the
open subsets of E. The morphisms are given by a class of homeomorphisms
between open sets, which is closed with respect to composition, restriction, and
inversion; furthermore 1U ∈ Γ for each open set U . Finally we require the
class to be locally defined. This means that if Γ0 is the set of all the germs of
the morphisms of Γ and f : U → V is a homeomorphism whose germ at every
point of U is in Γ0 , then f ∈ Γ.

Examples

(a) Γ is trivial, ie, it consists of the identity maps. This is the smallest
pseudogroup.

(b) Γ consists of all the homeomorphisms. This is the biggest pseudogroup,
which we will denote Top.

(c) Γ consists of all the stable homeomorphisms according to [Brown and
Gluck 1964]. This is denoted SH. We will return to this important pseu-
dogroup in IV, section 9.
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3 Polyhedra and categories of topological manifolds 17

(d) Γ consists of all the Cr homeomorphisms whose inverses are Cr.

(e) Γ consists of all the C∞ diffeomophisms, denoted by Diff, or all the
Cω diffeomorphisms (real analytic), or all CΩ diffeomorphisms (complex
analytic).

(f) Γ consists of all the Nash homeomorphisms.

(g) Γ consists of all the PL homeomorphisms, denoted by PL.

(h) Γ is a pseudogroup associated to foliations (see below).

(i) E could be a Hilbert space, in which case an example is offered by the
Fredholm operators.

Let us recall that a topological manifold of dimension m is a metrisable topo-
logical space M , such that each point x in M admits an open neighbourhood
U and a homeomorphism ϕ between U and an open set of Rm . Both U and
ϕ are called a chart around x. A Γ structure Θ on M is a maximal atlas Γ–
compatible. This means that, if (Uα, ϕα) and (Uβ , ϕβ) are two charts around
x, then ϕβ ◦ ϕ−1

α is in Γ,where the composition is defined.

If Γ is the pseudogroup of PL homeomorphisms of open sets of Rm , Θ is nothing
but a PL structure on the topological manifold M . If Γ is the pseudogroup
of the diffeomorphisms of open sets of Rm , then Θ is a C∞ structure on M .
If, instead, the diffeomorphisms are Cr , then we have a Cr–structure on M .
Finally if Γ = SH, Θ is called a stable structure on M . Another interesting
example is described below.

Let π : Rm → Rp be the Cartesian projection onto the first p coordinates and
let Γm be one of the peudogroups PL, C∞ , Top, on Rm considered above. We
define a new pseudogroup FpΓ ⊂ Γm by requiring that f : U → V is in FpΓ if
there is a commutative diagram

U
f

//

π

��

V

π

��

π(U)
g

// π(V )

with f ∈ Γm , g ∈ Γp . A FpΓ –structure on M is called a Γ–structure with
a foliation of codimension p. Therefore we have the notion of manifold with
foliation, either topological, PL or differentiable.

A Γ–manifold is a pair (M,Θ), where M is a topological manifold and Θ is a Γ–
structure on M . We will often write MΘ , or even M when the Γ–structure Θ is
obvious from the context. If f : M ′ →MΘ is a homeomorphism, the Γ structure
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18 I : PL Topology

induced on M ′ , f∗(Θ), is the one which has a composed homeomorphism as a
typical chart

f−1(U)
f−→U ϕ−→ϕ(U)

where ϕ is a chart of Θ on M .

From now on we will concentrate only on the pseoudogroups Γ = Top, PL, Diff.

A homeomorphism f : MΘ → M ′Θ′ of Γ–manifolds is a Γ–isomorphism if Θ =
f∗(Θ′). More generally, a Γ–map f : M → N between two Γ–manifolds is a
continuous map f of the underlying topological manifolds, such that, written
locally in coordinates it is a topological PL or C∞ map, according to the
pseudogroup chosen. Then we have the category of the Γ–manifolds and Γ–
maps, in which the isomorphisms are the Γ–isomorphisms described above and
usually denoted by the symbol ≈Γ , or simply ≈.

3.4 Isotopy

In the category of topological spaces and continuous maps, an isotopy of X is
a homeomorphism F : X × I → X × I which respects the levels, ie, p = pF ,
where p is the projection on I .

Such an F determines a continuous set of homeomorphisms ft : X → X through
the formula

F (x, t) = (ft(x), t) t ∈ I.

Usually, in order to reduce the use of symbols, we write Ft instead of ft . The
isotopy F is said to be ambient if f0 = 1X . We say that F fixes Z ⊂ X , or
that F is relative to Z , if ft|Z = 1Z for each t ∈ I ; we say that F has support
in W ⊂ X if F it fixes X −W . Two topological embeddings λ, µ : Y → X are
isotopic if there exists an embedding H : Y × I → X × I , which preserves the
levels and such that h0 = λ and h1 = µ. The embeddings are ambient isotopic
if there exists H which factorises through an ambient isotopy, F , of X :

Y × I H
//

λ×I
$$
II

II
II

II
I

X × I

X × I
F

::ttttttttt

and, in this case, we will say that F extends H . The embedding H is said to
be an isotopy between λ and µ.

The language of isotopies can be applied, with some care, to each of the cate-
gories Top, PL, Diff.
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3 Polyhedra and categories of topological manifolds 19

3.5 Boundary

The notion of Γ–manifold with boundary and its main properties do not present
any problem. It is sufficient to require that the pseudogroup Γ is defined
satisfying the usual conditions, but starting from a class of homeomorphisms
of the open sets of the halfspace Rm+ = {(x1, . . . , xm) ∈ Rm : x1 ≥ 0}. The
points in M that correspond, through the coordinate charts, to points in the
hyperplane, {(x1, . . . , xm) ∈ Rm+ : x1 = 0} define the boundary ∂M or Ṁ of
M . This can be proved to be an (m − 1)-dimensional Γ–manifold without
boundary. The complement of ∂M in M is the interior of M , denoted either
by IntM or by

◦
M . A closed Γ–manifold is defined as a compact Γ–manifold

without boundary. A Γ–collar of ∂M in M is a Γ–embedding

γ : ∂M × I →M

such that γ(x, 0) = x and γ(∂M × [0, 1)) is an open neighbourhood of ∂M
in M . The fact that the boundary of a Γ–manifold always admits a Γ–collar,
which is unique up to Γ–ambient isotopy is very important and non trivial.

3.6 Notation

Now we wish to establish a unified notation for each of the two standard objects
which are mentioned most often, ie, the sphere Sm−1 and the disc Dm .

In the PL category, Dm means either the cube Im = [0, 1]m ⊂ Rm or the
simplex

∆m = {(x1, . . . , xm) ∈ Rm : xi ≥ 0 and Σxi ≤ 1} .
Sm−1 is either ∂Im or ∆̇m , with their standard PL structures.

In the category of differentiable manifolds Dm is the closed unit disc of Rm ,
with centre the origin and standard differentiable structure, while Sm−1 =
∂Dm .

A PL manifold is said to be a PL m–disc if it is PL homeomorphic to Dm . It is a
PL m–sphere if it is PL homeomorphic Sm . Analogously a C∞ manifold is said
to be a differentiable m–disc (or differentiable m–sphere) if it is diffeomorphic
to Dm (or Sm respectively).

3.7 h–cobordism

We will finish by stating two celebrated results of the topology of manifolds:
the h–cobordism theorem and the s–cobordism theorem.

Let Γ = PL or Diff. A Γ–cobordism (V,M0,M1) is a compact Γ–manifold
V , such that ∂V is the disjoint union of M0 and M1 . V is said to be an h–
cobordism if the inclusions M0 ⊂ V and M1 ⊂ V are homotopy equivalences.
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20 I : PL Topology

h–cobordism theorem If an h–cobordism V is simply connected and dimV
≥ 6, then

V ≈Γ M0 × I,
and in particular M0 ≈Γ M1.

In the case of Γ = Diff, the theorem was proved by [Smale 1962]. He intro-
duced the idea of attaching a handle to a manifold and proved the result using
a difficult procedure of cancelling handles. Nevertheless, for some technical
reasons, the handle theory is better suited to the PL case, while in differential
topology the equivalent concept of the Morse function is often preferred. This
is, for example, the point of view adopted by [Milnor 1965]. The extension of
the theorem to the PL case is due mainly to Stallings and Zeeman. For an
exposition see [Rourke and Sanderson, 1972]

The strong PL Poincaré conjecture in dim > 5 follows from the h–cobordism
theorem (dimension five also follows but the proof is rather more difficult). The
differentiable h–cobordism theorem implies the differentiable Poincaré conjec-
ture, necessarily in the weak version, since the strong version has been disproved
by Milnor (the group of differentiable homotopy 7–sphere is Z/28): in other
words a differentiable homotopy sphere of dim ≥ 5 is a topological sphere.

Weak h–cobordism theorem

(1) If (V,M0,M1) is a PL h–cobordism of dimension five, then

V −M1 ≈PL M0 × [0, 1).

(2) If (V,M0,M1) is a topological h–cobordism of dimension ≥ 5, then

V −M1 ≈Top M0 × [0, 1).

Let Γ = PL or Diff and (V,M0,M1) be a connected Γ h–cobordism not nec-
essarily simply connected. There is a well defined element τ(V,M0), in the
Whitehead group Wh (π1(V )), which is called the torsion of the h–cobordism
V . The latter is called an s–cobordism if τ(V,M0) = 0.

s–cobordism theorem If (V,M0,M1) is an s–cobordism of dim ≥ 6, then

V ≈Γ M0 × I.

This result was proved independently by [Barden 1963], [Mazur 1963] and
[Stallings 1967] (1963).

Note If A is a free group of finite type then Wh (A) = 0 [Stallings 1965].
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4 PL structure of Rm , Poincaré conjecture 21

4 Uniqueness of the PL structure on Rm ,
Poincaré conjecture

In this section we will cover some of the great achievments made by geometric
topology during the sixties and, in order to do that, we will need to introduce
some more elements of combinatorial topology.

4.1 Stars and links

Recall that the join AB of two disjoint simplexes, A and B , in a Euclidean
space is the simplex whose vertices are given by the union of the vertices of A
and B if those are independent, otherwise the join is undefined. Using joins,
we can extend stars and links (defined for verticesin 3.1) to simplexes.

Let A be a simplex of a simplicial complex K , then the star and the link of A
in K are defined as follows:

S(A,K) = {B ∈ K : A ≤ B} (here {, } means simplicial closure)
L(A,K) = {B ∈ K : AB ∈ K}.

Then S(A,K) = AL(A,K) (join).

If A = A′A′′ , then

L(A,K) = L(A′, L(A′′,K)).

From the above formula it follows that a combinatorial manifold K is charac-
terised by the property that for each A ∈ K :

L(A,K) is either a PL sphere or a PL disc.

Furthermore ∂K ≡ {A ∈ K : L(A,K) is a disc}.

4.2 Alexander’s trick

This applies to both PL and Top.

Theorem (Alexander) A homeomorphism of a disc which fixes the boundary
sphere is isotopic to the identity, relative to that sphere.
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Proof It will suffice to prove this result for a simplex ∆. Given f : ∆ → ∆,
we construct an isotopy F : ∆× I → ∆× I in the following manner:

0

1

f

x x

F | ∆ × {0} = f ; F = 1 if restricted to any other face of the prism. In this
way we have defined F on the boundary of the prism. In order to extend F to
its interior we define F (x) = x, where x is the centre of the prism, and then
we join conically with F |∂ . In this way we obtain the required isotopy.

It is also obvious that each homeomorphism of the boundaries of two discs
extends conically to the interior.

4.3 Collapses

If K ⊃ L are two complexes, we say that there is an elementary simplicial
collapse of K to L if K −L consists of a principal simplex A, together with a
free face. More precisely if A = aB , then K = L ∪A and aḂ = L ∩A

A

B

a
K

aL

K collapses simplicially to L, written K↘sL, if there is a finite sequence of
simplicial elementary collapses which transforms K into L.

In other words K collapses to L if there exist simplexes A1, . . . , Aq of K such
that

(a) K = L ∪A1 ∪ · · · ∪Aq
(b) each Ai has one vertex vi and one face Bi , such that Ai = viBi and

(L ∪A1 ∪ · · · ∪Ai−1) ∩Ai = viḂi.

For example, a cone vK collapses to the vertex v and to any subcone.
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4 PL structure of Rm , Poincaré conjecture 23

The definition for polyhedra is entirely analogous. If X ⊃ Y are two polyhedra
we say that there is an elementary collapse of X into Y if there exist PL
discs Dn and Dn−1 , with Dn−1 ⊂ ∂Dn , such that X = Y ∪ Dn and, also,
Dn−1 = Y ∩Dn

X

Y

Dn−1

Dn

X collapses to Y , written X ↘ Y , if there is a finite sequence of elementary
collapses which transforms X into Y .

For example, a disc collapses to a point: D ↘ ∗.

Let K and L be triangulations of X and Y respectively and X ↘ Y , the reader
can prove that there exist subdivisions K ′ / K , L′ / L such that K ′ ↘sL′ .

Finally, if K ↘sL, we say that L expands simplicially to K . The technique
of collapses and of regular neighbourhoods was invented by J H C Whitehead
(1939).

The dunce hat Clearly, if X ↘ ∗, then X is contractible, since each elemen-
tary collapse defines a deformation retraction, while the converse is false.

For example, consider the so called dunce hat H , defined as a triangle v0v1v2 ,
with the sides identified by the rule v0v1 = v0v2 = v1v2 .

v0 v1

v2

H

It follows that H is contractible (exercise), but H does not collapse to a point
since there are no free faces to start.

It is surprising that H × I ↘ ∗ [Zeeman, 1964, p. 343].
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Zeeman’s conjecture If K is a 2-dimensional contractible simplicial com-
plex, then K × I ↘ ∗.

The conjecture is interesting since it implies a positive answer to the three-
dimensional Poincaré conjecture using the following reasoning. Let M3 be a
compact contractible 3–manifold with ∂M3 = S2 . It will suffice to prove that
M3 is a disc. We say that X is a spine of M if M ↘ X . It is now an easy
exercise to prove that M3 has a 2-dimensional contractible spine K . From
the Zeeman conjecture M3 × I ↘ K × I ↘ ∗ . PL discs are characterised by
the property that they are the only compact PL manifolds that collapse to a
point. Therefore M3× I ≈ D4 and then M3 ⊂ Ḋ4 = S3 . Since ∂M3 ≈ S2 the
manifold M3 is a disc by the Schoenflies theorem.

For more details see [Glaser 1970, p. 78].

4.4 General position

The singular set of a proper map f : X → Y of polyhedra is defined as

S(f) = closure {x ∈ X : f−1f(x) 6= x}.

Let f be a PL map, then f is non degenerate if f−1(y) has dimension 0 for
each y ∈ f(X).

If f is PL, then S(f) is a subpolyhedron.

Let X0 be a closed subpolyhedron of Xx , with X −X0 compact and Mm a
PL manifold without boundary, x ≤ m. Let Y y be a possibly empty fixed
subpolyhedron of M .

A proper continuous map f : X →M is said to be in general position, relative
to X0 and with respect to Y , if

(a) f is PL and non degenerate,

(b) dim(S(f)−X0) ≤ 2x−m,

(c) dim (f(X −X0) ∩ Y ) ≤ x+ y −m.

Theorem Let g : X → M be a proper map such that g|X0 is PL and non
degenerate. Given ε > 0, there exists a ε–homotopy of g to f , relative to X0 ,
such that f is in general position.
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4 PL structure of Rm , Poincaré conjecture 25

For a proof the following reading is advised [Rourke–Sanderson 1972, p. 61].

In terms of triangulations one may think of general position as follows: f : X →
M is in general position if there exists a triangulation (K,K0) of (X,X0) such
that

(1) f embeds each simplex of K piecewise linearly into M ,

(2) if A and B are simplexes of K −K0 then

dim (f(A) ∩ f(B)) ≤ dimA+ dimB −m,

(3) if A is a simplex of K −K0 then

dim ((f(A) ∩ Y ) ≤ dimA+ dimY −m.

One can also arrange that the following double-point condition be satisfied (see
[Zeeman 1963]). Let d = 2x−m
(4) S(f) is a subcomplex of K . Moreover, if A is a d–simplex of S(f) −

K0 , then there is exactly one other d–simplex A∗ of S(f) − K0 such
that f(A) = f(A∗). If S , S∗ are the open stars of A, A∗ in K then
the restrictions f | S , f | S∗ are embeddings, the images f(S), f(S∗)
intersect in f(

◦
A) = f(

◦
A∗) and contain no other points of f(X).

Remark Note that we have described general position of f both as a map
and with respect to the subspace Y , which has been dropped from the notation
for the sake of simplicity. We will need a full application of general position
later in the proof of Stallings’ Engulfing theorem.

Proposition Let X be compact and let f : X → Z be a PL map. Then if
X ⊃ Y ⊃ S(f) and X ↘ Y , then f(X)↘ f(Y ).

The proof is left to the reader. The underlying idea of the proof is clear:
X − Y 6⊃ S(f), the map f is injective on X − Y , therefore each elementary
collapse corresponds to an analogous elementary collapse in the image of f .

4.5 Regular neighbourhoods

Let X be a polyhedron contained in a PL manifold Mm . A regular neighbour-
hood of X in M is a polyhedron N such that

(a) N is a closed neighbourhood of X in M

(b) N is a PL manifold of dimension m
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(c) N ↘ X .

We will denote by ∂N the frontier of N in M .

We say that the regular neighbourhood N of X in M meets ∂M transversally
if either N ∩ ∂M is a regular neighbourhood of X ∩ ∂M in ∂M , or N ∩ ∂M =
X ∩ ∂M = ∅.
The example of a regular neighbourhood par excellence is the following.

Let (K,L) be a triangulation of (M,X) so that each simplex of K meets L
in a (possibly empty ) face; let f : K → I = ∆1 be the unique simplicial map
such that f−1(0) = L. Then for each ε ∈ (0, 1) it follows that f−1[0, ε] is a
regular neighbourhood of X in M , which meets ∂M transversally:

1 1 1 1 1

0
0 0 0 0

1 1 1 1 1

1

ε

0

X

Such a neighbourhood is simply called an ε–neighbourhood.

Theorem If X is a polyhedron of a PL manifold Mm , then:

(1) (Existence) There always exists a regular neighbourhood of X in M .

(2) (Uniqueness up to PL isomorphism) If N1 , N2 are regular neighbour-
hoods of X in M , then there exists a PL isomorphism of N1 and N2 ,
which fixes X .

(3) If X ↘ ∗, then each regular neighbourhood of X is a PL disc.

(4) (Uniqueness up to isotopy) If N1 , N2 are regular neighbourhoods of X
in M , which meet ∂M transversally, then there exists an ambient isotopy
which takes N1 to N2 and fixes X .

For a proof see [Hudson 1969, pp. 57–74] or [Rourke–Sanderson 1972, Chapter
3].

The following properties are an easy consequence of the theorem and therefore
are left as an exercise.

A) Let N1 , N2 be regular neighbourhoods of X in M with N1 ⊂
◦
N2 . Then

if N1 meets ∂M transversally, there exists a PL homeomorphism

N2 −N1 ≈PL ∂N1 × I.
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B) PL annulus theorem If D1 , D2 are m– discs with D1 ⊂
◦
D2 , then

D2 −D1 ≈PL ∂D1 × I .

Corollary Let D1 ⊂
◦
D2 ⊂ D2 ⊂

◦
D3 ⊂ . . . be a chain of PL m–discs. Then

∞⋃
1

Di ≈PL Rm.

The statement of the corollary is valid also in the topological case: a monotonic
union of open m–cells is an m–cell (M Brown 1961).

4.6 Introduction to engulfing

At the start of the Sixties a new powerful geometric technique concerning the
topology of manifolds arose and developed thanks to the work of J Stallings
and E C Zeeman. It was called Engulfing and had many applications, of which
the most important were the proofs of the PL weak Poincaré conjecture and of
the Hauptvermutung for Euclidean spaces of high dimension.

We say that a subset X—most often a closed subpolyhedron—of a PL m–
manifold M may be engulfed by a given open subset U of M if there exists a
PL homeomorphism h : M →M such that X ⊂ h(U). Generally h is required
to be ambient isotopic to the identity relative to the complement of a compact
subset of M .

Stallings and Zeeman compared U to a PL amoeba which expands in M until
it swallows X , provided that certain conditions of dimension, of connection and
of finiteness are satisfied. This is a good intuitive picture of engulfing in spite of
a slight inaccuracy due the fact that U may not be contained in h(U). When
Xx is fairly big, ie x = m − 3, the amoeba needs lots of help in order to be
able to swallow X . This kind of help is offered either by Zeeman’s sophisticated
piping technique or by Stallings’ equally sophisticated covering–and–uncovering
procedure. When X is even bigger, ie x ≥ m− 2, then the amoeba might have
to give up its dinner, as shown by examples constructed using the Whitehead
manifolds (1937) and Mazur manifolds (1961). See [Zeeman 1963].

There are many versions of engulfing according to the authors who formalised
them and to the specific objectives to which they were turned to. Our primary
purpose is to describe the engulfing technique and give all the necessary proofs,
with as little jargon as possible and in a way aimed at the quickest achievement
of the two highlights mentioned above. At the end of the section the interested
reader will find an appendix outlining the main versions of engulfing together
with other applications.
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We start here with a sketch of one of the highlights—the Hauptvermutung
for high-dimensional Euclidean spaces. Full details will be given later. The
uniqueness of the PL structure of Rm for m ≤ 3 has been proved by Moise
(1952), while the uniqueness of the differentiable structure is due to Munkres
(1960). J Stallings (1962) proved the PL and Diff uniqueness of Rm for m ≥ 5.
Stalling’s proof can be summarised as follows: start from a PL manifold, Mm ,
which is contractible and simply connected at infinity and use engulfing to prove
that each compact set C ⊂M is contained in an m–cell PL.

Now write M as a countable union M = ∪∞1 Ci of compact sets and inductively
find m–cells Di such that

◦
Di engulfs Ci−1 ∪ Di−1 . Then M is the union

D1 ⊂
◦
D2 ⊂ D2 ⊂

◦
D3 ⊂ · · · ⊂ Di ⊂

◦
Di+1 ⊂ · · · and it follows from Corollary

4.5 that M ≈PL Rm . If M has also a C∞ structure which is compatible with
the PL structure, then M is even diffeomorphic to Rm .

Exercise Show that PL engulfing is not possible, in general, if M has dimen-
sion four.

4.7 Engulfing in codimension 3

Zeeman observed that the idea behind an Engulfing Theorem is to convert a
homotopical statement into a geometric statement, in other words to pass from
Algebra to Geometry.

The fact that X is homotopic to zero in the contractible manifold M , ie, that
the inclusion X ⊂M is homotopic to a constant is a property which concerns
the homotopy groups exclusively. The fact that X is contained in a cell of M
is a much stronger property of purely geometrical character.

As a first illustratation of engulfing we consider a particular case of Stallings’
and Zeeman’s theorems.

Theorem Let Mm be a contractible PL manifold without boundary, and let
Xx be a compact subpolyhedron of M with x ≤ m− 3. Then X is contained
in an m–cell of M .

We will first prove the theorem for x < m − 3. The case x = m − 3 is rather
more delicate. We will need two lemmas, the first of which is quite general, as
it does not use the hypothesis of contractibility on M .

4.7.1 Lemma Suppose that X ↘ Y and let U be an open subset of M .
Then, if Y may be engulfed by U , X too may be engulfed. In particular, if Y
is contained in an m–cell of M , then so is X .
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Proof Without loss of generality, assume Y ⊂ U . The idea of the proof is
simple: while Y expands to X , it also pulls U with it.

a

b

x
A

B U

If we take an appropriate triangulation of (M,X,Y ), we can assume that
X ↘sY . By induction on the number of elementary collapses it will suffice
to consider the case when X ↘ Y is an elementary simplicial collapse. Sup-
pose that this collapse happens via the simplex A = aB from the free face B
of baricentre b.

Let L(B,M) be the link of B in M , which is a PL sphere so that bL(B,M)
is a PL disc D and S(B,M) = DḂ . Let x ∈ ab, be such that

axḂ ⊂ U.
There certainly exists a PL homeomorphism f : D → D with f(x) = b and
f |Ḋ = identity.

By joining f with 1Ḃ , we obtain a PL homeomorphism

h : S(B,M)→ S(B,M)

which is the identity on Ṡ(B,M) and therefore it extends to a PL homeomor-
phism hM : M →M which takes axḂ to A. Since

U ⊃ Y ∪ axḂ
we will have

hM (U) ⊃ Y ∪A = X.

Since hM is clearly ambient isotopic to the identity rel(M − S(B,M)),the
lemma is proved.

4.7.2 Lemma If Mm is contractible, then there exist subpolyhedra Y y , Zz ⊂
M so that X ⊂ Y ↘ Z and, furthermore:

y ≤ x+ 1
z ≤ 2x−m+ 3.
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Proof Let us consider a cone vX on X . Since X is homotopic to zero in M ,
we can extend the inclusion X ⊂ M to a continuous map f : vX → M . By
general position we can make f a PL map fixing the restriction f |X . Then we
obtain

dimS(f) ≤ 2(x+ 1)−m.

If vS(f) is the subcone of vX , it follows that

dim vS(f) ≤ 2x−m+ 3.

Take Y = f(vX) and Z = f(vS(f)).

Since a cone collapses onto a subcone we have

vX ↘ vS(f)

and, since vS(f) ⊃ S(f), we deduce that Y ↘ Z by Proposition 4.4. Since
f(X) = X , it follows that

X ⊂ Y ↘ Z ,

as required.

Proof of theorem 4.7 in the case x < m− 3 We will proceed by induction
on x, starting with the trivial case x = −1 and assuming the theorem true for
the dimensions < x.

By Lemma 4.7.2 there exist Y,Z ⊂M such that

X ⊂ Y ↘ Z

and z ≤ 2x−m+ 3 < x by the hypothesis x < m− 3.

Therefore Z is contained in a cell by the inductive hypothesis; by Lemma 4.7.1
the same happens for Y and, a fortiori, for X ⊂ Y . The theorem is proved.

H
Proof of theorem 4.7 in the case x = m− 3

This short proof was found by Zeeman in 1966 and communicated to Rourke
in a letter [Zeeman, letter 1966].3 The original proofs of Zeeman and Stallings
used techniques which are considerably more delicate. We will discuss them in
outline in the appendix.

Let f be a map in general position of the cone on X , CX , into M and let
S = S(f) ⊂ CX . Consider the projection p: S → X (projected down the
cone lines of CX ). Suppose that everything is triangulated. Then the top

3The letter is reproduced on Colin Rourke’s web page at:
http://www.maths.warwick.ac.uk/~cpr/Zeeman-letter.jpg
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dimensional simplexes of p(S) have dimension x − 1 and come in pairs τ1, τ2
where τi = p(σi), σi ∈ S , i = 1, 2, with f(σ1) = f(σ2) = fC(τ1) ∩ fC(τ2).

Now let Ni be the union of the open stars of all the τi for i = 1, 2 and let
Xi = X −Ni and X0 = X1 ∩X2 , ie X minus all the stars. Note that S meets
C(X0) in dimension ≤ x− 2.

Then X ⊂ X ∪ f(C(X2)) ↘ Z = X1 ∪ f(C(X0)), by collapsing the cones on
the stars of the τ1 ’s.

But Z ⊂ f(C(X1))↘ fC(X0), by collapsing the cones on the stars of the τ2 ’s.

Finally fC(X0) ↘ fC(S ∩ C(X0)) which has dimension ≤ x − 1 where we
have abused notation and written C(S ∩C(X0)) for the union of the cone lines
through S ∩ C(X0). We are now in codimension 4 and the earlier proof takes
over.

N
N1 X N2 N1 N2 N2 N2

f(σ1)=f(σ2)

fC(X) X ⊆ X ∪ f(C(X2))↘ X1 ∪ f(C(X0)) ⊆ fC(X1) ↘ fC(X0)

4.8 Hauptvermuting for Rm and the weak Poincaré conjecture

A topological space X is simply connected (or 1–connected) at infinity if, for each
compact subset C of X , there exists a compact set C1 such that C ⊂ C1 ⊂ X
and, furthermore, X − C1 is simply connected.

For example, Rm , with m > 2, is 1–connected at infinity, while R2 is not.

Observation Let X be 2–connected and 1–connected at infinity. Then for
each compact set C ⊂M there exists a compact set C1 such that C ⊂ C1 ⊂M
and, furthermore, (X,X − C1) is 2–connected.

Apply the homotopy exact sequence to the pair (X,X − C1) with C1 ⊃ C so
that X − C1 is 1–connected.

Stallings’ Engulfing Theorem Let Mm be a PL manifold without bound-
ary and let U be an open set of M . Let Xx be a closed subpolyhedron of M ,
such that

(a) (M,U) is x–connected,

(b) X ∩ (M − U) is compact,

(c) x ≤ m− 3.
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Then there exist a compact set G ⊂M and a PL homeomorphism h : M →M ,
such that

(1) X ⊂ h(U),

(2) h is ambient isotopic to the identity rel M −G

Proof Write X as X0 ∪ Y where X0 ⊂ U and Y is compact. We argue by
induction on the dimension y of Y . The induction starts with y = −1 when
there is nothing to prove. For the induction step there are two cases.

Case of codim ≥ 4 ie, y ≤ m− 4

Denote by Y ×′ I the result of squeezing (X0 ∩ Y )× I to X0 ∩ Y fibrewise in
Y × I . For i = 0, 1, continue to write Y × i for the image of Y × i under the
projection Y × I → Y ×′ I .

Since y ≤ x, by hypothesis (a) there is a map f : Y ×′ I → M such that
f | Y × 0 = id and f(Y × 1) ⊂ U . Put f in general position both as a map
and with respect to X . Let Σ ⊂ Y ×′ I be the preimage of the singular set,
which includes the points where the image intersects X0 . Define the shadow of
Σ, denoted Sh(Σ), to be {(y, t) | (y, s) ∈ Σ some s}. Then since Σ has codim
at least 3 in Y ×′ I , Sh(Σ) has codim at least 2 in Y ×′ I , ie dim ≤ y − 1.

Now write X ′0 = X0 ∪ f(Y × 1) and Y ′ = f(Sh(Σ)) and X ′ = X ′0 ∪ Y ′ , then
we have dim(Y ′) < y and

X ⊂ X ′′ = X ∪ f(Y ×′ I)↘ X ′

where the collapse is induced by cylindrical collapse of Y ×′ I − Sh(Σ) from
Y ×0 which is embedded by f . But by induction X ′ can be engulfed and hence
by lemma 4.7.1 so can X ′′ and hence X .

It remains to remark that the engulfing moves are induced by a finite collapse
and hence are supported in a compact set G as required.
H

Case of codim 3 ie, y = m− 3

The proof is similar to the proof of theorem 4.7 in the codim 3 case.

Let f and Σ be as in the last case and consider the projection p: Y ×′ I → Y .
Suppose that everything is triangulated so that X is a subcomplex and f and
p are simplicial. Then the top dimensional simplexes of p(Σ) have dimension
y − 1 and come in pairs τ1, τ2 where τi = p(σi), σi ∈ Σ, i = 1, 2, with
f(σ1) = f(σ2) = f(τ1 × I) ∩ f(τ2 × I).

Now let Ni be the union of the open stars of all the τi for i = 1, 2 and let
Yi = Y − Ni and Y0 = Y1 ∩ Y2 , ie Y minus all the stars. Note that Σ meets
Y0 ×′ I in dimension ≤ y − 2.
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Then X ⊂ X ∪ f(Y2 ×′ I ∪ Y × 1) ↘ Z = X0 ∪ f(Y0 ×′ I ∪ Y1 ∪ Y × 1), by
cylindrically collapsing the cylinders over the stars of the τ1 ’s from the 0–end.
But

Z ⊂ X0 ∪ f(Y1 ×′ I ∪ Y × 1)↘ T = X0 ∪ f(Y0 ×′ I ∪ Y × 1)

by similarly collapsing the τ2 × I ’s. Finally let Y ′ = Sh(Σ)∩ Y0×′ I which has
dimension < y and let X′0 = X0 ∪ f(Y × 1) and X′ = X′0 ∪ Y ′ . Then T ↘ X′

by cylindrically collapsing Y0 ×′ I − Sh(Σ).

But X′ can be engulfed by induction, hence so can T and hence Z and hence
X .

N

4.8.1 Note If we apply the theorem with X compact, M contractible and U
an open m–cell, we reobtain Theorem 4.7 above.

The following corollary is of crucial importance.

4.8.2 Corollary Let Mm be a contractible PL manifold, 1–connected at
infinity and C ⊂ M a compact set. Let T be a triangulation of M , and T 2

its 2–skeleton, m ≥ 5. Then there exists a compact set G1 ⊃ C and a PL
homeomorphism h1 : M →M , such that

T 2 ⊂ h1(M − C) and h1 fixes M −G1.

Proof By Observation 4.8 there exists a compact set C1 , with C ⊂ C1 ⊂ M
and (M,M − C1) 2–connected. We apply the Engulfing Theorem with U =
M − C1 and X = T 2 . The result follows if we take h1 = h and G1 = G ∪ C .
The condition m ≥ 5 ensures that 2 = x ≤ m− 3.

Note Since h1(M) = M , it follows that h1(C)∩T 2 = ∅. In other words there
is a deformation of M so that the 2–skeleton avoids C .

Theorem (PL uniqueness for Rm) Let Mm be a contractible PL manifold
which is 1–connected at infinity and with m ≥ 5. Then

Mm ≈PL Rm.
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Proof By the discussion in 4.6 it suffices to show that each compact subset of
M is contained in an m–cell in M . So let C ⊂ M be a compact set and T a
triangulation of M . First we apply Corollary 4.8.2 to T . Now let K ⊂ T be
the subcomplex

K = T 2 ∪ {simplexes of T contained in M −G1}.
Since T 2 ⊂ h1(M − C) and h1 fixes M −G1 , then necessarily

K ⊂ h1(M − C).

Now, if Y is a subcomplex of the simplicial complex X , the complementary
complex of Y in X , denoted X ÷ Y by Stallings, is defined as the subcomplex
of the barycentric subdivision X ′ of X which is maximal with respect to the
property of not intersecting Y . If Y contains all the vertices of X , then regular
neigbourhoods of the two complexes Y and X ÷ Y cover X . Indded the
1
2 –neighbourhoods of Y and X ÷ Y in have a common frontier since the 1–
simplexes of X ′ have some vertices in X and the rest in X ÷ Y .

Let L = T ÷ K . Then L is a compact polyhedron of dimension ≤ m − 3.
By Theorem 4.7, or Note 4.8.1, L is contained in an m–cell. Since K ⊂
h1(M − C) ⊂ M − h1(C), we have h1(C) ∩ K = ∅, therefore there exists a
ε–neighbourhood, Nε , of L in M such that

h1(C) ⊂ Nε ↘ L.

By Lemma 4.7.1 Nε , and therefore h1(C), is contained in an m–cell
◦
D . But

then h−1
1 (

◦
D) is an m– cell which contains C , as we wanted to prove.

Corollary (Weak Poincaré conjecture) Let Mm be a closed PL manifold
homotopically equivalent to Sm , with m ≥ 5. Then

Mm ≈Top S
m.

Proof If ∗ is a point of M , an argument of Algebraic Topology establishes
that M \ ∗ is contractible and simply connected at infinity. Therefore M is
topologically equivalent to the compactification of Rm with one point, ie to an
m–sphere.

4.9 The differentiable case

The reader is reminded that each differentiable manifold admits a unique PL
manifold structure which is compatible [Whitehead 1940]. We will prove this
theorem in the following sections. We also know that two differentiable struc-
tures on Rm are diffeomorphic if they are PL homeomorphic [Munkres 1960].

The following theorem follows from these facts and from what we proved forPL
manifolds.
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Theorem Let Mm be a differentiable manifold contractible and 1–connected
at infinity. Then if m ≥ 5,

Mm ≈Diff Rm.

Corollary (C∞ uniqueness for Rm) If m ≥ 5, Rm admits a unique differ-
entiable structure.

4.10 Remarks

These are wonderful and amazingly powerful theorems, especially so considering
the simple tools which formed the basis of the techniques used. It is worth re-
calling that combinatorial topology was revived from obscurity at the beginning
of the Sixties. When, later on, in a much wider, more powerful and sophisti-
cated context, we will reprove that a Euclidean space E , of dimension ≥ 5,
admits a unique PL or Diff structure simply because, E being contractible,
each bundle over E is trivial, some readers might want to look again at these
pages and these pioneers, with due admiration.

4.11 Engulfing in a topological product

We finish this section (apart from the appendix) with a simple engulfing the-
orem, whose proof does not appear in the literature, which will be used to
establish the important fibration theorem III.1.7.

4.11.1 Theorem Let Ww be a closed topological manifold with w 6= 3, let
Θ be a PL structure on W ×R and C ⊂W ×R a compact subset. Then there
exists a PL isotopy G of (W × R)Θ having compact support and such that
G1(C) ⊂W × (−∞, 0].

H
Proof For w = 2 the 3–dimensional Hauptvermutung of Moise implies that
(W × R)Θ is PL isomorphic to W × R, where W is a surface with its unique
PL structure. Therefore the result is clear.

Let now Q = (W × R)Θ and dim Q ≥ 5. If (a, b) is an interval in R we write
Q(a,b) for W × (a, b). Let U be the open set Q(−∞,0) and assume that C is
contained in Q(−r,r) . Write V for the open set Q(r,∞) so that V ∩C = ∅. We
want to engulf C into U .

Let T be a triangulation of Q by small simplexes, and let K be the smallest
subcomplex containing a neighbourhood of Q[−r,2r] . Let K2 be the 2–skeleton
and L be the complementary complex in K . Then L has codimension three.
Now consider V0 = Q(r,2r) in Q0 = Q(−∞,2r) and let L0 = L ∩ Q0 . The
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pair (Q0, V0) is ∞-connected. Therefore, by Stallings’ engulfing theorem, there
exists a PL homeomorphism j : Q0 → Q0 such that

(a) L0 ⊂ j(V0)

(b) there is an isotopy of j to the identity, which is supported by a compact
set.

It follows from (b) that j is fixed near level 2r and hence extends by the identity
to a homeomorphism of Q to itself such that j(V ) ⊃ L ∪Q[2r,∞] .

In exactly the same way there is a PL homeomorphism h: Q → Q such that
h(U) ⊃ K2 ∪ Q[−∞,−r] . Now h(U) and j(V ) contain all of Q outside K
and also neighbourhoods of complementary conplexes of the first derived of K .
By stretching one of these neighbourhoods we can assume that they cover K .
Hence we can assume h(U) ∪ j(V ) = Q. Then j−1 ◦ h(U) ∪ V = Q and it
follows that j−1 ◦h(U) ⊃ C . But each of j−1 , h is isotopic to the identity with
compact support. Hence there is an isotopy G with compact support finishing
with G1 = j−1 ◦ h and G1(C) ⊂ U .

N

Remark If W is compact with boundary the same engulfing theorem holds,
provided C ∩ ∂W ⊂ U .

4.12 Appendix: other versions of engulfing

This appendix, included for completeness and historical interest, discusses other
versions of engulfing and their main applications.

H
Engulfing à la Zeeman

Instead of Stallings’ engulfing by or into an open subset, Zeeman considers
engulfing from a closed subpolyhedron of the ambient manifold M .

Precisely, given a closed subpolyhedron C of M , we say that X may be engulfed
from C if X is contained in a regular neighbourhood of C in M .

Theorem (Zeeman) Let Xx , Cc be subpolyhedra of the compact mani-

fold M , with C closed and X compact, X ⊂
◦
M , and suppose the following

conditions are met:

(i) (M,C) is k–connected, k ≥ 0

(ii) there exists a homotopy of X into C which is modulo C

(iii) x ≤ m− 3; c ≤ m− 3; c+ x ≤ m+ k − 2; 2x ≤ m+ k − 2

Then X may be engulfed from C
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Zeeman considers also the cases in which X meets or is completely contained
in the boundary of M but we do not state them here and refer the reader to
[Zeeman 1963]. The above theorem is probably the most accurate engulfing
theorem, in the sense that examples show that its hypotheses cannot be weak-
ened. Thus no significant improvements are possible except, perhaps, for some
comments regarding the boundary.

Piping This was invented by Zeeman to prove his engulfing Theorem in codi-
mension three, which enabled him to improve the Poincaré conjecture from the
case n ≥ 7 to the case n ≥ 5.

A rigorous treatment of the piping construction—not including the preliminary
parts—occupies about twenty-five pages of [Zeeman 1963]. Here I will just try
to explain the gist of it in an intuitive way, using the terminology of isotopies
rather than the more common language of collapsing. As we saw earlier, Zeeman
[Letter 1966] found a short proof avoiding this rather delicate construction.

Instead of seeing a ball which expands to engulf X , change your reference system
and think of a (magnetized) ball U by which X is homotopically attracted. Let
f be the appropriate homotopy. On its way towards U , X will bump into lots
of obstacles represented by polyhedra of varying dimensions, that cause X to
step backward, curl up and take a different route. This behaviour is encoded
by the singular set S(f) of f . Consider the union T (f) of the shadow–lines
leading to these singularities.

If x < m − 3, then dimT (f) < x . Thus, by induction, T (f) may be engulfed
into U . Once this has been done, it is not difficult to view the remaining part
of the homotopy as an isotopy f ′ which takes X into U . Then any ambient
isotopy covering f ′ performs the required engulfing.

If x = m − 3, dimT (f) may be equal to dimX so that we cannot appeal to
induction. Now comes the piping technique. By general position we may obtain
that T (f) meets the relevant obstructing polyhedron at single points. Zeeman’s
procedure consists of piping away these points so as to reduce to the previous
easier case. The difficulty lies in the fact that the intersection– points to be
eliminated are essential, in the sense that they cannot be removed by a local
shift. On the contrary, the whole map f needs to be altered, and in a way such
that the part of X which is already covered by U be not uncovered during the
alteration.

Here is the germ of the construction.

Work in the homotopy cylinder on which f is defined. Let z be a bad point, ie,
a point of T (f) that gives rise to an intersection which we want to eliminate.
Once general position has been fully exploited, we may assume–to fix ideas–
that

(a) z lies above the barycenter a1 of a top–dimensional simplex A1 ∈ S(f)

such that there is exactly one other simplex A2 with f(
◦
A1) = f(

◦
A2);

moreover f is non degenerate and f(a1) = f(a2).
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(b) no bad points lie above the barycenter a2 .

Run a thin pipe from the top of the cylinder so as to pierce a hole around
the barycenter a2 . More precisely, take a small regular neighbourhood N of
the union with X × I with the shadow–line starting at a2 . Then consider the
closure V of X × [0, 1] − N in X × [0, 1]. Clearly V is a collar on X × 0.
Identify V with X× [0, 1] by a vertical stretch. This produces a new homotopy
f which takes X off the obstructing polyhedron. Now note that z is still there,
but, thanks to the pipe, it has magically ceased to be a bad point. In fact a1

is not in S(f) because its brother a2 has been removed by the pipe, so z does
not belong to the shadow–lines leading to S(f) and the easier case takes over.

A1
A2

a2
a1• •

•

N

V

z

1

0

We have skated over many things: one or both of A1 , A2 could belong to
X × 0, A2 could be a vertical simplex, in general there will be many pipes
to be constructed simultaneously, et cetera. But these constitute technical
complications which can be dealt with and the core of the piping argument is
the one described above.

The original proof of Stallings did not use piping but a careful inductive col-
lapsing procedure which has the following subtle implication: when the open
set U tries to expand to finally engulf the interior of the m − 3 simplexes of
X , it is forced to uncover the interior of some superfluous (m− 2)–simplexes
of M which had been previously covered.

To sum up, while in codimension > 3 one is able to engulf more than it is nec-
essary, in the critical codimension one can barely engulf just what is necessary,
and only after a lot of padding has been eliminated.

Engulfing à la Bing or Radial Engulfing

Sometimes one wants that the engulfing isotopy moves each point of X along
a prescribed direction.
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Theorem (Bing) Let {Aα} be a collection of sets in a boundariless PL
manifold Mm , let Xx ⊂ M be a closed subpolyhedron, x ≤ m − 4, U an
open subset of M with X ∩ (M −U) compact. Suppose that for each compact
y–dimensional polyhedron Y , y ≤ x , there exists a homotopy F of Y into U
such that, for each point y ∈ Y , F (y × [0, 1]) lies in one element of {Aα}.
Then, for each ε > 0, there is an ambient engulfing isotopy H of M satisfying
the condition that, for each point p ∈ M , there are x + 1 elements of {Aα}
such that the track H(p × [0, 1]) lies in an ε–neighbourhood of the union of
these x+ 1 elements.

For a proof see [Bing 1967].

There is also a Radial Engulfing Theorem for the codimension three, but it is
more complicated and we omit it [Bing op. cit.].

Engulfing by handle-moves

This idea is due to [Rourke–Sanderson 1972]. It does not lead to a different
engulfing theorem, but rather to an alternative method for proving the classi-
cal engulfing theorems. The approach consists of using the basic constructions
of Smale’s handle–theory (originally aimed at the proof of the h–cobordism
theorem), namely the elementary handle–moves, in order to engulf a given sub-
polyhedron of a PL manifold. Consequently it is an easy guess that the language
of cobordism turns out to be the most appropriate here.

Given a compact PL cobordism (V v,M0,M1), and a compact subpolyhedron X
of W , we say that X may be engulfed from the end M0 of V if X is contained
in a collar of M0 .

Theorem Assume X ∩M1 = ∅, and suppose that the following conditions
are met:

(i) there is a homotopy of X into a collar of M0 relative to X ∩M0

(ii) (V,M0) is k–connected

(iii) 2x ≤ v + k − 2 and x ≤ v − 3

Then X may be engulfed from M0

It could be shown that the main engulfing theorems previously stated, including
radial engulfing, may be obtained using handle–moves,with tiny improvements
here and there, but this is hardly worth our time here.

Topological engulfing

This was worked out by M Newman (1966) in order to prove the topological
Poincarè conjecture. E Connell (1967) also proved topological engulfing inde-
pendently, using PL techniques, and applied it to establish the weak topological
h–cobordism theorem.
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The statement of Newman’s theorem is completely analogous to Stallings’ en-
gulfing, once some basic notions have been extended from the PL to the topo-
logical context. We keep the notations of Stallings’ theorem. The concept of
p–connectivity for (M,U) must be replaced by that of monotonic connectivity.
The pair (M,U) is monotonically p–connected, if, given any compact subset
C of U , there exists a closed subset D of U containing C and such that
(M −D,U −D) is p–connected.

Assume that X is a polyhedron contained in the topological boundariless man-
ifold M . We say that X is tame in M if around each point x of X there is a
chart to Rm whose restriction to X is PL.

Theorem If (M,U) is monotonically x–connected and X is tame in M , then
there is an ambient compactly supported topological isotopy which engulfs X
into U .

See [Newman 1966] and [Connell 1967].

Applications

We conclude this appendix by giving a short list of the main applications of
engulfing.

• The Hauptvermutung for Rm (n ≥ 5) (Theorem 4.8) (Stallings’ or Zeeman’s
engulfing)

• Weak PL Poincarè conjecture for n ≥ 5 (Corollary 4.8) (Stallings’ or Zeeman’s
engulfing)

• Topological Poincarè conjecture for n ≥ 5 (Newman’s engulfing)

• Weak PL h–cobordism theorem for n ≥ 5 (Stallings’ engulfing)

• Weak topological h–cobordism theorem for n ≥ 5 (Newman’s or Connell’s
engulfing)

• Any stable homeomorphism of Rm can be ε–approximated by a PL homeomor-
phism (Radial engulfing)

• (Irwin’s embedding theorem) Let f : Mm → Qq be a map of unbounded PL
manifolds with M compact, and assume that the following conditions are met:

(i) q −m ≥ 3

(ii) M is (2m− q )–connected

(iii) Q is (2m− q + 1)–connected

Then f is homotopic to a PL embedding.

In particular:

(a) any element of πm(Q) may be represented by an embedding of an m–
sphere

(b) a closed k–connected m–manifold embeds in R2m−k , provided m−k ≥ 3.

The theorem may be proved using Zeeman’s engulfing

See [Irwin 1965],and also [Zeeman 1963] and [Rourke–Sanderson 1972].
N
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