
41

Part II : Microbundles

1 Semisimplicial sets

The construction of simplicial homology and singular homology of a simplicial
complex or a topological space is based on a simple combinatorial idea, that of
incidence or equivalently of face operator.

In the context of singular homology, a new operator was soon considered,
namely the degeneracy operator, which locates all of those simplices which
factorise through the projection onto one face. Those were, rightly, called de-
generate simplices and the guess that such simplices should not contribute to
homology turned out to be by no means trivial to check.

Semisimplicial complexes, later called semisimplicial sets, arose round about
1950 as an abstraction of the combinatorial scheme which we have just referred
to (Eilenberg and Zilber 1950, Kan 1953). Kan in particular showed that there
exists a homotopy theory in the semisimplicial category, which encapsulates the
combinatorial aspects of the homotopy of topological spaces [Kan 1955].

Furthermore, the semisimplicial sets, despite being purely algebraically defined
objects, contain in their DNA an intrinsic topology which proves to be extremely
useful and transparent in the study of some particular function spaces upon
which there is not given, it is not desired to give or it is not possible to give in
a straightforward way, a topology corresponding to the posed problem. Thus,
for example, while the space of loops on an ordered simplicial complex is not
a simplicial complex, it can nevertheless be defined in a canonical way as a
semisimplicial set.

The most complete bibliographical reference to the study of semisimplicial ob-
jects is [May 1967]; we also recommend [Moore 1958] for its conciseness and
clarity.

1.1 The semisimplicial category

Recall that the standard simplex ∆m ⊂ Rm is

∆m = {(x1, . . . , xm) ∈ Rm : xi ≥ 0 and Σxi ≤ 1} .
The vertices of ∆m are ordered 0, e1, e2, . . . , em , where ei is the unit vector
in the ith coordinate. Let ∆∗ be the category whose objects are the standard
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42 II : Microbundles

simplices ∆k ⊂ Rk (k = 0, 1, 2, . . .) and whose morphisms are the simplicial
monotone maps λ : ∆j → ∆k . A semisimplicial object in a category C is a
contravariant functor

X : ∆∗ → C.

If C is the category of sets, X is called a semisimplicial set. If C is the cate-
gory of monoids (or groups ), X is called a semisimplicial monoid (or group,
respectively).

We will focus, for the moment, on semisimplicial sets, abbreviated ss–sets.

We write X(k) instead of X(∆k) and call X(k) the set of k–simplices of X .
The morphism induced by λ will be denoted by λ# : X(k) → X(j) . A simplex
of X is called degenerate if it is of the form λ#τ , with λ non injective; if, on
the contrary, λ is injective, λ#τ is said to be a face of τ .

A simplicial complex K is said to be ordered if a partial order is given on its
vertices, which induces a total order on the vertices of each simplex in K . In
this case K determines an ss–set K defined as follows:

K(n) = {f : ∆n → K : f is a simplicial monotone map}.

If λ ∈ ∆∗ , then λ#f is defined as f ◦ λ. In particular, if ∆k is a standard
simplex, it determines an ss–set ∆k .

The most important example of an ss–set is the singular complex, Sing (A), of
a topological space A. A k–simplex of Sing (A) is a map f : ∆k → A and, if
λ : ∆j → ∆k is in ∆∗ , then λ#(f) = f ◦ λ.

We notice that, if A is a one–point set ∗, each simplex of dimension > 0 in
Sing (∗) is degenerate.

If X,Y are ss–sets, a semisimplicial map f : X → Y , (abbreviated to ss–map),
is a natural transformation of functors from X to Y . Therefore, for each k , we
have maps f (k) : X(k) → Y (k) which make the following diagrams commute

X(k)
f(k)

//

λ#

��

Y (k)

λ#

��
X(j)

f(j)
// Y (j)

for each λ : ∆j → ∆k in ∆∗ .
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1 Semisimplicial sets 43

Examples

(a) A map g : A→ B induces an ss–map Sing (A)→ Sing (B) by composition.

(b) If X is an ss–set, a k–simplex τ of X determines a characteristic map
τ : ∆k → X defined by setting

τ(µ) := µ#(τ).

The composition of two ss–maps is again an ss–map. Therefore we can define
the semisimplicial category (denoted by SS) of semisimplicial sets and maps.
Finally, there are obvious notions of sub ss–set A ⊆ X and pair (X,A) of
ss–sets.

1.2 Semisimplicial operators

In order to have a concrete understanding of the category SS we will examine
in more detail the category ∆∗ .

Each morphism of ∆∗ is a composition of morphisms of two distinct types:

(a) σi : ∆m → ∆m−1 , 0 ≤ i ≤ m− 1,

σ0(t1, . . . , tm) = (t2, . . . , tm)

σi(t1, . . . , tm) = (t1, . . . , ti−1, ti + ti+1, ti+2, . . . , tm) for i > 0

(b) δi : ∆m → ∆m+1 , 0 ≤ i ≤ m+ 1,

δ0(t1, . . . , tm) = (1−
∑n

1 ti, t1, . . . , tm).

δi(t1, . . . , tm) = (t1, . . . , ti−1, 0, ti, . . . , tm) for i > 0.

The morphism σi flattens the simplex on the face opposite the vertex vi , pre-
serving the order.

Example

v0

v1

v2 ∆1

σ0

σ0 : ∆2 → ∆1

The morphism δi embeds the simplex into the face opposite to the vertex vi .
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44 II : Microbundles

Example

v0 v1
v0

v1

v2

δ0

The following relations hold:
δjδi = δiδj−1 i < j

σjσi = σiσj+1 i ≤ j
σjδi = δiσj−1 i < j

σjδj = σjδj+1 = 1
σjδi = δi−1σj i > j + 1

If λ ∈ ∆∗ is injective, then λ is a composition of morphisms of type δi , other-
wise λ is a composition of morphisms σi and morphisms δj . Therefore, if X
is an ss–set and if we denote σ#

i by si and δ#
j by ∂j , we get a description of

X as a sequence of sets

X0
// X1oooo

//
// X

2oooo
oo

//
//
//
X3oooo

oooo

where the arrows pointing left are the face operators ∂j and the remaining
arrows are the degeneracy operators si . Obviously, we require the following
relations to hold:

∂i∂j = ∂j−1∂i i < j

sisj = sj+1si i ≤ j
∂jsj = ∂j+1sj = 1
∂isj = sj−1∂i i < j

∂isj = sj∂i−1 i > j + 1

In the case of the singular complex Sing (A), the map ∂i is the usual face
operator, ie, if f : ∆k → A is a k–singular simplex in A, then ∂if is the
(k−1)–singular simplex in A obtained by restricting f to the i–th face of ∆k :

∂if : ∆k−1 δi−→∆k f−→A.
On the other hand, sjf is the (k + 1)–singular simplex in A obtained by
projecting ∆k+1 on the j–th face and then applying f :

sjf : ∆k+1 σj−→∆k f−→A.
The following lemma is easy to check and the theorem is a corollary.
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1 Semisimplicial sets 45

Lemma (Unique decomposition of the morphisms of ∆∗ ) If ϕ is a morphism
of ∆∗ , then ϕ can be written, in a unique way, as

ϕ = (δi1 ◦ δi2 ◦ · · · ◦ δip)︸ ︷︷ ︸
injective

◦ (sj1 ◦ · · · ◦ sjt)︸ ︷︷ ︸
surjective

= ϕ1 ◦ ϕ2.

Theorem (Eilenberg–Zilber) If X is an ss–set and θ is an n–simplex in X ,
then there exist a unique non-degenerate simplex τ and a unique surjective
morphism µ ∈ ∆∗ , such that

µ∗(τ) = θ.

1.3 Homotopy

If X,Y are ss–sets, their product, X × Y , is defined as follows:

(X × Y )(k) := X(k) × Y (k)

λ#(x, y) := (λ#x, λ#y)

Example Sing (A×B) ≈ Sing (A)× Sing (B).

Let us write I = ∆1 , I = ∆1 . Then I has three non-degenerate simplices, ie
0, 1, I , or, more precisely, ∆0 → 0, ∆0 → 1, ∆1 → I . Write 0 for the ss–set
obtained by adding to the simplex 0 all of its degeneracies, corresponding to
the simplicial maps

∆k → 0, (1.3.1)

k = 1, 2, . . . . Hence, 0 has a k–simplex in each dimension. For k > 0, the
k–simplex is degenerate and it consists of the singular simplex (1.3.1).

Proceed in a similar manner for 1. One could also say, more concisely,

0 = Sing (0) 1 = Sing (1).

Now, let f0, f1 : X → Y be two semisimplicial maps.

A homotopy between f0 and f1 is a semisimplicial map

F : I×X → Y

such that F |0×X = f0 and F |1×X = f1 through the canonical isomorphisms
0×X ≈ X ≈ 1×X .

In this case, we say that f0 is homotopic to f1 , and write f0 ' f1 . Unfor-
tunately homotopy is not an equivalence relation. Let us look at the simplest
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46 II : Microbundles

situation: X = ∆0 . Suppose we have two homotopies F,G: I → Y , with
F (1) = G(0). If we set F (I) = y0 ∈ Y (1) and G(I) = y1 ∈ Y (1) , we have

∂0y0 = ∂1y1.

What transitivity requires, is the existence of an element y′ ∈ Y (1) such that

∂1y
′ = ∂1y0 ∂0y

′ = ∂0y1.

In general such an element does not exist.

y0

y1

y′

∂0y1

∂1y0

∂0y0 = ∂1y1

It was first observed by Kan (1957) that this difficulty can be avoided by as-
suming in Y the existence of an element y ∈ Y (2) such that

y0 = ∂2y and y1 = ∂0y

y0

y1

∂1y=y′
y

∂0y1

∂1y0

If such a simplex y exists, then y′ = ∂1y is the simplex we were looking for. In
fact

∂1y
′ = ∂1∂1y = ∂1∂2y = ∂1y0

∂0y
′ = ∂0∂1y = ∂0∂0y = ∂0y1.

We are now ready for the general definition:

Definition An ss–set Y satisfies the Kan condition if, given simplices

y0, . . . , yk−1, yk+1, . . . , yn+1 ∈ Y (n)

such that ∂iyj = ∂j−1yi for i < j and i, j 6= k , there exists y ∈ Y (n+1) such
that ∂iy = yi for i 6= k .
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1 Semisimplicial sets 47

Such an ss–set is said to be Kan. We shall prove later that for semisimplicial
maps with values in a Kan ss–set, homotopy is an equivalence relation. [f ]SS ,
or [f ] for short, denotes the homotopy class of f . We abbreviate Kan ss–set
to kss–set.

Example Sing (A) is a kss–set. This follows from the fact that the star
S(v, ∆̇) is a deformation retract of ∆ for each vertex v ∈ ∆ = ∆n .

v

n = 3

The union of three faces of the pyramid is a retract of the whole pyramid.

Exercise If ∆ is a standard simplex, a horn Λ of ∆ is, by definition, the star
S(v, ∆̇), where v is a vertex of ∆. Check that an ss–set X is Kan if and only
if each ss–map Λ→ X extends to an ss–map ∆→ X .

This exercise gives us an alternative definition of a kss–set.

Note The extension property allowed D M Kan to develop the homotopy the-
ory in the whole category of ss–sets. The original work of Kan in this direction
was based on semicubical complexes, but it was soon clear that it could be trans-
lated to the semisimplicial environment. For technical reasons, the category of
ss–sets replaced the analogous semicubical category, which, recently, regained
a certain attention in several contexts, not the least in computing sciences.

In brief the greatest inconvenience in the semicubical category is the fact that
the cone on a cube is not a combinatorial cube, while the cone on a simplex is
still a simplex.

1.4 The topological realisation of an ss–set (Milnor 1958)

Let X be an ss–set and
X =

∐
n

∆n ×X(n),

where X(n) has the discrete topology and
∐

denotes the disjoint union.
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48 II : Microbundles

We define the topological realisation of X , written |X|, to be the quotient
space of X with respect to the equivalence relation generated by the following
identifications

(t, λ#θ) ∼ (λ(t), θ),

where t ∈ ∆n , λ ∈ ∆∗ and θ ∈ X .

Thus, the starting point is an infinite union of standard simplices each labelled
by an element of X. We denote those simplices by ∆n

θ instead of ∆n × θ
(θ ∈ X(n)).

The relation ∼ is defined on labelled simplices by using the composition of the
two elementary operations (a) and (b) described below. Let us consider ∆n−1

τ

and ∆n
θ :

(a) if τ = ∂iθ for some i = 0, . . . , n, then ∼ identifies ∆n−1
τ to ∂i(∆n

θ ), ie,
∼ glues to each simplex its faces

(b) if τ = sjθ for some j = 0, . . . , n− 1, then ∼ squeezes the simplex ∆n
θ on

its j–th face, which in turn is identified with ∆n−1
τ .

0

1

2

0

1

∆n
θ

∆n−1
τ

j = 0

As a result |X| acquires a cw–structure, with a k–cell for each non degenerate
k–simplex of X with a canonical characteristic map ∆k → X .

Examples

(a) If K is a simplicial complex and K is its associated ss–set, then |K| = K .
In particular

|∆n| = ∆n, |I| = I = [0, 1], |0| = 0 ; |1| = 1.

(b) |Sing (∗)| = ∗.
(c) In general it can be proved that, for each cw–complex X , the realisation
|Sing (X)| is homotopicy equivalent to X by the map

[t, θ] 7→ θ(t)
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1 Semisimplicial sets 49

where θ : ∆n → X and t ∈ ∆n and [ ] indicates equivalence class in |Sing (X)|.
(d) If X,Y are ss–sets then |X × Y | can be identified with |X| × |Y |.

1.5 Approximation

Now we want to describe the realisation of an ss–map. If f : X → Y is such a
map, we define its realisation |f | : |X| → |Y | by setting

[t, θ] 7→ [t, f(θ)].

Clearly |f | is well defined, since if [t, θ] = [s, τ ] and there is µ ∈ ∆∗ , with
µ#(τ) = θ and µ(t) = s, then

|f |[t, θ] = [t, f(θ)] = [t, f(µ#(τ))] = [t, µ#f(τ)] =
= [µ(t), f(τ)] = |f |[µ(t), τ ] = |f |[s, τ ].

We say that a (continuous) map h : |X| → |Y | is realized if h = |f | for some
f : X → Y .

The following result is very useful.

Semisimplicial Approximation Theorem Let Z ⊂ X and Y be ss–sets,
with Y a kss–set, and let g : |X| → |Y | be such that its restriction to |Z| is
the realisation of an ss–map. Then there is a homotopy

g ' g′ rel |Z|
such that g′ is the realisation of an ss–map.

A very short and elegant proof of the approximation theorem is due to [Sander-
son 1975].

1.5.1 Corollary Let Y be a kss–set. Two ss–maps with values in Y are
homotopic if and only if their realisations are homotopic.

1.5.2 Corollary Homotopy between ss–maps is an equivalence relation, if
the codomain is a kss–set.

This is the result announced after Definition 1.3.

Exercise Convince yourself that an ordered simplicial complex seldom satisfies
the Kan condition.

It is not a surprise that the semisimplicial approximation theorem provides a
quick proof of Zeeman’s relative simplicial approximation theorem (1964), given
here in an intrinsic form:
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50 II : Microbundles

Theorem (Zeeman 1959) Let X,Y be polyhedra, Z a closed subpolyhedron
in X and let f : X → Y be a map such that f |Z is PL. Then, given ε > 0,
there exists a PL map g : X → Y such that

(1) f |Z = g|Z (2) dist (f, g) < ε (3) f ' g relZ.

The above theorem is important because, as observed by Zeeman himself, if L ⊂
K and T are simplicial complexes, a standard result of Alexander (1915) tells
us that each map f : |K| → |T |, with f |L simplicial, may be approximated by a
simplicial map g : K ′ → T , where K ′ /K such that f |L in turn is approximated
by g|L′ . However, while this is sufficient in algebraic topology, in geometric
topology we frequently need the strong version

f |L′ = g|L′.

The interested reader might wish to consult [Glaser 1970, pp. 97–103], [Zeeman
1964].

1.6 Homotopy groups

If X is an ss–set, we call the base point of X a 0–simplex ∗X ∈ X(0) or,
equivalently, the sub ss–set ∗ ⊂ X , generated by ∗X . An ss–map f : X → Y
is a pointed map if f(∗X) = ∗Y .

As a consequence of the semisimplicial approximation theorem, the homotopy
theory of ss–sets coincides with the usual homotopy theory of their realisations.

More precisely, let X,Y be pointed ss–sets, with ∗ ⊂ Y ⊂ X . We define
homotopy groups by setting

πn(X, ∗) := πn(|X|, ∗)
πn(X,Y ; ∗) := πn(|X|, |Y |, ∗).

We recall that from the approximation theorem that, if K is a simplicial com-
plex and X a kss–set, then each map f : K → |X| is homotopic to a map
f ′ : K → |X| which is the realisation of an ss–map. Moreover, if f is already
the realisation of a map on the subcomplex L ⊂ K , the homotopy can be taken
to be constant on L. This property allows us to choose, according to our needs,
suitable representatives for the elements of πn(X, ∗). As an example, we have:

πn(X, ∗) := [In, İn;X, ∗]SS = [∆n, ∆̇n;X, ∗]SS = [Sn, 1;X, ∗]SS,

where In , or Sn , is given the structure of an ss–set by any ordered triangula-
tion, which is, for convenience, very often omitted in the notation.
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1 Semisimplicial sets 51

1.7 Fibrations

An ss–map p : E → B is a Kan fibration if, for each commutative square of
ss–maps

Λ //
_�

��

E

p

��
∆ //

??�
�

�
�

B

there exists an ss–map ∆ → E , which preserves commutativity. Here ∆ and
Λ represent a standard simplex and one of its horns respectively.

An equivalent definition of Kan fibration is the following: if x ∈ Bq+1 and
y0, . . . , yk−1, yk+1, . . . , yq+1 ∈ E(q) are such that p(yi) = ∂ix and ∂iyj = ∂i−1yi
per i < j and j 6= k , then there is y ∈ E(q+1) , such that ∂iy = yi , for i 6= k
and p(y) = x.

If F is the preimage in E of the base point, then F is an ss–set, known as the
fibre over ∗.

Lemma Let p : E → B be a Kan fibration:

(a) if F is the fibre over a point in B , then F is a kss–set,

(b) if p is surjective, E is Kan if and only if B is Kan.

The proof is left to the reader, who may appeal to [May 1967, pp. 25–27].

Theorem [Quillen 1968] The geometric realisation of a Kan fibration is a
Serre fibration.

Remark Quillen’s proof is very short, but it relies on the theory of minimal
fibrations, which we will not introduce in our brief outline of the ss–category as
it it is not explicitly used in the rest of the book. The same remark applies to
Sanderson’s proof of the simplicial approximation lemma. We refer the reader
to [May 1967, pages 35–43]

As a consequence of this theorem and the definition of homotopy groups we
deduce that, provided p : E → B is a Kan fibration with B a kss–set, the
there is a homotopy long exact sequence:

· · · −→ πn(F ) −→ πn(E)
p∗−→πn(B) −→ πn−1(F ) −→ · · ·

Suppose now that we have two ss–fibrations pi : Ei → Bi (i = 1, 2) and let
f : E1 → E2 be an ss–map which covers an ss–map f0 : B1 → B2 . Assume
all the ss–sets are Kan and fix a base point in each path component so that
pi, f, f0 are pointed maps.
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Proposition Let pi, f, f0 be as above. Any two of the following properties
imply the remaining one:

(a) f is a homotopy equivalence,

(b) f0 is a homotopy equivalence,

(c) the restriction of f to the fibre of E1 over the base point of each path
component B1 is a homotopy equivalence with the corresponding fibre of
E2 .

Proof This result is an immediate consequence of the long exact sequence in
homotopy, Whitehead’s Theorem and the Five Lemma.

1.8 The homotopy category of ss–sets

Although it will be used very little, the content of this section is quite important,
as it clarifies the role of the category of ss–sets in homotopy theory.

We denote by SS (resp KSS) the category of ss–sets (resp kss–sets) and ss–
maps, and by CW the category of cw-complexes and continuous maps.

The geometric realisation gives rise to a functor | | : SS → CW . We also
consider the singular functor S : CW→ SS.

Theorem (Milnor) The functors | | and S induce inverse isomorphisms be-
tween the homotopy category of kss–sets and the homotopy category of cw–
complexes:

h KSS
| |

// h CW
S

oo

For a full proof, see, for instance, [May 1967, pp. 61–62].

Hence, there is a natural bijection between the homotopy classes of ss–maps
[Sing (X), Y ] and the homotopy classes of maps [X, |Y |], provided that X has
the homotopy type of a cw–complex and Y is a kss–set. Sometimes, we write
just [X,Y ] for either set.

In conclusion, as indicated earlier, we observe that the semisimplicial structure
provides us with a simple, safe and effective way to introduce a good topology,
even a cw structure, on the PL function spaces that we will consider. This
topology will allow the application of tools from classical homotopy theory.

Terminology For convenience, whenever there is no possibility of misunder-
standings we will confuse X and its realisation |X|. Moreover, unless otherwise
stated, all the maps from |X| to |Y | are always intended to be realised and,
therefore, abusing language, we will refer to such maps as semisimplicial maps.
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2 Topological and PL microbundles 53

2 Topological and PL microbundles

Each smooth manifold has a well determined tangent vector bundle. The same
does not hold for topological manifolds. However there is an appropriate gener-
alisation of the notion of a tangent bundle, introduced by Milnor (1958) using
microbundles.

2.1 Topological microbundles

A microbundle ξ , with base a topological space B , is a diagram of maps

B
i−→E p−→ B

with p ◦ i = 1B , where i is the zero–section and p is the projection of ξ .

A microbundle is required to satisfy a local triviality condition which we will
state after some examples and notation.

Notation We write E = E(ξ), B = B(ξ), p = pξ , i = iξ etc. We also write
ξ/B and E/B to refer to ξ . Further B is often identified with i(B).

Examples

(a) The product microbundle, with fibre Rm and base B , is given by

εmB : B i−→B × Rm π1−→B
with i(b) = (b, 0) and π1(b, v) = b.

(b) More generally, any vector bundle with fibre Rm is, in a natural way, a
microbundle.

(c) If M is a topological manifold without boundary, the tangent microbundle
of M , written TM , is the diagram

M
∆−→M ×M π1−→M

where ∆ is the diagonal map and π1 is the projection on the first factor.
a

a

b b

T (S1 × S1)
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54 II : Microbundles

Microbundles maps

2.2 An isomorphism, between microbundles on the same base B ,

ξα : B iα−→Eα
pα−→B (α = 1, 2),

is a commutative diagram

V1

p1

  @
@@

@@
@@

ϕ

��

B

i1
>>~~~~~~~

i2   @
@@

@@
@@

B

V2

p2

>>~~~~~~~

where Vα is an open neighbourhood of iα(B) in Eα and ϕ is a homeomorphism.

2.2.1 In particular, if E/B is a microbundle and U is an open neighbourhood
of i(B) in E , then U/B is a microbundle isomorphic to E/B .

Exercise

Prove that, if M is a smooth manifold, its tangent vector bundle and its tangent
microbundle are isomorphic as microbundles.

Hint Put a metric on M . If the points x, y ∈ M are close enough, consider
the unique short geodesic from x to y and associate to (x, y) the pair having
x as first component and the velocity vector at x as second component.

Observation Any (Rm, 0)–bundle on B is a microbundle, and isomorphic
bundles are isomorphic as microbundles.

2.3 More generally, a microbundle map

ξα : Bα
iα−→Eα

pα−→Bα α = 1, 2

is a commutative diagram

B1
i1 //

f

��

E1
p1 //

f

��

B1

f

��
B2 i2

// E2 p2
// B2

Geometry & Topology Monographs, Volume 6 (2003)



2 Topological and PL microbundles 55

where V1 is an open neighbourhood of i1(B1) in E1 and f , f are continu-
ous maps. We write f : ξ1 → ξ2 meaning that f covers f : B1 → B2 . Oc-
casionally, in order to be more precise, we will write (f , f): ξ1 → ξ2 . For
isomorphisms we shall use the imprecise notation since, by definition, each iso-
morphism ρ: ξ1/B ≈ ξ2/B covers 1B .

A map f : M → N of topological manifolds induces a map between tangent
microbundles

df : TM → TN,

known as the differential of f and defined as follows

M
∆ //

f

��

M ×M //

f×f
��

M

f

��
N

∆ // N ×N // N

Note As we have already observed, each microbundle is isomorphic to any
open neighbourhood of its zero–section; in other words, what really matters in
a microbundle is its behaviour near its zero–section.

In particular, the tangent microbundle TM can, in principle, be constructed by
choosing, in a continuous way, a chart Ux around x as a fibre over x ∈M. Yet,
as we do not have canonical charts for M , such a choice is not a topological
invariant of M : this is where the notion of microbundle comes in to solve the
problem, telling us that we are not forced to select a specific chart Ux , since a
germ of a chart (defined below) is sufficient. The name microbundle is due to
Arnold Shapiro.

2.4 Induced microbundle

If ξ is a microbundle on B and A ⊂ B , the restriction ξ|A is the microbundle
obtained by restricting the total space, ie,

ξ|A : A→ p−1
ξ (A)

pξ−→A
More generally, if ξ/B is a microbundle and f : A → B is a map of topologi-
cal spaces, the induced microbundle f∗(ξ) is defined via the usual categorical
construction of pull–back of the map pξ over the map f .

Example If f : M → N is a map of topological manifolds, then f∗(TN) is
the microbundle

M
i−→M ×N π1−→M

with i(x) = (x, f(x)).
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2.5 Germs

Two microbundle maps (f , f): ξ1 → ξ2 and (g, g): ξ1 → ξ2 are germ equivalent
if f and g agree on some neighbourhood of B1 in E1 . The germ equivalence
class of (f , f) is called the germ of (f , f) or less precisely the germ of f .
The notion of the germ of a map (or isomorphism) is far more useful and
flexible then that of map or isomorphism of microbundles because unlike maps
and isomorphisms, germs can be composed. Therefore we have the category of
microbundles and germs of maps of microbundles.

From now on, unless there is any possibility of confusion, we will use inter-
changeably, both in the notation and in the exposition, the germs and their
representatives.

2.6 Local triviality

A microbundle ξ/B is locally trivial, of dimension or rank m, or, more simply,
an m–microbundle, if it is locally isomorphic to the product microbundle εmB .
This means that each point of B has a neighbourhood U in B such that
εmU ≈ ξ|U .

An m–microbundle ξ/B is trivial if it is isomorphic to εmB .

B

ξ locally trivial

a

a

A non trivial microbundle on S1
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Examples

(a) The tangent microbundle TMm is locally trivial of rank m.

In fact, let x ∈ M and (U,ϕ) be a chart of M on a neighbourhood of x such
that ϕ(U) ⊂ Rm . Define hx : U × Rm → U × U near U × 0 by

hx(u, v) = (u, ϕ−1(ϕ(u) + v)).

(b) If ξ/B is an m–microbundle and f : A→ B is continuous, then the induced
microbundle f∗(ξ) is locally trivial. This follows from two simple facts:

(1) If ξ is trivial, then f∗(ξ) is trivial.

(2) If U ⊂ B and V = f−1(U) ⊂ A, then

f∗(ξ)|V = (f |V )∗(ξ|U).

Terminology From now on the term microbundle will always mean locally
trivial microbundle.

2.7 Bundle maps

With the notation used in 2.3, the germ of a map (f , f) of m–microbundles
is said to be locally trivial if, for each point x, of B1 , f restricts to a germ
of an isomorphism of ξ1|x and ξ2|f(x). Once the local trivialisations have
been chosen this germ is nothing but a germ of isomorphism of (Rm, 0) (as a
microbundle over 0) to itself.

A locally trivial map is called a bundle map. Thus a map is a bundle map
if, restricted to a convenient neighbourhood of the zero-section, it respects the
fibres and it is an open topological embedding on each fibre. Note that an
isomorphism between m–microbundles is automatically a bundle map.

Terminology We often refer to an isomorphism between m–microbundles as
a micro–isomorphism.

Examples

(a) If f : M → N is a homeomorphism of topological manifolds, its differential
df : TM → TN is a bundle map. It will be enough to observe that, since it
is a local property, it is sufficient to consider the case of a homeomorphism
f : Rm → Rm . This is a simple exercise.

(b) Going back to the induced bundle, there is a natural bundle map f : f∗(ξ)→
ξ . The universal property of the fibre product implies that f is, essentially, the
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only example of a bundle map. In fact, if f ′ : η → ξ is a bundle map which covers
f , then there exists a unique isomorphism h : η → f∗(ξ) such that f ◦ h = f ′ :

η h //

f ′
!!B

BB
BB

BB
BB

f∗(ξ)

f

��
ξ

(c) It follows from (b) that if f : A → B is a continuous map then each iso-
morphism ϕ: ξ1/B → ξ2/B induces an isomorphism f∗(ϕ): f∗(ξ1)→ f∗(ξ2).

2.8 The Kister–Mazur theorem.

Let ξ : B i−→E p−→B be an m–microbundle, then we say that ξ admits or con-
tains a bundle, if there exists an open neighbourhood E1 of i(B) in E , such
that p : E1 → B is a topological bundle with fibre (Rm, 0) and zero–section
i(B). Such a bundle is called admissible.

The reader is reminded that an isomorphism of (Rm, 0)–bundles is a topological
isomorphism of Rm–bundles, which is the identity on the 0–section.

Theorem (Kister, Mazur 1964) If an m–microbundle ξ has base B which
is an ENR then ξ admits a bundle, unique up to isomorphism.

The reader is reminded that ENR is the acronym for Euclidean Neighbourhood
Retract and therefore the result is valid, in particular, in those cases when B is a
locally finite Euclidean polyhedron or a topological manifold. The proof of this
difficult theorem, for which we refer the reader to [Kister 1964], is based upon
a lemma which is interesting in itself. Let G0 be the space of the topological
embeddings of (Rm, 0) in itself with the compact open topology and let H0 be
the subspace of proper homeomorphisms of (Rm, 0). The lemma states that H0

is a deformation retract of G0 , ie, there exists a continuous map F : G0×I → G0

so that F (g, 0) = g , F (g, 1) ∈ H0 for each g ∈ G0 and F (h, t) ∈ H0 for each
t ∈ I and h ∈ H0 .

In the light of this result it makes sense to expect the fact that two admissible
bundles are not only isomorphic but even isotopic. This fact is proved by Kister.

Note In principle Kister’s theorem would allow us to work with genuine Rm–
bundles which are more familiar objects than microbundles. In fact, according
to definition 2.5, a microbundle ξ is micro-isomorphic to each of its admissible
bundles.
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It is not surprising if Kister’s discovery took, at first, some of the sparkle from
the idea of microbundle. Nevertheless, it is in the end convenient to maintain
the more sophisticated notion of microbundle, since, for instance, the tangent
microbundle of a topological manifold is a canonical object while the admissible
tangent bundle is defined only up to isomorphism.

2.9 Microbundle homotopy theorem

The microbundle homotopy theorem states that each microbundle ξ/X × I ,
where X is a paracompact Hausdorff space, admits an isomorphism ϕ: ξ ≈
η × I , where η is a copy of ξ|X × 0. There is also a relative version of this
result, where, given C a closed subset of X and an isomorphism ϕ′ : (ξ|U)× I ,
where U is an open neighbourhood of C in X , it is possible to chose ϕ to
coincide with ϕ′ on an appropriate neighbourhood of C .

Kister’s result reduces this theorem to the analogous and more familiar result
concerning bundles with fibre Rm [cf Steenrod 1951, section 11].

The following important property follows immediately from the homotopy the-
orem.

Proposition If f, g are continuous homotopic maps, of a paracompact Haus-
dorff space X to Y and if ξ/Y is an m–microbundle, then f∗(ξ) ≈ g∗(ξ).

2.10 PL microbundles

The category of PL microbundles and maps is defined in analogy to the corre-
sponding topological case using polyhedra and PL maps, with obvious changes.
For example, each PL manifold without boundary M admits a well defined PL
tangent microbundle given by

M
∆−→M ×M π1−→M .

A PL map f : Mm → Nm induces a differential df : TM → TN , which is a PL
map of PL m–microbundles. The PL microbundle f∗(ξ), induced by a PL map
of polyhedra, is defined in the usual way through the categorical construction
of the pullback and the natural map f∗(ξ) → ξ is locally trivial (ie is a PL
bundle map) if ξ is locally trivial.

As it the topological case PL microbundle will always mean PL locally trivial
microbundle.

The PL version of Kister–Mazur theorem is proved in [Kuiper–Lashof 1966].

Finally, the homotopy theorem for the PL case asserts that, if X is a polyhedron,
then ξ/X × I ≈ η × I , with η = ξ|X × 0. Nevertheless the proposition that
follows from it is less obvious than its topological counterpart.
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Proposition Let f, g : X → Y be PL maps of polyhedra and assume that
f, g are continuously homotopic. Let ξ/Y be a PL m–microbundle. Then

f∗(ξ) ≈PL g
∗(ξ).

Proof Let F : X × I → Y be homotopy of f and g . By Zeeman’s relative
simplicial approximation theorem, there exists a homotopy F ′ : X × I → Y of
f and g , with F ′ a PL map. The remaining part of the proof is then clear.
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3 The classifying spaces BPLm and BTopm

Now we want to prove the existence of classifying spaces for PL m–microbundles
and topological m–microbundles. The question fits in the general context of
the construction of the classifying space BG of a simplicial group (monoid) G.
On this problem, at the time, a large amount of literature was produced and
of this we will just cite, also making a reference for the reader, [Eilenberg and
MacLane 1953, 1954], [Maclane 1954], [Heller 1955], [Milnor 1961], [Barratt,
Gugenheim and Moore 1959], [May 1967], [Rourke and Sanderson 1971]. The
first to construct a semisimplicial model for BPLm and BTopm was Milnor
prior to 1961.

The semisimplicial groups Topm and PLm

3.1 We remind the reader that a semisimplicial group G is a contravariant
functor from the category ∆∗ to the category of groups. From now on em will
denote the identity in G(m) = G(∆m).

We define the ss–set Topm to have typical k–simplex ϕ a micro-isomorphism

ϕ: ∆k × Rm → ∆k × Rm.

For each λ : ∆l → ∆k in ∆∗ , we define

λ# : Top(k)
m → Top(l)

m

by setting λ#(ϕ) to be equal to the micro-isomorphism induced by ϕ according
to 2.7 (c):

∆l × Rm
λ#(ϕ)

//

λ×1

��

∆l × Rm

λ×1

��
∆k × Rm ϕ

// ∆k × Rm

The operation of composition of micro-isomorphisms makes Top(k)
m into a group

and λ# a homomorphism of groups. Therefore Topm is a semisimplicial group.

3.2 In topological m–microbundle theory Topm plays the role played by the
linear group GL(m,R) in vector bundle theory. Furthermore it can be thought
of as the singular complex of the space of germs of the homeomorphisms of
(Rm, 0) to itself.

Geometry & Topology Monographs, Volume 6 (2003)



62 II : Microbundles

3.3 Since |∆k| ≈ |Λk × I|, it follows that Topm satisfies the Kan condition.
On the other hand we have the following general result, whose proof is left to
the reader.

Proposition Each semisimplicial group satisfies the Kan condition.

Proof See [May 1967, p. 67].

3.4 The semisimplicial group PLm is defined in a totally analogous manner
and, from now on, the exposition will concentrate on the PL case.

3.5 Steenrod’s criterion

The classification of bundles of base X in the classical approach of [Steenrod
1951] is done through the following steps:

(a) there is a one to one canonical correspondence

[Rm–vector bundles] ≡ [GL(m,R)–principal bundles]

More generally

[bundles with fibre F and structure group G] ≡ [G–principal bundles]

where [ ] indicates the isomorphism classes;

(b) recognition criterion: there exists a classifying principal bundle

γG : G→ EG→ BG

which is characterised by the fact that E is path connected and πq(E) = 0
if q ≥ 1. The homotopy type of BG is well defined and it is called the
classifying space of the group G, or also classifying space for principal
G–bundles with base a cw–complex.

The correspondence (a) assigns to a bundle ξ , with group G and fibre F , the
associated principal bundle Princ(ξ), which is obtained by assuming that the
transitions maps of ξ do not operate on F any longer but operate by translation
on G itself. The inverse correspondence assigns to a principal G–bundle, E/X ,
the bundle obtained by changing the fibre, ie the bundle

F → E ×G F → X.

It follows that by changing the fibre of γG , we obtain the classifying bundle for
the bundles with group G and fibre F , so that BG is the classifying space also
for those bundles. Obviously we are assuming that there is a left action of G
on the space F , which is not necessarily effective, so that

E ×G F := E × F/(xg, y) ∼ (x, gy), y ∈ F.
We will follow the outline explained above adapting it to the semisimplicial
case.
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3.6 Semisimplicial principal bundles

Let G be a semisimplicial group. Then a free action of G on the ss–set E is an
ss–map E ×G → E , such that, for each θ ∈ E(k) and g′, g′′ ∈ G(k) , we have:
(a) (θg′)g′′ = θ(g′g′′); (b) θek = θ ; (c) θg′ = θg′′ ⇔ g′ = g′′ .

The space X of the orbits of E with respect to the action of G is an ss–set and
the natural projection p : E → X is called a G–principal bundle. The reader
can observe that neither E , nor X are assumed to be Kan ss–sets.

Proposition p : E → X is a Kan fibration.

Proof Let Λk be the k–horn of ∆k , ie Λk = S(vk, ∆̇k). We need to prove the
existence of a map α which preserves the commutativity of the diagram below.

Λk γ
//

_�

��

E

p

��
∆

α //

α

??~
~

~
~

X

To start with consider any lifting α′ of α, which is not necessarily compatible
with γ. Let ε : Λk → G be defined by the formula

α′(x)ε(x) = γ(x).

Since G satisfies the Kan condition, ε extends to ε : ∆k → G. If we set

α(x) := α′(x)ε(x);

then α is the required lifting.

The theory of semisimplicial principal G–bundles is analogous to the theory of
principal bundles, developed by [Steenrod, 1951] for the topological case. In
particular we leave to the reader the task of defining the notion of isomorphism
of G–bundles, of trivial G–bundle, of G–bundle map, of induced G–bundle and
we go straight to the main point.

For each ss–set X let Princ(X) be the set of isomorphism classes of princi-
pal G–bundles on X and, for each ss–map f : X → Y , let f∗ : Princ(Y ) →
Princ(X) be the induced map: Princ is a contravariant functor with domain
the category SS. Our aim is to represent this functor.
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3.7 The construction of the universal bundle

Steenrod’s recognition criterion 3.5 (b) is carried unchanged to the semisim-
plicial case with a similar proof. Then it is a matter of constructing a principal
G–bundle γ : G→ EG→ BG, such that

(i) EG and BG are Kan ss–sets
(ii) EG is contractible.
H

We will follow the procedure used by [Heller 1955] and [Rourke–Sanderson 1971].
If X is an ss–set, let

XS :=
∞⋃
0

X(k).

In other words XS is the graded set consisting of all the simplexes of X , without
the face and degeneracy operators. We will denote with EG(X) the totality of
the maps of sets f with domain XS and range GS , which have degree zero, ie
f(X(k)) ⊂ G(k) .

Since G(k) is a group, then also EG(X) is a group.

Let G(X) be the subgroup consisting of those maps of sets which commute
with the semisimplicial operators, ie, those maps of sets which are restrictions
of ss–maps. For each k ≥ 0 we define

EG(k) := EG(∆k),

and we observe that G(∆k) is a group isomorphic to G(k) , the isomorphism
being the map which associates to each element of G(k) its characteristic map,
∆k → G , thought of as a graded function ∆k

S → GS (cf II 1.1).

Now it remains to define the semisimplicial operators in

EG =

∞⋃
0

EG(k).

Let λ: ∆l → ∆k be a morphism of ∆∗ and let λS : ∆l
S → ∆k

S be the corre-
sponding map of sets. For each θ ∈ EG(k) we define

λ#θ := θ ◦ λS : ∆l
S → GS

where λ# : EG(k) → EG(l) is a homomorphism of groups.
N

This concludes the definition of an ss–set EG, which even turns out to be a
group which has a copy of G as semisimplicial subgroup.
H

Furthermore, it follows from the definition above, that there is a natural iden-
tification:

EG(X) ≡ {ss–maps X → EG} (3.7.1)

The reader is reminded that EG(X) is the set of the degree–zero maps of sets
from XS to GS .

N

Geometry & Topology Monographs, Volume 6 (2003)



3 The classifying spaces BPLm and BTopm 65

Proposition EG is Kan and contractible.

H
Proof We claim that each ss–map ∂∆k → EG extends to ∆k . This follows
from (3.7.1) and from the fact that each map of sets of degree zero ∂∆k

S → GS
obviously admits an extension to ∆k

S . The result follows straight away from
this claim.

N

At this point we define
BG := EG/G,

the ss–set of the right cosets of G in EG, and set pγ : EG→ BG to be equal
to the natural projection.

In this way we have constructed a principal G–bundle γ/BG with E(γ) = EG.
It follows from Lemma 1.7 that BG is a Kan ss–set.

The following classification theorem for semisimplicial principal G-bundles has
been established.

Theorem BG is a classifying space for the group G, ie, the natural transfor-
mation

T : [X;BG]→ Princ(X),

defined by T [f ] := [f∗(γ)] is a natural equivalence of functors.

Corollary If H ⊂ G is a semisimplicial subgroup, then there exists, up to
homotopy, a fibration

G/H → BH → BG.

Proof Factorise the universal bundle of G through H and use the fact that,
by the Steenrod’s recognition principle,

EG/H ' BH.

Observation If H ⊂ G is a subgroup, then the quotient

H → G→ G/H

is a principal H –fibration and, by lemma 1.7, G/H is Kan.
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Classification of m–microbundles

3.8 So far we have established part (b) of 3.5 for principal G–bundles. Now
we assume that G = PLm and we will examine part (a). Let K be a locally
finite simplicial complex. Order the vertices of K . We consider the associated
ss–set K, which consists of all the monotone simplicial maps f : ∆q → K
(q = 0, 1, 2, . . .), with λ# : Kq → Kr given by λ#(f) = f ◦ λ with λ ∈ ∆∗ .

We will denote by Micro(K) the set of the isomorphism classes of m–microbun-
dles on K and by Princ(K) the set of the isomorphism classes of PL principal
m–bundles with base K.

Theorem There is a natural one to one correspondence

Micro(K) ≈ Princ(K).

H
Proof If ξ/K is an m–microbundle, the associated principal bundle Princ(ξ)
is defined as follows:

1) a q–simplex of the total space E of Princ(ξ) is a microisomorphism

h : ∆q × Rm → f∗(ξ)

with f ∈ Kq . The semisimplicial operators λ# : E(q) → E(r) are defined
by the formula

λ#(f,h) := (λ#(f), λ∗(h))

2) the projection p: E(q) → K is given by p(h) = f

3) the action E(q)×PL
(q)
m → E(q) is the composition of micro-isomorphisms.

Since PL
(q)
m acts freely on E(q) with orbit space K(q) , then the projection

p: E → K is, by definition, a PL principal m–bundle.

Conversely, given a PL principal m–bundle η/K , we can construct an m–
microbundle on K as follows: Let α : K → E(η) be any map which associates
with each ordered q–simplex θ in K a q–simplex α(θ) in E(η), such that

pηα(θ) = θ . Then there exists ϕ(i, θ) ∈ PL
(q−1)
m such that

∂iα(θ) = α(∂iθ)ϕ(i, θ).

Furthermore ϕ(i, θ) is uniquely determined. Let us now consider the disjoint
union of trivial bundles εmθ with θ in K. We glue together such bundles by
identifying each εm∂iθ with εmθ |∂iθ through the micro-isomorphism defined by
ϕ(i, θ) and by the ordering of the vertices of θ . The reader can verify that such
identifications are compatible when restricted to any face of θ . Therefore an
m–microbundle is defined η[Rm]/K . It is not difficult to convince oneself that
the two correspondences constructed

ξ −→ Princ(ξ) (associated principal bundle)

η −→ η[Rn] (change of fibre)
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are inverse of each others. This proves the theorem.
N

3.9 A certain amount of technical detail which is necessary for a rigorous
treatment of the classification of microbundles has been omitted, particularly
the part concerning the naturality of various constructions. However the main
points have been explained and we move on to state the final result. To do this
we need to define a microbundle with base an ss–set X . For what follows it
suffices for the reader to think of a microbundle with base X as a microbundle
with base |X|. Readers who are concerned about the technical details here may
read the following inset material.
H

It the topological case it is quite satisfactory to regard a microbundle ξ/X as
a microbundle ξ/|X|, however in the PL case it is not clear how to give |X|
the necessary PL structure so that a PL microbundle over |X| makes sense.
We avoid this problem by defining a PL microbundle ξ/X to comprise a collec-
tion of PL microbundles with bases the simplexes of X glued together by PL
microbundle maps corresponding to the face maps of X .

More precisely, for each σ ∈ X(k) we have a PL microbundle ξσ/∆
k and for each

pair σ ∈ X(k), τ ∈ X(l) and monotone map λ: ∆l → ∆k such that λ#(σ) = τ
an isomorphism

λ#
στ : ξτ ≈ λ∗ξσ

which is functorial ie, (λ ◦ µ)#
σρ = µ∗(λ#

στ ) ◦ µ#
τρ

where µ : ∆j → ∆l and µ#(τ) = ρ. Another way of putting this is that we have
a lifting of X (as a functor) to the category of PL microbundles and bundle

maps. More precisely associate a category X̃ with X by Ob(X̃) =
∑
nX

(n)

and Map(X̃)(τ, σ) = {(λ, τ, σ) : λ#σ = τ} for σ, τ ∈ Ob(X̃). Composition of

maps in X̃ is given by (λ, τ, σ) ◦ (µ, ρ, τ) = (λµ, ρ, τ). A PL microbundle ξ/X

is then a functor ξ from X̃ to the category of PL microbundles and bundle
maps such that for each σ ∈ X(n) , ξσ = ξ(σ) is a microbundle with base ∆n .

The definition implies that the microbundles ξσ can be glued to form a (topo-
logical) microbundle with base |X|.

N
Let BPLm be the classifying space of the group G = PLm constructed in 3.7.
Theorem 3.7 now implies that we have a PL microbundle γmPL/BPLm which we
call the classifying bundle and we have the following classification theorem.

Theorem BPLm is a classifying space for PL m–microbundles which have a
polyhedron as base. Precisely, there exists a PL m–microbundle γmPL/BPLm ,
such that the set of the isomorphism classes of PL m–microbundles on a
fixed polyhedron X is in a natural one to one correspondence with [X,BPLm]
through the induced bundle.
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3.10 Milnor (1961) also proved that the homotopy type of BPLm contains a
locally finite simplicial complex.

His argument proceeds through the following steps:

(a) for each finite simplicial complex K the set Micro(K) is countable

(b) by taking K to be a triangulation of the sphere Sq deduce that each
homotopy group πq(BPLm) is countable

(c) the result then follows from [Whitehead 1949, p. 239].

The theorem of Whitehead, to which we referred, asserts that each countable
cw–complex is homotopically equivalent to a locally finite simplicial complex.
We still have to prove that each cw–complex whose homotopy groups are count-
able is homotopically equivalent to a countable cw–complex, for more detail
here, see subsection 3.13 below.

Note By virtue of 3.10 and of the Zeeman simplicial approximation theorem
it follows that

[X,BPLm]PL ≡ [X,BPLm]Top.

3.11 Let BTopm be the classifying space of G = Topm . Then we have, as
above:

Theorem BTopm classifies topological m–microbundles with base a polyhe-
dron.

Addendum BTopm even classifies the m–microbundles with base X , where
X is an ENR. In particular X could be a topological manifold.

Proof of the addendum Let γmTop/BTopm be a universal m–dimensional
microbundle, which certainly exists, and let N(X) be an open neighbourhood
of X in a Euclidean space having X as a retract. Let r : N(X) → X be the
retraction. Assume that ξ/X is a topological m–bundle and take r∗(ξ)/N(X).
By the classification theorem there exists a classifying function

(F, F ): r∗(ξ)→ γmTop.

Since r∗(ξ)|X = ξ , then (F, F )|ξ classifies ξ .

From now on we will write Gm to indicate, without distinction, either Topm
or PLm .

Geometry & Topology Monographs, Volume 6 (2003)



3 The classifying spaces BPLm and BTopm 69

3.12 There are also relative versions of the classifying theorems which assert
that, if C ⊂ X is closed and U is an open neighbourhood of C in X and if
fU : ξ|U → γmG is a classifying map, then there exists a classifying map f : ξ →
γmG , such that f = fU on a neighbourhood of C . In the case where C is
a subpolyhedron of X the relative version can be easily obtained using the
semisimplicial techniques described above.

3.13 Either for historical reasons or in order to have at our disposal explicit
models for BGm , which should make the exposition and the intuition eas-
ier in the rest of the text, we used Milnor’s heuristic semisimplicial approach.
However the existence of BGm can be deduced from Brown’s theorem [Brown
1962] on representable functors. This was observed for the first time by Arnold
Shapiro. The reader who is interested in this approach is referred to [Kirby–
Siebenmann 1977; IV section 8]. Siebenmann observes [ibidem, footnote p.
184] that Brown’s proof reduces the unproven statement at the end of 3.10 to
an easy exercise. This is true. Let T be a representable homotopy cofunc-
tor defined on the category of pointed cw–complexes. An easy inspection of
Brown’s argument ensures that, provided T (Sn) is countable for every n ≥ 0,
T admits a classifying cw–complex which is countable. Now let Y be a path
connected cw–complex whose homotopy groups are all countable, and consider
T (X) := [X,Y ]. Then the above observation tells us that T (X) admits a count-
able classifying Y ′ . But Y is homotopically equivalent to Y ′ by the homotopy
uniqueness of classifying spaces, which proves what we wanted.

3.14 BGm as a Grassmannian

We will start by constructing a particular model of EGm . Let R∞ denote the
union R1 ⊂ R2 ⊂ R3 ⊂ . . . .
An m–microbundle ξ/∆k is said to be a submicrobundle of ∆k×R∞ if E(ξ) ⊂
∆k × R∞ and the following diagram commutes:

E(ξ)
_�

��

p

##H
HH

HH
HH

HH

∆k

i
;;vvvvvvvvv

j
$$I

II
II

II
II

∆k

∆k × R∞
π1

::uuuuuuuuu

where i is the zero-section of ξ , p is the projection and j(x) = (x, 0). Having
said that, let WGm be the ss–set whose typical k–simplex is a monomorphism

f : ∆k × Rm → ∆k × R∞
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ie, a Gm micro-isomorphism between ∆k×Rm and a submicrobundle of ∆k ×
R∞ . The semisimplicial operators are defined as usual, passing to the induced
micro-isomorphism.

Exercise WGm is contractible.

In order to complete the exercise we need to show that each ss–map ∆̇→WGm
extends to ∆ → WGm , where ∆ is any standard simplex. This means that
each monomorphism h : ∆̇×Rm → ∆̇×R∞ has to extend to a monomorphism
H : ∆× Rm → ∆× R∞ and this is not difficult to establish.

In the same way one can verify that WGm satisfies the Kan condition. WGm
is called the Gm–Stiefel manifold.

An action WGm×Gm →WGm defined by composing the micro–isomorphisms
transforms WGm into the space of a principal fibration

γ(Gm): Gm →WGm → BGm. (3.14.1)

By the Steenrod’s recognition criterion, BGm in (3.14.1) is a classifying space
for Gm and a typical k–simplex of BGm is nothing but a Gm–submicrobundle
of ∆k ×R∞ . In this way BGm is presented as a semisimplicial grassmannian.
Furthermore the tautological microbundle γmG /BGm is obtained by putting on
the simplex σ the microbundle which it represents which we will still denote
with σ . Therefore

γmG |σ := σ.

3.15 The ss–set Topm/PLm

In the case of the natural map of grassmannians

BPLm
pm−→BTopm

induced by the inclusion PLm ⊂Topm , it is very convenient to have a geomet-
ric description of its homotopic fibre. This is very easy to obtain using the
semisimplicial language. In fact there is an action also defined by composition,

WTopm × PLm →WTopm,

whose orbit space has the same homotopy type as BPLm and gives the required
fibration

B : Topm/PLm −→ BPLm
pm−→BTopm.

This takes us back to the general construction of Corollary 3.7.
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Obviously, Topm/PLm is the ss–set obtained by factoring with respect to the
natural action of PLm on Topm , so, by Observation 3.7, Topm/PLm satisfies
the Kan condition and

PLm ⊂ Topm → Topm/PLm

is a Kan fibration.
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4 PL structures on topological microbundles

In this section we will consider the problem of the reduction of a topological
microbundle to a PL microbundle and we will classify reductions in terms of lift-
ings on their classifying spaces. In this way we will put in place the foundations
of the obstruction theory which will allow the use apparatus of homotopy theory
for the problem of classifying the PL structures on a topological manifold.

4.1 A structure of PL microbundle on a topological m–microbundle ξ , with
base an ss–set X , is an equivalence class of topological micro–isomorphisms
f : ξ → η , where η/X is a PL microbundle. The equivalence relation is f ∼ f ′

if f ′ = h ◦ f , with h a PL micro–isomorphism.

A structure of PL microbundle will also be called a PLµ–structure (µ indicates
a microbundle). More generally, an ss–set, PLµ(ξ), is defined so that a typical
k–simplex is an equivalence class of micro–isomorphisms

f : ∆k × ξ → η

where η is a PL m–microbundle on ∆k ×X . The semisimplicial operators are
defined, as usual, passing to the induced micro–isomorphism.

Equivalently, a structure of PL microbundle on

ξ : X i−→E(ξ)
p−→X

is a polyhedral structure Θ, defined on an open neighbourhood U of i(X), such
that

X
i−→UΘ

p−→X

is a (locally trivial) PL m–microbundle. If Θ′ is another such polyhedral struc-
ture then we say that Θ is equal to Θ′ if the two structures define the same
germ in a neighbourhood of the zero–section, ie, if Θ = Θ′ in an open neigh-
bourhood of i(X) in E(ξ). Then Θ truely represents an equivalence class.
Using this language PLµ(ξ) is the ss–set whose typical k–simplex is the germ
around ∆k ×X of a PL structure on the product microbundle ∆k × ξ .

Going back to the fibration

B : Topm/PLm −→ BPLm
pm−→BTopm

constructed in 3.15 we fix, once and for all, a classifying map f : ξ → γmTop , which
restricts to a continuous map f : X → BTopm . Let us also fix a classifying map
pm : γmPL → γmTop , with restriction pm : BPLm → BTopm . A k–simplex of the
kss–set Lift(f) is a continuous map

σ : ∆k ×X → BPLm
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such that pm ◦ σ = f ◦ π2 , where π2 is the projection on X . Therefore a
0–simplex of Lift(f) is nothing but a lifting of f to BPLm , a 1–simplex is a
vertical homotopy class of such liftings, etc. As usual the liftings are nothing
but sections. In fact, passing to the induced fibration f∗(B) ( which we will
denote later either with ξf or ξ[Topm/PLm]) we have, giving the symbols the
obvious meanings,

Lift(f) ≈ Sect ξ[Topm/PLm] (4.1.1)

where the right hand side is the ss–set of sections of the fibration ξ[Topm/PLm]
associated with ξ .

Classification theorem for the PLµ–structures Using the notation in-
troduced above, there is a homotopy equivalence

α : PLµ(ξ)→ Lift(f)

which is well defined up to homotopy.

First we will give an indication of how α can be constructed directly, following
[Lashof 1971].

First proof Firstly we will observe that f : ξ → γmTop induces an isomorphism
h : ξ → f∗(γmTop).

η //

q

��
�
�
�
�
�
�
� γmPL

��
�
�
�
�
�
�
�

pm

$$J
JJ

JJ
JJ

JJ

ξ
f //

��
�
�
�
�
�
�
�

h
##F

F
F

F
F

g

;;wwwwwwwwwww
γmTop

��
�
�
�
�
�
�
�

f∗(γmTop)

{{w
w
w
w
w

BPLm
pm

$$J
JJ

JJ
JJ

JJ
J

X
f

//

f̂

55jjjjjjjjjjjjjjjjjjjj BTopm

Let f̂ : X → BPLm be a lifting of f and η = f̂∗(γPL). The map of m–
microbundles pm induces an isomorphism

q : η = f̂∗(γPL)→ f∗(γTop).

In fact, f∗(γTop) = (pmf̂)∗(γTop) = f̂∗p∗m(γTop) and there is a canonical iso-
morphism ϕ between γPL and p∗m(γTop). Therefore it will suffice to put

q := f̂∗(ϕ).
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Now we can define a PLµ–structure g on ξ by defining

g := q−1h.

In this way we have associated a 0–simplex of PLµ(ξ) with a 0–simplex of
Lift(f) .

On the other hand, if f̂t is a 1-simplex of Lift(f), ie, a vertical homotopy class
of liftings of f , then the set of induced bundles f̂∗t (γTop) determines, in the
way we described above, a 1–simplex gt of PLµ–structures on ξ .

Conversely, fix a PLµ–structure g : ξ → η , and let a : η → γPL be a classifying
map which covers a : X → BPLm .

η a // γPL

��
�
�
�
�
�
�
�

pm

%%K
KK

KK
KK

KK
K

ξ
f //

��
�
�
�
�
�
�
�

g

OO

γTop

��
�
�
�
�
�
�
�

BPLm
pm

%%K
KK

KK
KK

KK

X
pma //

f

11

a

<<xxxxxxxxx

f̂ 88

BTopm

The maps X → BTopm given by pma and f are homotopic, since they classify
topologically isomorphic microbundles. Therefore, since pm is a fibration and
pma lifts to a trivially, then f also lifts to a f̂ : X → BPLm . This way is
established a correspondence between a 0–simplex of PLµ(ξ) and a 0–simplex
of Lift(f).

4.2 It would be possible to conclude the proof of the theorem in this heuristic
way, however we would rather use a less direct argument, which is more elegant
and, in some sense, more instructive and illuminating. This argument is due to
[Kirby–Siebenmann 1977, pp. 236–239].

H
Preface If A and B are metrisable topological spaces, then the typical k–
simplex of the ss of the functions BA is a continuous map

∆k × A→ B.

The semisimplicial operators are defined by composition of functions. Naturally
the path components of BA are nothing but the homotopy classes [A,B]. An
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ss–map g of a simplicial complex Y in BA is a continuous map G : Y ×A→ B ,
defined by

G(y, a) = g(y)(a)

for y ∈ Y ; furthermore g is homotopic to a constant if and only if G is homo-
topic to a map of the same type as

Y ×A π2−→A −→ B.

Incidentally we notice that if A has a countable system of neighbourhoods and
if we give BA the compact open topology, then g is continuous if and only if
G is continuous.

Second proof of theorem 4.1 Let MTop(X) be the ss–set whose typical
k–simplex is a topological m–microbundle ξ with base ∆k × X . In order to
avoid set–theoretical problems we can think of ξ as being represented by a
submicrobundle of ∆k × X × R∞ . We agree that another such microbundle
ξ′/∆k × X represents the same simplex of MTop(X) if ξ coincides with ξ′

in a neighbourhood of the zero–section. In practice (cf 3.14) MTop(X) can
be considered as the grassmannian of the m–microbundles on X . Now, if
Y is a simplicial complex, then an ss–map Y → MTop(X) is represented by
an m–microbundle γ on Y × X and it is homotopic to a constant if there
exists an m–microbundle γI on I × Y ×X , such that γI |0 × Y ×X = γ and
γI |1× Y ×X = Y × γ1 , where γ1 is some microbundle on X .

Further, let M+
Top(X) be the ss–set whose typical k–simplex is an equivalence

class of pairs (ξ, f), where ξ is an m–microbundle on ∆k ×X and f : ξ → γmTop

is a classifying micro–isomorphism and, also, (ξ, f) ∼ (ξ′, f ′) if the pairs are
identical in a neighbourhood of the two respective zero–sections. In this case
an ss–map g : Y →M+

Top(X) is represented by an m–microbundle η on Y ×X ,
together with a classifying map fη : η → γmTop. Furthermore g is homotopic to a
constant if there exist an m–microbundle ηI on I×Y ×X and a classifying map
F : ηI → γmTop , such that (ηI ,F)|0×Y ×X = (η, fη) and (ηI ,F)|1×Y ×X is of
type (Y × η1, f1π2), where π2 is the projection on η1/X and f1 is a classifying
map for η1 . Consider the two forgetful maps

MTop(X)
ρTop←−M+

Top(X)
σTop−→BTopXm,

ρTop(ξ, f) = ξ , and σTop(ξ, f) = f. We leave to the reader the proof that
ρ, σ are homotopy equivalences, since they induce a bijection between the path
components, as well as an isomorphism between the homotopy groups of the
corresponding components. For ρ this is a consequence of the classification
theorem for topological m–microbundles, in its relative version. In order to
find a homotopy inverse for σ , we instead use the construction of the induced
bundle and of the homotopy theorem for microbundles. In the PL case we have
analogous ss–sets and homotopy equivalences, which are defined in the same
way as the corresponding topological objects:

MPL(X)
ρPL←−M+

PL(X)
σPL−→BPLXm,
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where k–simplex of MPL(X) is now a topological m–microbundle ξ on ∆k×X ,
together with a PL structure Θ, and (ξ,Θ) ∼ (ξ′,Θ′) if such pairs coincide in a
neighbourhood of the zero section.

We observe that the proof of the fact that σPL is a homotopy equivalence
requires the use of Zeeman’s simplicial approximation theorem.

In this way we obtain a commutative diagram of forgetful ss–maps

MPL(X)

p′

��

M+
PL(X)

ρPLoo

p

��

σPL // BPLXm

p′′

��
MTop(X) M+

Top(X)
ρTop

oo
σTop

// BTopXm

where p′′ is induced by the projection pm : BPLm → BTopm of the fibration B .
It is easy to verify that both p′ and p′′ are Kan fibrations. Furthermore we can
assume that p also is a fibration. In fact, if it is not, the Serre’s trick makes p a
fibration, transforming the diagram above into a new diagram which is commu-
tative up to homotopy and where the horizontal morphisms are still homotopy
equivalences, while the lateral vertical morphisms p′, p′′ remain unchanged. At
this point the Proposition 1.7 ensures that, if (ξ, f) ∈ M+

Top(X), then the fi-

bre p′
−1

(ξ) is homotopically equivalent to the fibre (p′′)−1(f). However, by
definition:

(p′)−1(ξ) = PLµ(ξ)

(p′′)−1(f) = Lift(f).

The theorem is proved.
N
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